WHO Expert Committee on Biological Standardization

Thirty-eighth Report

World Health Organization
Technical Report Series
771

World Health Organization, Geneva 1988
CONTENTS

General
- Freedom of international reference materials from contamination by hepatitis B virus and human immunodeficiency viruses .. 9
- Possible adverse effect of secondary desiccation on the stability of lyophilized international reference materials .. 9
- Assignment of units of activity to reference materials 10
- Distribution of international reference materials by the four International Laboratories for Biological Standards .. 11
- Reference materials for uses other than biological standardization 11
- Definition of "production area" for biologicals 12
- The residual content of animal serum or its constituents in vaccines prepared in cell cultures or grown in media containing animal serum 13
- Meeting of the WHO Consultative Group on Poliomyelitis Vaccines 13
- Thromboplastins ... 14
- Interferons .. 15
- Selection of candidate suppliers of BCG vaccines to UNICEF 17
- Future meetings .. 17

Substances

Antibiotics
1. Teicoplanin .. 17

Antibodies
2. Cytomegalovirus immunoglobulin .. 18
3. Tetanus immunoglobulin ... 18
4. Varicella zoster immunoglobulin .. 19
5. Anti-toxoplasma IgM serum ... 19
6. Anti-rabies serum, equine, and rabies immunoglobulin 20

Allergens
7. Alternaria (Alternaria alternata) extract and Bermuda grass (Cynodon dactylon) pollen extract ... 20
8. Dog (Canis domesticus) hair and dander extract 21
9. Purified protein derivatives (PPD) of tuberculin 21

Antigens
10. Measles vaccine (live) ... 22
11. Rabies vaccine ... 22

Blood products
12. Anti-D (anti-Rh0) complete blood-typing serum (chemically modified) .. 23
13. Human protein C .. 23

3
Endocrinological and related substances

19. Insulin cell antibodies ... 25
20. Thyroid stimulating antibodies 26
21. Corticotrophin (ACTH), human 26
22. Erythropoietin .. 26
23. Human growth hormone ... 27
24. Inhibin .. 27
25. Human interleukin-2 ... 28
26. Human pituitary luteinizing hormone 28
27. Human atrial natriuretic factor 28
28. Renin .. 29
29. Somatomedin C ... 29

Miscellaneous

30. Vitamin B₁₂ in serum .. 29
31. Interferon, human, fibroblast, β 29
32. Interferon, human, recombinant, α₁(αD) 30
33. Interferon, human, recombinant, α₂(αA) 30
34. Interferon, human, recombinant, β₁α₁β 30
35. Interferon, murine, α ... 31
36. Interferon, murine, β ... 31
37. Interferon, murine, γ ... 31
38. Digitalis ... 32

Requirements for Biological Substances

39. Requirements for poliomyelitis vaccine (oral) (addendum 1987) 32
40. Requirements for measles vaccine (live) (revised 1987) 32
41. Requirements for Japanese encephalitis vaccine (inactivated) for human use 32
42. Requirements for human interferons made by recombinant DNA techniques 33
43. Requirements for the production of human interferons prepared from lymphoblastoid cells 33
44. Requirements for hepatitis B vaccine prepared from plasma (revised 1987) 34
45. Requirements for hepatitis B vaccines made by recombinant DNA techniques 34
46. Requirements for stability of yellow fever vaccines (addendum 1987) 34
47. List of yellow fever vaccine manufacturers approved by WHO (revised 1987) 35
48. Requirements for antimicrobial susceptibility tests
 1. Agar diffusion tests using antimicrobial susceptibility discs (addendum 1987) 35
ANNEXES

Annex 1. Standardization of interferons: report of a WHO Informal Consultation .. 37
Annex 2. Modification for lyophilized BCG vaccines of the procedure for evaluating the acceptability in principle of vaccines proposed to United Nations agencies for use in immunization programmes ... 88
Annex 3. Model certificate for the release of BCG vaccines acquired by United Nations agencies .. 90
Annex 4. Requirements for poliomyelitis vaccine (oral) (addendum 1987) ... 91
Annex 5. Requirements for measles vaccine (live) (revised 1987) ... 93
Annex 6. Requirements for Japanese encephalitis vaccine (inactivated) for human use .. 133
Annex 7. Requirements for human interferons made by recombinant DNA techniques .. 158
Annex 8. Requirements for hepatitis B vaccine prepared from plasma (revised 1987) .. 181
Annex 9. Requirements for yellow fever vaccine (addendum 1987) .. 208
Annex 10. Laboratories approved by WHO for the production of yellow fever vaccine .. 210
Annex 11. Requirements for antimicrobial susceptibility tests
1. Agar diffusion tests using antimicrobial susceptibility discs (addendum 1987) .. 211
Annex 12. Requirements for dried BCG vaccine (amendment 1987) .. 212
Annex 14. Requirements for biological substances and other sets of recommendations .. 216
WHO EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION

Geneva, 1–9 December 1987

Members

Dr T. Bektimirov, Director, Tarasevič State Institute for the Standardization and Control of Medical Biological Preparations, USSR Ministry of Health, Moscow, USSR (Chairman)

Dr J. Furesz, Director, Bureau of Biologics, Drugs Directorate, Tunney's Pasture, Ottawa, Ontario, Canada

Dr C. Guthrie, Operations Director, Commonwealth Serum Laboratories, Parkville, Victoria, Australia (Rapporteur)

Dr M.C. Hardegree, Director, Division of Bacterial Products, Office of Biologics Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA

Dr H. Mirchamsy, Associate Director, Razi State Institute of Sera and Vaccines, Teheran, Islamic Republic of Iran (Vice-Chairman)

Dr M.S. Nasution, Director, Perusahaan Negara “Bio Farma”, Bandung, Indonesia

Dr R. Netter, Director-General, National Health Laboratory, Paris, France

Dr S.N. Saxena, Director, Central Research Institute, Kasauli, India

Professor G. Swaniker, Department of Basic Medical Sciences, Faculty of Medicine, University of Papua New Guinea, Boroko, Papua New Guinea

Dr Xiang Jian-zhi, Chairman, Expert Committee on Science and Technology, Shanghai Institute of Biological Products, Shanghai, China

Representative(s) of other organizations

International Union of Immunological Societies

Dr H. Baer, Laboratory of Allergenic Products, Office of Biologics, Food and Drug Administration, Bethesda, MD, USA

Secretariat

Dr M. Arita, Department of Enteroviruses, National Institute of Health, Tokyo, Japan (Temporary Adviser)

Dr D.H. Calam, Chemistry Division, National Institute for Biological Standards and Control, Potters Bar, Herts., England (Temporary Adviser)

Dr M. Gheorghiu, Chief, BCG Laboratory, Pasteur Institute, Paris, France (Temporary Adviser)

Professor S.E. Grossberg, Chairman, Department of Microbiology, Medical College of Wisconsin, Milwaukee, WI, USA (Temporary Adviser)

Professor W. Hennessen, Berne, Switzerland (Temporary Adviser)

Dr S.L. Jeffcoat, Department of Endocrinology, National Institute for Biological Standards and Control, Potters Bar, Herts, England (Temporary Adviser)

Dr H. Krijnen, Director, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, Netherlands (Temporary Adviser)

Dr A. Lee, Biological Products and Standards Department, Central Veterinary Laboratory, New Haw, Weybridge, Surrey, England (Temporary Adviser)
Dr S.M. Lewis, Royal Postgraduate Medical School, London, England (Temporary Adviser)
Mr J. Lyng, Head, Laboratory for Biological Standardization, State Serum Institute, Copenhagen, Denmark (Temporary Adviser)
Dr D. Magrath, National Institute for Biological Standards and Control, Potters Bar, Herts., England (Temporary Adviser)
Dr P. Sizarri, Acting Chief, Biologicals, WHO, Geneva, Switzerland (Secretary)
Dr W.W. Wright, Senior Scientist, Drug Standards Division, United States Pharmacopeia, Rockville, MD, USA (Temporary Adviser)
Dr D. Zewdie, National Research Institute of Health, Addis Ababa, Ethiopia (Temporary Adviser)
WHO EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION

Thirty-eighth Report

The WHO Expert Committee on Biological Standardization met in Geneva from 1 to 9 December 1987. The meeting was opened on behalf of the Director-General by the Director of the Division of Mental Health, Dr N. Sartorius.

GENERAL

Freedom of international reference materials from contamination by hepatitis B virus and human immunodeficiency viruses

In accordance with the request of the Committee contained in the thirty-sixth report (WHO Technical Report Series, No. 745, 1987, p. 11), the WHO Secretariat had contacted various custodians of the WHO international reference materials regarding the testing of these materials for specific viral antigens or other markers of hepatitis B virus (HBV) or human immunodeficiency viruses (HIV). The Committee received assurances that, whenever appropriate, such tests were being conducted or had been completed. Assurances were also given that suitable warnings are always included in leaflets of instructions to users. This type of testing should help to ensure that, so far as HBV and HIV are concerned, the international standards and international reference reagents are not infectious for laboratory personnel in respect of these viruses. This testing does not, however, obviate the need for laboratory workers to abide by the guidelines established in their institutions for handling materials derived from human origin.

Possible adverse effect of secondary desiccation on the stability of lyophilized international reference materials

Many international standards and reference reagents are prepared by lyophilization in the presence of "inert" carriers followed by an extensive period of secondary desiccation. The
Committee considered a study conducted in the United Kingdom by the National Institute for Biological Standards and Control, Potters Bar,\(^1\) using high-performance liquid chromatography to analyse the effects of lyophilization and secondary desiccation on the initial degradation and subsequent stability of a model protein, insulin (BS/87.1571).\(^2\) Secondary desiccation was found to promote reaction between insulin and carriers consisting of buffer salts and a sugar. The Committee agreed that careful consideration needs to be given, case by case, to the selection of the procedures for the preparation of international reference materials, particularly where they are ampouled in the absence of carrier proteins.

As a result of these findings, the Committee requested the National Institute for Biological Standards and Control to prepare a guiding statement for inclusion as an addendum to the Guidelines for the Preparation, Characterization and Calibration of International Biological Standards and Reference Reagents (WHO Technical Report Series, No. 760, 1987, Annex 3, Part A).

Assignment of units of activity to reference materials

The Guidelines for the Preparation and Establishment of International and Other Standards and Reference Reagents for Biological Substances, as revised in 1986 (WHO Technical Report Series, No. 760, 1987, Annex 3), indicate that international standards and reference reagents are provided primarily to enable national control authorities and individual laboratories to calibrate and test their own national reference preparations. This revision resulted, in part, from the Committee’s decisions in 1983 (WHO Technical Report Series, No. 700, 1984, pp. 7–8) no longer to establish international reference preparations that have international units of activity assigned to them. In its thirty-seventh report (WHO Technical Report Series, No. 760, 1987, p. 15 and Annex 3) the Committee decided that two categories of reference materials

\(^1\) Referred to in previous reports as the National Institute for Biological Standards and Control, London. This institute, a WHO International Laboratory for Biological Standards, moved from London to Potters Bar, Hertfordshire, England, in 1987.

\(^2\) References prefixed “BS/...” or “BLG/...” are to unpublished working documents of the World Health Organization. They are not issued to the general public, but a limited number of copies may be available to professionally interested persons on application to Biologicals, World Health Organization, 1211 Geneva 27, Switzerland.
would be established in the future. The first category, international biological standards, is intended to allow the calibration of reference materials in international units. The second category, international biological reference reagents, is intended primarily to serve for qualitative purposes.

At the present meeting the Committee examined some candidate reference materials that were not considered suitable for establishment as international standards, but for which an assignment of potency would have been useful. The Committee therefore recognized that the revised guidelines need additional review to evaluate the impact of the restriction on assigning international units of activity to international reference reagents. The Committee requested the WHO Secretariat to arrange for this review.

Distribution of international reference materials by the four International Laboratories for Biological Standards

The Committee noted that the distribution of international reference materials by the four International Laboratories for Biological Standards had continued in 1986 (Table 1). Such materials are most useful for the assay of biological products used in the prophylaxis, therapy, or diagnosis of human and some animal diseases. The Committee recognized the importance of this programme in furthering the standardization of biological products.

Reference materials for uses other than biological standardization

The Committee was informed that there is an increasing need for reference materials for purposes other than those for which international biological reference materials have been established. In particular, reference materials are required for identification and for quantitation by nonbiological (i.e., physical and chemical) procedures of therapeutic products derived by recombinant DNA technology (e.g., human growth hormone of relative molecular mass 22,000 and erythropoietin) and for diagnostic purposes (e.g., abnormal haemoglobins). Provision of such materials on an international basis would be of considerable benefit to national control authorities, manufacturers and others and would improve diagnosis and control. The Committee recognized that the Guidelines for the Preparation and Establishment of International
Table 1. International biological standards and international biological reference reagents distributed in 1986 to laboratories in different WHO Regions by the WHO International Laboratories for Biological Standards

<table>
<thead>
<tr>
<th>Recipient WHO Region</th>
<th>Number of items distributed by WHO International Laboratories for Biological Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amsterdam *</td>
</tr>
<tr>
<td>Africa</td>
<td>105</td>
</tr>
<tr>
<td>Americas</td>
<td>194</td>
</tr>
<tr>
<td>South-East Asia</td>
<td>7</td>
</tr>
<tr>
<td>Europe</td>
<td>1317</td>
</tr>
<tr>
<td>Eastern Mediterranean</td>
<td>7</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>78</td>
</tr>
<tr>
<td>All WHO Regions</td>
<td>1708</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

*Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, Netherlands, items distributed during the calendar year 1986.
**State Serum Institute, Copenhagen, Denmark. Items distributed during the calendar year 1986.
****Central Veterinary Laboratory, Weybridge, Surrey, England. Items distributed during the calendar year 1986.

and Other Standards and Reference Reagents for Biological Substances (WHO Technical Report Series, No. 760, 1987, Annex 3) might not be fully applicable to such materials and that the provision of such materials might be the responsibility of WHO programmes other than that concerned with biological standardization. The Committee therefore requested the WHO Secretariat to investigate how the need for such reference materials might be recognized and their provision achieved in the most efficient and effective manner.

Definition of “production area” for biologicals

During the consideration of the proposed requirements for human interferons made by recombinant DNA techniques (see page 33) the Committee reviewed comments from consultants which requested that the concept of “production area” be defined further. There was special concern about the restriction on the use of more than one fermenter in a production area. The Committee adopted the requirements (Annex 7), in which a section states that all processing of cells shall be done in an area in which no microorganisms or eukaryotic cells other than those needed for production shall be introduced. The Committee nevertheless requested the WHO Secretariat to review the concept of the simultaneous use of several closed fermentation systems in the same
production area not only for interferons, but for other types of biologicals as well.

The residual content of animal serum or its constituents in vaccines prepared in cell cultures or grown in media containing animal serum

The Committee noted during its review of the draft requirements for the manufacture of several vaccines that there is considerable inconsistency in the sections of the different requirements that are aimed at limiting the amount of animal serum constituents that may be present in cell-culture-derived vaccines. The Committee also noted the lack of recommendation for specific assay methods for the detection of serum constituents, including proteins, in the amounts specified. The Committee therefore requested the WHO Secretariat to review the methods by which the content of animal serum constituents—e.g., specific serum proteins and blood group substances—can be assayed and to draft appropriate test methods for the detection of these constituents at the limits specified.

Meeting of the WHO Consultative Group on Poliomyelitis Vaccines

The Committee considered the report (BLG/POLIO/87.1) of a WHO Consultative Group on Poliomyelitis Vaccines, which had been held in Geneva on 8–10 July 1987 to discuss several aspects of the use of oral (OPV) and inactivated (IPV) poliomyelitis vaccines in the world. The Group had reviewed the recent data published by several investigators on the molecular biology of polioviruses, with emphasis on its application for OPV. Following the successful sequence analysis of types 1 and 3 Sabin vaccine strains and their precursor wild strains, attempts were now being made in several laboratories to determine the regions of the virus genome that were responsible for the neurovirulence of the virus in monkeys and humans.

The Group had considered that it might be desirable to prepare OPV in cell substrates other than primary monkey-kidney cells and human diploid cells, such as continuous cell lines derived from African green monkeys (Cercopithecus aethiops). Preliminary data on such vaccines were encouraging. However, the Group had concluded that further work was required on the validation of purification procedures used in vaccine production and that the
possible effect of repeated passage of the vaccine virus on its genetic characteristics in any new cell substrate should be investigated.

The Group had reviewed the clinical data obtained from studies conducted in one country in which either monovalent type 3 vaccine or trivalent OPV had been used. It had been found that doubling the usual type-3 virus content in the trivalent formulation resulted in a significantly higher seroconversion rate to type 3 among children less than 5 years of age. As a result of the study, WHO was interested in sponsoring large-scale trials in several countries in an effort to identify alternative formulations that might improve the performance of OPV in the developing world.

The Group had discussed the current experience with the WHO neurovirulence test in monkeys (WHO Technical Report Series, No. 687, 1983, Annex 4) and the incidence of vaccine-associated paralytic disease since the adoption of the test in 1982. There was no evidence to suggest that there had been an increase in the incidence of such disease. The Group had strongly recommended that the surveillance programme organized and sponsored by WHO during the past 15 years in many countries should be maintained and, if possible, extended to other countries using inactivated poliomyelitis vaccine. The Group had additionally recommended that WHO should convene an expert group to review the available data and other issues relating to the WHO monkey neurovirulence test.

The Committee noted the recommendations of the Group and requested that WHO should continue (1) to obtain, maintain, and distribute among manufacturers and national control authorities the WHO OPV working virus seeds and reference virus preparations; (2) to verify the OPV production and quality-control testing procedures of new manufacturers applying for WHO certification by organizing the inspection of their facilities and assessing their products; (3) to monitor the safety and efficacy of OPV and IPV in various countries by the use of appropriate epidemiological and laboratory methods; and (4) to organize collaborative studies on potency testing of IPV products.

Thromboplastins

The Committee was informed that a meeting between the WHO Secretariat and members of the WHO Expert Advisory Panel on Biological Standardization and of the International Committee for Standardization in Haematology (ICSH) had been held in 1987.
to discuss the status of the different international reference preparations of thromboplastin and their future replacements. At that meeting, a preference had been expressed for only one thromboplastin standard if this were scientifically acceptable.

The Committee was informed also that the above-mentioned concept had been discussed at the 1987 meeting of the ICSH Subcommittee on Control of Anticoagulation, when it had been decided to organize a large international collaborative study to obtain more knowledge, as to date no scientific evidence was available to support the underlying concept. The ICSH had also recommended that the present standardization system based on three thromboplastin standards should be maintained until the results of the international collaborative studies had been evaluated, as ample stocks of all three international reference preparations of thromboplastin were still available, and, on the basis of present demand, would suffice for several years to come.

Interferons

The Committee was informed that advances in the interferon field had revealed the need for more international reference materials for the control of interferon products intended for therapeutic use and to improve diagnostic procedures. The Committee recognized the increase in clinical investigations and in the licensing of interferons in some countries and the growing commercial interest in mouse interferons as the model for preclinical work. The Committee established several new standards, one of which, the standard for human fibroblast beta-interferon (HulFN-β), replaces the first international reference preparation of this type, the supply of which has been exhausted. The Committee recognized that a need remained for a reference material for HulFN-γ derived by recombinant DNA technology. The development of reference reagents for the standardization of antiviral assays for other substances, such as beta₂-interferon (also known as 26K protein, B-cell stimulating factor 2, or plasmacytoma/hybridoma growth factor) and tumour necrosis factors, which may induce antiviral activity, might eventually become necessary when more information about them becomes available.

A rapid, simple, objective antiviral assay used in the international collaborative studies to assay the human interferon standard preparations was found by all laboratories to be reproducible and
suitably sensitive for all three types of human interferon; however, no internationally acceptable reference bioassay can yet be recommended.

Progress has been made in the development and application of immunoassays for interferons. Although immunoassays may be of limited usefulness in the quantification of multicomponent samples, they can have wide application in the assay of preparations containing a single interferon protein, e.g., samples of gamma-interferon or individual subtypes of recombinant alpha-interferon.

The expanding use of interferons in the treatment of some forms of malignancy increases the need to have an in vitro test to measure the ability of interferons to prevent the proliferation of cells or to cause regression of tumour cells. However, there has been little progress towards the development of suitable quantitative assays based on non-antiviral biological activities of interferons. Such alternative biological assays may be particularly desirable for the study of gamma-interferon. The development of anti-interferon antibodies in some patients treated with interferon preparations is a matter that merits continued monitoring and evaluation.

The Committee noted that a WHO Informal Consultation on the Standardization of Interferons had taken place in Geneva in March 1987 to discuss the results of collaborative studies on the in vitro antiviral potency of 7 separations of human interferons and 4 preparations of murine interferons (BS/87.1552). The Committee noted also that the activity of each of the interferon preparations studied, except that of the murine gamma-interferon, was determined relative to that of the appropriate existing international reference material of interferon.

On the basis of these collaborative studies, carried out under the aegis of the National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA, the Committee established 7 preparations, including the murine alpha- and beta-interferons, as new or replacement international standards, as detailed on pages 29–32. The International Reference Preparation of Interferon, Mouse (α + β) was not replaced; however, the Committee noted that a purer reference material of murine alpha/beta-interferon (MuIFN-α/β) is available from the National Institutes of Health, Bethesda.

The Committee agreed that the report of the Informal Consultation, which gave a description of the results of the collaborative study on the standardization of interferons, should be annexed to this report (Annex 1).
Selection of candidate suppliers of BCG vaccines to UNICEF

The Committee noted that, in addition to coordinating the activities leading to the establishment of international reference materials and the adoption of international requirements for the production and control of biological substances, the WHO Secretariat had implemented a surveillance programme on the quality of vaccines delivered to UNICEF for use in the Expanded Programme on Immunization (EPI) and that, in addition, it was advising UNICEF on the selection of suitable EPI vaccine manufacturers. The Committee noted the efforts of the Secretariat to bring the method followed for selecting dried BCG vaccine into line with the procedure adopted for the 5 other EPI vaccines, and agreed to include, as Annexes 2 and 3 to this report, the modifications for BCG vaccine of that procedure and of the Model Certificate for the Release of Vaccines Acquired by United Nations Agencies (WHO Technical Report Series, No. 760, 1987, Annexes 1 and 2). The Committee recommended that in order to utilize scarce resources as efficiently as possible the application of the selection procedures should be restricted to manufacturers capable of offering significant quantities of EPI vaccines to UNICEF for international use.

Future meetings

The Committee was informed that meetings organized or sponsored by WHO were planned in 1987 or 1988 on blood and blood products, on the requirements for immunoglobulins, and on cell substrates.

SUBSTANCES¹

Antibiotics

1. Teicoplanin

The Committee was informed that in accordance with the request made in its thirty-seventh report (WHO Technical Report Series,

¹ Changes to the list of international standards and international reference reagents are given in Annex 13.
No. 760, 1987, p. 17), the National Institute for Biological Standards and Control, Potters Bar, had obtained a quantity of teicoplanin, forming part of a batch that had been freeze-dried in ampoules by the manufacturer, intended to serve as a primary reference material. The Committee was informed also that the suitability of this material to serve as an international reference material was being assessed and that if it was found to be satisfactory, a collaborative study would be arranged.

Antibodies

2. Cytomegalovirus immunoglobulin

The Committee was informed that there was a need for an international reference material of cytomegalovirus immunoglobulin and that a candidate material, prepared in Japan, had been offered for this purpose. The Committee therefore requested the Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, to obtain the material and arrange a collaborative study.

3. Tetanus immunoglobulin

The Committee noted that, as was mentioned in its thirty-sixth and thirty-seventh reports (WHO Technical Report Series, No. 745, 1987, p. 18; No. 760, 1987, p. 18), the State Serum Institute, Copenhagen, had obtained material to serve as an international standard for tetanus immunoglobulin and that a collaborative study among 12 laboratories in 12 countries had been completed (BS/87.1554). The Committee was informed, however, that, since the preparation had deteriorated during the process of ampouling and freeze-drying, it was no longer suitable to serve as a standard preparation.

The Committee agreed that a reference material of antibodies derived from human serum is needed—e.g., for titration of antibodies by the enzyme-linked immunosorbent assay (ELISA)—and requested the State Serum Institute, Copenhagen, to obtain further material and to arrange a new collaborative study.
4. Varicella zoster immunoglobulin

The Committee was informed that the collaborative assay of the preparation of varicella zoster immunoglobulin organized by the Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, and referred to in its thirty-fifth report (WHO Technical Report Series, No. 725, 1985, p. 17), had been completed and the results had been analysed. It was stated that stability data for a period of 23 weeks at elevated temperatures were available. Although additional stability studies are still under way, the Committee agreed that the material was suitable to serve as an international standard.

The Committee therefore established the preparation as the International Standard for Varicella Zoster Immunoglobulin, and on the basis of the results of the collaborative assay defined the activity of the contents of each ampoule of the International Standard for Varicella Zoster Immunoglobulin as 50 International Units of Varicella Zoster Immunoglobulin.

The Committee noted that this standard is suitable for use in the enzyme-linked immunosorbent assay (ELISA).

5. Anti-toxoplasma IgM serum

The Committee noted that, as was mentioned in its thirty-sixth report (WHO Technical Report Series, No. 745, 1987, p. 19), the State Serum Institute, Copenhagen, had obtained material suitable to serve as an international standard for anti-toxoplasma IgM antibodies and had arranged a collaborative study among 12 laboratories in 8 countries (BS/87.1555). The Committee was informed of concern about the stability of the product and requested the State Serum Institute to obtain additional stability data for the preparation.

The Committee reaffirmed the need for an international reference material derived from human blood collected relatively early in the infection and thus rich in specific antibody of the IgM class, besides the existing International Standard for Anti-toxoplasma Serum, which is derived from a pool of convalescent sera. The Committee was informed that methods for the assay of both the IgG and the IgM classes of antibody which develop during the course of an infection with toxoplasma are available. However, as shown in the report on the collaborative study (BS/87.1555), a considerable heterogeneity in the specificity of these methods was observed. The
Committee requested the WHO Secretariat to consult with appropriate experts and, if necessary, to arrange for a consultative meeting so that the problem may be investigated further.

6. Anti-rabies serum, equine, and rabies immunoglobulin

As was mentioned in its thirty-seventh report (WHO Technical Report Series, No. 760, 1987, p. 18), the Committee had been informed in 1986 that some laboratories had obtained different estimates of the potencies of human rabies immunoglobulin preparations relative to that of the International Standard for Equine Anti-Rabies Serum when the mouse neutralization test and the rapid fluorescent focus-inhibition test were used. The Committee now noted a survey of published results related to this problem (BS/87.1549).

The Committee was informed that samples of rabies immunoglobulin preparations from different producers had been obtained, including a possible replacement preparation for the International Standard for Equine Anti-Rabies Serum from the Central Research Institute, Kasauli, India. This serum preparation was, after ampouling and freeze-drying, designated as KARS-87. The Committee was also informed that an international collaborative study had been arranged in 8 laboratories in 6 countries to assess the potency, using both the above-mentioned tests, of the following preparations: the International Standard for Equine Anti-Rabies Serum, KARS-87, the International Standard for Rabies Immunoglobulin, and 4 samples of rabies immunoglobulin preparations.

Allergens

7. Alternaria (Alternaria alternata) extract and Bermuda grass (Cynodon dactylon) pollen extract

The Committee was informed that the collaborative studies of Alternaria alternata extract\(^1\) and Bermuda grass pollen extract\(^2\) referred to in its thirty-seventh report (Technical Report Series, 178–189 (1987).

\(^1\) Helm, R. M. et al. *International Archives of Allergy and Applied Immunology*, 82: 624–631 (1986).

No. 760, 1987, p. 19) had been completed. The Committee was also informed that preliminary stability studies based on accelerated degradation tests had provided inconclusive results in both cases. The Committee therefore requested the WHO Secretariat to arrange for more detailed stability studies through the International Union of Immunological Societies.

8. Dog (*Canis domesticus*) hair and dander extract

The Committee noted that accelerated degradation studies had been made of the International Standard for Dog (*Canis domesticus*) Hair and Dander Extract (BS/87.1547). The Committee was informed that, although statistical analysis of the data had predicted an appreciable loss of potency at −20 °C, the standard error was so wide that little confidence could be placed on the estimate. The Committee therefore requested the WHO Secretariat to arrange for further stability studies, which should preferably include radioallergosorbent (RAST) inhibition tests and tests for antigen content.

9. Purified protein derivatives (PPD) of tuberculin

The Committee discussed the names of the International Standard for Purified Protein Derivative (PPD) of Avian Tuberculin established in 1954 (WHO Technical Report Series, No. 96, 1955, p. 11), the International Standard for Purified Protein Derivative (PPD) of Mammalian Tuberculin established in 1951 (WHO Technical Report Series, No. 56, 1952, p. 6), and the International Standard for Purified Protein Derivative (PPD) of Bovine Tuberculin established in 1986 (WHO Technical Report Series, No. 760, 1987, p. 20). Because the terms “mammalian” and “bovine” are not mutually exclusive, the Committee agreed to rename these international standards to indicate the respective source organisms, as follows:

<table>
<thead>
<tr>
<th>Old name</th>
<th>New name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purified Protein Derivative (PPD) of Avian Tuberculin</td>
<td>Purified Protein Derivative (PPD) of Mycobacterium avium Tuberculin</td>
</tr>
<tr>
<td>Purified Protein Derivative (PPD) of Mammalian Tuberculin</td>
<td>Purified Protein Derivative (PPD) of Mycobacterium tuberculosis Tuberculin</td>
</tr>
<tr>
<td>Purified Protein Derivative (PPD) of Bovine Tuberculin</td>
<td>Purified Protein Derivative (PPD) of Mycobacterium bovis Tuberculin</td>
</tr>
</tbody>
</table>
Antigens

10. Measles vaccine (live)

In 1985, a preparation of attenuated live measles vaccine (Schwarz strain), coded 82/638, was established as the International Reference Reagent for the Assay of Measles Vaccine (Live) and on the basis of a collaborative study a titre of $10^{3.7}$ was assigned to the contents of each vial (WHO Technical Report Series, No. 745, 1987, p. 16); for practical purposes the titre might be taken to be equivalent to 5000 TCID$_{50}$ or 5000 PFU. However, in view of the fact that the material was freeze-dried in rubber-stoppered vials, the National Institute for Biological Standards and Control, Potters Bar, had been requested to conduct long-term stability studies of the material (WHO Technical Report Series, No. 745, 1987, pp. 16–17).

In order to do so, the National Institute obtained a small quantity of Schwarz strain vaccine (intended to serve as a calibrator against which the stability of the international reference reagent could be evaluated from time to time), which was then freeze-dried in glass ampoules, coded 86/600(P), and maintained at $-70\,^\circ\mathrm{C}$. Six laboratories participated in a study in which they were asked to provide data to establish the potency of the international reference reagent relative to the ampouled virus. The Committee noted that the ampouled material is suitable for evaluating the stability of the International Reference Reagent for the Assay of Measles Vaccine (Live).

11. Rabies vaccine

The Committee noted that the stocks of the International Standard for Rabies Vaccine were low and that a replacement was needed (BS/87.1548). The Committee was advised that at least 4000 ampoules of a rabies vaccine should be available in order to serve usefully as a standard. One manufacturer has agreed to provide this quantity of vaccine, which is made in Vero cell culture using the Pittman-Moore strain of rabies virus. The Committee requested the State Serum Institute, Copenhagen, to investigate the stability of the preparation and, if it is found to be acceptable, to arrange a collaborative study. The Committee also requested that rabies vaccines made with different virus strains and in other cell substrates should be evaluated in this study.
Blood Products

12. Anti-D (anti-Rh.) complete blood-typing serum (chemically modified)

The Committee noted that the collaborative study of the proposed international standard for a chemically modified anti-D complete blood-typing serum referred to in its thirty-seventh report (WHO Technical Report Series, 1987, No. 760, 1987, p. 20) was in progress and that 8 laboratories in 7 countries had agreed to participate in the study (BS/87.1566).

13. Human protein C

The Committee noted that there was a need for an international reference material of human protein C, a vitamin-K-dependent serine protease which upon activation displays anticoagulant activity through the inactivation of blood coagulation factors V and VIII (BS/87.1561). The Committee also noted the results of a collaborative study arranged by the National Institute for Biological Standards and Control, Potters Bar, of a freeze-dried preparation of normal human plasma containing protein C. Eighteen laboratories in 10 countries took part in the study, which involved the calibration of this preparation by measurement against fresh pooled normal plasma. Assays were carried out using 6 different types of method (4 based on measurement of biological activity and 2 on measurement of antigen). The results obtained from the different methods were very comparable. Further studies showed that the preparation studied had adequate stability.

The Committee therefore established the preparation, coded 86/622, as the International Standard for Human Protein C and, on the basis of the results of the collaborative study, defined the activity of the contents of each ampoule as 0.82 International Unit of Human Protein C.

14. Human blood coagulation factors II, IX, and X in concentrates

The Committee noted that, in accordance with the authorization given in its thirty-seventh report (WHO Technical Report Series, No. 760, 1987, p. 21), the National Institute for Biological Standards and Control, Potters Bar, had established one of the preparations
studied, coded 84/681, as the International Standard for Human Blood Coagulation Factors II, IX, and X in Concentrates and, with the agreement of the participants in the collaborative study, had defined the activity of the contents of each ampoule as, respectively, 10.8 International Units of Factor II in Concentrate, 10.7 International Units of Factor IX in Concentrate, and 9.8 International Units of Factor X in Concentrate (BS/87.1563). The Committee was informed also that, in accordance with the agreement in the same report and in keeping with the recommendations of the International Committee for Thrombosis and Haemostasis at its meeting in Brussels in July 1987, the potencies of blood coagulation factors II, IX, and X had been assigned on the basis of assays in which the concentrate was diluted with plasma deficient in the factor being assayed instead of with buffered saline.

15. Human tissue plasminogen activator (t-PA)

The Committee was informed that stocks of the International Standard for Human Tissue Plasminogen Activator (t-PA) were exhausted and noted that the National Institute for Biological Standards and Control, Potters Bar, had obtained a candidate replacement material, coded 86/670, and had freeze-dried it in ampoules (BS/87.1562). This material had been produced by a continuous melanoma cell line, which maintained continuity of origin with the International Standard for Human Tissue Plasminogen Activator (t-PA). The Committee noted the results of a collaborative study in which 10 laboratories in 8 countries had participated.

The Committee established preparation 86/670 as the Second International Standard for Human Tissue Plasminogen Activator (T-PA) and, on the basis of the results of the collaborative study, defined the activity of the contents of each ampoule as 850 International Units of Human Tissue Plasminogen Activator (t-PA).

16. Haemoglobin F

The Committee was informed that there was a need for an international reference material for haemoglobin F for the
calibration of a diagnostic test. The Committee was also informed that the suitability of a candidate material, freeze-dried in ampoules, was being assessed and that the International Committee for Standardization in Haematology intended to arrange a collaborative study. The Committee therefore requested the National Institute for Biological Standards and Control, Potters Bar, to provide advice and assistance in the matter to the International Committee for Standardization in Haematology.

17. Haemoglobin A$_2$

The Committee was informed that there was a need for an international reference material for quantitation of haemoglobin A$_2$. The Committee was also informed that a candidate preparation of haemoglobin A$_2$ was being investigated and that, if it was found suitable, the International Committee for Standardization in Haematology would arrange a collaborative study. The Committee therefore requested the National Institute for Biological Standards and Control, Potters Bar, to provide advice and assistance in the matter to the International Committee for Standardization in Haematology.

18. Haemoglobin variants

The Committee was informed that there was a need for an international reference material for several haemoglobin variants (A, C, F, J and S) for use as a marker for identifying abnormal haemoglobins. The Committee was also informed that the International Committee for Standardization in Haematology intended to obtain suitable materials and to arrange a collaborative study. The Committee therefore requested the WHO Secretariat to maintain close liaison with the International Committee for Standardization in Haematology.

Endocrinological and Related Substances

19. Islet cell antibodies

The Committee noted that there was a need for an international reference material for islet cell antibodies for the standardization of
preparations used to estimate autoantibodies to cytoplasmic islet-cell determinants that appear in the circulation during the pathogenesis of insulin-dependent diabetes (BS/87.1568). The Committee therefore requested the National Institute for Biological Standards and Control, Potters Bar, to obtain suitable material and to arrange a collaborative study.

20. Thyroid stimulating antibodies

The Committee noted that there was a need for an international reference material of autoantibodies to the receptor for thyroid stimulating hormone—i.e., thyroid stimulating antibodies (TSAb) (BS/87.1569). The Committee therefore requested the National Institute for Biological Standards and Control, Potters Bar, to obtain suitable material and to arrange a collaborative study.

21. Corticotrophin (ACTH), human

The Committee noted that, although the preparation of highly purified human corticotrophin referred to in its thirty-sixth report (WHO Technical Report Series, No. 745, 1987, p. 25) had appeared to be suitable to serve as an international reference material, accelerated degradation studies of the ampouled material had shown that the contents had become insoluble and that there was an unacceptable loss of ACTH activity (BS/87.1574). The Committee therefore requested the National Institute for Biological Standards and Control, Potters Bar, to obtain further material.

22. Erythropoietin

The Committee noted that, in accordance with the request in its thirty-sixth report (WHO Technical Report Series, No. 745, 1987, p. 23), the National Institute for Biological Standards and Control, Potters Bar, had obtained samples from 3 preparations of human erythropoietin made by recombinant DNA techniques to serve as candidate international reference materials, and that each preparation would be distributed into ampoules and a collaborative study arranged (BS/87.1573). The Committee noted further that the collaborative study, involving various bioassays and immunoassays, would also include the Second International Reference Preparation of Erythropoietin, Human, Urinary, for Bioassay, and a highly purified human urinary erythropoietin.
23. Human growth hormone

The Committee noted that stocks of the International Reference Preparation of Growth Hormone, Human, for Immunoassay, coded 66/217, were nearly exhausted (BS/87.1572) and that the collaborative study of the International Standard for Human Growth Hormone for Bioassay, coded 80/505 (WHO Technical Report Series, No. 687, 1983, p. 27), had shown that it was also suitable for use in immunoassays (WHO/BS/82.1369). The Committee therefore discontinued the International Reference Preparation of Growth Hormone, Human, for Immunoassay, and in accordance with the policy on the suitability of standards for different types of assay (WHO Technical Report Series No. 760, 1987, p. 15) renamed the International Standard for Human Growth Hormone for Bioassay as the International Standard for Human Growth Hormone, with no change in the definition of the International Unit.

The Committee noted that, because of the rapidly decreasing availability of human pituitary tissue, a quantity of partially purified pituitary human growth hormone of relative molecular mass 22 000 had been obtained by the National Institute for Biological Standards and Control, Potters Bar, and freeze-dried in ampoules, coded 86/710, and that additional material was being sought. This preparation might be needed as a reference material against which the corresponding protein of relative molecular mass 22 000 obtained by recombinant DNA techniques can be examined. The Committee also discussed the need for international reference materials of human growth hormones of relative molecular masses 20 000 and 22 000, prepared by recombinant DNA technology, intended for uses other than biological standardization. The Committee requested the National Institute for Biological Standards and Control to keep the situation under review and, if appropriate, to obtain suitable materials for investigation.

24. Inhibin

The Committee noted that there was a need for an international reference material for inhibin (BS/87.1575). The Committee also noted that a quantity of partially purified inhibin from porcine ovarian follicular fluid had been obtained and that a collaborative study was being arranged by the National Institute for Biological Standards and Control, Potters Bar.
25. Human interleukin-2

The Committee noted that, because of the need for an international reference material for human interleukin-2, 5 preparations had been obtained, freeze-dried in ampoules, and assayed in a collaborative study arranged by the National Institute for Biological Standards and Control, Potters Bar (BS/87.1559). On the basis of the results of the collaborative study, the Committee established one of the preparations studied, coded 86/504, as the International Standard for Human Interleukin-2, and defined the activity of the contents of each ampoule as 100 International Units of Human Interleukin-2.

The Committee also noted that a preparation of interleukin-2, coded 86/564, obtained by recombinant DNA technology, had been included in the collaborative study and is available from the National Institute for Biological Standards and Control.

26. Human pituitary luteinizing hormone

The Committee noted that stocks of the International Reference Preparation of Human Pituitary Luteinizing Hormone (LH) for Immunoassay, coded 68/40, established in 1977 (WHO Technical Report Series, No. 626, 1978, p. 21) were almost exhausted (BS/87.1579). The Committee also noted that after extensive studies the National Institute for Biological Standards and Control, Potters Bar, had selected a candidate replacement preparation and was arranging a collaborative study in which various bioassays and immunoassays would be used.

27. Human atrial natriuretic factor

The Committee noted that the collaborative study of the preparation of human atrial natriuretic factor referred to in its thirty-sixth report (WHO Technical Report Series, No. 745, 1987, p. 24) had been completed and that analysis of the results had shown the preparation to be suitable to serve as an international standard (BS/87.1578). The Committee also noted that the collaborative study had included immunoassay and radioreceptor assays and agreed that the usefulness of the material in other assay systems had not been demonstrated. The Committee established the material, in ampoules coded 85/669, as the International Standard for Human Atrial Natriuretic Factor and defined the activity of the contents of
each ampoule as 2.5 International Units of Human Atrial Natriuretic Factor.

28. Renin

The Committee noted that there was a need to replace the International Reference Preparation of Human Renin and that quantities of human renin prepared by recombinant DNA technology had been obtained for this purpose (BS/87.1576). The Committee therefore requested the National Institute for Biological Standards and Control, Potters Bar, to arrange a collaborative study.

29. Somatomedin C

The Committee noted that the collaborative study of the proposed international reference material for somatomedin C referred to in its thirty-seventh report (WHO Technical Report Series, No. 760, 1987, p. 28) was in progress and that 13 laboratories in 5 countries had agreed to participate (BS/87.1570).

Miscellaneous

30. Vitamin B₁₂ in serum

The Committee was informed that there was a need for an international reference material for the measurement of vitamin B₁₂ in a serum matrix. The Committee was also informed that a preparation had been offered for this purpose and that a collaborative study was being arranged by the British Committee for Standardization in Haematology and the International Committee for Standardization in Haematology. The Committee therefore requested the National Institute for Biological Standards and Control, Potters Bar, to provide advice and assistance as necessary.

31. Interferon, human, fibroblast, β

The Committee noted that supplies of the International Reference Preparation of Interferon, Human, Fibroblast, β, established in 1978 (WHO Technical Report Series, No. 638, 1979, p. 31), were depleted
(BS/87.1552). It also noted that the National Institutes of Health, Bethesda, had obtained material suitable to serve as an international standard for human fibroblast beta-interferon (HuIFN-β) and had completed a collaborative study among 8 laboratories in 5 countries. The Committee established the material studied, coded Gb23-902-531, as the Second International Standard for Interferon, Human, Fibroblast, β, and, on the basis of the results of the collaborative study, assigned an activity of 15 000 International Units of Interferon, Human, Fibroblast, β, to the contents of each ampoule.

32. Interferon, human, recombinant, α₁(αD)

The Committee noted that the National Institute for Biological Standards and Control, Potters Bar, had obtained material suitable to serve as an international standard for human recombinant alpha₁(alpha D)-interferon (rHuIFN-α₁(αD)) and had completed a collaborative study among 8 laboratories in 5 countries (BS/87.1552). The Committee established the material studied, coded 83/514, as the International Standard for Interferon, Human, Recombinant, α₁(αD) and, on the basis of the results of the collaborative study, assigned an activity of 8000 International Units of Interferon, Human, Recombinant, α₁(αD) to the contents of each ampoule.

33. Interferon, human, recombinant, α₂(α₂b)

The Committee noted that the National Institute for Biological Standards and Control, Potters Bar, had obtained material suitable to serve as an international standard for human recombinant alpha₂(alpha₂b)-interferon (rHuIFN-α₂(α₂b)) and had completed a collaborative study among 8 laboratories in 5 countries (BS/87.1552). The Committee established the material studied, coded 82/576, as the International Standard for Interferon, Human, Recombinant, α₂(α₂b), and, on the basis of the results of the collaborative study, assigned an activity of 17 000 International Units of Interferon, Human, Recombinant, α₂(α₂b), to the contents of each ampoule.

34. Interferon, human, recombinant, β₁₇

The Committee noted that the National Institutes of Health, Bethesda, had obtained material suitable to serve as an international
standard for human recombinant beta&subscript;ser17-interferon (rHuIFN-
\(\beta_{ser17}\)) and had completed a collaborative study among 8
laboratories in 5 countries (BS/87.1552). The Committee established
the material studied, coded Gxb02-901-35, as the First International
Standard for Interferon, Human, Recombinant, \(\beta_{ser17}\), and, on the
basis of the results of the collaborative study, assigned an activity of
6000 International Units of Interferon, Human, Recombinant,
\(\beta_{ser17}\), to the contents of each ampoule.

35. Interferon, murine, \(\alpha\)

The Committee noted that the National Institutes of Health,
Bethesda, had obtained material suitable to serve as an international
standard for murine alpha-interferon (MuIFN-\(\alpha\)) and had completed a collaborative study among 7 laboratories in 4 countries
(BS/87.1552). The Committee established the material studied,
coded Ga02-901-511, as the First International Standard for Interferon, Murine, \(\alpha\), and, on the basis of the results of the collaborative study, assigned an activity of 16 000 International Units of Interferon, Murine, \(\alpha\), to the contents of each ampoule.

36. Interferon, murine, \(\beta\)

The Committee noted that the National Institutes of Health,
Bethesda, had obtained material suitable to serve as an international
standard for murine beta-interferon (MuIFN-\(\beta\)) and had completed a collaborative study among 7 laboratories in 4 countries. The Committee established the material studied, coded Gb02-902-511, as the First International Standard for Interferon, Murine, \(\beta\), and, on the basis of the results of the collaborative study, assigned an activity of 15 000 International Units of Interferon, Murine, \(\beta\), to the contents of each ampoule.

37. Interferon, murine, \(\gamma\)

The Committee noted that the National Institutes of Health,
Bethesda, had obtained material suitable to serve as an international
standard for murine gamma-interferon (MuIFN-\(\gamma\)) and had completed a collaborative study among 7 laboratories in 4 countries
(BS/87.1552). The Committee established the material studied,
coded Gg02-901-533, as the International Standard for Interferon,
Murine, γ, and, on the basis of the results of the collaborative study, defined the activity of the contents of each ampoule as 1000 International Units of Interferon, Murine, γ.

38. Digitalis

The Committee noted that in recent years there has been little demand for the International Standard for Digitalis (BS/87.1567) and therefore requested the WHO Secretariat to inquire whether there continued to be a need for this standard.

REQUIREMENTS FOR BIOLOGICAL SUBSTANCES

39. Requirements for poliomyelitis vaccine (oral) (addendum 1987)

The Committee was informed that the addendum in the thirty-seventh report (WHO Technical Report Series, No. 760, 1987, p. 165-166) concerning the potency of oral poliomyelitis vaccine could be misinterpreted. The Committee therefore prepared a replacement addendum, which is annexed to this report (Annex 4).

40. Requirements for measles vaccine (live) (revised 1987)

The Committee was informed that since the publication of the WHO Requirements on Measles Vaccine (Live) (WHO Technical Report Series, No. 329, 1966, Annex 2) there have been several changes in the procedures for the manufacture and control of these vaccines and that some manufacturers have produced live measles vaccine using human diploid cells as a substrate. The Committee was also informed that an informal working group had prepared draft requirements for live measles vaccine (BS/87.1543) which incorporate requirements applicable to vaccines produced in these cells. After discussion and several modifications, the Committee adopted the Requirements for Measles Vaccine (Live) (Revised) annexed to this report (Annex 5).

41. Requirements for Japanese encephalitis vaccine (inactivated) for human use

The Committee noted that several manufacturers had developed inactivated vaccines against Japanese encephalitis prepared from
mouse brain or in primary hamster kidney cells (BS/87.1550). It also noted that proposed draft requirements for inactivated Japanese encephalitis vaccine for human use had been prepared by a WHO Working Group on Japanese Encephalitis Vaccines that met in Osaka, Japan, in 1987. These requirements had been reviewed by various experts, whose comments were considered by the Committee. After making some modifications, the Committee adopted the Requirements for Japanese Encephalitis Vaccines (Inactivated) for Human Use annexed to this report (Annex 6).

42. Requirements for human interferons made by recombinant DNA techniques

The Committee recognized that there has been considerable progress in the development of human interferons through the use of recombinant DNA techniques (WHO Technical Report Series, No. 725, 1985, p. 12) and noted that interferons have been approved for clinical use in some countries. The Committee discussed a report of a WHO Informal Consultation on the Standardization of Interferons, which had drafted proposed requirements for human interferons made by recombinant techniques (BS/87.1545). The Committee recognized the need for such requirements and after several modifications to the text proposed, adopted the Requirements for Human Interferons Made by Recombinant DNA Techniques annexed to this report (Annex 7).

43. Requirements for the production of human interferons prepared from lymphoblastoid cells

The Committee recognized that there had also been progress in the development of human interferons through the use of lymphoblastoid cells and noted that the clinical use of such interferons has been approved in some countries. The Committee noted that draft requirements for the production of human interferons prepared from lymphoblastoid cells had been prepared by a WHO Informal Consultation on the Standardization of Interferons (BS/87.1546). It requested the WHO Secretariat to arrange for further review of the draft, particularly with respect to the provisions concerning manufacturing and testing.
44. Requirements for hepatitis B vaccine prepared from plasma
(revised 1987)

The Committee was informed that since 1984, when the requirements for hepatitis B vaccine were last revised (WHO Technical Report Series, No. 725, 1985, Annex 3), there had been a number of technical developments that justified additional revision. Accordingly, revised requirements were drafted (BS/87.1555) at a WHO informal meeting in London in April 1987 and reviewed by the WHO Technical Advisory Group on Hepatitis that met in Geneva in November 1987. After making some modifications to the draft, the Committee adopted the Requirements for Hepatitis B Vaccine Prepared from Plasma (Revised) annexed to this report (Annex 8).

45. Requirements for hepatitis B vaccines made by recombinant DNA techniques

Annex 6 to the thirty-seventh report of the Committee (WHO Technical Report Series, No. 760, 1987) contains the Requirements for Hepatitis B Vaccines made by Recombinant DNA Techniques in Yeast (Requirements for Biological Substances No. 39) adopted by the Committee in 1986. At that time draft provisions relating to such vaccines derived from mammalian cells had been withdrawn from consideration because this type of vaccine had not yet been licensed in any country. The Committee was now informed, however, that a product derived from mammalian cell culture was being licensed. Therefore the Committee reaffirmed its decision that hepatitis B vaccines made by recombinant DNA techniques, whether they are derived from yeast or from mammalian cells, should be subject to a single set of requirements and requested the WHO Secretariat to provide revised proposed requirements for further review. The document should incorporate the details of all appropriate sections from the Requirements for Continuous Cell Lines Used for Biologicals Production (Requirements for Biological Substances No. 37; WHO Technical Report Series, No. 745, 1987, Annex 3).

46. Requirements for stability of yellow fever vaccines
(addendum 1987)

The Committee noted that the Requirements for Yellow Fever Vaccine (Revised 1975) (WHO Technical Report Series, No. 594,
1976, pp. 23–49) contain a recommendation that the stability of each batch of yellow fever vaccine should be evaluated by testing for potency before and after storage at 37°C for 2 weeks. It also noted that a WHO collaborative study (BS/87.1551) had found that many manufacturers were now producing vaccines that met more stringent stability requirements. The Committee accordingly adopted the addendum to the Requirements for Yellow Fever Vaccine that is given in Annex 9 to this report.

47. List of yellow fever vaccine manufacturers approved by WHO (revised 1987)

The Committee was informed that the product of one manufacturer of yellow fever vaccine was no longer meeting the WHO requirements. Because of this and of other previous changes to the list of WHO-approved yellow fever vaccine manufacturers (WHO Technical Report Series, No. 658, 1981, Annex 1), the Committee agreed to annex a revised list to this report (Annex 10).

48. Requirements for antimicrobial susceptibility tests
1. Agar diffusion tests using antimicrobial susceptibility discs (addendum 1987)

The Committee noted that, since the publication of a revised list of codes for antimicrobial susceptibility discs (WHO Technical Report Series, No. 687, 1983, Annex 5), the WHO Secretariat had received a number of requests for allocation of codes for new antimicrobial substances and had accordingly prepared a draft addendum to the Requirements for Antimicrobial Susceptibility Tests (BS/87.1560). The Committee adopted this further addendum with some modifications and agreed that it should be annexed to this report (Annex 11).

49. Requirements for dried BCG vaccine (amendment 1987)

The Committee was informed that improvements in the manufacturing process for BCG vaccines since the adoption of revised requirements in 1985 (WHO Technical Report Series, No. 745, Annex 2) have resulted in vaccines with greater stability, to which it is possible to allocate a longer expiry date. The Committee therefore agreed that it was appropriate to amend further the
Requirements for Dried BCG Vaccine (Revised 1985); it adopted the proposed text (BS/87.1544) with minor modifications and agreed that it should be annexed to this report (Annex 12).

50. Draft requirements for oral poliomyelitis vaccine prepared in continuous cell lines

The Committee was advised that some manufacturers have prepared oral poliomyelitis vaccines in continuous cell lines. It noted that the WHO Consultative Group on Poliomyelitis Vaccines referred to on page 13 above, had discussed the use of continuous cell lines such as Vero cells for the production of OPV and had agreed that it was appropriate to initiate a broader discussion on this subject. The consideration of continuous cell lines was relevant, not only because vaccine production in such cells is already in progress but also because (a) a WHO Study Group on Biologicals (WHO Technical Report Series, No. 747, 1987) recently concluded that continuous cell lines can be acceptable as a substrate for producing biologicals if, for each given product, its nature and the characteristics of the manufacturing process are considered independently; (b) the availability of non-human primates, now used for the preparation of primary cultures for vaccine production, is decreasing and cells derived from this source are often contaminated with adventitious agents and must consequently be discarded; and (c) although human diploid cells are used in some countries, many manufacturers have encountered difficulties in achieving satisfactory yields of vaccine virus on this substrate. The Consultative Group had therefore prepared draft requirements for oral poliomyelitis vaccine prepared in continuous cell lines (BS/87.1580); the draft was to be distributed to manufacturers and national control authorities for their comments.

The Committee recommended that special attention should be given to the need for the elimination of cell-derived DNA in such vaccines and to analysing the potential advantages and disadvantages of purification procedures in regard to vaccine safety. The Committee also recommended that the comments and the draft requirements be reviewed at its next meeting.
Annex 1

STANDARDIZATION OF INTERFERONS

Report of a WHO Informal Consultation

1. INTRODUCTION

A WHO Informal Consultation on the Standardization of Interferons was held in Geneva from 23 to 25 March 1987. The meeting was opened on behalf of the Director-General by Dr P. Sizaret, Scientist, Biologicals, who remarked that, in the time since an informal consultation on the same subject had been held in 1983 (I, Annex 1), considerable progress had been made,
particularly in the testing of new interferons and the manufacture of interferons for clinical use.

Twelve institutions in 6 countries were involved in the 1985–1986 collaborative study of 7 human interferon (HuIFN) and 4 mouse interferon (MuIFN) preparations. Eight laboratories in 5 countries measured the activity of the proposed reference materials for HuIFN-α, -β and -γ, comparing their activity with that of the appropriate international standards or reference preparations. It was noted that this study represents the second international effort to measure interferon reference materials using a single type of bioassay with cells and virus obtained from a single source (1). Seven laboratories in 4 countries measured the activity of one proposed reference material for murine gamma-interferon (MuIFN-γ), and compared the activity of the murine alpha- and beta-interferon preparations with the International Reference Preparation of Interferon, Mouse, α/β (preparation G002-904-511). Two HuIFN-α recombinant preparations, 2 HuIFN-β preparations (one natural and one recombinant), and 3 murine interferon preparations were acceptable as suitable international reference materials. A recommendation was therefore made that 3 of these reference materials be established as international standards in order to replace existing international reference preparations of HuIFN-β and MuIFN-α/β, and that the MuIFN-γ and the recombinant preparations of HuIFN-α1(αD), HuIFN-α2b, and HuIFN-βser1 be established as new standards. The 2 proposed reference materials for HuIFN-γ were found not to be acceptable as WHO reference reagents: the testing of the HuIFN-γ produced in Escherichia coli by recombinant DNA techniques gave results that were too variable, and the HuIFN-γ produced in human leukocytes, while otherwise acceptable, duplicated the purer International Standard for Interferon, Human (HuIFN-γ), of which an adequate supply remains.

Since the supplies of the international reference preparations of HuIFN-β and MuIFN-α/β are essentially exhausted, it is important that the standards replacing them be established as soon as possible in order that laboratories throughout the world can compare their
results. The description of the reference materials and the report of the findings of the participating laboratories are given in the Appendix. It was anticipated that studies of additional candidate reference materials would be undertaken in the future.

3. REFERENCE BIOASSAY

In the report of the WHO Informal Consultation on the Standardization of Interferons held in 1983 (1) it was considered that a reference bioassay suitable for the 3 types of human interferon should be developed that is reliable, reproducible, and relatively easy to perform. It was realized that no single bioassay may be suitable for all kinds of interferon studies, but a standardized assay may be useful in the evaluation of potency of proposed interferon standard preparations. Attempts to develop a reference bioassay suitable for all types of interferon have already been made. In the 1983 international collaborative study (1) a method measuring the reduction in infectivity yield of infectious virus after a single cycle of replication of encephalomyocarditis virus (EMCV) in a human lung carcinoma cell line (A549) was used to calibrate several human interferon reference materials. Although satisfactory results were obtained, the investigators participating in the study considered this yield-reduction assay to be too cumbersome to serve as a reference assay. Another reference bioassay was selected for use in the 1985–1986 international collaborative study (see the Appendix, Part I); this measures the changes in the spectrophotometric absorbance of naphthol blue-black dye taken up by cultures of the human A549 cell line that are infected with EMCV (2). All participants were provided with (i) a standard protocol for the bioassay, (ii) the EMCV, (iii) the A549 cell line, and (iv) the L cell line (for the propagation of the EMCV). The results obtained with this bioassay were satisfactory and very comparable to those obtained with the routine assays employed in the different laboratories. It was concluded that the calibration of future interferon standards can be accomplished by the analysis of results obtained with the routine assays performed in various laboratories. Although the naphthol blue-black-uptake assay was found to be reproducible, relatively simple and convenient (3), it was not thought helpful to recommend this or any other particular bioassay as a reference bioassay.
4. IMMUNOASSAYS

The essential features of immunoassays for interferons have been summarized in 3 reports in the WHO Technical Report Series (1, 3, 4) and need not be repeated here.

Recent experience indicates that immunoassays for interferons can be superior to bioassays in their reproducibility, sensitivity, specificity, speed, and ease of performance. An additional advantage of immunoassays is the lack of interference by other substances present in the test specimens, a potential problem in bioassays. Thus, immunoassays, if sufficiently sensitive, may be particularly valuable when low concentrations of interferons are being assayed in crude preparations, e.g., in serum or other biological fluids. However, in order to establish the validity of a given immunoassay as a measure of biological activity, its results must be correlated with determinations of biological activity in interferon samples undergoing progressive degradation or inactivation.

Bioassays of unknown interferon preparations generally do not distinguish the various types of interferon; a second assay employing specific neutralizing antibodies is therefore often necessary to determine whether the interferon present is of the alpha, beta, or gamma type. In contrast, immunoassays are specific for a single interferon type. This specificity may be advantageous both for quantification and for identification of the type of interferon and can be accomplished in a single step. On the other hand, the specificity of immunoassays may be a drawback because a negative result in one type of immunoassay (e.g., an assay for gamma-interferon) will not rule out the presence of unrelated types of interferon (e.g., alpha-interferon).

4.1 Immunoassays for human alpha-interferon

Immunoassays for human alpha-interferon have become generally available and widely used. The results obtained by the use of specific immunoassays for single-component preparations of human alpha-interferon subtypes have been shown to correlate well with the results of bioassays. However, most of the commercially available immunoassays do not detect all human alpha-interferon subtypes; the sensitivity of the immunoassays is less than that of bioassays; and it has become apparent that quantification of multicomponent alpha-interferon preparations by immunoassay may only yield
values that correlate rather poorly with those derived from bioassays. More progress is needed towards the development of immunoassays that would be suitable for the detection and measurement of the so-called acid-labile alpha-interferon present in the sera of patients with autoimmune diseases or the acquired immunodeficiency syndrome (AIDS).

4.2 Immunoassays for human beta-interferon

It should be possible to construct immunoassays appropriate for the detection and quantification of beta-interferon. However, no recent efforts to this end have been reported.

4.3 Immunoassays for human gamma-interferon

The results of immunoassays for human gamma-interferon, including the measurement of samples undergoing different types of degradation tests, have shown an excellent concordance with those from bioassays; and immunoassays for HuIFN-γ have become the preferred type of assay for various applications. The HuIFN-γ immunoassay procedure may have some advantages over the bioassay, including greater sensitivity and reproducibility, and good-quality commercial kits based on immunoradiometry are widely available.

In general, less progress has been made in the development of immunoassay for interferons from other species. Immunoassays for murine gamma-interferon have been developed, but satisfactory commercial kits are not known to be available.

5. MEASUREMENT OF ANTIBODIES TO INTERFERON IN SERA OF PATIENTS

Neutralizing and non-neutralizing antibodies to interferons can be found in the circulation of patients receiving interferon therapy. Although endogenously generated interferons are normally non-immunogenic, administration of interferons manufactured by various techniques may stimulate the production of anti-interferon antibodies even in homologous species. Such antibodies have also been observed in some patients not treated with interferons.

The 1983 Informal Consultation on the Standardization of Interferons emphasized the desirability of using the most sensitive
procedures for the detection of antibodies to interferon in the sera of patients. A standard method of neutralization assay, using a constant concentration of interferon (10 laboratory units [LU]/ml) along with various dilutions of antiserum, and the definitions of a neutralization titre were discussed and described in its report (1). Since then, the quantitative neutralization test, using a constant quantity of antibody and various interferon concentrations (the "constant antibody method"), has been extensively studied by some investigators, and a practical procedure for titrating neutralizing antibodies in sera of unknown potency by this method has been described in detail (5). The "constant interferon" and the "constant antibody" methods are considered equivalent in principle, and a "chequerboard-type assay" which combines both methods may be useful as well as practical. Further, the use of immunoassay is recommended as a method to quantitate the amount of interferon-binding antibodies, which in combination with the neutralization assay can evaluate the presence and development of non-neutralizing antibodies in patients treated with interferon preparations.

Particular attention has recently been paid to long-term administration of interferons produced by recombinant DNA techniques. Such products can have altered molecular structures, such as heterogeneity of the amino terminal sequence and/or non-glycosylation or abnormal carbohydrate structure. Such preparations may be recognized immunologically as foreign. It is difficult to compare different types of interferon for their immunogenic potential. The most extensive antibody studies have been carried out on recombinant alpha-interferon preparations. In a large clinical trial a considerable incidence of neutralizing antibody formation after treatment with HuIFN-α2a was reported (6), whereas a relatively low incidence (2.4%) was measured in patients treated systemically with HuIFN-α2b (7). The total dose or duration of interferon therapy seemingly required to stimulate antibody production seems to vary with individuals, and no consistent relationships have been revealed between the presence of any particular disease and the development of neutralizing antibodies. Recombinant beta-interferon possessing a serine substitution for cysteine was also shown to be somewhat immunogenic, at least in one report (8).

However, despite the appearance of neutralizing and non-neutralizing antibodies in sera, there is no definitive evidence to
suggest clinically adverse effects or decreased clinical response to interferon therapy in such patients. Continued attention should be paid to the development of anti-interferon antibodies and their possible relevance to therapeutic response or long-term effects.

6. ASSAYS OF ANTIPROLIFERATIVE AND OTHER CELLULAR EFFECTS OF INTERFERONS

It is important to note that interferon was first approved for clinical use in several countries for the treatment of cancer. It is therefore appropriate to consider what mechanisms of action of interferon might serve as a basis for its anticancer effects, and what assays might be employed to measure these effects. At least 5 different mechanisms of action of interferons might contribute to their inhibition of tumor growth: (1) inhibition of tumour virus growth; (2) induction of enzymes that may result in inhibition of cell growth; (3) immunoregulatory actions; (4) direct inhibitory effects on cell growth; and (5) regulation of the expression of oncogenes and growth factors.

Assays based on the inhibition of a cytopathic effect or the production of an antiviral product by interferons may not suffice for measuring the inhibition of tumour viruses. For example, the assembly of retroviruses or their release from the cell surface is impaired by interferon. If interferons were to prove effective in the treatment of tumours that are associated with retrovirus infections, and if their antitumour activity seemed related to inhibition of virus growth, then an assay of their ability to reduce the release of fully infectious retrovirus particles might be useful.

Interferon treatment results in the induction of several enzymes, including double-stranded RNA-dependent protein kinase, indolamine dioxygenase, and 2'-5'-oligoadenylate (2-5A) synthetase. The assay of these enzymes may provide valuable information. For instance, the production of endogenous interferon or the response to exogenous interferon is sometimes followed by measuring lymphocyte 2-5A synthetase, since the levels of this enzyme may remain elevated far longer than that of interferon itself.

Interferons also cause many effects on the immune system. In one experimental model interferon inhibited tumour growth by increasing major histocompatibility antigen expression on the tumour cells. In other models, antitumour effects may be due to
stimulation of the activities of cytotoxic lymphocytes, monocytes and macrophages, or NK cells. In the case of monocyte/macrophage stimulation, standardized assays for the induction of Fc receptors or Ia antigen have been developed that give reproducible results in different laboratories. There is a need to develop assays to test the immunomodulatory effect of interferons.

Interferons exert their antiproliferative effects on both normal and transformed cells. For an assay of the antiproliferative effect, cells from a continuous cell line can be used, with the preference usually given to cells easily maintained in culture. For assaying human interferons, the inhibition of the replication of Daudi cells, a lymphoblastoid cell line, may be suitable since such cells have proved to be remarkably sensitive to the antiproliferative effects of HuIFN-α or -β (but not to HuIFN-γ), as shown by many investigators. Another method involves counting colonies of Daudi cells suspended in soft agar in the presence of various concentrations of interferon. For murine interferons a similar assay can be used, for example, with mouse leukaemia L1210 cells. Other methods of enumeration of cell concentrations, such as the incorporation of radioactive thymidine or amino acids, may not be satisfactory since, for example, interferons can inhibit the uptake of the radioactive precursors, leading to overestimates of their growth-inhibitory effect.

The biological effects of interferons on the expression of regulators of cell multiplication and oncogenes are currently being evaluated. How these effects can best be quantified remains to be determined.

7. NEED FOR ADDITIONAL INTERFERON REFERENCE MATERIALS

As a result of the 1985–1986 collaborative study, several interferon materials appear to be suitable candidates for designation as international reference materials. The Consultation was informed that the thirty-seventh WHO Expert Committee on Biological Standardization, in 1986, had decided that all future preparations assigned international units of activity should be called International Standards, whereas other reference materials should be designated as International Reference Reagents (9, p. 15)
7.1 Human reference materials

It is likely that the existing and replacement international reference materials for human alpha-, beta- and gamma-interferons will be adequate for most purposes. However, it is recognized that a need remains for a reference reagent for non-glycosylated HuIFN-γ derived from bacterial cells as well as for glycosylated gamma-interferon derived from eukaryotic cells, e.g., Chinese hamster ovary cells. In addition, a reference agent for alpha-class II (or -omega) (10, 11) would also be useful. The development of reference reagents for the standardization of antiviral assays for other substances, such as beta2-interferon (also known as 26K protein, B-cell stimulating factor 2, or plasmacytoma/hybridoma growth factor) and tumour necrosis factors, which may induce antiviral activity, might eventually become necessary when more information about them becomes available.

7.2 Animal reference materials

Existing and proposed international reference materials for animal interferons, especially those for mouse interferons, will continue to have widespread uses. However, while it is recognized that reference reagents for additional animal interferons, e.g., those of bovine origin, are likely to be needed, their development should follow previous recommendations (1).

8. RECOMMENDATION FOR THE ESTABLISHMENT OF A WHO WORKING CELL BANK

A WHO Study Group on Biologicals has recommended the establishment of a limited number of banks for the storage of continuous cell lines (12). Such preparations would be available to the Member States of WHO and to manufacturers for the development of working cell banks that meet the Requirements for Biological Substances No. 37 (Requirements for Continuous Cell Lines Used for Biologicals Production) (13). It was recommended that lymphoblastoid cell lines be included in WHO cell banks for the production of human interferons.
9. CONCLUSIONS

It is recommended that the following materials be accepted as WHO international standards for interferons (see Appendix):

1. Preparation Gb23–902–531 as the International Standard for Interferon, Human, Fibroblast (HuIFN-β), having an activity of 15 000 (4.18 log_{10}) International Units per ampoule, in order to replace the first international reference preparation;

2. Preparation 82/576 as the International Standard for Interferon, Human, Recombinant, α_2(α_2b) (HuIFN-α_2(α_2b)), having an activity of 17 000 (4.24 log_{10}) International Units per ampoule;

3. Preparation 83/514 as the International Standard for Interferon, Human, Recombinant α_1(αD), (HuIFN-α_1(αD)), having an activity of 8000 (3.90 log_{10}) International Units per ampoule;

4. Preparation Gxb02–901–535 as the International Standard for Interferon, Human, Recombinant β_{ser17} (HuIFN-β_{ser17}), having an activity of 6000 (3.78 log_{10}) International Units per ampoule;

5. Preparation Ga02–901–511 as the International Standard for Interferon, Murine, α (MuIFN-α), having an activity of 16 000 (4.2 log_{10}) International Units per ampoule;

6. Preparation Gb02–902–511 as the International Standard for Interferon, Murine, β (MuIFN-β), having an activity of 15 000 (4.18 log_{10}) International Units per ampoule;

7. Preparation Gg02–901–533 as the International Standard for Interferon, Murine, γ (MuIFN-γ), having an activity of 1000 (3.0 log_{10}) International Units per ampoule.

Although it was felt that the preparation of murine alpha/beta-interferon (MuIFN-α/β) Ga02–901–511 (with an activity of 10 000 (4.0 log_{10}) International Units per ampoule) could be considered for establishment as either an international standard or an international reference reagent, it was decided to defer judgement pending further information. This preparation is available from the National Institutes of Health, Bethesda, MD, USA.

A preparation of recombinant human gamma-interferon (Gxg01–901–535) and a preparation of natural human gamma-interferon (82/587) were not recommended for adoption as international reference materials. Insufficient information on the preparation, characteristics, and stability of a preparation of recombinant human beta-interferon was available for any recommendation to be made. It was recommended that a
preparation of an E. coli-derived, non-glycosylated, recombinant, human gamma-interferon, as well as one produced in mammalian cells (e.g., in Chinese hamster ovary cells) transfected with human gamma-interferon cDNA, be developed for use as an international reference material; such materials are expected to be comparable to natural human gamma-interferon and devoid of contaminating lymphokines.

An antiviral bioassay was used in common by all participating laboratories for the calibration of the human interferon reference materials. The cells, virus, and other key ingredients used in the antiviral bioassay, along with detailed instructions, were supplied to all participating laboratories from a single source. As the results obtained were comparable to those obtained by individual laboratories using their own routine assay procedures, it was agreed that in future collaborative studies it may not be necessary for all participating laboratories to use the same assay procedure.

Progress has been made in the development and application of immunoassays for interferons. Whereas immunoassays are of limited usefulness in the quantification of multicomponent interferon samples, they can have wide application in the assay of preparations containing a single interferon protein (e.g., preparations of gamma-interferon or individual subtypes of recombinant alpha-interferon). There has been little progress towards the development of suitable quantitative assays based on non-antiviral biological activities of interferons. Such alternative biological assays may be particularly desirable for the study of gamma-interferon.

The development of neutralizing and non-neutralizing antibodies in some patients treated with interferon preparations requires continued monitoring and evaluation.

Drafts of proposed WHO requirements for the production of interferons prepared from lymphoblastoid cells and by recombinant DNA techniques have been prepared. The documents recommended for approval by the Expert Committee should facilitate the clinical use of interferon by WHO Member States.
REFERENCES

PARTICIPANTS

Dr. O.G. Andzhaparidze, Director, Moscow Research Institute for Viral Preparations, Moscow, USSR
Dr. J.J. Ayres, Quality Assurance Division, Wellcome Research Laboratories, Beckenham, Kent, England
Dr. E. De Maeyer, CNRS Director of Research, Biology Section, Curie Institute, Orsay, France
Dr. N. Finier, Development Division, Wellcome Research Laboratories, Beckenham, Kent, England
Professor R. Friedman, Chairman, Department of Pathology, Uniformed Services University of the Health Services, Bethesda, MD, USA
Professor S.F. Grossberg, Chairman, Department of Microbiology, Medical College of Wisconsin, Milwaukee, WI, USA (Rapporteur)
Dr. S.M. Kramer, Genentech Inc., San Francisco, CA, USA
Dr. C.A. Laughlin, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA (Chairwoman)
Dr. P.J. Leibowitz, Director, Molecular and Analytical Biology, Schering Corporation, Bloomfield, NJ, USA

48
Dr A. Meager, Division of Immunobiology, National Institute for Biological Standards and Control, London, England
Mr M. Narachi, Amgen, Thousand Oaks, CA, USA
Dr M. Truehaft, Section Head, Biological Assay Research, Schering Corporation, Bloomfield, NJ, USA
Professor J. Vilecek, Department of Microbiology, New York University Medical Center, New York, NY, USA
Dr S. Yamazaki, Director, Central Virus Diagnostic Laboratory, National Institute of Health, Tokyo, Japan
Dr K. Zoon, Chief, Laboratory of Immunology, Center for Drugs and Biologics, Food and Drug Administration, Bethesda, MD, USA

WHO Secretariat
Dr J. Esparza, Microbiology and Immunology Support Services, World Health Organization, Geneva, Switzerland
Dr V. Grachev, Scientist, Biologicals, World Health Organization, Geneva, Switzerland
Dr P. Sizaret, Scientist, Biologicals, World Health Organization, Geneva, Switzerland (Secretary)
PART 1

THE INTERNATIONAL COLLABORATIVE STUDY, 1985–1986

1. Materials

1.1 Human interferons

An international collaborative study was organized in order to test the suitability of proposed reference materials for 2 HuIFN-α subtypes, 3 HuIFN-β types, and 2 HuIFN-γ types. Each participating laboratory was asked to use a proposed reference bioassay and optionally its routine bioassay as well to titrate, on 5 or more different occasions, these preparations and the following interferon international reference materials (IS: International Standard; IRP: International Reference Preparation):

(a) Human Leukocyte, HuIFN-α, (IRP 69/19);
(b) Human Recombinant HuIFN-α2(αA) (IS Gxa01-901-535);
(c) Human Fibroblast, HuIFN-β (IRP G023-902-527); and
(d) Human Leukocyte, HuIFN-γ (IS Gg23-901-530).

The reference bioassay was a microtitre dye-uptake method employing encephalomyocarditis virus (EMCV) in the human lung carcinoma cell line A549. The virus and cell line were sent by

1 The bibliographical references for Parts 1 and 2 of this Appendix are listed at the end of Part 2.
2 The investigators participating in the collaborative study were: A. Billiau and M. de Ley, Rega Institute, Louvain, Belgium; C. Czarniecki, Genentech Inc., San Francisco, CA, USA; E. De Maeyer, Curie Institute, Orsay, France; R. Friedman and S. Vogel, Uniformed Services University of the Health Services, Bethesda, MD, USA; S.E. Grossberg, Medical College of Wisconsin, Milwaukee, WI, USA; J. Hilfenshaus, Behringwerke AG, Marburg an der Lahn, Federal Republic of Germany; Y. Kawade, Institute for Virus Research, Kyoto, Japan; S. Kobayashi, Toray Industries, Kamakura, Japan; L. Kronenberg, Lee Biomolecular Research Laboratories, San Diego, CA, USA; T. Meager, National Institute for Biological Standards and Control, London, England; J. Vilecek, New York University Medical Center, New York, NY, USA; S. Yamazaki, National Institute of Health, Tokyo, Japan.

50
Professor S.E. Grossberg (Department of Microbiology, Medical College of Wisconsin, Milwaukee, WI, USA) to each participating laboratory along with details of the procedures. The analysis of the raw data obtained from each laboratory was performed by Dr Patricia Jameson and Dr John Kalbfleisch who participated in all previous collaborative testing of freeze-dried interferon standards prepared at the Medical College of Wisconsin for the National Institutes of Health. This study represents the second international collaborative effort to measure interferon reference materials using a single bioassay with cells and virus obtained from a single source.

The following 7 human samples were supplied and distributed by the National Institutes of Health, Bethesda, MD, USA:

(1) Gb23-902-531, HuIFN-β, a preparation produced in human fibroblast cultures, partially purified by Dr Rentschler, Arzneimittel GmbH, Laupham, Federal Republic of Germany, and further purified, freeze-dried and characterized at the Medical College of Wisconsin;

(2) Gxb01-901-535, HuIFN-β, produced in *Escherichia coli* by a recombinant DNA technique and highly purified, characterized and freeze-dried at Toray Industries, Kamakura, Japan;

(3) Gxb02-901-535, HuIFN-β, produced in *E. coli* by a recombinant DNA technique and highly purified by Cetus Corporation, Emeryville, CA, USA, and subsequently diluted, freeze-dried, and characterized at the Medical College of Wisconsin;

(4) Gxg01-901-535, HuIFN-γ, produced in *E. coli*, highly purified and freeze-dried at Genentech, San Francisco, CA, USA;

(5) IS Gxa01-901-535, Human, Recombinant, HuIFN-α2(αA);

(6) IRP G023-902-527, Human, Fibroblast, HuIFN-β;

(7) IS Gg23-901-530, Human, “Immune”, HuIFN-γ.

The following 4 human samples were supplied and distributed by the National Institute for Biological Standards and Control, London, England:

(1) IRP 69/19, International Reference Preparation of Interferon, Human Leukocyte, HuIFN-α;

(2) 82/576, recombinant HuIFN-α2(α2B) produced in *E. coli* by a recombinant DNA technique and purified, characterized, and freeze-dried at Schering Corporation, Bloomfield, NJ, USA;
(3) 83/514, recombinant HuIFN-α₁(αD) produced in *E. coli* by a recombinant DNA technique and purified, characterized and freeze-dried at Roche Research Center, Nutley, NJ, USA;

(4) 82/587, HuIFN-γ prepared in leukocytes and characterized at IFN Sciences, Camden, NJ, USA.

1.2 Murine interferons

The following 5 mouse interferon materials were supplied by the National Institutes of Health, Bethesda, MD, USA:

(1) Gu02-901-511, MuIFN-α/β, prepared in mouse L cells at Lee Biomolecular Research Laboratories, San Diego, CA, USA, and subsequently freeze-dried and characterized at the Medical College of Wisconsin;

(2) Ga02-901-511, MuIFN-α produced in L cells, highly purified and characterized at Lee Biomolecular Research Laboratories, San Diego, CA, USA, and freeze-dried at the Medical College of Wisconsin;

(3) Gb02-902-511, MuIFN-β produced in L cells and highly purified at Lee Biomolecular Research Laboratories, San Diego, CA, USA, and freeze-dried at the Medical College of Wisconsin;

(4) Gg02-901-533, MuIFN-γ produced in mouse splenocytes, purified, freeze-dried, and characterized at the Medical College of Wisconsin;

(5) IRP G002-904-611, International Reference Preparation of Interferon, Mouse (MuIFN-α/β).

More detailed information on each of the proposed reference materials is given in Part 2 of this Appendix.

2. Results

2.1 Human alpha- and beta-interferons: proposed reference materials

Data were analysed from the 8 laboratories in 5 countries that submitted results of at least 5 titrations performed with the reference bioassay method. Dose–response curves were constructed by linear regression analysis of the data from each reference bioassay titration performed by each laboratory. The end-point was taken as the
median absorbance within the linear portion of the curve relative to the range of absorbance delimited by that measured in the control cultures (not exposed to interferon) of the virus-infected and the uninfected cells. No statistically significant differences in slopes were obtained either among the different HuIFN-α or among the different HuIFN-β preparations. The geometric mean titre (GMT) of each interferon was computed for each laboratory. The mean of the GMT values for all laboratories and the standard deviation were calculated for each preparation. The assigned potency of each preparation was calculated from this mean value by proportional relationship, as previously recommended, to the appropriate international reference preparation titrated in this collaborative assay study. The results are presented in Table 1.

Table 1. Summary of results of the 1985–1986 international collaborative study on human α and β interferon proposed international standards and assignment of potency

<table>
<thead>
<tr>
<th>HuIFN sample</th>
<th>Interferon type</th>
<th>Geometric mean titre/ampoule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed (LU)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Log₂ ± SD</td>
</tr>
<tr>
<td>Gb29-902-531*</td>
<td>β</td>
<td>3.61 ± 0.368</td>
</tr>
<tr>
<td>82/514°</td>
<td>α₁ (GD)</td>
<td>3.98 ± 0.404</td>
</tr>
<tr>
<td>Gb2/576°</td>
<td>α₂ (G24)</td>
<td>4.17 ± 0.423</td>
</tr>
<tr>
<td>Gb2/001-535*</td>
<td>β</td>
<td>3.64 ± 0.571</td>
</tr>
<tr>
<td>Gb2/002-535°</td>
<td>β</td>
<td>3.42 ± 0.245</td>
</tr>
</tbody>
</table>

*LU = international units; LU = laboratory units as determined by the reference bioassay (EMC virus/A45 cell naphthol-blue-black dye-uptake assay).
*The HuIFN-α samples were calibrated against the International Reference Preparation of Interferon, Human Fibroblast (GB02-902-537); the HuIFN-α (IGP) samples against the International Reference Preparation of Interferon, Human Leukocyte (88/19); and the HuIFN-α (IUw) samples against the International Standard for Interferon, Human, IFA (HuIFN-α (IA)) (Gb29-901-535).
*Proposed international standard.
*Not a proposed international standard.

Tables 3, 5, 13 and 14 (in Part 2) summarize the observed, uncorrected titres obtained by the reference bioassay. On the basis of these data, a biological activity was assigned to the content of each of the ampoules by comparison with the appropriate international reference preparation (Table 1). The assigned values are likely to be in the range obtained by most workers with their routine assay (see the tables in Part 2).
2.2 Murine alpha- and beta-interferons: proposed reference materials

Data were analysed from the 7 laboratories in 4 countries that submitted results of at least 5 titrations performed with the routine bioassay of the individual laboratory. Titres were calculated from the raw data if no titre was submitted, but if titres were reported, they were accepted without further calculation. The GMT of each interferon preparation was computed for each laboratory. The mean of the GMT values for all laboratories and the standard deviation were calculated for each preparation. No statistically significant differences in slopes were obtained among the different MuIFN-α and MuIFN-β preparations. The detailed results are presented in Tables 7 and 9 (in Part 2), which indicate the observed titres obtained with the routine assays. On the basis of these data, a biological activity was assigned to the content of each of the ampoules by comparison with the International Reference Preparation of Interferon, (G002-904-511) Mouse (α + β) (Table 2).

Table 2. Summary of results of the 1985–1986 international collaborative study by 7 laboratories on mouse α and β interferon proposed international standards and assignment of potency

<table>
<thead>
<tr>
<th>MuIFN sample</th>
<th>Interferon type</th>
<th>Geometric mean titre/ampoule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed (LU*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Log₁₀ ± SD</td>
</tr>
<tr>
<td>Ga02-901-511*</td>
<td>α</td>
<td>4.005 ± 0.374</td>
</tr>
<tr>
<td>G502-902-511*</td>
<td>β</td>
<td>3.974 ± 0.363</td>
</tr>
<tr>
<td>Gu02-901-511*</td>
<td>α/β</td>
<td>3.806 ± 0.390</td>
</tr>
</tbody>
</table>

*IU = international units; LU = laboratory units as determined by the assays done routinely in the individual collaborating laboratories.
*Correlated against the International Reference Preparation of interferon, Mouse (α + β) (G002-904-511).
*Proposed International standard.
*Not a proposed international standard.

2.3 Murine gamma-interferon: proposed international standard

Table 11 (in Part 2) summarizes the test results obtained with the MuIFN-γ proposed reference reagent Gg02-901-533. In this first assignment of units to a MuIFN-γ proposed reference material, a potency of 1000 (3.0 log₁₀) laboratory units per ampoule was chosen.
on the basis of the results obtained with routine bioassays without comparison with the unrelated International Reference Preparation of Interferon, Mouse \((\alpha + \beta)\) (G602-904-511) inasmuch as the dose–response curves of the two preparations were different and there was no proportionality of measurements between the two preparations. Therefore it was proposed that this activity be defined as international units.

3. Reference Bioassay

A virus yield-reduction assay \((I)\) employing EMC virus and the A549 human lung carcinoma cell line was used to calibrate international reference preparations in the 1983 collaborative assay study, but it was considered cumbersome and the suggestion was made that a simpler method should be sought. A microtitre interferon assay based on the spectrophotometric measurement of the cellular uptake of naphthol blue-black dye (which has a high extinction coefficient) was recently developed using EMC virus in A549 cells \((2)\). Eight laboratories were able to follow without difficulty the standard protocol provided. The bioassay was deemed to be reproducible and suitably sensitive for all three types of human interferon, as well as more rapid and economical than the yield-reduction assay used in the previous international collaborative study.

PART 2

DETAILED INFORMATION ON ASSAY METHODS, MAIN MATERIALS EXAMINED, AND RESULTS

1. Freeze-dried Human Beta-interferon (HuIFN-\(\beta\))
 Proposed International Standard
 (NIH Catalogue No. Gb23-902-531)

1.1 Preparation

Human fibroblast beta-interferon (HuIFN-\(\beta\)) was produced in FS-4 human foreskin fibroblast cultures by superinduction with
poly(I)·poly(C) (3) by Dr Rentschler, Arzneimittel GmbH, Laupham, Federal Republic of Germany. It was originally provided to the National Cancer Institute of the National Institutes of Health (NIH) in the USA as freeze-dried preparations: lot 4, sent in October 1977; and study number “charge g”, sent in 1979. These lots were stated to contain HuIFN-β concentrations of 8×10^5 IU/ml and 10^6 IU/ml respectively, and protein contents of 9 mg/ml and 6 mg/ml respectively. The specific activities of the two lots were 9×10^4 IU/mg and 10^5 IU/mg respectively before human serum albumin was added as a stabilizer. The NIH sent 220 vials of the 1977 lot and 45 vials of the 1979 lot to the Medical College of Wisconsin for the production of a HuIFN-β standard reagent.

The two lots of interferon were reconstituted, partially purified, pooled, and supplemented as follows. The interferon was reconstituted with sterile distilled water, 1 ml/vial, and the contents of all vials of a given lot were pooled; each vial was then rinsed with an additional 0.2 ml, which was added to the pool. Each lot was purified independently by chromatography (4) through a controlled pore glass (CPG) column, from which the interferon was eluted with 0.1 mol/litre HCl-KCl buffer, pH 2, containing gelatin, 5 mg/ml. Previous purification attempts resulted in products of acceptable purity but very poor stability during storage at either 4 °C or −70 °C for even brief periods; and the addition of gelatin during purification permitted optimal recovery of the interferon activity. The purified interferon was filter-sterilized through a 0.2 μm membrane and left at pH 2 for storage at 4 °C while the two lots were titrated. They were combined immediately prior to freeze-drying, and a 25% stock solution of human serum albumin (Travenol “Buminate”) was added to the final concentration of 1 mg/ml. The pooled interferon preparation was aseptically diluted into ice-cold sterile buffer solution composed of 0.1 mol/litre sodium phosphate buffer, pH 7, supplemented with 1 mg/ml human serum albumin and 5 mg/ml gelatin. The vessel was packed in wet ice to keep the solution chilled during the process of filling the ampoules; 1.00-ml portions were dispensed into borosilicate glass ampoules using a high-precision Hamilton dispenser. The consistency of the filling, determined gravimetrically with 13 samples, was 1.0047 g/vial, with a standard deviation of 0.0025 g (coefficient of variation = 0.25). Ampoules were filled in groups of 19 and held on ice until 5 groups were filled and were then placed in the refrigerated chamber of the freeze-dryer. After all ampoules were filled, they were frozen at −30 °C, and the
material was dried to a residual moisture of about 3%. The ampoules were then backfilled with argon, and the tips were heat-fused at atmospheric pressure. Each ampoule tip was dipped in neoprene solution to ensure complete sealing. The last ampoule filled in each group of 19 was marked for testing of sterility and antiviral activity after freeze-drying. All the marked vials were subjected to a test for the completeness of the seal by submersion in water with a dye under a partial vacuum at room temperature, and inspected for the presence of liquid 20 minutes after they had been returned to atmospheric pressure (5). Ampoules are stored at −70 °C but can be shipped at ambient temperatures.

1.2 Recommendations for reconstitution

Add 1.0 ml of sterile distilled water to the lyophilized powder, taking care to avoid the loss of any material in the neck or stem of the ampoules. Small portions of the reconstituted interferon may be stored at −70 °C for dilution at another time. However, a suitable amount of an appropriate dilution, based on the known sensitivity of the assay being used, should be made in the freeze-drying buffer (see above) supplemented with human serum albumin (1 mg/ml) and gelatin (5 mg/ml) or in serum-containing culture medium used in the biological assay. Aliquots of the diluted interferon should preferably be stored at −70 °C in volumes each sufficient for a single titration. It may be possible to store enough material in a single container at −70 °C for use in as many as 3 titrations, but repeated thawing and freezing may result in loss of activity. All liquid samples should be stored at −70 °C or lower.

1.3 Stability

The freeze-dried reference preparation did not lose any activity in the linear non-isothermal accelerated degradation test (6), in which material is progressively heated from 50 °C to 90 °C over a 28-h period. From the results of the predictive multiple isothermal accelerated degradation test, (6), involving storage at 52 °C, 60 °C, 68 °C, and 76 °C for periods up to 1 year, the product is estimated to have unlimited stability at −20 °C and −70 °C. The length of time during which the preparation was predicted to lose 1 log of activity at temperatures above freezing was estimated from these
data to be 1.3 years at 56 °C, 16.6 years at 37 °C, 180.9 years at 20 °C, and 2570 years at 4 °C.

1.4 Test results

No bacteria or fungi were detected in 60 samples tested from the 154 different groups of ampoules composing the reference lot. The interferon used for freeze-drying was diluted to contain 1 mg of protein per ml (considering the product to have 6 mg/ml as 1 mg/ml human serum albumin and 5 mg/ml gelatin) and characterized as follows: it was more than 99% inactivated by trypsin in 1 h, 90% inactivated during heating at 56 °C for up to 3 h, and not inactivated during 48 h of pH 2 dialysis at 4 °C. The product was not neutralized by antisera to HuIFN-γ (prepared at the Medical College of Wisconsin against purified HuIFN-γ), or by anti-HuIFN-α serum (NIH G026-502-568); but it was neutralized completely by anti-HuIFN-β serum (NIH G028-501-568). The interferon was composed of primarily one molecular size (relative molecular mass 22 000), as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis in phosphate buffer by the method of Weber & Osborne. Analysis of HuIFN-β by isoelectric focusing revealed a major peak of activity with an isoelectric point of 5.5.

The potency was determined from the data contributed by 7 international laboratories, which had performed 3 or more titrations of the preparation using a microtitre reference bioassay technique (7) (Table 3). The reference bioassay involves the spectrophotometric measurement of the uptake of naphthol blue-black dye in cultures of the A549 line of human lung carcinoma cells infected with encephalomyocarditis virus (EMCV) after treatment with dilutions of the interferon samples. The end-point is defined as the median dye uptake between optical density values for cultures that were not treated with interferon but were infected with EMCV (virus controls) and those that were not infected with EMCV (cell controls).

The geometric mean titre (GMT) calculated as the mean of the GMT values reported from each laboratory (total number of titrations = 131) was 3.8131 log laboratory units (LU) (with a standard deviation (SD) of 0.368 log LU, corresponding to about 2.3-fold variation). Six of the laboratories also titrated the HuIFN-β by routinely used bioassays of different types with various cell–virus combinations; the resulting GMT values ranged from 3.31 to 4.17
log LU (based on a total of 50 determinations), with a mean of 3.73 log LU, SD 0.31 (Table 3).

| Table 3. Summary of results of the international collaborative study of the human β interferon proposed international standard (Gb23-902-531) |
|---|---|---|---|---|---|---|---|
| Assay method | Observed LU/ml and variance within 7 laboratories | Summary of results of all tests in all laboratories |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Reference bioassay | | | | | | | |
| Number of titrations | 6 | 5 | 5 | 5 | 3 | 5 | 8 |
| SD (log) | 0.138 | 0.114 | 0.269 | 0.085 | 0.162 | 0.410 | 0.243 |
| Other assay methods | | | | | | | |
| Number of titrations | 5 | 5 | 5 | 11 | 8 | 8 | 8 |
| GMT (log) | 3.506 | 4.167 | 3.537 | 3.673 | 3.513 | 3.308 | 3 |
| SD (log) | 0.106 | 0.167 | 0.087 | 0.178 | 0.190 | 0.218 | 0.306 |

*The geometric mean titres (GMT) and standard deviations (SD) are based on titres calculated from the raw data provided by each laboratory.
| In this column the GMT and SD are based on the mean of the GMT values obtained for all laboratories.
| The reference bioassay method measured changes in absorbance of naphthol blue-black dye taken up by the human A549 cell line infected with encephalomyocarditis virus (EMCV). The EMCV was propagated in L-cell cultures. A standard protocol [7] for the assay, as well as the EMCV and the A549 and L-cell lines were provided to all participants by Dr S.E. Grouseberg's laboratory at the Medical College of Wisconsin.
| The assigned potency of Gb23-902-531, in relation to the International Reference Preparation of Interferon, Human Fibroblast (Gb23-902-527) is 15 000, or 4.176 log IU, International Units (see text).
| A dash indicates that no titrations were done.

There was little activity on cells of heterologous species. The following observed unadjusted titres were obtained by the haemagglutination yield-reduction method (δ), using the GDVII strain of EMCV with L cells, and EMCV with all other types of cells: 22 000 LU in human A549 cells, 180 LU in murine L cells, and 825 LU in RK-13 cells.

1.5 Titre assignment

The assigned potency of the HuIFN-β NIH preparation Gb23-902-531 is 15 000 International Units (IU), or 4.176 log IU. This value is derived from the test results of an international collaborative study using the reference bioassay by proportional relationship to the International Reference Preparation of Interferon, Human Fibroblast, (Gb23-902-527), having an assigned potency of 10 000 IU.
1.6 Use of the proposed international standard for interferon, human, fibroblast (HuIFN-β)

The purpose of the proposed HuIFN-β international standard is to provide a comparison of the sensitivities of bioassays that measure the antiviral activity of HuIFN-β in different laboratories. This preparation should be used only for the calibration of laboratory preparations of HuIFN-β that have dose–response curves parallel to those of this preparation (1, 2, 9–12).

Each laboratory should measure the proposed international standard simultaneously with an internal laboratory standard in 5 or more titrations done on separate occasions and should report the observed logarithm of the geometric mean titre (GMT) and its standard deviation along with the assigned titre (as the logarithm) of the proposed international standard in accordance with recommendations by the World Health Organization (1, 2, 9, 10).

The potency of the laboratory standard in International Units per ml is calculated in relation to the proposed international standard as follows:

\[
\text{assigned potency (in IU) of the international standard} \times \frac{\text{potency (in LU) of the laboratory standard}}{\text{potency (in LU) of the international standard observed from GMT}} = \frac{\text{potency (in IU) of the laboratory standard observed from GMT}}{\text{potency (in IU) of the proposed international standard}} \quad (1)
\]

Similarly, the laboratory standard may be used to determine the titre of a test sample (in IU) as follows:

\[
\frac{\text{potency (in IU) of the laboratory standard}}{\text{potency (in LU) of the laboratory standard observed from GMT}} \times \frac{\text{potency (in LU) of the test sample}}{\text{potency (in IU) of the test sample observed from GMT}} = \frac{\text{potency (in IU) of the proposed international standard}}{\text{potency (in IU) of the test sample}} \quad (2)
\]

It is important to recognize that the accuracy of estimation of the titre of a given sample depends largely upon the number of determinations done in separate titrations. The range of expected mean titres for various numbers of titrations, based on the variance calculated for the results submitted in the collaborative assay, is presented in Table 4.
Table 4. Range of expected mean titres for a given number of titrations of the human β interferon proposed international standard (Gb23-902-531)

<table>
<thead>
<tr>
<th>Range of expected mean titres</th>
<th>Number of titrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>low</td>
<td>4.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnitude of range (factor)</th>
<th>Range of expected log GMTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>9.8</td>
</tr>
<tr>
<td>high</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
</tr>
</tbody>
</table>

2. Freeze-dried Human Recombinant

Beta_{ser17}-interferon (HuIFN-β_{ser17})

Proposed International Standard

(NIH Catalogue No. Gxb02-901-535)

2.1 Preparation

Human recombinant beta_{ser17}-interferon (HuIFN-β_{ser17}) was produced by Cetus Corporation, Emeryville, CA, USA, as lot BP-126, in which the manufacturer measured 5×10^7 IU/ml. The interferon was extracted from plasmid-transformed *Escherichia coli* cultures and purified by a series of procedures involving precipitation, molecular exclusion chromatography, and diafiltration (13-15). The material was supplied as a freeze-dried preparation containing 0.25 mg interferon, with 12.5 mg human serum albumin and 12.5 mg dextrose per vial, corresponding to a reconstituted volume of 1 ml. The specific activity of the interferon was therefore 2×10^8 IU/mg before addition of human serum albumin as a stabilizing agent. Two vials of this lot were used for the production of this proposed standard. Because of the high specific activity of this interferon, no further purification was required.

The interferon was reconstituted in sterile distilled water and diluted directly into ice-cold, sterile 0.1 ml/litre sodium phosphate buffer at pH 7, supplemented with 1 mg/ml 25% human serum albumin (Travenol “Buminate”) and 5 mg/ml gelatin. The vessel was packed in wet ice to keep the solution chilled during the process of filling the ampoules; 1.00-ml portions were dispensed into borosilicate glass ampoules using a high-precision Hamilton dispenser. The consistency of the filling, determined gravimetrically with 12 samples taken at intervals throughout the process, was
1.0094 g/vial, with a standard deviation of 0.0014 g (coefficient of variation = 0.14). Ampoules were filled in groups of 19 and held on ice until 5 groups were filled and were then placed in the refrigerated chamber of the freeze-dryer. After all ampoules were filled, they were frozen at \(-30^\circ\text{C}\), and the material was dried to a residual moisture of about 3%. The ampoules were then backfilled with argon and the tips were heat-fused at atmospheric pressure. Each ampoule tip was dipped in neoprene solution to ensure complete sealing. The last ampoule filled in each group of 19 was marked for testing of sterility and antiviral activity after freeze-drying. All the marked vials were subjected to a test for the completeness of the seal by submersion in water with a dye under a partial vacuum at room temperature and inspected for the presence of liquid 20 minutes after they were returned to atmospheric pressure (5). All the vials tested were found to be completely sealed. Ampoules are stored at \(-70^\circ\text{C}\) but can be shipped at ambient temperatures.

2.2 Recommendations for reconstitution

Add 1.0 ml of sterile distilled water to the lyophilized powder, taking care to avoid the loss of any material in the neck or stem of the ampoules. Small portions of the reconstituted interferon may be stored at \(-70^\circ\text{C}\) for dilution at another time. However, a suitable amount of an appropriate dilution, based on the known sensitivity of the assay being used, should be made in the freeze-drying buffer (see above) supplemented with human serum albumin (1 mg/ml) and gelatin (5 mg/ml) or in serum-containing culture medium used in the biological assay. Aliquots of the diluted interferon should preferably be stored at \(-70^\circ\text{C}\) in volumes each sufficient for a single titration. It may be possible to store enough material in a single container at \(-70^\circ\text{C}\) for use in as many as 3 titrations, but repeated thawing and freezing may result in loss of activity. All liquid samples should be stored at \(-70^\circ\text{C}\) or lower.

2.3 Stability

The freeze-dried reference preparation did not lose any activity in the linear non-isothermal accelerated degradation test (6), in which material is progressively heated from 50°C to 90°C over a 28-h period. From the results of the predictive multiple isothermal accelerated degradation test (6), involving storage at 52°C, 60°C,
68 °C, and 76 °C for periods up to 1 year, the product is estimated to have unlimited stability at −20 °C and −70 °C. The length of time during which the preparation was predicted to lose 1 log of activity at temperatures above freezing was estimated from these data to be 2.1 years at 56 °C, 29.6 years at 37 °C, 368.3 years at 20 °C, and 6067 years at 4 °C.

2.4 Test results

No bacteria or fungi were detected in 63 samples tested from the 152 different groups of ampoules composing the reference lot. The physicochemical properties of the interferon were determined by Cetus Corporation (14, 15). The amino acid sequence of the HuIFN-β_{ser17} differs from that of natural HuIFN-β by having a serine instead of a cysteine at position 17. The relative molecular mass estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 19 000. Antiviral activity of HuIFN-β_{ser17} was neutralized completely by anti-HuIFN-β serum (from Dr C. Y. Tan) and by anti-HuIFN-β_{ser17} serum (from Cetus Corporation) but it was not neutralized by antisera to HuIFN-γ (prepared at the Medical College of Wisconsin against purified HuIFN-γ), by anti-HuIFN-α(Ly) serum (NIH G030-501-533) or by anti-HuIFN-α(Le) serum (NIH G026-502-568).

The potency was determined from the data contributed by 7 international laboratories, which had performed 3 or more titrations of the preparation using a microtitre reference bioassay technique (7) (Table 5). The reference bioassay involves the spectrophotometric measurement of the uptake of naphthol blue-black dye in cultures of the A549 line of human lung carcinoma cells infected with encephalomyocarditis virus (EMCV) after treatment with dilutions of the interferon samples. The end-point is defined as the median dye uptake between optical density values for cultures that were not treated with interferon but were infected with EMCV (virus controls) and those that were not infected with EMCV (cell controls).

The geometric mean titre (GMT) calculated as the mean of the GMT values reported from each laboratory (total number of titrations = 133) was 3.421 log laboratory units (LU) (with a standard deviation (SD) of 0.244 log LU, corresponding to about 1.8-fold variation). Six of the laboratories also titrated the HuIFN-β_{ser17} by routinely used bioassays of different types with various
cell–virus combinations, with resulting GMT values ranging from 3.056 to 3.83 log LU, with a mean of 3.45 log LU, SD 0.350 (Table 5).

<table>
<thead>
<tr>
<th>Assay method</th>
<th>Observed LU/ml and variance within 7 laboratories*</th>
<th>Summary of results of all tests in all laboratories*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Reference bioassay*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of titrations</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>SD (log)</td>
<td>0.175</td>
<td>0.206</td>
</tr>
<tr>
<td>Other assay methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of titrations</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>GMT (log)</td>
<td>3.659</td>
<td>3.800</td>
</tr>
<tr>
<td>SD (log)</td>
<td>0.113</td>
<td>0.088</td>
</tr>
</tbody>
</table>

*The geometric mean (titres (GMT)) and standard deviations (SD) are based on titres calculated from the raw data provided by each laboratory.
*In this column the GMT and SD are based on the mean of the GMT values obtained for all laboratories.

There was little activity on cells of heterologous species, with 150 units/ml (observed unadjusted titre) in murine L cells with the GDVII strain of ECMV detected by the haemagglutination yield-reduction method (8).

2.5 Titre assignment

The assigned potency of the HuIFN-β17 preparation Gxb02-901-535 is 6000 International Units (IU) (3.778 log IU). This value is derived from the test results of an international collaborative study using the reference bioassay by proportional relationship to the International Reference Preparation of Interferon Human Fibroblast (G023-902-527), having an assigned potency of 10 000 IU.
2.6 Use of the proposed international standard for interferon, recombinant, βser17 (HuIFN-βser17)

The purpose of the proposed HuIFN-βser17 international standard is to provide a comparison of the sensitivities of bioassays that measure the antiviral activity of HuIFN-βser17, or of other recombinant beta-interferons with dose–response curves similar to that of the HuIFN-βser17, in different laboratories by conversion to international units (1, 2, 7–12). Each laboratory should measure the proposed international standard simultaneously with an internal laboratory standard in 5 or more titrations done on separate occasions and should report the observed logarithm of the geometric mean titre (GMT) and its standard deviation along with the assigned titre (as the logarithm) of the proposed international standard in accordance with recommendations by the World Health Organization (1, 2, 9, 10).

The potency of the laboratory standard is calculated according to equation (1) on page 60 and the potency of a test sample according to equation (2) on the same page.

It is important to recognize that the accuracy of estimation of the titre of a given sample depends largely upon the number of determinations done in separate titrations. The range of expected mean titres for various numbers of titrations, based on the variance calculated for the results submitted in the collaborative assay, is presented in Table 6.

<table>
<thead>
<tr>
<th>Range of expected mean titres</th>
<th>Number of titrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Magnitude of range (factor)</td>
<td>8.4</td>
</tr>
<tr>
<td>Range of expected log GMT’s</td>
<td>3.31</td>
</tr>
<tr>
<td>low</td>
<td>4.24</td>
</tr>
<tr>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Range of expected mean titres for a given number of titrations of the human recombinant βser17 interferon proposed international standard (Gxb02-901-535)
3. Freeze-dried Murine Alpha-interferon (MuIFN-α)
Proposed International Standard
(NIH Catalogue No. Ga02-902-511)

3.1 Preparation

Murine interferon was produced by Lee Biomolecular Research Laboratories Inc., San Diego, CA, USA. It was induced in L cells in protein-free nutrient medium by Newcastle disease virus and held at pH 3 for 2 weeks at 4°C to inactivate that virus. The MuIFN-α was separated from the MuIFN-β by differential chromatography on controlled pore glass and held at pH 3 and 4°C until fractions were pooled and freeze-dried. Two lots of the MuIFN-α were provided: lot 83002 contained 7.4×10^6 IU/ml, with a specific activity of 1.7×10^6 IU/mg, and was packaged as 700 kilo-IU; and lot number 83007 contained 1.8×10^6 IU/ml, with a specific activity of 2.7×10^6 IU/mg, and was packaged as 1.8 mega-IU. The biological activities are those measured by the producer. Both lots were freeze-dried in 0.4 mol/litre glycine hydrochloride pH 3.5.

Forty vials of lot 83002 and 4 vials of lot 83007 were used for the preparation of the working material. The interferon was reconstituted with sterile distilled water, 1 ml/vial, and the contents of all vials were pooled. Each vial was rinsed with an additional 1.0 ml of sterile 0.1 mol/litre sodium phosphate buffer, pH 7, which was added to the pool. The pooled preparation was aseptically diluted into ice-cold sterile buffer solution composed of 0.1 mol/litre sodium phosphate buffer, pH 7, supplemented with gelatin, to a final concentration of 5 mg/ml, and 25% human serum albumin (Travenol/“Buminate”) to a final concentration of 1 mg/ml. The vessel was packed in wet ice to keep the solution chilled during the process of filling the ampoules; 1.00-ml portions were dispensed into borosilicate glass ampoules using a high-precision Hamilton dispenser. The consistency of the filling, determined gravimetrically with 12 samples, was 1.0153 g/vial, with a standard deviation of 0.032 g (coefficient of variation = 0.31). Ampoules were filled in groups of 19 and held on ice until 5 groups were filled and were then placed in the refrigerated chamber of the freeze-dryer. After all ampoules were filled, they were frozen at $-30^\circ C$, and the material was dried to a residual moisture of about 3%. The ampoules were then backfilled with argon and the tips were heat-fused at
atmospheric pressure. Each ampoule tip was dipped in neoprene solution to ensure complete sealing. The last ampoule filled in each group of 19 was marked for testing of sterility and antiviral activity after freeze-drying. One randomly selected box of 144 ampoules, containing representatives of several groups from various stages of the filling and sealing procedures, was subjected to a test for the completeness of the seal. The ampoules were submerged in water containing a dye under a partial vacuum at room temperature and inspected for the presence of liquid 20 minutes after they were returned to atmospheric pressure (5). Ampoules are stored at \(-70^\circ C\) but can be shipped at ambient temperatures.

3.2 Recommendations for reconstitution

Add 1.0 ml of sterile distilled water to the lyophilized powder, taking care to avoid loss of any material in the neck or stem of the ampoules. Small portions of the reconstituted interferon may be stored at \(-70^\circ C\) for dilution at another time. However, a suitable amount of an appropriate dilution based on the known sensitivity of the assay being used should be made in the freeze-drying buffer (see above) supplemented with human serum albumin (1 mg/ml) and gelatin (5 mg/ml) or in serum-containing culture medium used in the biological assay. Aliquots of the diluted interferon should preferably be stored at \(-70^\circ C\) in volumes each sufficient for a single titration. It may be possible to store enough material in a single container at \(-70^\circ C\) for use in as many as 3 titrations, but repeated thawing and freezing may result in loss of activity. All liquid samples should be stored at \(-70^\circ C\) or lower.

3.3 Stability

The freeze-dried reference preparation did not lose any activity in the linear non-isothermal accelerated degradation test (6) in which material is progressively heated from 50°C to 90°C over a 28-h period. From the results of the predictive multiple isothermal accelerated degradation test (6), involving storage at 52°C, 60°C, 68°C, and 76°C for periods up to 1 year, the product is estimated to have unlimited stability at \(-20^\circ C\) and \(-70^\circ C\). The length of time during which the preparation was predicted to lose 1 log of activity at temperatures above freezing was estimated from these
data to be 0.5 year at 56°C, 3.8 years at 37°C, 25.9 years at 20°C, and 217.9 years at 4°C.

3.4 Test results

No bacteria or fungi were detected in 51 samples tested from the 155 different groups of ampoules composing the reference lot. The interferon used for freeze-drying was diluted to contain 1 mg of protein per ml (considering the product to have 6 mg/ml as 1 mg/ml human serum albumin and 5 mg/ml gelatin) and characterized as follows: it was more than 99% inactivated by trypsin in 1 h, 27% inactivated during heating at 56°C for up to 3 h, and not inactivated during 48 h of pH 2 dialysis at 4°C. The product was not neutralized by antiserum to MuIFN-γ (prepared by E. Havell) but it was neutralized by anti-MuIFN-α/β serum (NIH G024-501-568). The interferon was composed primarily (99.5%) of one molecular size (relative molecular mass 28 000), with a minor component of relative molecular mass 36 000, as estimated by the producer by discontinuous gel electrophoresis in Laemmli buffers with 8–18% linear polyacrylamide gradients. Analysis of the MuIFN-α by isoelectric focusing revealed a major peak of activity with an isoelectric point of 7.4.

The potency was determined from the data contributed by 7 international laboratories, which had performed 5 or more titrations of the preparation (Table 7). Each laboratory used the method of its choice.

The geometric mean titre (GMT) calculated as the mean of the GMT values reported from each laboratory (total number of titrations = 54) was 4.005 log laboratory units (LU) (with a standard deviation (SD) of 0.374 log LU, corresponding to about 2.4-fold variation) (Table 7).

There was little activity on cells of heterologous species. The following observed unadjusted titres were obtained by the haemagglutination yield-reduction method (8), using encephalomyocarditis virus (EMCV): 200 LU in human A549 cells, and 53 LU in RK-13 rabbit kidney cells.

3.5 Titre assignment

The assigned potency of the MuIFN-α Ga02-901-511 is 16 000 International Units (IU), or 4.204 log IU. This value is derived from
Table 7. Summary of results of the international collaborative study of the murine α interferon proposed international standard (Ga02-901-511)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of titrations</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
| SD (log) | 0.478 | 0.358 | 0.106 | 0.067 | 0.165 | 0.282 | 0.185 | 0.374

*The geometric mean titre (GMT) and standard deviations (SD) are based on titres calculated from the raw data provided by each laboratory.

*The assigned potency of Ga02-901-511, in relation to the International Reference Preparation of Interferon, Mouse (α + β) (G002-904-511), is 18 000, or 4.204 log10, International Units (see text).

The test results of an international collaborative study by proportional relationship to the International Reference Preparation of Interferon, Mouse (α + β) (G002-904-511), having an assigned potency of 12 000 IU. Although the International Reference Preparation G002-904-511 contains approximately 90% MuIFN-β, there is a significant correlation by linear regression analysis of the ratio of the GMTs of the preparation Ga02-901-511 relative to G002-904-511 for all the laboratories, justifying use of the proportional relationship in assignment of potency.

3.6 Use of the proposed international standard for interferon, murine, α

The purpose of the proposed MuIFN-α international standard is to provide a comparison of the sensitivities of bioassays that measure the antiviral activity of MuIFN-α in different laboratories. This preparation should be used only for the calibration of laboratory preparations of MuIFN-α that have dose–response curves parallel to that of this preparation (1, 2, 9–12). Each laboratory should measure the proposed international standard simultaneously with an internal laboratory standard in 5 or more titrations done on separate occasions and should report the observed logarithm of the geometric mean titre (GMT) and its standard deviation along with the assigned titre (as the logarithm) of the proposed international standard in accordance with recommendations by the World Health Organization (1, 2, 9, 10).

The potency of the laboratory standard is calculated according to equation (1) on page 60 and the potency of a test sample according to equation (2) on the same page.
It is important to recognize that the accuracy of estimation of the titre of a given sample depends largely upon the number of determinations done in separate titrations. The range of expected mean titres for various numbers of titrations, based on the variance calculated for the results submitted in the collaborative assay, is presented in Table 8.

<table>
<thead>
<tr>
<th>Range of expected mean titres</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>5,019</td>
<td>8,192</td>
<td>9,525</td>
<td>11,087</td>
<td>12,344</td>
</tr>
<tr>
<td>high</td>
<td>50,079</td>
<td>31,234</td>
<td>26,861</td>
<td>23,077</td>
<td>20,728</td>
</tr>
<tr>
<td>Magnitude of range (factor)</td>
<td>10.2</td>
<td>3.8</td>
<td>2.8</td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Range of expected log GMTs</td>
<td>3.70</td>
<td>3.91</td>
<td>3.98</td>
<td>4.04</td>
<td>4.09</td>
</tr>
<tr>
<td>low</td>
<td>4.71</td>
<td>4.49</td>
<td>4.43</td>
<td>4.36</td>
<td>4.32</td>
</tr>
</tbody>
</table>

4. Freeze-dried Murine Beta-interferon (MuIFN-β)
Proposed International Standard
(NIH Catalogue No. Gb02-902-511)

4.1 Preparation

Murine interferon was produced by Lee Biomolecular Research Laboratories Inc., San Diego, CA, USA. It was induced in L cells in protein-free nutrient medium by Newcastle disease virus and held at pH 3 for 2 weeks at 4 °C to inactivate that virus. The MuIFN-β was separated from the MuIFN-α by differential chromatography on controlled pore glass. The lot provided (lot 82014) contained 1.7×10^7 IU/ml, with a specific activity of 7.6×10^7 IU/mg, and was packaged as 12 mega-IU. The biological activities are those measured by the producer.

Seven vials of lot 82014, which had been freeze-dried in 0.4 mol/litre glycine hydrochloride, pH 3.5, were used for the preparation of the working material. One vial was reconstituted with 1 ml of sterile distilled water, and diluted 1:10 in sterile, complete freeze-drying buffer for titration prior to the day of freeze-drying. On the day of freeze-drying, the other 6 vials were reconstituted with complete
freeze-drying buffer, 1 ml/vial, and the contents of all vials were pooled. Each vial was rinsed with an additional 1.0 ml of complete buffer, which was added to the pool. The pooled preparation was aseptically diluted into ice-cold sterile complete buffer solution composed of 0.1 mol/litre sodium phosphate buffer, pH 7, supplemented with 5 mg/ml gelatin and 25% human serum albumin (Travenol “Buminate”) to a final concentration of 1 mg/ml. The vessel was packed in wet ice to keep the solution chilled during the process of filling the ampoules; 1.00-ml portions were dispensed into borosilicate glass ampoules using a high-precision Hamilton dispenser. The consistency of the filling, determined gravimetrically with 12 samples, was 0.9865 g/vial, with a standard deviation of 0.007 g (coefficient of variation = 0.71). Ampoules were filled in groups of 19 and held on ice until 5 groups were filled and were then placed in the refrigerated chamber of the freeze-dryer. After all ampoules were filled, they were frozen at -30°C, and the material was dried to a residual moisture of about 3%. The ampoules were then backfilled with argon and the tips were heat-fused at atmospheric pressure. Each ampoule tip was dipped in neoprene solution to ensure complete sealing. The last ampoule filled in each group of 19 was marked for testing of sterility and antiviral activity after freeze-drying. One box of 144 ampoules, containing ampoules representing various stages of the filling and sealing procedures, was subjected to a test for the completeness of the seal. The ampoules were submerged in water with a dye under a partial vacuum at room temperature and inspected for the presence of liquid 20 minutes after they were returned to atmospheric pressure (5). Ampoules are stored at -70°C but can be shipped at ambient temperatures.

4.2 Recommendations for reconstitution

Add 1.0 ml of sterile distilled water to the lyophilized powder, taking care to avoid the loss of any material in the neck or stem of the ampoules. Small portions of the reconstituted interferon may be stored at -70°C for dilution at another time. However, a suitable amount of an appropriate dilution based on the known sensitivity of the assay being used should be made in the freeze-drying buffer (see above) supplemented with human serum albumin (1 mg/ml) and gelatin (5 mg/ml) or in serum-containing culture medium used in the biological assay. Aliquots of the diluted interferon should preferably be stored at -70°C in volumes each sufficient for a single titration.
It may be possible to store enough material in a single container at −70 °C for use in as many as 4 titrations, but repeated thawing and freezing may result in loss of activity. All liquid samples should be stored at −70 °C or lower.

4.3 Stability

The freeze-dried reference preparation did not lose any activity in the linear non-isothermal accelerated degradation test (6) in which material is progressively heated from 50 °C to 90 °C over a 28-h period. From the results of the predictive multiple isothermal accelerated degradation test (6), involving storage at 52 °C, 60 °C, 68 °C, and 76 °C for periods up to 1 year, the product is estimated to have unlimited stability at −20 °C and −70 °C. The length of time during which the preparation was predicted to lose 1 log of activity at temperatures above freezing was estimated from these data to be 1.7 years at 56 °C, 12.4 years at 37 °C, 82.5 years at 20 °C, and 675 years at 4 °C.

4.4 Test results

No bacteria or fungi were detected in 64 samples tested from the 158 different groups of ampoules composing the reference lot. The interferon used for freeze-drying was diluted to contain 1 mg of protein per ml (considering the product to have 6 mg/ml as 1 mg/ml human serum albumin and 5 mg/ml gelatin) and characterized as follows: it was more than 99% inactivated by trypsin in 1 h, 50% inactivated during heating at 56 °C for up to 3 h, and not inactivated during 48 h of pH 2 dialysis at 4 °C. The product was not neutralized by antisera to MuIFN-γ (prepared by E. Havell), but it was neutralized by anti-MuIFN-α/β serum (NIH G024-501-568). The interferon was composed primarily (99.5%) of one molecular size (relative molecular mass 36 000), as estimated by the producer by discontinuous gel electrophoresis in Laemmli buffers with 8–18% linear polyacrylamide gradients. Analysis of the MuIFN-β by isoelectric focusing revealed a major peak of activity with an isoelectric point of 7.2.

The potency was determined from the data contributed by 7 international laboratories, which had performed 5 or more titrations of the preparation (Table 9). Each laboratory used the method of its choice.
The geometric mean titre (GMT) calculated as the mean of the GMT values reported from each laboratory (total number of titrations = 55) was 3.974 log laboratory units (LU) (with a standard deviation (SD) of 0.363 log LU, corresponding to about 2.4-fold variation) (Table 9).

Table 9. Summary of results of the international collaborative study of the murine β interferon proposed international standard (Gb02-902-511)

<table>
<thead>
<tr>
<th>Observed LU/ml and variance within 7 laboratories*</th>
<th>Summary of results of all tests in all laboratories*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of titrations</td>
<td>1</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>GMT (log)</td>
<td>4.948</td>
</tr>
<tr>
<td>SD (log)</td>
<td>0.384</td>
</tr>
</tbody>
</table>

*The geometric mean titre (GMT) and standard deviations (SD) are based on titres calculated from the raw data provided by each laboratory.

There was no activity on cells of heterologous species as measured by the haemagglutination yield-reduction method (8), using encephalomyocarditis virus (EMCV) in human A549 cells line and RK-13 rabbit kidney cells.

4.5 Titre assignment

The assigned potency of the MuIFN-β preparation Gb02-902-511 is 15 000 International Units (IU), or 4.176 log IU. This value is derived from the test results of an international collaborative study by proportional relationship to the International Reference Preparation of Interferon, Mouse (α + β) (G002-904-511) is 15 000, or 4.176 logu, International Units (see text).

4.6 Use of the proposed international standard for interferon, murine, β

The purpose of the proposed MuIFN-β international standard is to provide a comparison of the sensitivities of bioassays that measure the antiviral activity of MuIFN-β in different laboratories. This preparation should be used only for the calibration of laboratory preparations of MuIFN-β that have dose–response curves parallel to that of this preparation (1, 2, 9–12). Each laboratory should measure the proposed international standard
simultaneously with an internal laboratory standard in 5 or more
titrations done on separate occasions and should report the observed
logarithm of the geometric mean titre (GMT) and its standard
deviation along with the assigned titre (as the logarithm) of
the proposed international standard in accordance with rec-
ommendations by the World Health Organization (1, 2, 9, 10).

The potency of the laboratory standard is calculated according to
equation (1) on page 60 and the potency of a test sample according
to equation (2) on the same page.

It is important to recognize that the accuracy of estimation of the
titre of a given sample depends largely upon the number of
determinations done in separate titrations. The range of expected
mean titres for various numbers of titrations, based on the variance
calculated for the results submitted in the collaborative assay, is
presented in Table 10.

Table 10. Range of expected mean titres for a given number of titrations of the
murine β interferon proposed international standard (Gb02-902-511)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of expected mean titres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>6.54</td>
<td>9.29</td>
<td>10.34</td>
<td>11.53</td>
<td>12.45</td>
</tr>
<tr>
<td>high</td>
<td>34.37</td>
<td>24.20</td>
<td>21.73</td>
<td>19.45</td>
<td>18.03</td>
</tr>
<tr>
<td>Magnitude of range (factor)</td>
<td>5.3</td>
<td>2.6</td>
<td>2.1</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Range of expected log GMTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>3.82</td>
<td>3.97</td>
<td>4.01</td>
<td>4.06</td>
<td>4.10</td>
</tr>
<tr>
<td>high</td>
<td>4.54</td>
<td>4.38</td>
<td>4.34</td>
<td>4.29</td>
<td>4.26</td>
</tr>
</tbody>
</table>

5. Freeze-dried Murine Gamma-interferon (MuIFN-γ)
 Proposed International Standard
 (NIH Catalogue No. Gg02-901-533)

5.1 Preparation

Murine gamma-interferon was produced at the Medical College of
Wisconsin in mouse splenocytes stimulated to grow for 4 days by
addition of concanavalin A and pretreated with the phorbol ester,
mezerein, for 3 hours prior to induction with lentil lectin from Lens
culinaris (10). Crude interferon was collected from the supernatant
fluids 1 day later. All incubations were carried out at 37°C. The
interferon was concentrated by fractional ammonium sulfate precipitation and purified by single-step chromatography on yeast RNA-sepharose eluted with 1 mol/litre NaCl in 0.02 mol/litre sodium phosphate buffer at pH 7.2 (16). In preliminary tests, the specific activity of interferon-containing fractions was about 10^6 units/mg protein. For the production of large volumes of the interferon for freeze-drying, the fractions expected to contain interferon were supplemented with gelatin (5 mg/ml) and human serum albumin (25% Travenol “Buminate”) to a final concentration of 1 mg/ml. The fractions in the peak area were pooled and dialysed, first against 4 litres of 0.02 mol/litre sodium phosphate buffer at pH 7.2 and then against 4 litres of 0.1 mol/litre sodium phosphate buffer at pH 7. The dialysed interferon was filter-sterilized through a 0.2 μm filter, and stored at 4°C. Smaller amounts of interferon prepared without the protein stabilizers were stored at −70°C after sterilization and were supplemented with human serum albumin and gelatin as above at the time of addition to the pool for freeze-drying.

This pooled interferon was aseptically diluted into ice-cold sterile buffer solution composed of 0.1 mol/litre sodium phosphate buffer, pH 7, supplemented with 5 mg/ml gelatin and 25% human serum albumin to a final concentration of 1 mg/ml. The vessel was packed in wet ice to keep the solution chilled during the process of filling the ampoules; 1.00-ml portions were dispensed into borosilicate glass ampoules using a high-precision Hamilton dispenser. The consistency of the filling, determined gravimetrically with 18 samples, was 1.00795 g/vial, with a standard deviation of 0.0044 g (coefficient of variation = 0.43). Ampoules were filled in groups of 19 and held on ice until 5 groups were filled and were then placed in the refrigerated chamber of the freeze-dryer. After all ampoules were filled they were frozen at −30°C, and the material was dried to a residual moisture of about 3%. The ampoules were then backfilled with argon and the tips were heat-fused at atmospheric pressure. Each ampoule tip was dipped in neoprene solution to ensure complete sealing. The last ampoule filled in each group of 19 was marked for testing of sterility and antiviral activity after freeze-drying. One box of 144 ampoules, containing samples from several stages of the filling and sealing procedures, was randomly selected for testing the completeness of the seal. The ampoules were submerged in water containing a dye under a partial vacuum at room temperature and inspected for the presence of liquid 20 minutes after they were returned to atmospheric pressure (5).
Ampoules are stored at $-70^\circ C$ but can be shipped at ambient temperatures.

5.2 Recommendations for reconstitution

Add 1.0 ml of sterile distilled water to the lyophilized powder, taking care to avoid the loss of any material in the neck or stem of the ampoules. Small portions of the reconstituted interferon may be stored at $-70^\circ C$ for dilution at another time. However, a suitable amount of an appropriate dilution based on the known sensitivity of the assay being used should be made in the freeze-drying buffer (see above) supplemented with human serum albumin (1 mg/ml) and gelatin (5 mg/ml) or in serum-containing culture medium used in the biological assay. Aliquots of the diluted interferon should preferably be stored at $-70^\circ C$ in volumes each sufficient for a single titration. It may be possible to store enough material in a single container at $-70^\circ C$ for use in as many as 3 titrations, but repeated thawing and freezing may result in loss of activity. All liquid samples should be stored at $-70^\circ C$ or lower.

5.3 Stability

The freeze-dried reference preparation did not lose any activity in the linear non-isothermal accelerated degradation test (δ), in which material is progressively heated from 50°C to 90°C over a 28-h period. From the results of the predictive multiple isothermal accelerated degradation test (δ), involving storage at 52°C, 60°C 68°C, and 76°C for periods up to 1 year, the product is estimated to have unlimited stability at 4°C, $-20^\circ C$ and $-70^\circ C$. The length of time during which the preparation was predicted to lose 1 log of activity at higher temperatures was estimated from these data to be 0.64 year at 56°C, 32.2 years at 37°C, and 1318 years at 20°C.

5.4 Test results

No bacteria or fungi were detected in 40 samples tested from the 77 different groups of ampoules composing the reference lot. The interferon used for freeze-drying was diluted to contain 1 mg of protein per ml (considering the product to have 6 mg/ml as 1 mg/ml human serum albumin and 5 mg/ml gelatin) and characterized as follows: it was more than 99% inactivated by trypsin in 1 h, 73%
inactivated during heating at 56°C for up to 3 h, and 97% inactivated within 11 h of pH 2 dialysis at 4°C. The product was not neutralized by antisera to MuIFN-αβ (NIH G024-501-568), but it was neutralized by anti-MuIFN-γ rabbit polyclonal and rat monoclonal antibodies (prepared by E. Havell). The interferon was composed of two molecular sizes (relative molecular masses 20 000 and 40 000), as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis in phosphate buffer by the method of Weber & Osborne. Analysis of MuIFN-γ by isoelectric focusing revealed a heterogeneous peak of activity with an isoelectric point range of 5.5–6.5.

The potency was determined from the data contributed by 7 international laboratories, which had performed 5 or more titrations of the preparation (Table 11). Each laboratory used the method of its choice.

The geometric mean titre (GMT) calculated as the mean of the GMT values reported from each laboratory (total number of titrations = 63) was 3.048 log laboratory units (LU) (with a standard deviation (SD) of 0.558 log LU, corresponding to about 3.6-fold variation) (Table 11).

<table>
<thead>
<tr>
<th>Number of titrations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMT (log)</td>
<td>3.898</td>
<td>2.658</td>
<td>3.533</td>
<td>2.959</td>
<td>3.304</td>
<td>2.299</td>
<td>2.686</td>
</tr>
<tr>
<td>SD (log)</td>
<td>0.320</td>
<td>0.142</td>
<td>0.186</td>
<td>0.066</td>
<td>0.458</td>
<td>0.286</td>
<td>0.381</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary of results of all tests in all laboratories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of titrations</td>
</tr>
<tr>
<td>GMT (log)</td>
</tr>
<tr>
<td>SD (log)</td>
</tr>
</tbody>
</table>

*The geometric mean titre (GMT) and standard deviation (SD) are based on the raw data provided by each laboratory.
*In this column the GMT and SD are based on the mean of the GMT values obtained for all laboratories.
*The assigned potency of Gg02-901-533 is 1000 or 3.0 log₁₀ International Units (see text).

There was no activity on cells of heterologous species as assessed by the haemagglutination yield-reduction method (8) using enteroviruses of species (EMCV) in human A549 cells and RK-13 rabbit kidney cells.
5.5 Titre assignment

The assigned potency of the MuIFN-α preparation Gg02-901-533 is 1000 International Units (IU), or 3.0 log IU. This value is derived from the test results of an international collaborative study.

5.6 Use of the proposed international standard for interferon, murine, γ

The purpose of the proposed MuIFN-γ international standard is to provide a comparison of the sensitivities of bioassays that measure the antiviral activity of MuIFN-γ in different laboratories. This preparation should be used only for the calibration of laboratory preparations of MuIFN-γ that have dose–response curves parallel to that of this preparation (1, 2, 9–12). Each laboratory should measure the proposed international standard simultaneously with an internal laboratory standard in 5 or more titrations done on separate occasions and should report the observed logarithm of the geometric mean titre (GMT) and its standard deviation along with the assigned titre (as the logarithm) of the proposed international standard in accordance with recommendations by the World Health Organization (1, 2, 9, 10).

The potency of the laboratory standard is calculated according to equation (1) on page 60 and the potency of a test sample according to equation (2) on the same page.

It is important to recognize that the accuracy of estimation of the titre of a given sample depends largely upon the number of determinations done in separate titrations. The range of expected mean titres for various numbers of titrations, based upon the variance calculated for the results submitted in the collaborative assay, is presented in Table 12.

6. Freeze-dried Human Recombinant Alpha1(Alpha-D)-Interferon (HuIFN-α1(αD))

Proposed International Standard

(NIBSC Catalogue No. 85/514)

6.1 Preparation

Recombinant human alpha1(α-D)-interferon was prepared at the Roche Research Center, Nutley, NJ, USA. E. coli cells
Table 12. Range of expected mean titres for a given number of titrations of the murine γ interferon proposed international standard (Gg02-901-533)

<table>
<thead>
<tr>
<th>Range of expected mean titres</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>215</td>
<td>412</td>
<td>503</td>
<td>615</td>
<td>700</td>
</tr>
<tr>
<td>high</td>
<td>4052</td>
<td>2429</td>
<td>1989</td>
<td>1626</td>
<td>1410</td>
</tr>
<tr>
<td>Magnitude of range (factor)</td>
<td>21.6</td>
<td>5.9</td>
<td>4.0</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Range of expected log GMTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>2.33</td>
<td>2.61</td>
<td>2.70</td>
<td>2.79</td>
<td>2.85</td>
</tr>
<tr>
<td>high</td>
<td>3.67</td>
<td>3.39</td>
<td>3.50</td>
<td>3.21</td>
<td>3.15</td>
</tr>
</tbody>
</table>

transformed with a plasmid containing the DNA encoding the mature 166 amino acid alpha1(alpha-D)-interferon protein were grown in a nutrient medium under conditions that permitted the bacteria to produce HuIFN-α1(αD). The bacterial cells containing HuIFN-α1(αD) were killed by treatment at low pH (about 1.8), harvested, passed through a mechanical grinder, and suspended in extraction buffer. The resultant cell debris and nucleic acids were flocculated and removed by centrifugation. The HuIFN-α1(αD) in the supernatant fluid was purified by a series of chromatographic procedures. The amino acid sequence of the HuIFN-α1(αD) (17) differs from that predicted from the DNA sequence reported by Streuli et al. (18) in that the amino acid at position 114 is valine instead of alanine.

The highly purified HuIFNα1(αD) (95% pure) was diluted to approximately 1.12 μg of the protein per ml with phosphate-buffered saline, pH 7.2, containing human serum albumin (2 mg/ml) and the solution was filter-sterilized. Aliquots of 1 ml were aseptically dispensed into sterile glass ampoules. The contents of the ampoules were lyophilized, and the ampoules were sealed under nitrogen. The number of ampoules filled was limited to 900 because of the relatively high interferon content per ampoule in this case. The reproducibility of the fill, as measured by the mean fill weight per ampoule for 23 ampoules, was 0.095% (± variance).

6.2 Recommendations for reconstitution

Add 1.0 ml of sterile distilled water to the lyophilized powder, taking care that no loss of material occurs in the neck or stem of the ampoule. Portions of this reconstituted material can be stored at −70 °C for dilution at another time. However, the material may also
be stored at -70°C after appropriate (e.g., 1:10) dilution, preferably in 0.1 mol/litre sodium phosphate buffer (pH 7) containing 5 mg of human serum albumin per ml; Hanks's salt solution with 5 mg of human serum albumin per ml or serum-containing culture medium may be substituted. For optimum long-term preservation of stability, samples of the liquid material should be stored at -70°C.

6.3 Stability

Studies involving long-term storage (3 years) at -70°C, -20°C, 4°C, 20°C, 37°C, 45°C and 56°C showed that the preparation will have unlimited stability at -20°C and -70°C. The length of time during which the preparation was predicted to lose 1 log of activity at temperatures above freezing was estimated from these data to be 8.7 years at 56°C, 33.5 years at 37°C, 200 years at 20°C, and 500 years at 4°C.

6.4 Test results

No mycoplasmas, bacteria, fungi or viruses were detected in 10 samples randomly selected from the reference lot. The interferon used for freeze-drying was diluted to contain 2 mg of human serum albumin per ml and characterized as follows. It was non-sedimentable at 100 000 g; more than 99% of the interferon activity was lost following trypsin-treatment; and it was stable during heating at 56°C for up to 3 h and during dialysis at 4°C at pH 2 for 72 h. The interferon activity was neutralized by several alpha-interferon type-specific antisera and monoclonal antibodies, but not by beta- and gamma-interferon type-specific antisera. The interferon migrated as a single molecular species under reducing conditions in sodium dodecyl sulfate–polyacrylamide gel electrophoresis. It had a relative molecular mass of 18 000. It had a specific activity of $2-8 \times 10^6$ IU/mg protein in human cells and a relatively high specific activity of $5-20 \times 10^7$ IU/mg in bovine cells (19–21).

The potency was determined from the data provided by the 8 laboratories that had performed 5 or more titrations of the preparation using a reference bioassay technique. The reference bioassay involved the reduction in cytopathic effect of infectious encephalomyocarditis virus in the A549 line of human lung carcinoma cells. The mean of the geometric mean titre (GMT) values
reported by each laboratory (total number of titrations = 136) was 3,987 log laboratory units (LU), with a standard deviation (SD) of 0.404 log LU, corresponding to about 2.5-fold variation. The titration of the HuIFN-α1(aD) by routinely used bioassays of different types with various virus–cell combinations (mostly dye-uptake measurement of cytolysis) gave GMT values ranging from 3.599 to 4.524 log LU, with a mean GMT of 4.168 log LU and interlaboratory SD of 0.333 log LU (Table 13). HuIFN-α1(aD) showed greater activity in heterologous cells, e.g., bovine, than in human cells.

Table 13. Summary of results of the international collaborative study of the human recombinant α1(aD) interferon proposed international standard (83/514)

<table>
<thead>
<tr>
<th>Assay method</th>
<th>Observed LU/ml and variance within 8 laboratories*</th>
<th>Summary of results of all tests in all laboratories*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8</td>
<td></td>
</tr>
<tr>
<td>Reference bioassay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of titrations</td>
<td>5 5 5 6 3 5 8</td>
<td>3.987 4.435 4.231 3.885 4.129 4.376 3.776 3.187</td>
</tr>
<tr>
<td>GMT (log)</td>
<td>0.128 0.092 0.401 0.045 0.126 0.395 0.171 0.051</td>
<td>0.404</td>
</tr>
<tr>
<td>SD (log)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other assay methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of titrations</td>
<td>5 5 5 11 8 8 - -</td>
<td>4.524 3.079 4.359 4.338 4.209 3.599 - -</td>
</tr>
<tr>
<td>GMT (log)</td>
<td>0.134 0.176 0.063 0.241 0.160 0.214 - -</td>
<td>0.333</td>
</tr>
<tr>
<td>SD (log)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The geometric mean titres (GMT) and standard deviations (SD) are based on titres calculated from the raw data provided by each laboratory.

*The reference bioassay method measured changes in absorbance of methyl blue-black dye taken up by the human A549 cell line infected with encephalomyocarditis virus (EMCV). The EMCV was propagated in L cell cultures. A standard protocol for the assay as well as the A549 and L cell lines were provided to all participants by Dr B.E. Grossberg’s laboratory at the Medical College of Wisconsin.

*The assigned potency of 83/514, in relation to the International Reference Preparation of Interferon, Human Leukocyte (69/19) is 8000, or 3.903 log(α1), International Units (see text).

* A dash indicates that no titrations were done.

6.5 Titre assignment

On the basis of the data provided by 8 participating laboratories, the HuIFN-α1(aD) preparation is assigned a potency of 8000 International Units (IU), or 3.903 log IU. This value is derived by proportional relationship to the International Reference Preparation of Interferon, Human Leukocyte, α (69/19), having an assigned potency of 5000 IU.
6.6 Use of the proposed international standard for interferon, human, recombinant, α₂(αD)(HuIFN-α₂(αD))

This proposed international standard is intended for comparison of the sensitivities of the bioassays used in different laboratories for the measurement of the antiviral activity of HuIFN-α₁(αD). It should be noted that it should be used for the calibration of only those laboratory preparations of HuIFN-α₁(αD) that have dose–response curves parallel to that of this preparation (2, 9–12).

Each laboratory should measure the potency of the proposed international standard simultaneously with an internal laboratory standard in 5 or more titrations done on separate occasions. It is recommended that the name and assigned unitage of the standard (in international units) should be stated along with the logarithm of the observed geometric mean titre (GMT), its standard deviation, and the number of titrations done to obtain this result, thereby indicating the precision of the assay (2, 9–12).

For the sake of convenience, a large number of aliquots of the calibrated standard material should be kept frozen at −70 °C and titrated every time an assay of HuIFN-α₁(αD) sample is run.

The potency of the laboratory standard is calculated according to equation (1) on page 60 and the potency of a test sample according to equation (2) on the same page.

7. Freeze-dried Human Recombinant Alpha₂(Alpha₂₅) Interferon (HuIFN-α₂(α₂₅))
Proposed International Standard
(NIBSC Catalogue No. 82/576)

7.1 Preparation

Recombinant human alpha₂(α₂₅)-interferon was prepared at the Schering Corporation facility in Bloomfield, NJ, USA. E. coli cells transformed with a plasmid containing the DNA encoding the mature 165 amino acid alpha₂(α₂₅)-interferon protein were grown in a nutrient medium under conditions that permitted the bacteria to produce HuIFN-α₂(α₂₅). The bacterial cells containing HuIFN-α₂(α₂₅) were killed and then lysed in extraction buffer. The resultant cell debris and nucleic acids were removed by centrifugation. The HuIFN-α₂(α₂₅) in the supernatant was purified
by a series of chromatographic procedures. The amino acid sequence of the HuIFN-α2b (18) differs from that predicted from the DNA sequence reported by Goeddel et al. (17) (HuIFN-α2a) in that the amino acid at position 23 is arginine instead of lysine. Although this difference in structure is of only one amino acid, an antigenic difference between HuIFN-α2b and HuIFN-α2a has been demonstrated by using specific monoclonal antibodies (22).

The highly purified HuIFN-α2a (99% pure; 2.4 × 10^8 IU/mg protein) was diluted to approximately 0.067 μg of the protein per ml with phosphate-buffered saline, pH 7.2, containing human serum albumin (2 mg/ml) and the solution was filter-sterilized. Aliquots of 1 ml were aseptically dispensed into 4000 sterile glass ampoules. The contents of the ampoules were sealed under nitrogen. The reproducibility of the fill, as measured by the mean fill weight per ampoule for 61 ampoules, was 0.17% (+ variance).

7.2 Recommendations for reconstitution

Add 1.0 ml of sterile distilled water to the lyophilized powder, taking care that no loss of material occurs in the neck or stem of the ampoule. Portions of this reconstituted material can be stored at -70°C for dilution at another time. However, the material may also be stored at -70°C after appropriate (e.g., 1:10) dilution, preferably in 0.1 mol/litre sodium phosphate buffer (pH 7) containing 5 mg of human serum albumin per ml; Hank's salt solution with 5 mg of human serum albumin per ml or serum-containing culture medium may be substituted. For optimum long-term preservation of stability, samples of the liquid material should be stored at -70°C.

7.3 Stability

Studies involving long-term storage (3.5 years) at -70°C, -20°C, 4°C, 20°C, 37°C, 45°C and 56°C showed that the preparation will have unlimited stability at -20°C and -70°C. The length of time during which the preparation was predicted to lose 1 log of activity at temperatures above freezing was estimated from these data to be 6.8 years at 56°C, 18.2 years at 37°C, 120 years at 20°C, and 500 years at 4°C.
7.4 Test results

No mycoplasmas, bacteria, fungi or viruses were detected in 10 samples randomly selected from the reference lot. The interferon used for freeze-drying was diluted to contain 2 mg of human serum albumin per ml and characterized as follows. It was non-sedimentable at 100 000 g; more than 99% of the interferon activity was lost following trypsin treatment; and it was stable during heating at 56°C for up to 3 h, and during dialysis at 4°C at pH 2 for 72 h. The interferon activity was neutralized by several alpha-interferon type-specific antisera and monoclonal antibodies, but not by beta- and gamma-interferon type-specific antisera. The interferon migrated as a single molecular species under reducing conditions in sodium dodecyl sulfate–polyacrylamide gel electrophoresis. It had a relative molecular mass of 18 000.

The potency was determined from the data provided by the 8 laboratories that had performed 5 or more titrations of the preparation using a reference bioassay technique. The reference bioassay involved the reduction in cytopathic effect of infectious encephalomyocarditis virus in the A549 line of human lung carcinoma cells. The mean of the GMT values reported by each laboratory (total number of titrations = 133) was 4.171 log laboratory units (LU), with a standard deviation (SD) of 0.423 log LU, corresponding to about 2.5-fold variation. The titration of the HuIFN-α2(α2b) by routinely used bioassays of different types with various virus–cell combinations (mostly dye-uptake measurement of cytolysis) gave GMT values ranging from 3.745 to 4.613 log LU, with a mean GMT of 4.261 log LU and interlaboratory SD of 0.308 log LU (Table 14). HuIFN-α2(α2b) showed similar activity in heterologous cells, e.g., bovine, to that in human cells.

7.5 Titre assignment

On the basis of the data provided by 8 participating laboratories, the HuIFN-α2(α2b) preparation is assigned a potency of 17 000 International Units (IU), or 4.238 log IU. This value is derived by proportional relationship to the International Standard for Interferon, Human, rDNA (HuIFN-α2(αA)), having an assigned potency of 9000 IU.
Table 14. Summary of results of the international collaborative study of the human recombinant α₂(α₂b) interferon proposed international standard (82/576)

<table>
<thead>
<tr>
<th>Assay method</th>
<th>Observed LU/ml and variance within 8 laboratories*</th>
<th>Summary of results of all tests in all laboratories*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Reference bioassay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of titrations</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>SD (log)</td>
<td>0.153</td>
<td>0.087</td>
</tr>
<tr>
<td>Other assay methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of titrations</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>GMT (log)</td>
<td>4.613</td>
<td>4.498</td>
</tr>
<tr>
<td>SD (log)</td>
<td>0.190</td>
<td>0.149</td>
</tr>
</tbody>
</table>

*The geometric mean titres (GMT) and standard deviations (SD) are based on titre values calculated from the raw data provided by each laboratory.

The reference bioassay method measured changes in absorbance of naphthol blue-black dye taken up by the human A549 cell line infected with encephalomyocarditis virus (EMCV). The EMCV was propagated in L cell cultures. A standard protocol for the assay as well as the EMCV and the A549 and L cell lines were provided to all participants by Dr S.E. Grossberg's laboratory at the Medical College of Wisconsin.

The assigned potency of 82/576, in relation to the International Standard for Interferon, Human, rDNA (HulIFN-α₂(α₂b)) (Gx507-501-538) is 17,000, or 4.236 log₂IU, International Units (see text).

A dash indicates that no titrations were done.

7.6 Use of the proposed international standard for interferon, human, recombinant, α₂(α₂b) (HulIFN-α₂(α₂b))

This proposed international standard is intended for comparison of the sensitivities of the bioassays used in different laboratories for the measurement of the antiviral activity of HulIFN-α₂(α₂b). It should be noted that it should be used for the calibration of only those laboratory preparations of HulIFN-α₂(α₂b) that have dose–response curves parallel to the dose–response curve of this preparation (2, 9–12).

Each laboratory should measure the potency of the proposed international standard simultaneously with an internal laboratory standard in 5 or more titrations done on separate occasions. It is recommended that the name and assigned unitage of the standard (in international units) should be stated along with the logarithm of the observed geometric mean titre (GMT), its standard deviation, and the number of titrations done to obtain this result, thereby indicating the precision of the assay (2, 9–12).

For the sake of convenience, a large number of aliquots of the calibrated standard material should be kept frozen at −70 °C and titrated every time an assay of HulIFN-α₂(α₂b) sample is run.
The potency of the laboratory standard is calculated according to equation (1) on page 60 and the potency of a test sample according to equation (2) on the same page.

APPENDIX REFERENCES

Annex 2

MODIFICATION FOR LYOPHILIZED BCG VACCINES OF THE PROCEDURE FOR EVALUATING THE ACCEPTABILITY IN PRINCIPLE OF VACCINES PROPOSED TO UNITED NATIONS AGENCIES FOR USE IN IMMUNIZATION PROGRAMMES

BCG vaccines were excluded from the procedure for evaluating the acceptability of vaccines proposed to United Nations agencies that was published as Annex 1 to the thirty-seventh report of the WHO Expert Committee on Biological Standardization (WHO Technical Report Series, No. 760, 1987, pp. 35-37).

The procedure now adopted for evaluating lyophilized BCG vaccines is that previously published for other vaccines except in respect of clinical testing and of the evaluation of consistency of production (the difference mainly concerning paragraphs 2(a), 2(e), and 2(d) on page 36 of WHO Technical Report Series, No. 760).

Consistency of production

WHO will evaluate the consistency of production by tests conducted by the WHO Collaborating Laboratory for BCG Vaccine. A minimum of 20 randomly selected batches of vaccine produced by the manufacturer over the past 2 years must be tested with satisfactory results before acquisition by United Nations agencies may be considered. If unsatisfactory results are obtained, either the vaccine is disqualified for consideration or more batches are tested. When satisfactory results are obtained and a vaccine proves acceptable in principle, every batch supplied to United Nations agencies during a period of 1 year will also be tested. Testing of further batches after that time is more limited and will be performed on a random selection of batches.

The main tests that will be performed are those for absence of contamination, optical density, number of culturable particles, thermostability, and microscopic pattern after reconstitution. The
expenses related to such testing are chargeable in advance to the manufacturer.

Clinical testing

WHO will evaluate the results of clinical studies conducted in comparison with a reference BCG vaccine. The candidate vaccine must prove satisfactory with respect to tuberculin sensitivity conversion and to the induction of local lesions and other complications.
Annex 3

MODEL CERTIFICATE FOR THE RELEASE OF
BCG VACCINES ACQUIRED BY
UNITED NATIONS AGENCIES

(to be completed by the national control authority
of the country where the vaccines have been manufactured, and to be sent by the
vaccine manufacturer to the relevant United Nations agency, with a copy to Chief,
Biologicals, World Health Organization, 1211 Geneva 27, Switzerland)

The following lots of BCG vaccine produced by...............\(^1\) in...............\(^2\),
whose numbers appear on the labels of the final containers, meet all national
requirements,\(^3\) Part A\(^*\) of WHO Requirements for Biological Substances No. 11
(Requirements for Dried BCG Vaccine (revised 1985), and WHO Requirements for
Biological Substances No. 1, General Requirements for Manufacturing Establishments
and Control Laboratories (revised 1965).

<table>
<thead>
<tr>
<th>Lot No.</th>
<th>Expiry date</th>
<th>Lot No.</th>
<th>Expiry date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As a minimum, this certificate is based on examination of the manufacturing
protocol.

The Director of the National Control Laboratory (or Authority as appropriate)\(^5\)
Name (typed). ...
Signature ...
Date ...

\(^1\) Name of manufacturer.
\(^2\) Country.
\(^3\) If any national requirements are not met, specify which one(s) and indicate why
release of the lot(s) has nevertheless been authorized by the national control authority.
\(^*\) With the exception of the provisions on shipping, which the national control
authority may not be in a position to control.
\(^5\) Or his or her representative.
Annex 4

REQUIREMENTS FOR
POLIOMYELITIS VACCINE (ORAL)

(Requirements for Biological Substances No. 7)

Addendum 1987

General considerations (page 113)

Delete lines 11 to 23.

Virus titration (page 136)

Replace paragraph 5.3 by the following:
"The poliovirus titre shall be determined as described in Part A, section 3.5.4, of these requirements. If the vaccine contains more than one poliovirus type, each type shall be titrated separately by using appropriate type-specific serum for neutralizing each of the other types present. National control authorities should specify the virus titres for a human dose.

It is recommended that, when the Sabin strains are used, the estimated mean virus titres for a single human dose of trivalent poliomyelitis vaccine (oral) should be not less than $10^{5.0}$ infectious units for type 1, $10^{5.0}$ infectious units for type 2, and $10^{5.5}$ infectious units for type 3. The limits of the 95% confidence intervals of the assay should not differ by more than $10^{0.5}$ from the estimated number of infectious units in the vaccine.

In some countries national control authorities recommend both an upper and a lower limit for the infectivity titre per human dose."
The ratio between the three types of poliovirus in the vaccine shall be approved by the national control authority.

In some countries a ratio of 10:1:3 is being used.
The detailed procedures for virus titration, including the use of type-specific sera, should be approved by the national control authority.
The minimum titres of virus of each type determined by this test should be stated on the label of each container (see part A, section B).
To facilitate the administration of oral poliomyelitis vaccine in countries where multi-dose vials are used, it is recommended that a single dose of vaccine be contained in two drops.”

Storage conditions (page 138)
Replace section 10.1 by the following:
“Before being distributed by the manufacturing establishment, all vaccines in bulk form or in final containers shall be kept continuously in the frozen state below –20°C.

After distribution or issue, the vaccine in the final containers shall be stored whenever possible in a frozen state.
At peripheral centres where it is not possible to maintain low temperatures specially for this purpose, vaccines should be kept at or below +8°C.
Limited experiments have shown that several successive freezings and thawings of oral poliomyelitis vaccines have no significant effect on titres, provided that such operations are done quickly.1”

Annex 5

REQUIREMENTS FOR MEASLES VACCINE
(LIVE)

(Requirements for Biological Substances No. 12)
(Revised 1987)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>94</td>
</tr>
<tr>
<td>General considerations</td>
<td>94</td>
</tr>
<tr>
<td>Part A. Manufacturing requirements</td>
<td>97</td>
</tr>
<tr>
<td>1. Definitions</td>
<td>97</td>
</tr>
<tr>
<td>2. Certification of the strain of virus for use in vaccine production.</td>
<td>98</td>
</tr>
<tr>
<td>3. General manufacturing requirements</td>
<td>99</td>
</tr>
<tr>
<td>4. Production control</td>
<td>100</td>
</tr>
<tr>
<td>5. Filling and containers</td>
<td>111</td>
</tr>
<tr>
<td>6. Control tests on final product</td>
<td>111</td>
</tr>
<tr>
<td>7. Records</td>
<td>113</td>
</tr>
<tr>
<td>8. Samples</td>
<td>113</td>
</tr>
<tr>
<td>9. Labelling</td>
<td>113</td>
</tr>
<tr>
<td>10. Distribution and shipping</td>
<td>114</td>
</tr>
<tr>
<td>11. Storage and expiry date</td>
<td>114</td>
</tr>
<tr>
<td>Part B. National control requirements</td>
<td>115</td>
</tr>
<tr>
<td>1. General</td>
<td>115</td>
</tr>
<tr>
<td>2. Release and certification</td>
<td>115</td>
</tr>
<tr>
<td>Part C. Requirements for human diploid cells to be used for the production of measles vaccine (live)</td>
<td>116</td>
</tr>
<tr>
<td>1. Definitions</td>
<td>116</td>
</tr>
<tr>
<td>2. Production control</td>
<td>117</td>
</tr>
<tr>
<td>Authors</td>
<td>121</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>121</td>
</tr>
<tr>
<td>References</td>
<td>122</td>
</tr>
<tr>
<td>Appendix 1. Summary protocols</td>
<td>123</td>
</tr>
<tr>
<td>Appendix 2. Model certificate for the release of measles vaccines by national control authorities</td>
<td>132</td>
</tr>
</tbody>
</table>
INTRODUCTION

Measles, an almost invariable clinical experience of childhood, is in some countries a major cause of illness and of death in children. Immunization against measles has been of interest to WHO for many years, and more especially since the Expanded Programme on Immunization was launched in 1974 with measles as one of the principal diseases against which it is directed. Since the original production of measles vaccine, many years ago, the search for improved immunizing agents continues.

In support of this, reference materials such as anti-measles serum and measles vaccine virus have been established, and Requirements for Measles Vaccine (Live) and Measles Vaccine (Inactivated) were adopted by the WHO Expert Committee on Biological Standardization in 1966 (1). Although new developments may be anticipated today, only live measles vaccines are used, and it has become necessary to update the requirements for these. In drafting this revision, account has been taken of the opinions of consultants, of the regulations and requirements for the manufacture and control of measles vaccines that have been formulated in a number of countries, and of information from published and unpublished sources. In addition, opinions and data have been received from a number of experts, whose assistance is gratefully acknowledged below.

GENERAL CONSIDERATIONS

Hundreds of millions of persons have been vaccinated with live attenuated measles virus vaccines, and there is ample evidence that measles vaccines which are safe and effective are produced throughout the world. Production of such vaccines requires the observance of certain rules, and it is thus important that up-to-date international requirements for live attenuated measles vaccines should be formulated and made available to manufacturers and national control authorities.

The antibody response in persons inoculated with live measles vaccine can be accurately measured serologically, and a number of studies have established that the presence of detectable levels of antibody is correlated with protection against the disease. Immunity following the use of live measles vaccine appears to be of long
duration; this is indicated by the persistence of neutralizing antibodies in children who, a number of years ago, received vaccines prepared from several attenuated strains derived from the Edmonston strain of measles virus. Nevertheless, it is important that studies should be made to ascertain the exact duration of immunity induced by vaccines derived from various strains.

The optimum age for the immunization of babies may differ from one country to another. If immunization is carried out too early in life, there may be no or poor protection, especially if vaccine strains have been over-attenuated. On the other hand, the pattern of incidence of measles in some developing countries is such that it may be necessary to immunize babies as early as 6 months of age. The poorer seroconversion rate when measles vaccine is administered early in life can be circumvented by a second injection later in life.

Measles vaccine can be combined with other live attenuated vaccines such as mumps and rubella vaccines, and such combinations are also highly effective.

While the basic immunogenic potential of each strain of measles vaccine can be assessed by the antibody response in man, this is not a practical method for the routine testing of the potency of batches of vaccines. Such testing is done by measuring infectivity when cell cultures are inoculated with various dilutions of vaccines. For each strain of measles vaccine, it is necessary to establish the relationship between the laboratory estimation of virus titre on the one hand and safety and efficacy for man on the other. Where measles vaccines are to be used in combination with other vaccines, dose–response curves for each component should be determined by administering it in the proposed combined form.

It is obviously important that the strains of virus used to prepare live measles vaccine should show no tendency to produce neurological complications of the type encountered in some cases of natural measles. Present experience indicates that the live vaccines so far used are, indeed, safe in this respect. In the absence of a more satisfactory test, the intracerebral inoculation of monkeys has been used as a laboratory test by which this property could be evaluated. The development of more reliable methods is desirable. The possibility exists that post-measles encephalopathy is the result of an immunopathogenic reaction; the underlying mechanism is not known.

It is essential that every precaution should be taken to exclude all adventitious agents from vaccines for use in humans. In the
requirements formulated below, tests have been described for
detecting adventitious agents that might be present in cell cultures
used for vaccine production.

The systematic use of cells from birds maintained in closed
colonies that have been subject to continuous and systematic
veterinary and laboratory monitoring for the presence of infectious
agents, or of cells derived from well-characterized human diploid cell
lines has resulted in the production of cell substrates of better quality
than hitherto; however, in spite of the conclusion of a group
convened by WHO in 1980 (2) that it was sufficient to conduct the
tests for extraneous agents in cell cultures on control cells, tests for
the absence of such agents are still mandatory for individual harvests
and/or virus pools in these revised requirements. On the other hand,
tests for extraneous agents on small laboratory animals have been
abandoned, except for the testing of virus seeds and, when measles
vaccines are produced in human diploid cells, for the testing of
manufacturer's working cell banks.

Each of the following sections constitutes a recommendation. The
parts of each section that are printed in large type have been written
in the form of requirements, so that, if a health administration so
desires, these parts as they appear may be used as definitive national
requirements. The parts of each section that are printed in small type
are comments or recommendations for guidance.

Should individual countries wish to adopt these requirements as
the basis of their national regulations concerning measles vaccines,
it is recommended that a clause be included that would permit
modifications of manufacturing requirements, on the condition that
it be demonstrated to the satisfaction of the national control
authority that such modified requirements ensure that the degree of
safety and potency of the vaccine are at least equal to those provided
by the requirements formulated below. The World Health Organ-
ization should then be informed of the action taken.

The terms “national control authority” and “national control
laboratory”, as used in these requirements, always refer to the
country in which the vaccine is manufactured.
PART A. MANUFACTURING REQUIREMENTS

1. Definitions

1.1 International name and proper name

The international name shall be *Vaccinum morbillorum vivum*. The proper name shall be the equivalent of the international name in the language of the country of origin.

The use of the international name should be limited to vaccines that satisfy the requirements formulated below.

1.2 Descriptive definition

Vaccinum morbillorum vivum is a preparation of live attenuated measles virus grown in a suitable cell culture. The preparation shall satisfy all the requirements formulated below.

At present, live measles vaccines are blended with an appropriate stabilizer and lyophilized. They are available for distribution only in that form, either as monovalent vaccines or in combination with live mumps and/or live rubella vaccines.

1.3 International reference materials

The International Reference Preparation of Anti-Measles Serum was established in 1964. It is intended for the calibration of national standards or reference preparations for use in the manufacture and laboratory control of anti-measles serum and of human immunoglobulin. It is also intended for assessing the antibody response to measles vaccines. The International Reference Preparation of Anti-Measles Serum is in the custody of the State Serum Institute, Copenhagen, and is available on request.

An International Reference Reagent for the Assay of Measles Vaccine (Live) is available on request from the National Institute for Biological Standards and Control, Potters Bar, England, and is suitable for estimating the *in vitro* infectivity of measles vaccines.

1.4 Terminology

The following definitions are given for the purposes of these Requirements only.
Master virus seed lot: a quantity of virus of uniform composition, processed at one time, and distributed into a number of containers. Master virus seed lots are derived from a seed virus used in the preparation of vaccines shown to be immunogenic and safe in man, and not more passages removed from it than a number approved by the national control authority. They are used for the preparation of working virus seed lots.

Working virus seed lot: a quantity of virus suspension that has been processed together, is uniform with respect to composition, and is only one passage from a master seed lot produced on the same substrate. Material is drawn from working seed lots for inoculating cell cultures for the production of vaccines.

Cell substrate lot: a number of cell cultures derived from the same pool of cells, processed and prepared together.

Single harvest: a virus suspension derived from one cell substrate lot, all the cultures having been inoculated at the same time with the same inoculum. Single harvests may be derived from one cell substrate lot by repeated harvesting at intervals.

Virus pool: a pool of a number of single harvests before clarification.

Final bulk suspension: a quantity of vaccine after completion of preparations for filling and present in the container from which the final containers are filled. The final bulk may be prepared from one clarified bulk suspension, or from a blend of clarified bulk suspensions, or from a dilution thereof.

Final lot: a collection of sealed final containers that derive from the same final bulk and that are homogeneous with respect to the risk of contamination during filling and freeze-drying. A final lot therefore consists of finished material dispensed into containers during one working session and lyophilized together.

Tissue culture infective dose 50% (TCID₅₀): the quantity of a virus suspension that will infect 50% of cell cultures.

Plaque-forming unit (PFU): the smallest quantity of a virus suspension that will produce a plaque in monolayer cell cultures.

2. Certification of the Strain of Virus for Use in Vaccine Production

2.1 The strain of measles virus used in the production of measles vaccine shall be identified by historical records, which shall include
information on the origin of the strain as well as on the method used in the attenuation of it.

2.2 The vaccine strains of measles virus used in the production of vaccine shall have been shown to be safe and immunogenic by appropriate laboratory tests (see Part A, section 4, of these Requirements) and by tests in susceptible humans. Only strains that are approved by the national control authority shall be used.

2.3 A dose–response study should establish the minimal vaccine dose inducing seroconversion in susceptible individuals.

3. General Manufacturing Requirements

The general manufacturing requirements contained in the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply to establishments manufacturing measles vaccine, with the addition of the following directives.

Production areas shall be decontaminated before they are used for the manufacture of measles vaccine.

The production of measles vaccine shall be conducted by staff who have not handled other infectious microorganisms or animals on the same working day. The staff shall consist of persons who shall be examined medically and found to be healthy. Steps shall be taken to ensure that all personnel involved in the production areas are immune to measles. Production and control shall be organized as two separate units of the manufacturing establishment with independent responsibilities.

Only the virus seed lot and cell cultures approved by the national control authority for the production of measles vaccine shall be introduced or handled in the production area.

Persons not directly concerned with the production processes, other than official inspectors, shall not be permitted to enter the production area without valid reason and specific authorization.

Particular attention shall be given to the recommendations in Part A, section 1, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) regarding the training and experience of the persons in charge of production and testing, and of those assigned to various areas of responsibility in the manufacturing
establishment, as well as to the registration of such personnel with the national control authority.

4. Production Control

The general production precautions formulated in Part A section 3, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply to the manufacture of measles vaccine.

4.1 Substrate for virus propagation

4.1.1 Measles virus used in the production of measles vaccine shall be propagated in cell cultures approved by the national control authority. All information on the source and method of preparation of the cell culture system used shall be available to the national control authority.

4.1.2 If chick-embryo cell cultures are used for the propagation of measles vaccine virus, the eggs used as a source of cells shall be derived from a closed, specific-pathogen-free, healthy flock. Monitoring shall be performed at regular intervals for Mycobacterium avium, fowl pox, avian retroviruses, Newcastle disease virus, avian encephalomyelitis virus, infectious laryngotracheitis virus, reticuloendotheliosis virus, Marek's disease virus, infectious bursal disease virus, avian reovirus, avian adenovirus, avian influenza virus, avian parainfluenza virus, Haemophilus paragallinarum, Salmonella gallinarum, Salmonella pullorum, Mycoplasma gallisepticum, and Mycoplasma synoviae.

4.1.3 If human diploid cells are used for the propagation of measles virus, a manufacturer's working cell bank (MWCB) shall be established in conformity with the provisions of Part C of these Requirements. The cell seed shall be derived from an early population doubling of the approved diploid cell strain, and the MWCB shall be prepared from it by serial subculture up to an approved population doubling level. Each manufacturer shall show to the satisfaction of the national control authority that the cell substrate propagated from the accepted cell strain and laid down as a MWCB conforms with the tests in animals and eggs for freedom
from extraneous agents, for lack of tumorigenicity, for normal karyology at least up to the population doubling level at which the cells are used to propagate the measles virus (production cell cultures), and for identity, as indicated in Part C of these Requirements. The cells shall not be used beyond two-thirds of the total number of population doublings corresponding to the average finite life of the cells.

4.1.4 Serum used in cell culture medium

Serum used for the propagation of cells for measles vaccine production shall be tested to demonstrate freedom from bacteria, fungi and mycoplasmas according to the requirements in Part A, sections 5.2 and 5.3, of the revised Requirements for Biological Substances No. 6 (General Requirements for Sterility of Biological Substances) (4) and to demonstrate freedom from viruses.

Suitable tests for the detection of viruses in calf or newborn calf serum are given in Appendix 3 of the Requirements for Poliomyelitis Vaccine (Oral) (Requirements for Biological Substances No. 7) (5).

Serum shall also be shown to be free from inhibitors of measles virus. Human serum shall not be used. If human albumin is used, it shall meet the WHO Requirements for the Collection, Processing and Quality Control of Human Blood and Blood Products (Requirements for Biological Substances No. 27) (6).

In some countries sera are also examined for freedom from phage.

4.1.5 Trypsin used for preparing cell cultures

Trypsin used for preparing cell cultures shall be bacteriologically sterile and free from mycoplasmas and viruses, especially porcine parvoviruses. The methods used to ensure this shall be approved by the national control authority.

4.2 Virus seed

The production of vaccine shall be based on the seed lot system.

It is recommended that a large working virus vaccine seed lot be set aside as the basic material that the manufacturer should use for the preparation of each batch of vaccine.
Virus seed lots shall be stored lyophilized in a special refrigerator at a temperature lower than \(-20^\circ\text{C}\), or, if not lyophilized, at a temperature of \(-60^\circ\text{C}\) or lower.

The virus in the final vaccine shall not be more than 5 cell culture passages removed from the virus seed used in the preparation of a vaccine shown to be immunogenic and safe in man.

4.2.1 Tests on virus seed lots

The seed lot used for the production of vaccine shall be free from detectable extraneous agents, including those which might have contaminated the original human specimen from which the virus strain was initially isolated, the cell culture used during the initial passages, or the attenuation process.

The seed lot virus shall be produced in conditions which satisfy sections 4.3 and 4.4 (with the exception of 4.4.5.1 and 4.4.5.2) of Part A of these Requirements. Tests for extraneous agents on small laboratory animals and for neurovirulence shall be done on either the master or the working seed lot as indicated in sections 4.2.1.1 and 4.2.1.2 below.

4.2.1.1 Tests in small laboratory animals

4.2.1.1.1 Test in adult mice

Each of at least 10 adult mice, of 15–20 g weight, shall be inoculated intracerebrally with 0.03 ml and intraperitoneally with at least 0.5 ml of the virus seed. The mice shall be observed for at least 21 days. All mice that die after the first 24 hours of the test or that show signs of illness shall be autopsied and examined for evidence of viral infection, both by direct macroscopical observation and by subinoculation of appropriate tissue suspensions by the intracerebral and intraperitoneal routes into at least 5 additional mice, which shall be observed for 21 days.

The virus seed passes the test if at least 80% of the original inoculated mice survive the observation period and if no mouse shows evidence of infection with adventitious transmissible agents attributable to the virus seed.

In some countries the national control authority permits a 60% survival of the original inoculated animals.
4.2.1.2 Tests in suckling mice

Each of at least 20 mice, less than 24 hours old, shall be inoculated intracerebrally with 0.01 ml and intraperitoneally with at least 0.1 ml of the virus seed. The mice shall be observed daily for at least 14 days. All mice that die after the first 24 hours of the test or that show signs of illness shall be autopsied and examined for evidence of viral infection, both by direct macroscopical observation and by subinoculation of appropriate tissue suspensions by the intracerebral and intraperitoneal routes into at least 5 additional suckling mice, which shall be observed daily for 14 days.

In addition, in some countries a blind passage of a suspension of the pooled emulsified tissue (minus skin and viscera) of all mice surviving the original 14-day test is made.

The virus seed passes the test if at least 80% of the original inoculated mice survive the observation period and if no mouse shows evidence of infection with adventitious transmissible agents attributable to the virus seed.

4.2.1.3 Tests in guinea-pigs

The virus seed shall be tested for adventitious agents by the intraperitoneal inoculation of 5.0 ml of the virus seed into each of at least 5 guinea-pigs of 350–450 g weight. The animals shall be observed for at least 42 days for signs of disease. All guinea-pigs that die after the first 24 hours of the test or that show signs of illness shall be autopsied and examined both microscopically and by tissue culture for evidence of infection. Animals that survive the observation period shall be sacrificed and examined in a similar manner.

The virus seed passes the test if at least 80% of the guinea-pigs survive the observation period and if no guinea-pig shows evidence of infection with adventitious transmissible agents attributable to the virus seed.

4.2.1.2 Tests for neurovirulence

Each master or working virus vaccine seed lot shall be shown to be free from neurovirulence by tests in measles-susceptible monkeys.

Such tests can be conducted as follows:
Immediately prior to the inoculation each monkey should be shown to be serologically negative for measles. At least 10 monkeys should be employed in each test. The material under
test should be given to each monkey by inoculation of 0.5 ml into the thalamic region of each hemisphere. The total amount of measles virus inoculated into each monkey should be not less than the amount contained in the recommended single human dose of vaccine. Monkeys should be observed for 17–21 days for symptoms of paralysis and other evidence of neurological involvement. Animals that die within 48 hours after injection may be replaced. The test is invalid and should be repeated if more than 20% of the monkeys die even from nonspecific causes. At the end of the observation period each monkey is (a) bled and the serum tested for measles antibody and (b) anaesthetized, sacrificed and autopsied; histopathological examinations of appropriate areas of the brain are made for evidence of central nervous system involvement.

As a check against the inadvertent introduction of wild measles virus, at least 4 measles-susceptible uninoculated monkeys should be maintained as a control, either as cage mates of or within the same immediate area as the inoculated test animals for the entire period of observation (17–21 days) plus an additional 10 days. Serum samples should be taken from the control monkeys at the time of inoculation of the test animals and again 10 days after the test animals are killed.

The material passes the test if: (a) at least 80% of the inoculated monkeys are serologically positive for measles with an adequate level of specific antibody (0.2 IU/ml or greater) and all the serum samples from the control monkeys are shown to be free from measles antibody; and (b) there is no clinical or histopathological evidence of involvement of the central nervous system attributable to the inoculated virus.

In some countries the seed lot itself is not tested but vaccines are accepted provided each of the first 5 undiluted clarified virus pools prepared from the same seed lot satisfies the requirements of the test for neurovirulence.

4.3 Control of cell cultures

Either 5% or not less than 500 ml of the cell suspension at the concentration employed for vaccine production cultures shall be used to prepare control cultures.

Cells set aside as control material shall be treated in a similar manner to the production cell cultures, but shall remain uninoculated as control cultures for the detection of extraneous viruses; they shall be incubated under the same conditions as the inoculated cultures for at least 2 weeks, or until the time of the last harvest of the production cultures, whichever is the later, and shall be observed microscopically for changes attributable to the presence of adventitious agents. At the end of the observation period, fluids
collected from the control cultures as well as cell sheets from a proportion of the control vessels shall be tested for the presence of adventitious agents by the tests described in this section. If any such tests show evidence of the presence in a control culture of any adventitious agent, the measles vaccine virus grown in the corresponding batch of production cultures shall not be used for vaccine production.

For the tests to be valid, at least 80% of the culture vessels shall be available and suitable for evaluation at the end of the respective test periods.

4.3.1 Test for haemadsorbing viruses

At the end of the observation period, cells comprising 25% of the control cells shall be tested for the presence of haemadsorbing viruses, using guinea-pig red cells. If the red cells have been stored, the duration of storage shall not have exceeded 7 days, and the temperature of storage shall have been in the range of 2-8°C.

In some countries, the national control authority requires that additional tests for haemadsorbing viruses should be made on control cultures between 3 and 5 days, and again at 12 days using also other types of red cells, including those from humans (blood group IV, O), monkeys, and chickens (or other avian species). All tests should be read after incubation for 30 minutes at 0-4°C, and again after a further incubation for 30 minutes at 20-25°C. The test with monkey red cells should be read once more after yet another incubation for 30 minutes at 34-37°C.

4.3.2 Tests for non-haemadsorbing extraneous agents

At 14 days after the day of inoculation of the production cultures, or at the time of final virus harvest, if this is later, a sample of cell culture fluid shall be taken from each control culture and pooled. Ten millilitres of the pool shall be tested in the same substrate, but not the same batch as that used for the production of virus growth, and additional 10-ml samples of each pool shall be tested in both human and simian cells.

Each sample shall be inoculated into bottles of cell cultures in such a way that the dilution of the pooled fluid in the nutrient medium does not exceed 1 in 4. The area of the cell sheet shall be at least 3 cm² per ml of pooled fluid. At least one bottle of the cell cultures shall remain uninoculated as a control.
The inoculated cultures shall be incubated at a temperature of 35–37°C and shall be examined for abnormal morphology for a period of at least 14 days.

Some national control authorities require that, at the end of this observation period, a subculture is made in the same culture system and observed for at least 7 days. Furthermore, some national control authorities require that these cells should be tested for the presence of haemadsorbing viruses.

For the tests to be valid, at least 80% of the culture vessels shall be available and suitable for evaluation at the end of the respective test periods.

If any cytopathic changes occur in any of the cultures, the virus harvests produced from the batch of cells from which the control cells were taken shall be discarded.

4.3.3 Additional test if chicken-cell cultures are used

If chicken-cell cultures are used, a sample of fluids pooled from the control cultures shall be tested for adenoviruses and for avian retroviruses such as avian leukemia virus, using a method approved by the national control authority.

Satisfactory procedures for testing for avian leukemia virus include tests for detecting the resistance-inducing factor (RIF), complement-fixation tests (COFAL), and enzyme-linked immunosorbent assays (ELISA).

The control cultures pass the test if there is no evidence of the presence of virus.

A certificate of freedom from avian leukemia virus and adenovirus provided by the supplier of the fertile eggs may satisfy the licensing authority.

4.3.4 Additional tests on control cells if human diploid cells are used for production

If human diploid cells are used for production, the cell cultures shall be identified as human by tests approved by the national control authority, as specified in Part C, section 2.2.2, of these Requirements.
4.4 Production and harvest of virus vaccines

4.4.1 Cells used for vaccine production

If human diploid cells are used as the substrate for the multiplication of the vaccine virus, they shall satisfy the conditions specified in Part C, section 2.2.1, of these Requirements.

On the day of inoculation with the seed lot virus, each cell culture shall be examined for degeneration caused by infective agents. If such examination shows evidence of the presence in a cell culture of any adventitious agent, the whole group of cultures concerned shall not be used for vaccine production.

After virus inoculation, cultures for vaccine production shall be incubated under controlled temperature conditions approved by the national control authority.

If animal serum is used for the maintenance of cell cultures before the harvesting of virus, the medium shall be removed and replaced with serum-free maintenance medium, the cells being rinsed before being added to the new medium.

Beta-lactam antibiotics shall not be used at any stage of manufacture.

Minimal concentrations of other suitable antibiotics may be used if approved by the national control authorities.

4.4.2 Single harvests

Harvesting of virus fluids shall be carried out by a method approved by the national control authority. A single harvest may be a combination of several consecutive harvests from one production cell lot. Single harvests are stored at a suitable temperature until pooling. No antibiotics shall be added at the time of harvesting nor at any later stage of manufacturing. Samples of single harvests shall be taken for testing for sterility and virus content; if not tested immediately, samples shall be kept at a temperature below -50°C until testing is done.

4.4.2.1 Sterility tests

A volume of at least 10 ml of each single harvest shall be tested for bacterial and mycotic sterility according to the requirements in Part A, section 5.2, of the revised Requirements for Biological Substances No. 6 (General Requirements for Sterility of Biological
Substances) (4), as well as for mycoplasmas by a method approved by the national control authority.

Tests for mycoplasmas should be done using both solid and liquid media that have been shown to be capable of supporting the growth of sterol-requiring and non-sterol-requiring mycoplasmas, and using for each group of tests at least 10 ml of single harvests. Approved non-culture methods may also be used.

4.4.2.2 Virus titration

The live virus content of each single harvest may be determined by cell culture titration, using a reference material of live measles virus, the titre of which has been determined by comparison with the International Reference Reagent (see Part A, section 1.3, of these Requirements).

4.4.3 Virus pool

The virus pool shall be prepared from one or several single harvests and shall be submitted to the following tests, unless these tests have already been done on each single harvest; however, even in that event, sterility tests shall be done on the virus pool.

The virus pool may be clarified, stabilized and stored at −50 °C or lower before being used to prepare final bulk for freeze-drying.

In tests that require prior neutralization of measles virus, the antiserum used shall not be of human, simian, or avian origin. The immunizing antigen used for the preparation of the antiserum shall be produced in cell culture free from extraneous microbial agents that might elicit antibodies inhibitory to the growth of any extraneous agents that may be present in the measles virus pool.

4.4.3.1 Sterility tests

Sterility tests shall be performed as indicated in Part A, section 4.4.2.1, of these Requirements.

4.4.3.2 Virus titration

Virus titration shall be performed as indicated in Part A, section 6.3, of these Requirements.
4.4.3.3 Test for mycobacteria

Regardless of which substrate is used for producing the virus vaccine, tests for detecting the presence of mycobacteria pathogenic for man shall be performed. Tests for mycobacteria shall be done on the pellet obtained after centrifugation of 20 ml of the virus pool.

4.4.3.4 Tests in cell cultures of neutralized virus pool

A volume of each virus pool equivalent to at least 500 human doses shall be neutralized by specific antiserum and shall be tested for adventitious agents by inoculation into simian cell cultures. Similar volumes of the neutralized virus pool shall likewise be tested in human cell cultures and in cell cultures of the same type but not the same batch of cells as that used in the preparation of the virus pool. Uninoculated cell cultures shall be kept as a control. All cell cultures shall be observed for at least 14 days.

Some national control authorities require that at the end of this observation period a subculture is made in the same culture system.

The virus pool passes the tests if none of the inoculated cell cultures shows evidence of the presence of any adventitious agents.

4.4.3.5 Additional tests if chick-embryo tissue is used as substrate for production

If chick-embryo tissue is used for vaccine production, the following additional tests shall be made.

A volume of each virus pool, equivalent to at least 100 human doses of vaccine, or 10 ml, shall be tested in a group of embryos of fertilized chicken's eggs by the allantoic route of inoculation, and a similar sample shall be tested in a separate group of eggs by the yolk sac route of inoculation, using 0.5 ml of inoculum per egg in both cases.

The virus pool passes the test if there is no evidence of the presence of any adventitious agents. If, however, an adventitious agent is detected in the uninoculated controls, the test may be repeated.

4.4.4 Clarification of the vaccine virus pool

The vaccine virus pool suspension shall be clarified by a method that will remove cells and cell debris. Samples of the clarified bulk
suspension shall be taken immediately after clarification to ensure that no cell or cell debris is left. Samples shall also be taken to control the identity and infectious virus content of the pool. If not tested immediately, the samples shall be kept at a temperature below \(-50\,^\circ\text{C}\) until testing is done.

4.4.4.1 Test for clarification

Microscopical observation of a smear of a concentrated sample is suitable for ensuring that no cells or cell debris are detected after clarification.

4.4.4.2 Test for virus content

The viable virus content of samples from clarified bulk suspension shall be tested, using for comparison a reference preparation of live measles virus (see Part A, section 1.3, of these Requirements).

4.4.5 Final bulk suspension

The final bulk suspension shall be prepared from one or more clarified virus pools that are obtained from substrates of which control cultures pass the test specified in Part A, section 4.3 of these Requirements. They shall satisfy the tests specified in Part A, sections 4.4.3 and 4.4.4.

The operations necessary for preparing the final bulk shall be conducted in such a manner as to avoid contamination of the product.

Assays of virus content may be done on the final bulk suspension.

4.4.5.1 Added substances

In preparing the final bulk, any substance such as diluent or stabilizer that is added to the product shall have been shown to the satisfaction of the national control authority not to impair the safety and efficacy of the vaccine in the concentration used.

4.4.5.2 Residual animal serum proteins

A sample of the final bulk shall be tested to verify that the level of contamination by heterologous serum is less than 1 part per million of the final reconstituted vaccine; that is, less than 0.5 µg if the human dose is 0.5 ml. Alternatively the test may be performed on the clarified bulk.

Serological tests such as ELISA are suitable for this purpose.
4.4.5.3 Storage

Until it is distributed into containers and lyophilized, the final bulk suspension shall be stored in conditions shown by the manufacturer to retain the activity of the vaccine.

5. Filling and Containers

The requirements concerning filling and containers in Part A, section 4, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply.
Care shall be taken to ensure that the material of which the container and, if applicable, of the closure is made does not adversely affect the virus content of the vaccine under the recommended conditions of storage.

Single-dose containers are recommended, except in the case of mass immunization campaigns.

6. Control Tests on Final Product

Samples shall be taken from each freeze-dried lot for the tests in the following sections.

6.1 Identity tests

The virus in 2 or more individually labelled final containers shall be identified as measles virus by appropriate methods, such as seroneutralization and then inoculation of cells.

6.2 Tests for bacteria and fungi

Reconstituted vaccine shall be tested for bacterial and mycotic sterility according to the requirements in Part A, section 5.2, of the Requirements for Biological Substances No. 6 (Requirements for the Sterility of Biological Substances) (4), or by acceptable methods approved by the national control authority.

6.3 Virus concentration

The virus content in each of at least 3 ampoules selected at random from each drying lot shall be determined individually.
The national control authority shall determine the minimum content of the vaccine virus that should be contained in one human dose.

The minimum quantity of the vaccine virus that should be contained in one human dose is generally considered to be 1000 viral infective units. In at least one country, however, the minimum dose has been set at 5000 infective units.

An additional 3 ampoules of the final freeze-dried vaccine shall be exposed at 37°C for 7 days. The geometric mean infectious virus titre of the vials that have been exposed shall be equal to or greater than the required minimum numbers of infective units per human dose, and the geometric mean virus titre of the vaccine shall not have been decreased by more than $1.0 \log_{10}$ during the period of exposure. Titration of non-exposed and exposed vials shall be made in parallel and results expressed in terms of PFU and/or TCID$_{50}$ per human dose. A reference reagent of measles virus, the titre of which has been determined by comparison with the International Reference Reagent (see Part A, section 1.3, of these Requirements), shall be included in each assay.

The detailed procedures for carrying out this test and for interpreting the results should be those approved by the national control authority, which should specify the acceptable confidence limits.

6.4 General safety tests

Innocuity shall be tested by appropriate tests in mice and guinea-pigs, using parenteral injections. The tests shall be those approved by the national control authority.

6.5 Residual moisture

The residual moisture in a representative sample of each freeze-dried lot shall be determined by a method approved by the national control authority. The upper limit for the moisture content shall be specified by the national control authority.

Moisture levels of less than 2% are usually considered satisfactory.
6.6 Inspection of final containers

Each container in each filling lot shall be inspected visually and any that show an abnormality shall be discarded.

7. Records

The requirements in Part A, section 6, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply.

8. Samples

The requirements in Part A, section 7, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply.

9. Labelling

The requirements regarding labels of individual containers and labels of packages in Part A, section 8, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply with the addition of the following:

The label on the carton enclosing one or more final containers, or the leaflet accompanying the container, shall contain the following additional information:

(a) a statement that the vaccine fulfils these Requirements;
(b) a statement of the nature of the preparation, specifying the designation of the strain of measles virus contained in the live attenuated virus vaccine, the minimum number of infective units per human dose, and the origin of the substrate used in the preparation of the vaccine;
(c) a statement of the nature and quantity of any antibiotic present in the vaccine;
(d) a statement concerning the photosensitivity of the vaccine, cautioning that both lyophilized and reconstituted vaccine should be protected from light;
(e) a statement indicating the volume and nature of diluent\(^1\) to be added in order to reconstitute the vaccine, and specifying that the diluent to be used is that supplied by the manufacturer;

(f) a statement that after the vaccine is reconstituted, it should be used without delay, or if not used immediately, stored between 0 °C and 10 °C and in the dark for a period not exceeding 8 hours.

10. Distribution and Shipping

The requirements in Part A, section 9, of the revised Requirements for Biological Substances No. 1 (Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply.

Shipments should be at temperatures of 8 °C or below and parcels should contain cold-chain monitors.

11. Storage and Expiry Date

The statements concerning storage temperature and expiry date appearing on the label or the leaflet, as specified in Part A, section 9, of these Requirements, shall be based on experimental evidence and shall be submitted for approval to the national control authority.

11.1 Storage conditions

Before distribution, the manufacturer shall store lyophilized vaccines at a temperature shown by the manufacturer to be compatible with minimal titre loss. After distribution, live measles vaccine shall be stored at all times at a temperature below 8 °C.

11.2 Expiry date

The expiry date shall be fixed with the approval of the national control authority and shall relate to the date of the last satisfactory test for virus concentration, this date being that on which the test-system was inoculated. It shall be based on experimental evidence

\(^1\) No preservative or any substance that has a deleterious effect on the virus should be present in the diluent used to reconstitute the vaccine.
and shall not be less than 2 years for a temperature of storage not higher than 8 °C.

In some countries, manufacturers and control authorities have observed that measles vaccines continuously stored in the lyophilized state at temperatures not higher than −20 °C do not lose potency over a period of several years. In such cases, national control authorities allow the dating period to start at the time the vaccine is taken out of the frozen state, provided that a satisfactory potency test has been successfully carried out within 12 months preceding the start of the dating period.

PART B. NATIONAL CONTROL REQUIREMENTS

1. General

The general requirements for control laboratories contained in Part B of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply.

The national control authority shall provide a reference material of live measles virus (see Part A, section 1.3, of the present Requirements) for tests for virus concentration (see Part A, sections 4.4.2.2, 4.4.3.2, 4.4.4.2, and 6.3) and shall specify the requirement for virus content that shall be fulfilled, in order to achieve adequate immunization of humans when the recommended human dose is used.

2. Release and Certification

A vaccine shall be released only if it fulfils Part A of the present Requirements. A statement along the lines of that contained in Appendix 2 and signed by the appropriate official of the national control laboratory shall be provided at the request of the manufacturing establishment and shall certify whether the lot of vaccine in question meets all national requirements, as well as Part A of the present Requirements. The certificate shall state the date of the last satisfactory test for virus concentration by the manufacturer and the final lot number which must appear on the labels of the containers.

The purpose of the certificate is to facilitate the exchange of live measles vaccines among countries.
PART C. REQUIREMENTS FOR HUMAN DIPLOID CELLS TO BE USED FOR THE PRODUCTION OF MEASLES VACCINE (LIVE)¹

The following requirements concern the testing of the cell substrate for the production of measles vaccine if human diploid cells are used; they should therefore be added to or substituted for the corresponding sections in Parts A and B, as appropriate. *All the other requirements in Parts A and B remain applicable.*

1. Definitions

1.1 Terminology

Cell seed: a quantity of cells derived from a single human tissue and of uniform composition, stored frozen at \(-70\,^\circ\text{C}\) or below in aliquots, one or more of which would be used for the production of a manufacturer's working cell bank.

Manufacturer's working cell bank (MWCB): a quantity of cells derived from one or more aliquots of the cell seed, of uniform composition, stored frozen at \(-70\,^\circ\text{C}\) or below in aliquots, one or more of which would be used for the production of each single harvest.

In normal practice a cell seed is issued to manufacturers at or near the eighth population doubling level (PDL). It is expanded by serial subculture up to a PDL selected by the manufacturer, at which point the cells are combined into one or more pools and preserved cryogenically to form the MWCB. One or more of such ampoules from a pool would be used to prepare the production cell culture.

Production cell culture: a collection of cell cultures at the population doubling level used for virus growth that have been prepared together from one or more ampoules of the MWCB.

¹ Part C is based largely on Part C of the Requirements for Poliomyelitis Vaccine (Oral) (5, pp. 140–150).
2. Production Control

2.1 Control of source materials

The cell seed and the manufacturer's working cell bank shall be those approved by and registered with the national control authority. The cells shall have been characterized with respect to their genealogy, growth characteristics, genetic markers (HLA), viability during storage, and karyology, and they shall have been shown to be free from bacteria, mycoplasma, fungi, and haemadsorbing and other viruses by the relevant tests in Part A of these Requirements. In addition the cells of the MWCB shall have been shown to be diploid and stable with respect to karyology and morphology by the tests outlined in this section.

The MWCB shall also have been shown to yield cell cultures capable of producing vaccine that is both safe and immunogenic in man.

2.1.1 Tests in animals and eggs for extraneous agents

The cells of the MWCB are suitable if at least 80% of the animals or eggs which are inoculated with them remain healthy and survive the observation period, and none of the animals or eggs shows evidence of the presence in the cells of any extraneous agent.

2.1.1.1 Tests in animals

The tests in animals for adventitious agents in the MWCB shall include the inoculation of each of the following groups of animals with the cells by the intramuscular route, using at least 10^7 cells divided equally between the animals in each group:

- 2 litters of suckling mice, totalling at least 10 animals, less than 24 hours old,
- 10 adult mice of 15–20 g weight,
- 5 guinea-pigs of 350–450 g weight, and
- 5 rabbits.

The animals shall be observed for at least 4 weeks. Any animals that are sick or show any abnormality shall be investigated to establish the cause of illness.

In some countries the suckling and adult mice are also inoculated by the intracerebral route.
2.1.1.2 Tests in eggs

At least 10^6 viable cells shall be injected into the allantoic cavity of 10 embryonated chicken's eggs, 9–11 days old, which shall be examined after not less than 5 days. The allantoic fluids of the fertile eggs shall be tested with erythrocytes from guinea-pigs and chick or other avian species for the presence of haemagglutinins.

2.1.2 Other tests for extraneous agents

Suitable tests approved by the national control authority shall be performed in order to exclude the presence of retroviruses and the integration of nucleic acid of viral origin (hepatitis B virus and human immunodeficiency virus, HIV) in the genome of the cells.

In some countries the cells are examined also by ultra-thin sections and by negative staining under the electron microscope.

2.1.3 Freedom from tumorigenicity

The cells shall also be shown to be free from potential tumorigenicity by appropriate animal tests approved by the national control authority.

Suitable tests using immunosuppressed animals may be made as follows. Approximately 10^6 cells obtained from cultures at the same passage levels as those to be used for vaccine production are injected into: newborn mice or hamsters treated with antilymphocyte serum; or athymic mice (nude nu/nu genotype); or thymectomized mice irradiated and bone marrow reconstituted (T−B+). Some of the same group of animals should be inoculated with a similar dose of HeLa or KB cells, and it should be shown that tumour formation is caused by the inoculation of the neoplastic tissue, thus demonstrating the ability of the strain of animals to give rise to tumours. The animals should be observed for not less than 3 weeks. Any other test using animals treated with immunosuppressive agents and with equal sensitivity to neoplastic cells may be used.

The cells are suitable for vaccine production if at least 80% of the animals inoculated with cells remain healthy and survive the observation period, and none of the animals shows evidence of tumour formation from the cells.
2.1.4 Chromosomal characterization

At least 4 samples from the cell seed shall be examined as described in Part C, section 2.1.5, of these Requirements at approximately equal intervals over the life-span of the cell line during serial cultivation. Each sample shall consist of 1000 metaphase cells.

It is also recommended that photographic reconstruction should be employed in the preparation of chromosome-banded karyotypes of 50 metaphase cells per 1000-cell sample, using either G-banding or Q-banding techniques. The incidence of karyotypic abnormalities (pseudodiploidy, inversions, translocations, etc.) that are detectable with the greater resolution provided by banding should be approved by the national control laboratory.

2.1.5 Chromosomal monitoring—preparation and testing

For the determination of the general character of the manufacturer’s working cell bank, a minimum of 500 cells in metaphase shall be examined at the production level or at any passage thereafter for frequency of polyploidy and for exact counts of chromosomes, frequency of breaks, structural abnormalities, and other abnormalities such as despiralization or marked attenuations of the primary or secondary constriction.

For vaccine production, examination of the cells is usually made between the 27th and 33rd population doubling. The national control authority should determine the level of cell population doubling allowable.

For WI-38 and MRC5 cells examined in metaphase, the upper limits of acceptability (upper fiducial limits at 95% (Poisson)) for abnormalities for a 1000- and 500-cell sample are as follows:¹

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>1000 cells</th>
<th>500 cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromatid and chromosome breaks</td>
<td>47/1000</td>
<td>26/500</td>
</tr>
<tr>
<td>Structural abnormalities</td>
<td>17/1000</td>
<td>10/500</td>
</tr>
<tr>
<td>Hyperploidy</td>
<td>8/1000</td>
<td>5/500</td>
</tr>
<tr>
<td>Hypoploidy</td>
<td>180/1000</td>
<td>90/500</td>
</tr>
<tr>
<td>Polyploidy</td>
<td>30/1000</td>
<td>17/500</td>
</tr>
</tbody>
</table>

¹ These upper limits are based on extensive experience with the examination of WI-38 and MRC5 cells reported to and examined by the ad hoc Committee on Karyological Controls of Human Substrates, which met in 1978 at Lake Placid, NY, USA. These values will not necessarily be applicable if other human cell strains are used.
All cells showing abnormalities shall be subjected to detailed examination, and records shall be maintained of the detailed criteria applied to particular abnormalities observed in the karyotype analysis.

Stained slide preparations of the chromosomal monitoring of the working cell bank pool, or photographs of these, shall be maintained permanently as part of the record of the MWCB.

Only the cell pools of the MWCB that have normal karyology shall be used for vaccine production.

2.2 Production precautions

The general production precautions as formulated in Part A, section 3, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (3) shall apply to the manufacture of measles vaccine with the addition of the following.

2.2.1 Cell cultures used for vaccine production

Only human diploid cell cultures derived from a MWCB approved by the national control authority shall be used for vaccine production. The production of each single harvest shall be initiated from one or more new ampoules of the cell seed. All processing of the cell seed and subsequent cell cultures shall be done in an area in which no other cells are handled during the entire period of vaccine production. The cell cultures shall be used only if no changes have occurred in their growth characteristics, and if no changes from the normal karyology have been shown to occur within the total number of population doublings that correspond to the average finite life of the cells as determined under the particular conditions of the production establishment (see Part C, section 2.1.4, of these Requirements).

It is advisable to ensure that both the trypsin and the animal serum used in the preparation or growth of the cell suspensions are free from extraneous agents.

3.2.2 Identity test

An identity test shall be performed on the control cell cultures by methods approved by the national control authority.

120
Suitable tests are isozymes, HLA or other immunological tests or karyotype of at least one metaphase spread of chromosomes.

The cells shall be shown to be of human origin.

AUTHORS

The Requirements for Measles Vaccine (Live) were prepared by the following WHO consultants and staff members:
Dr M. Clark, National Institute for Biological Standards and Control, Potters Bar, Herts., England (Consultant)
Dr V. Grachev, Biologicals, WHO, Geneva, Switzerland
Dr D. Magrath, National Institute for Biological Standards and Control, Potters Bar, Herts., England (Consultant)
Dr P. Minor, National Institute for Biological Standards and Control, Potters Bar, Herts., England (Consultant)
Dr P. Sizaret, Biologicals, WHO, Geneva, Switzerland

ACKNOWLEDGEMENTS

Acknowledgements are due to the following experts for their comments and advice:
Dr M. Beck, Director, Institute of Immunology, Zagreb, Yugoslavia
Dr B. Beys, Scientific Adviser, Drugs Control Service, Belgian Pharmaceutical Association, Brussels, Belgium
Dr I. Di Tommaso, Head, Tuscan Institute for Serotherapy and Vaccine Production (SCLAYO), Siena, Italy
Dr H. J. van de Donk, National Control Laboratory, State Institute of Public Health and Environmental Hygiene, Bilthoven, Netherlands
Dr J. Garcia-Ramos, General Manager, National Institute of Hygiene, National Institute of Virology, Mexico City, Mexico
Dr G. Kado Boll, Associate Director for Control, National Institute of Virology, Mexico City, Mexico
Dr P. Lemoine, Serum and Vaccine Control, Department of Microbiology, Institute of Hygiene and Epidemiology, Brussels, Belgium
Dr S. Makino, Adviser for Research and Development and Head of Virology Department, Kitasato Institute, Tokyo, Japan
Dr H. Mirchamsy, Associate Director, Razi State Institute of Sera and Vaccines, Teheran, Islamic Republic of Iran
Dr J. de Mucha Macias, Director, National Institute of Hygiene, National Institute of Virology, Mexico City, Mexico
Dr R. Netter, Director-General, National Health Laboratory, Paris, France
Dr P. Paroz, Immunobiological Products Control, Federal Office of Public Health, Berne, Switzerland
Dr J. Peetersmans, Technical Director, Biological Division, Smith Kline-RIT, Rixensart, Belgium
REFERENCES

Appendix 1

SUMMARY PROTOCOLS FOR MEASLES VACCINE (LIVE)

Based on Requirements for Biological Substances No. 12
(Requirements for Measles Vaccine (Live))
(Revised 1987)

The following protocols are intended for guidance and indicate the minimum of information to be provided.

The Protocol for Final Lot must be accompanied by a sample of the label and a copy of the leaflet accompanying the vaccine container. It must also be accompanied by a certificate from the national control authority of the country in which the vaccine was produced stating that the product meets the national\(^1\) as well as the WHO Requirements (see Appendix 2).

I. PROTOCOL FOR WORKING VIRUS SEED LOT

A. Summary Information

<table>
<thead>
<tr>
<th>Name and address of manufacturer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus strain</td>
<td></td>
</tr>
<tr>
<td>Reference no. of virus seed used to prepare your first measles vaccine that was safe and immunogenic in man</td>
<td></td>
</tr>
<tr>
<td>Reference no. of master seed virus</td>
<td></td>
</tr>
<tr>
<td>Number of passages between the two above seeds</td>
<td></td>
</tr>
<tr>
<td>Date of preparation of working seed virus</td>
<td></td>
</tr>
<tr>
<td>No. of containers of working seed virus prepared</td>
<td></td>
</tr>
<tr>
<td>Reference no. of working seed virus prepared</td>
<td></td>
</tr>
<tr>
<td>Conditions of storage of seed virus prepared</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) If product does not meet the national requirements, the reason why it does not should be stated.
History of vaccine strain

Provide a brief account indicating how the vaccine strain was acquired, history up to production of master seed virus lot, and criteria on which acceptability for virus production is based.

B. Control of Cell Cultures (A.4.3)

Provide information on control cells corresponding to each single harvest, using extra pages if necessary.

Substrate used for production of virus seed lot
Reference no. of control cell cultures
Quantity of overall cell cultures used as control cultures
Period of observation of uninoculated control cells

B.1 Tests for haemadsorbing viruses (A.4.3.1)

Type of red blood cells
Date of test
Result of test

B.2 Test on cell cultures for non-haemadsorbing extraneous agents (A.4.3.2)

Simian cells
Type of cells
Date of inoculation
Result

Human cells
Type of cells
Date of inoculation
Result

B.3 Other tests for non-haemadsorbing viruses

1. Case where substrate is chicken fibroblast (A.4.3.3)

Test for avian leukemia virus
Method
Date
Results

1 Letters and numbers in parentheses refer to the corresponding parts and sections in the text of the Requirements for Measles Vaccine (Live).
Test for avian adenovirus
Method
Date
Results

2. Case where cell substrate is human
diploid cell (HDC) (A.4.3.4)
Include the manufacturing protocol of
the manufacturer's working cell bank
(prepared along the lines indicated in
Part C of the Requirements)
HDC cultures used for testing the
particular control cell cultures
Reference no. of batch
Date of inoculation
Results

C. Single Harvests Used in Preparation of Seed Lot (A.4.4.2)
Report results of tests for each single harvest, using extra pages if necessary.
Name and concentration of antibiotics
used in cell culture medium
No. and reference no. of single harvests

Tests on single harvests

<table>
<thead>
<tr>
<th>Date of sterility test (A.4.4.2.1)</th>
<th>Result of sterility test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of test for mycoplasmas</td>
<td>Result of test for mycoplasmas</td>
</tr>
<tr>
<td>Date of test on virus concentration (A.4.4.2.2)</td>
<td>Result of test on virus concentration</td>
</tr>
</tbody>
</table>

D. Virus Pool (A.4.4.3)
If any test had to be repeated or any abnormal result was observed, this must be specified.

D.1 Tests for extraneous agents in small laboratory animals\(^1\) (A.4.2.1.1)
Report on separate pages the details of tests in suckling mice, adult mice, guinea-pigs, and chicken embryos, giving all relevant information, such as number of animals, weight (suckling mice), date and route of inoculation, quantity injected, route of inoculation, results (survival numbers).

\(^1\) Not mandatory if already performed on the primary virus seed.
D.2 Tests for neurovirulence\(^1\) (A.4.2.1.2)

<table>
<thead>
<tr>
<th>No. of monkeys in test</th>
<th>Volume injected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of monkeys surviving without specific symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result of serological tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result of histopathological examination (specify findings)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

D.3 Tests for bacterial and mycotic sterility (A.4.4.3.1)

<table>
<thead>
<tr>
<th>Date of inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

D.4 Tests for mycoplasmas (A.4.4.3.1)

<table>
<thead>
<tr>
<th>Date of inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

D.5 Virus titration (A.4.4.3.2)

<table>
<thead>
<tr>
<th>Cells used for titration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

D.6 Tests for mycobacteria (A.4.4.3.3)

<table>
<thead>
<tr>
<th>Date of inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period of observation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

D.7 Tests on cell cultures after seroneutralization (A.4.4.3.4)

<table>
<thead>
<tr>
<th>Species in which neutralizing serum was prepared and cell substrate on which immunogen was produced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nature of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simian cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nature of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Not mandatory if already performed on the primary virus seed.
D.8 Additional tests

1. If chicken fibroblasts are used as substrate (A.4.4.3.5)
 Tests in embryonated eggs inoculated by allantoic route
 No. and age of embryonated eggs inoculated
 Date
 Results

2. If human diploid cells (HDC) are used (A.4.4.3.4)
 Reference of batch no. of HDC
 Date of inoculation
 Results

E. Certification

Name (typed) and signature of head of production laboratory

Certification by the head of the control laboratory of the manufacturer taking overall responsibility for production and control of the seed:

I certify that the working virus seed lot of measles vaccine No. meets the requirements in Part A, sections 2 to 4.4.4.2, of the WHO Requirements for Biological Substances No. 12 (Requirements for Measles Vaccine (Live)) (Revised 1987).

Name (typed)
Signature
Date
II. PROTOCOL FOR FINAL BULK SUSPENSION

A. Summary Information

Name and address of manufacturer

Virus strain

Reference no. of secondary virus seed

Date of completion of final bulk suspension

B. Control of Cell Cultures

Give all relevant information, following as a guide section B of the Protocol for Working Virus Seed Lot. If human diploid cells were used as substrate, do not repeat information on the production of the manufacturer’s working cell bank (MWC) (Part C of the Requirements) unless a different MWC has been used.

C. Single Harvests

Give all relevant information as indicated in section C of the Protocol for Working Virus Seed Lot.

D. Virus Pool

Reference no. of virus pool

Give all relevant information as indicated in section D of the Protocol for Working Virus Seed Lot, except that the information on tests for neurovirulence and on tests on small laboratory animals need not be repeated.

E. Clarified Virus Pool

Date and result of test for clarification (A.4.4.4.1)

Date, cell substrate used for the assay and result of the test for virus content (A.4.4.4.2)

Reference preparation used in the assay

F. Final Bulk Suspension

Nature of stabilizer and final concentration

Reference of final bulk suspension

Total volume of final bulk suspension

Result of test for virus content (optional)

128
Tests for residual heterologous serum proteins
Date
Method
Result (indicate amount and nature of serum protein(s) present per human dose)

G. Certification

Name (typed) and signature of head of production laboratory

Certification by the head of the control laboratory of the manufacturer taking overall responsibility for production and control:

I certify that final bulk suspension lot No. ____________ of measles vaccine meets the requirements in Part A, section 4.4.5, of the WHO Requirements for Biological Substances No. 12 (Requirements for Measles Vaccine (Live)) (Revised 1987).

Name (typed)
Signature
Date
III. PROTOCOL FOR FINAL LOT

A. Summary Information

Name and address of manufacturer

Proprietary name of vaccine
Reference no. of freeze-drying lot
Expiry date
No. of containers in the lot
No. of doses per container

B. Production Details

Lot no. of final bulk suspension
Date of submission of bulk protocol
Date of filling of final lot

Tests of final product

1. Identity test (A.6.1)
 Date
 Method used
 Results

2. Tests for bacterial and mycotic sterility (A.6.2)
 Date of inoculation
 Media used
 Observation period
 Results

3. Tests for virus concentration (A.6.3)
 Date of inoculation
 Type of cell cultures
 Reference preparation used

<table>
<thead>
<tr>
<th>Vaccine containers</th>
<th>Not kept at 37°C</th>
<th>Kept 7 days at 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

No. of containers tested

Virus concentration found in each container (in human doses)

1 Give details of all tests and retests.

130
4. General safety tests (A.6.4)
 Date of inoculation
 No. of mice given injections
 Volume and route of injection
 Observation period
 Results (give all relevant details in case of deaths)
 No. of guinea-pigs given injections
 Volume and route of injection
 Observation period
 Results (give all relevant details in case of deaths)

5. Residual moisture (A.6.5)
 Date
 Method used
 Size of sample
 Moisture content (%)

6. Inspection of final containers (A.6.6)
 Date and result

C. Certification

Name (typed) and signature of head of laboratory

Date

Certification by person taking overall responsibility for production and control of the vaccine:

I certify that lot No. of measles vaccine meets the requirements in Part A of the WHO Requirements for Biological Substances No. 12 (Requirements for Measles Vaccine (Live)) (Revised 1987).

Name (typed)
Signature
Date
Appendix 2

MODEL CERTIFICATE FOR THE RELEASE OF MEASLES VACCINES BY NATIONAL CONTROL AUTHORITIES

(to be completed by the national control authority of the country where vaccines have been manufactured, and to be provided by the vaccine manufacturer to importers)

The following final lots of measles vaccine produced by ¹ in ², the numbers of which appear on the labels of the final containers, meet all national requirements³ and Part A⁴ of WHO Requirements for Biological Substances No. 12 (Requirements for Measles Vaccine (Live)) (Revised 1987), and WHO Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (Revised 1965).

Date of last satisfactory test for potency by producer ..

<table>
<thead>
<tr>
<th>Final Lot No.</th>
<th>Expiry Date</th>
<th>Final Lot No.</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As a minimum, this certificate is based on examination of the manufacturing protocol.

The Director of the National Control Laboratory (or Authority as appropriate)⁵

Name (typed)..

Signature... |

Date..

¹ Name of manufacturer.
² Country.
³ If any national requirements are not met, specify which one(s) and indicate why release of the lot(s) has nevertheless been authorized by the national control authority.
⁴ With the exception of provisions on distribution and shipping, which the national control authority may not be in a position to assess.
⁵ Or his or her representative.
Annex 6

REQUIREMENTS FOR JAPANESE ENCEPHALITIS VACCINE (INACTIVATED) FOR HUMAN USE

(Requirements for Biological Substances No. 43)

<table>
<thead>
<tr>
<th>General considerations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A. Manufacturing requirements</td>
<td>133</td>
</tr>
<tr>
<td>1. Definitions</td>
<td>135</td>
</tr>
<tr>
<td>2. General manufacturing requirements</td>
<td>136</td>
</tr>
<tr>
<td>3. Control of source materials</td>
<td>137</td>
</tr>
<tr>
<td>4. Control of vaccine production</td>
<td>140</td>
</tr>
<tr>
<td>5. Filling and containers</td>
<td>144</td>
</tr>
<tr>
<td>6. Control tests on final product</td>
<td>144</td>
</tr>
<tr>
<td>7. Records</td>
<td>147</td>
</tr>
<tr>
<td>8. Samples</td>
<td>147</td>
</tr>
<tr>
<td>9. Labelling</td>
<td>147</td>
</tr>
<tr>
<td>10. Distribution and shipping</td>
<td>148</td>
</tr>
<tr>
<td>11. Storage and expiry date</td>
<td>148</td>
</tr>
<tr>
<td>Part B. National control requirements</td>
<td>148</td>
</tr>
<tr>
<td>1. General</td>
<td>148</td>
</tr>
<tr>
<td>2. Release and certification</td>
<td>149</td>
</tr>
<tr>
<td>Authors</td>
<td>149</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>151</td>
</tr>
<tr>
<td>References</td>
<td>151</td>
</tr>
<tr>
<td>Appendix 1. Summary protocol</td>
<td>152</td>
</tr>
<tr>
<td>Appendix 2. General scheme for the preparation of Japanese encephalitis vaccines</td>
<td>157</td>
</tr>
</tbody>
</table>

GENERAL CONSIDERATIONS

Specific vaccines are the most commonly used means for the control of Japanese encephalitis. The causative virus is amplified in nature in a cycle involving Culex mosquitoes and vertebrate animals,
especially pigs. Humans are susceptible at all ages unless immunized by natural infection or vaccination. Evidence shows that effective vaccines will protect animals and humans against illness and will remove the vaccinated animal from the pool of potential amplifying hosts of the virus. Although the control of mosquitoes and the vaccination of pigs are effective in some circumstances in preventing Japanese encephalitis in humans, these measures have not proved effective in practice over much of the endemic area. It is also important to recognize that the infection is a zoonosis, that humans are incidental hosts, and that for protection, vaccine coverage must be maintained indefinitely in all persons exposed to the infection.

Two types of formalin-inactivated vaccines have each been used in millions of people. A vaccine produced in adult mouse brain is purified to remove myelin basic protein and is not associated with central nervous system damage in recipients. A vaccine produced in primary hamster tissue culture is also widely used.

Large outbreaks of Japanese encephalitis, sometimes involving thousands of cases, continue to occur in the classic areas of endemicity. In addition, certain special groups, such as travellers to endemic areas and laboratory workers, require immunization. In view of the need to immunize large numbers of people in such circumstances, requirements for Japanese encephalitis vaccine for human use have been formulated. In drafting them, account has been taken of the opinions of consultants, of the regulations and requirements for the manufacture and control of Japanese encephalitis vaccine that have been formulated in several countries, and of information from both published and unpublished sources.

Each of the following sections constitutes a recommendation. The parts of each section that are printed in large type have been written in the form of requirements, so that, if a health administration so desires, these parts as they appear may be included in definitive national requirements. The parts of each section that are printed in small type are comments and recommendations for guidance.

Should individual countries wish to adopt these requirements as the basis of their national regulations concerning Japanese encephalitis vaccine, it is recommended that a clause should be included that would permit modifications of manufacturing requirements on the condition that it can be demonstrated to the satisfaction of the national control authority that such modified requirements ensure that the degree of safety and the potency of the vaccine are at least equal to those provided by the requirements
formulated below. The World Health Organization should then be informed of the action taken.

The terms "national control authority" and "national control laboratory", as used in these requirements, always refer to the country in which the vaccine is manufactured.

PART A. MANUFACTURING REQUIREMENTS

1. Definitions

1.1 International name and proper name

The international name shall be *Vaccinum encephalitidis japonicae*. The proper name shall be the equivalent of the international name in the language of the country of origin.

The use of the international name should be limited to vaccines that satisfy the requirements formulated below.

1.2 Descriptive definition

Vaccinum encephalitidis japonicae is a fluid or freeze-dried preparation of virus grown in neural tissue of mice or in cell cultures and inactivated by a suitable method. The preparations for human use shall satisfy all the requirements formulated below.

1.3 International standards and reference reagents

Preparations are currently under study.

1.4 Terminology

The following definitions are given for the purposes of these Requirements only.

Master virus seed lot: a quantity of virus of uniform composition, processed at one time, and distributed into a number of containers. Seed lots are derived from a seed virus used in the preparation of inactivated vaccines shown to be immunogenic in man, and not more passages removed from it than a number approved by the national control authority. The master virus seed lot is used for the preparation of working virus seed lots.
Working virus seed lot: a quantity of virus suspension that has been processed together, is of uniform composition, and is not more passages removed from the master virus seed lot than a number approved by the national control authority. Material is drawn from working virus seed lots for inoculating cell cultures or mouse neural tissue for the production of vaccine.

Adventitious agents: contaminating microorganisms, including bacteria, fungi, mycoplasmas, and endogenous and exogenous viruses.

Single harvest: a virus suspension derived from one cell substrate lot, all the cultures having been inoculated at the same time with the same inoculum and harvested at the same time.

Bulk material: a pool of inactivated single harvests before preparation of the final bulk. It may be prepared from one single harvest or a number of single harvests and may yield one or more final bulks.

Final bulk: the finished biological material prepared from one or more purified bulks present in the container from which the final containers are filled.

Final lot: a collection of sealed final containers, filled from the same final bulk, that are homogeneous with respect to the risk of contamination during filling or drying. A final lot must therefore consist of containers that have been filled in one working session and (for lyophilized products) have been freeze-dried together in the same chamber at the same time.

2. General Manufacturing Requirements

The general requirements for manufacturing establishments contained in the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (I) shall apply to establishments manufacturing Japanese encephalitis vaccine for human use, with the addition of the following directives.

The production of Japanese encephalitis vaccine shall be conducted by staff who have not handled other infectious microorganisms, animals, or tissue cultures in the same working day. The staff shall consist of persons who shall be examined medically and found to be healthy. Steps shall be taken to ensure that all such persons in the production and control areas have a serum
neutralizing antibody titre of at least 1:10 from either immunization against or natural infection with Japanese encephalitis.

Only mouse brain tissue and cell cultures approved by the national control authority for the production of Japanese encephalitis vaccine shall be introduced into or handled in the production area.

Persons not directly concerned with the production processes, other than official inspectors, shall not be permitted to enter the production area without valid reason and specific authorization.

Particular attention shall be given to the recommendations contained in Part A, section 1, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (I, p. 13) regarding the training and experience of the persons in charge of production and testing and of those assigned to various areas of responsibility in the manufacturing establishment, as well as to the registration of such personnel with the national control authority.

3. Control of Source Materials

The general production precautions formulated in Part A, section 3, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (I, p. 15) shall apply to the manufacture of Japanese encephalitis vaccine.

3.1 Animals and cell cultures used for production

3.1.1 Hamsters

When hamster-kidney tissue is used for the propagation of Japanese encephalitis virus, only hamster stock approved by the national control authority shall be used as a source of tissue.

The animal stock should be free from infection with mycoplasmas and from microorganisms pathogenic for hamsters. The parents of animals to be used as a source of tissue should be maintained in quarantine in vermin-proof quarters for a minimum of 3 months. Neither the parent hamsters nor their progeny should previously have been used for experimental purposes involving infectious agents.
3.1.2 Mice

When mice are used for the propagation of Japanese encephalitis virus in neural tissue, only animals less than 5 weeks of age shall be used, and they shall be free from all signs of disease. Methods for intracerebral inoculation and harvesting shall be approved by the national control authority.

The animal stock should be free from microorganisms pathogenic for mice.

3.1.3 Serum used in cell culture medium

Serum used for the growth of cells shall be tested to demonstrate freedom from bacteria, fungi, and mycoplasmas according to the requirements in Part A, sections 5.2 and 5.3, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (2, pp. 49–52), as well as freedom from pathogens, such as viruses of the species of origin of the serum, by methods approved by the national control authority (3, p. 99).

In some countries sera are examined for freedom from phage and endotoxin.

3.1.4 Human albumin used in cell culture medium

If human albumin is used, it shall meet the requirements in Parts C and D of the Requirements for Biological Substances No. 27 (Requirements for the Collection, Processing and Quality Control of Human Blood and Blood Products) (4).

3.2 Virus seed

3.2.1 Strain of virus

The strains of virus used in the production of all seed lots shall be approved by the national control authority and shall yield safe and immunogenic vaccines when the virus has been inactivated. They shall be identified by historical records and by infectivity tests, serological tests, and animal inoculation.
3.2.2 Virus seed lot system

The preparation of Japanese encephalitis vaccine shall be based on the use of a virus seed lot system. The national control authority shall determine the acceptable number of passages from the master virus seed lot to produce working virus seed lots. If mice are used for the passages, suckling mice are preferred. Vaccines shall be made from a working virus seed lot without further intervening passage. Virus seed lots shall be maintained either in the dried or in the frozen form. The dried seed shall be kept at a temperature below 10 °C, while the frozen seed shall be kept at a temperature below −60 °C.

Seed lots shall have been shown, to the satisfaction of the national control authority, to be capable of yielding vaccine that meets all the present Requirements.

In some countries the national control authority distributes the master virus seed to manufacturers.

3.2.3 Tests on virus seed lots

Each virus seed lot shall be identified as Japanese encephalitis virus by methods approved by the national control authority.

3.2.3.1 Freedom from bacteria, fungi and mycoplasmas

Each virus seed lot shall be tested for bacterial, mycotic, and mycoplasmal contamination by appropriate tests according to the requirements in Part A, sections 5.2 and 5.3, of the revised Requirements for Biological Substances No. 6 (General Requirements for Sterility of Biological Substances) (2, pp. 49–52).

3.2.3.2 Tests for adventitious agents

Each virus seed lot shall be tested for adventitious agents. For these tests the virus shall be neutralized by a specific anti-Japanese-encephalitis serum.

The individual tests on the virus seed lots should be so designed that they satisfy the requirements of the national control authority. The anti-Japanese-encephalitis serum should be free from known adventitious viruses.

3.2.3.3 Tests on working virus seed lots

Each time a new working virus seed lot is prepared, tests shall be carried out to characterize the virus strain. Such tests shall include
the titration of virus and an identity test using standard serum provided by the national control authority.

When an international standard becomes available, the national standard serum should be calibrated against it.

4. Control of Vaccine Production

4.1 Mouse brains

The brains of the mice inoculated intracerebrally with the virus strain for production shall be harvested immediately before death when the animals show typical signs of encephalitis. The harvested brains shall be triturated in buffered isotonic sodium chloride solution, or any other suitable medium, and centrifuged. The supernatant shall be collected and treated by alcohol precipitation, with protamine sulfate, by ultracentrifugation, or by any other appropriate methods to serve as the virus suspension.

The virus suspension shall be subjected to the tests given in Part A. sections 4.3.1 and 4.3.2, of these Requirements.

4.2 Cell cultures

Beta-lactam antibiotics shall not be used at any stage of manufacture.

Minimal concentrations of other suitable antibiotics such as kanamycin may be used when approved by the national control authority.

At least 5% of the cell suspension (not less than 500 ml) at the concentration employed for seeding vaccine production cultures shall be used to prepare control cultures.

In some countries in which the technology of large-scale production has been developed the national control authority should determine the size of the cell sample to be examined and the control methods to be applied.

The treatment of cells set aside as control material shall be similar to that of the production cell cultures, but they shall remain uninoculated to serve as control cultures for the detection of extraneous viruses.

These control cell cultures shall be incubated under the same conditions as the inoculated cultures for at least 2 weeks or until the
time of the last harvest of the production cultures and shall be
examined during this period for evidence of cytopathic changes. For
the test to be valid, not more than 20% of the control cell cultures
shall have had to be discarded for nonspecific, accidental reasons.

At the end of the observation period, the control cell cultures shall
be examined for degeneration caused by an infectious agent. If this
examination, or any of the tests specified in this section, shows
evidence of the presence in a control culture of any adventitious
agent, the Japanese encephalitis virus grown in the corresponding
inoculated cultures shall not be used for vaccine production.

4.3 Control of single virus harvests

4.3.1 Sterility test of single virus harvests

A sample removed from each virus harvest shall be tested for
bacterial and fungal contamination by appropriate tests according
to the requirements in Part A, section 5.2, of the revised
Requirements for Biological Substances No. 6 (General Require-
ments for the Sterility of Biological Substances) (2, p. 49). Any single
virus harvest in which contamination is detected shall be discarded.

4.3.2 Test of virus content

A sample removed from each virus harvest shall be tested for
virus content using the method of intracerebral inoculation of mice.
The animals shall be observed for 14 days and the LD₅₀ then
calculated.

4.3.2.1 The virus content shall be not less than 10⁷.₅ LD₅₀/0.03 ml
when neural tissue is used.

4.3.2.2 The virus content shall be not less than 10⁷.₀ LD₅₀/0.03 ml
when cell culture is used.

4.4 Control of bulk material

4.4.1 Pooling of single virus harvests

Only virus harvests satisfying the requirements for sterility and
virus content in Part A, sections 4.3.1 and 4.3.2, of these
Requirements shall be pooled.
4.4.2 Animal serum

For cell-culture-derived vaccines, the serum concentration in the bulk vaccine shall not be more than 1 part per million (1 μl/litre).

In some countries, control tests are carried out to detect the residual animal serum content in the final vaccine.

4.4.3 Inactivation of virus

The process for the inactivation of the Japanese encephalitis virus and any adventitious agents shall be approved by the national control authority.

4.4.3.1 Treatment before inactivation

When cell cultures are used the bulk material shall be filtered or clarified by continuous centrifugation prior to inactivation.

The importance of filtration or clarification using continuous centrifugation of the crude virus suspensions as a means of improving the regularity of the inactivation process has been clearly established. Generally, filters are used in series or filtration is performed step-wise through filters of decreasing porosity. Satisfactory results have been reported with several filter types, but a final filtration using a 0.22 μm filter should be used.

4.4.3.2 Method and agents

The method and agents used for inactivation shall be approved by the national control authority. The method used shall be demonstrated to be consistently effective in the hands of the manufacturer. Inactivation should be commenced immediately after the preparation and sampling of single virus harvests when neural tissue is used, or immediately after filtration when cell cultures are used.

One method that has been successfully used to inactivate Japanese encephalitis virus is the treatment of the virus harvest with formalin at a final concentration of 1:2000 for 50-60 days at 4°C.

The suspension containing inactivated virus shall serve as the bulk material when neural tissue is used, and as the final bulk when cell cultures are used.

4.4.3.3 Test for effective inactivation

Each bulk suspension shall be tested for inactivation of virus. The test shall be approved by the national control authority. The test
shall be performed with the undiluted bulk suspension. A test sample corresponding to no less than 25 human doses of the final bulk shall be used.

In one country the test sample is dialysed at about 5°C for not less than 24 hours against a sufficient volume of buffered isotonic sodium chloride solution—and diluted if necessary—to remove any cytopathogenic effect due to the residual inactivating agent or other substances.

The total volume of the test sample shall be inoculated into the primary culture of hamster-kidney cells, or any other cell cultures with no less susceptibility to the virus than hamster-kidney cells, and incubated at 35 ± 1°C for a period of 14 days. A cell culture sheet not less than 3 cm² shall be used for 1 ml of the test material. During the incubation period, no cytopathic change shall be detected.

At the completion of the observation, the cultured fluid shall be collected and inoculated intracerebrally at a dose of 0.03 ml into at least 10 mice of about 4 weeks of age. The animals shall be observed for 14 days. The bulk passes the test if the product has been shown to be free from residual live virus.

4.4.4 Purification of inactivated virus suspension

4.4.4.1 The bulk suspension derived from mouse brains (see part A, section 4.1, of these Requirements) shall be purified by a process that has been approved by the national control authority and has been shown to give consistent results.

The purification process should be designed to reduce the myelin content to the lowest possible level.

4.4.4.2 The bulk suspension derived from cell culture shall be purified and concentrated by a process approved by the national control authority.

4.4.5 Potency test of bulk suspension

The test for potency shall be made on each bulk suspension by detecting the neutralizing antibody produced in immunized mice. The method used shall be approved by the national control authority.

143
4.5 Preparation and control of final bulk

4.5.1 Preservatives and other substances added

In the preparation of the final bulk only the preservatives or other substances approved by the national control authority shall be added. Such substances shall have been shown by appropriate tests not to impair the safety or effectiveness of the product in the amounts used.

If formalin has been used for inactivation, the procedure shall be such that the amount of formaldehyde in the final bulk is no greater than 0.01%. The test method used shall be approved by the national control authority.

No antibiotics shall be added to Japanese encephalitis vaccine for human use after virus harvest.

4.5.2 Sterility tests

Each final bulk shall be tested for sterility according to the requirements in Part A, section 5.2, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (2, p. 49).

5. Filling and Containers

The requirements concerning filling and containers in Part A, section 4, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (1, p. 16) shall apply, with the addition of the following directive.

Containers of dried vaccine shall be hermetically sealed under vacuum or after filling with pure, dry, oxygen-free nitrogen or any other gas not deleterious to the vaccine. All containers sealed under vacuum shall be tested for leaks and all defective containers shall be discarded.

6. Control Tests on Final Product

6.1 Identity test

An identity test shall be performed on at least one labelled container from each final lot by an appropriate method.
The test for potency, as described in Part A, section 6.5, of these Requirements may serve as an identity test.

6.2 Sterility tests
Each final lot shall be tested for bacterial and mycotic sterility according to the requirements in Part A, section 5.2, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (2, p. 49).

6.3 Innocuity tests
Each final lot shall be tested for abnormal toxicity by appropriate tests in mice and guinea-pigs, using parenteral injections. The test procedures shall be approved by the national control authority.

6.4 Protein content
6.4.1 The protein content shall be no greater than 80 µg/ml when neural tissue is used.

6.4.2 The protein content shall be no higher than 200 µg/ml when human albumin is added in cell culture.

6.5 Potency test
The potency test shall be determined by titration of the neutralizing antibody produced in immunized mice by the plaque-reduction method, using primary chick-embryo cells or BHK-21 cells. The test shall be made in parallel with a reference vaccine. The challenge strain and reference vaccine, as well as the test procedure used, shall be approved by the national control authority (see Part B, section 1, of these Requirements).

The test vaccine and the reference vaccine are diluted appropriately and each dilution is injected intraperitoneally in 2 doses of 0.5 ml each at 7-day intervals into at least 10 mice of 4 weeks of age. Seven days following the second injection, each animal is bled. The separated serum is pooled at each dilution of vaccine and then inactivated at 56°C for 30 min; it may then be stored at −20°C.

The serum is appropriately diluted and mixed with an equal volume of challenge virus, containing about 200 PFU/0.4 ml. The mixture is kept at 37°C for 90 min for neutralization.

145
The virus suspension is then diluted and inoculated on to chick-embryo or BHK-21 cells. The infected cells are overlaid with 1% agar or methyl cellulose.

After incubation for an appropriate time, the cells are stained and the number of plaques formed on the cultures counted to obtain the plaque-reduction rates for the test and the reference vaccines. From the rates, the neutralizing antibody titres are calculated for each group.

The mean number of plaques of the control should be 50–150 per dish.

The potency of the test sample should be no less than that of the reference vaccine upon statistical comparison of the results.

6.6 Stability test

The method of production of vaccine shall be such that stable vaccine is produced. The test used shall be approved by the national control authority.

In some countries stability is ascertained by testing samples throughout the shelf-life of the vaccine.

The test for potency of liquid vaccine made after the storage of samples for 1 week at 37 °C is suitable. The test for potency of freeze-dried vaccine is made after the storage of samples for 4 weeks at 37 °C. In order to pass the test the lot should retain minimum potency, as defined in Part A, section 6.5, of these Requirements.

In some countries each lot of vaccine must be subjected to the stability test; in others the test is required only for the initial licensing lots to show consistency of production.

6.7 Residual moisture tests on freeze-dried vaccine

The residual moisture in a representative sample of each freeze-dried lot shall be determined by a method approved by the national control authority. The upper limit for the moisture content shall be specified by the national control authority.

Moisture levels of less than 3% are usually considered satisfactory.

6.8 Inspection of final containers

Each container in each final lot shall be inspected, and any that show any abnormality shall be discarded.

146
6.9 Test for pyrogenic substances

Each final lot shall be tested for pyrogenic substances. The test shall be approved by the national control authority.

6.10 Animal serum

The serum concentration in the final product shall be not more than 1 part per million (ppm).

6.11 Inactivation of virus

In some countries a test for virus inactivation is carried out by inoculating 10 mice intracerebrally with 0.03 ml of the final product.

7. Records

The requirements in Part A, section 6, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (I, p. 17) shall apply.

8. Samples

The requirements in Part A, section 7, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (I, p. 18) shall apply.

9. Labelling

The requirements in Part A, section 8, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (I, p. 18) shall apply, with the addition of the following directive.

The leaflet accompanying the package shall include the following information.

(a) whether the vaccine was prepared by an in vivo or an in vitro method;
(b) the method used for inactivating the virus; and

(c) if the vaccine is in freeze-dried form, a statement that, after its reconstitution, it shall be used immediately unless data are provided to show that it may be stored for a limited time without loss of potency.

10. Distribution and Shipping

The requirements in Part A, section 9, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (I, p. 18) shall apply.

11. Storage and Expiry Date

The requirements in Part A, section 10, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (I, p. 19) shall apply.

11.1 Storage conditions

Japanese encephalitis vaccine shall be stored at a temperature of 5 ± 3°C avoiding freezing if in liquid form, and at less than 10°C if in lyophilized form.

11.2 Expiry date

The expiry date shall be based on data submitted by the manufacturer and shall be determined by the national control authority.

PART B. NATIONAL CONTROL REQUIREMENTS

1. General

The general requirements for control laboratories in Part B of the revised Requirements for Biological Substances No. 1 (General
Requirements for Manufacturing Establishments and Control Laboratories (I, p. 19) shall apply.

The national control authority shall approve the strain of Japanese encephalitis virus used in the production of vaccine.

The national control authority shall provide or approve the strain for challenge and the reference vaccine for use in the potency test (see Part A, section 6.5, of the present Requirements).

2. Release and Certification

A vaccine lot shall be released only if it fulfils Part A of these Requirements.

A statement signed by the appropriate official of the national control laboratory shall be provided at the request of the manufacturing establishment and shall certify whether or not the lot of vaccine in question meets all national requirements as well as Part A of these Requirements. The certificate shall further state the date of the last satisfactory potency test, the lot number, the number under which the lot was released, and the number appearing on the labels of the containers. In addition, a copy of the official national release document shall be attached.

The purpose of the certificate is to facilitate the exchange of Japanese encephalitis vaccine between countries.

AUTHORS

The first draft of the Requirements for Japanese Encephalitis Vaccine was prepared in January 1987 by the following WHO consultants and staff members:

Dr M. Abe, Deputy Director, Biologics and Antibiotics Division, Ministry of Health and Welfare, Tokyo, Japan (Consultant)
Dr Ao Jian, Chief, First Division for Viral Vaccines, National Institute for the Control of Pharmaceutical and Biological Products, Ministry of Public Health, Beijing, China (Consultant)
Dr J. Blok, Queensland Institute of Medical Research, Brisbane, Queensland, Australia (Consultant)
Dr Chen Bo-quan, Institute of Virology, Chinese Academy of Medical Sciences, Beijing, China (Consultant)
Ms H.W. Cho, National Institute of Health, Seoul, Republic of Korea (Consultant)
Dr J. Esparza, Microbiology and Immunology Support Services, World Health Organization, Geneva, Switzerland

149
The second draft of these Requirements was formulated in March 1987 by the following WHO staff, taking into consideration the first draft and the need for
consistency of these Requirements with other WHO requirements for inactivated vaccines:

Dr. J. Petricciani, Chief, Biologics, World Health Organization, Geneva, Switzerland
Dr. V. Grachev, Scientist, Biologics, World Health Organization, Geneva, Switzerland

ACKNOWLEDGEMENTS

Acknowledgements are due to the following experts for their comments and advice on the second draft and for supplying additional data relevant to these Requirements: Dr. M. Abe, Deputy Director, Biologics and Antibiotics Division, Ministry of Health and Welfare, Tokyo, Japan; Dr. Ao Jian, Chief, First Division for Viral Vaccines, National Institute for the Control of Pharmaceutical and Biological Products, Ministry of Public Health, Beijing, China; Dr. J. Blok, Queensland Institute of Medical Research, Brisbane, Queensland, Australia; Dr. S. Huilan, Health Laboratory Technology, WHO Regional Office for the Western Pacific, Manila, Philippines; Dr. Li He-min, Honorary Director, National Institute for the Control of Pharmaceutical and Biological Products, Ministry of Public Health, Beijing, China; Dr. A. Oya, Director, Department of Virology and Rickettsiology, National Institute of Health, Tokyo, Japan; Dr. K. Puvri, Director, National Institute of Virology, Pune, India.

REFERENCES

Appendix 1

SUMMARY PROTOCOL FOR PRODUCTION AND TESTING OF JAPANESE ENCEPHALITIS VACCINE (INACTIVATED) FOR HUMAN USE

Identification of Final Lot

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and address of manufacturer</td>
<td></td>
</tr>
<tr>
<td>Lot number of vaccine</td>
<td></td>
</tr>
<tr>
<td>Date of manufacture of final lot</td>
<td></td>
</tr>
<tr>
<td>Expiry date</td>
<td></td>
</tr>
<tr>
<td>Total volume of final lot</td>
<td></td>
</tr>
</tbody>
</table>

Control of Source Materials

Serum for cell cultures

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin of serum used</td>
<td></td>
</tr>
<tr>
<td>Tests performed on serum</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

Virus seed

Strain of virus

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and short description of history</td>
<td></td>
</tr>
<tr>
<td>Date of preparation of master virus seed lot</td>
<td></td>
</tr>
<tr>
<td>Date of preparation of working virus seed lot</td>
<td></td>
</tr>
<tr>
<td>Number of passages between master and working virus seed lots</td>
<td></td>
</tr>
<tr>
<td>Number of subcultures between working seed lot and production</td>
<td></td>
</tr>
</tbody>
</table>

Tests for identification of the virus seed lot

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method used</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

152
Tests for freedom from bacteria, fungi, and mycoplasmas

<table>
<thead>
<tr>
<th>Method used</th>
<th>Results</th>
</tr>
</thead>
</table>

Tests for adventitious agents

Tests in animals:

<table>
<thead>
<tr>
<th>Methods used</th>
<th>Results</th>
</tr>
</thead>
</table>

Tests in cell cultures:

<table>
<thead>
<tr>
<th>Methods used</th>
<th>Results</th>
</tr>
</thead>
</table>

Control of Vaccine Production

Control of single virus harvests

Sterility test

<table>
<thead>
<tr>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
</table>

Test of virus content

<table>
<thead>
<tr>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
</table>

Bulk material

Pooling of single virus harvests

<table>
<thead>
<tr>
<th>Number of single harvests pooled</th>
<th>Volume of bulk material</th>
</tr>
</thead>
</table>

Animal serum test

<table>
<thead>
<tr>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
</table>

Inactivation

<table>
<thead>
<tr>
<th>Agent and concentration</th>
<th>Temperature</th>
</tr>
</thead>
</table>
Date of start of inactivation

Date of completion of inactivation

Test for effective inactivation
- **Method**
- **Results**

Purification of virus
- **Method of purification**
- **Concentration**

Potency test of bulk suspension
- **Method**
- **Results**

Final bulk
- **Preservatives and other substances**
- **Concentrations**

Sterility test
- **Method**
- **Results**

Final product
- **Potency test**
- **Method**
- **Results**

Identity test
- **Method**
- **Results**

Sterility test
- **Method**
- **Results**
<table>
<thead>
<tr>
<th>Innocuity test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of animals</td>
<td></td>
</tr>
<tr>
<td>Route of injection</td>
<td></td>
</tr>
<tr>
<td>Volume of injection</td>
<td></td>
</tr>
<tr>
<td>Date of injection</td>
<td></td>
</tr>
<tr>
<td>Date of end of test</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein content</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stability test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pyrogenicity test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual moisture test (for freeze-dried vaccine)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content of inactivating agent</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content of preservatives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inactivation of virus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Certification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (typed) and signature of head of laboratory</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

155
Certification by person taking overall responsibility for production and control of the vaccine:

I certify that lot No. of Japanese encephalitis vaccine (inactivated) meets the requirements of Part A of the WHO Requirements for Biological Substances No. 43 (Requirements for Japanese Encephalitis Vaccine (Inactivated) for Human Use).

Name (typed)
Signature
Date
GENERAL SCHEME FOR THE PREPARATION OF JAPANESE ENCEPHALITIS VACCINES

<table>
<thead>
<tr>
<th>Stage</th>
<th>Procedures</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single harvest
(1 production run)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell culture vaccine</td>
<td>Inactivation</td>
<td>Virus content</td>
</tr>
<tr>
<td>Mouse brain vaccine</td>
<td></td>
<td>Sterility</td>
</tr>
<tr>
<td>Bulk material
(1 or more pooled harvests)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell culture vaccine</td>
<td>Filtration or continuous centrifugation Inactivation Purification</td>
<td>Inactivation Potency</td>
</tr>
<tr>
<td>Mouse brain vaccine</td>
<td>Purification</td>
<td></td>
</tr>
<tr>
<td>Final bulk
(1 or more pooled purified bulks)</td>
<td>Addition of preservatives and stabilizers</td>
<td>Sterility</td>
</tr>
<tr>
<td>Final product</td>
<td>Filling</td>
<td>Potency Identity Sterility Innocuity Protein content Stability Pyrogenicity Residual moisture Content of inactivating agent Content of preservative Inactivation of virus Animal serum Inspection of final containers</td>
</tr>
</tbody>
</table>
Annex 7

REQUIREMENTS FOR HUMAN INTERFERONS MADE BY RECOMBINANT DNA TECHNIQUES

(Requirements for Biological Substances No. 41)

GENERAL CONSIDERATIONS

Advances in molecular genetics and gene engineering have made it possible to identify genes coding for biologically active substances, to analyse them in detail, to transfer them within and between organisms, and to obtain gene expression under controlled
conditions with efficient synthesis of the product for which they code. A gene that codes for a specific product can be isolated and propagated by inserting its DNA into a suitable vector with the aid of highly specific restriction endonuclease enzymes (which cleave the vector DNA at predetermined sites) and ligases (which join the gene insert to the vector). The vector can then be introduced into host organisms, and individual clones that carry the desired gene can be selected and propagated in mass culture.

A gene is characterized by a specific nucleotide sequence in one strand of the double-stranded DNA molecule. When the strands are separated, each forms a template for the synthesis of a complementary copy, thus providing a mechanism for the faithful reproduction of genes with conservation of the linear sequence of the four mononucleotides. The process of decoding this information and the synthesis of the gene product occurs in two phases: first, transcription of the DNA coding strand in the form of messenger RNA (mRNA), and, second, translation of the information carried by the mRNA molecule into an amino acid sequence. The factors affecting the expression of foreign genes introduced into prokaryotic and eukaryotic cells are complex; indeed, the efficient and controlled expression of stable, cloned DNA sequences is an important field of current research. Currently, recombinant DNA products are produced by the following systems: bacteria, yeast, insect cells, and mammalian cells.

Interferons are proteins with antiviral, antiproliferative, and immunomodulatory properties. There are three classes of interferon: alpha-interferon (α), beta-interferon (β), and gamma-interferon (γ). Human alpha-interferon (HuIFN-α) represents a family of more than 23 species of structurally similar proteins, many of which have been cloned. Within the HuIFN-α family there are two subclasses of genes, a major one encoding for interferons of 165 or 166 amino acids and a second which encodes for those of 172 amino acids. Both subclasses are found on chromosome 9. Many of the species of HuIFN-α are potent antiviral agents with specific activities of approximately 2×10^8 units/mg protein and apparent relative molecular masses in the range 17–28 000. One major species of HuIFN-β has been identified, and the gene is also located on chromosome 9. This interferon is composed of 166 amino acids, and shares 34% sequence similarity HuIFN-α25. It is also a potent antiviral agent with a specific activity in the range $1–5 \times 10^8$ units/mg protein. A single gene on chromosome 12 codes for HuIFN-γ.
The gene codes for a mature protein of 143 amino acids and has little or no sequence similarity to HuIFN-α or HuIFN-β. Compared with HuIFN-α and HuIFN-β, HuIFN-γ is a more potent modulator of the immune response. Natural human beta- and gamma-interferons are glycosylated; several of the natural human alpha-interferons examined also appear to be glycosylated.

The genes for HuIFN-α2 have been cloned and their products isolated in pure form. HuIFN-α2a and HuIFN-α2b were shown to have antiviral activity in vitro similar to that of interferon preparations obtained from parainfluenza-induced human leukocytes and lymphoblastoid cells.

In general, an interferon derived from the cells of a given animal species is most active when it is used to treat cells from the same species; and, being a protein, it may be antigenic when administered to an animal from another species. Therefore, although human interferons have been used in a number of animal studies, these have for the most part little relevance to their use in man. However, the antiviral and antitumour activity of human interferon preparations in man is now well established.

The Requirements which follow should be considered in the control and testing of recombinant human alpha-2-interferon made by recombinant DNA methods. They have been formulated bearing in mind the scale-up required for commercial production. Particular emphasis is placed on "in-process control" and consistency of the manufacturing process, a concept which has been highly effective in the control of other biological products, rather than on relying entirely on tests on the final product. General requirements, such as tests for potency, identity, purity, toxicity, pyrogenicity and sterility, will apply as much to interferon made by recombinant DNA methods as to those derived from lymphoblastoid cells and peripheral blood lymphocytes. Certain tests will be required on every production batch of interferon, whereas others will be required only to establish the validity, acceptability, and consistency of a given manufacturing process.

A detailed description of the strategy by which the product is manufactured should be given. Evidence should be presented to show that interferon made by recombinant DNA techniques possesses antiviral activity, plus any other biological activity expected of the product. Rigorous identification and characterization of the recombinant-DNA-derived interferon will be required since structural alterations can arise at the genetic or post-trans-
lational level during cultivation or at the protein level during purification. Therefore structural and biological characterization is necessary for each lot to ensure product consistency. In addition, microbial contamination may occur during fermentation, and testing for contaminants must therefore be thorough. Finally, whenever possible, information pertaining to the chemical, structural, biological and/or immunological properties of the naturally occurring interferon component or components should be provided and compared with the corresponding properties of the recombinant product.

Special attention should be given to the potential presence of contaminants in the final product. For instance:

(1) Unwanted gene products may be co-expressed unexpectedly with the interferon. Such gene products might arise because (a) mutations, insertions, deletions or rearrangements in the coding region of the product occur during fermentation; (b) transcription initiates at several sites; or (c) changes occur during culture that affect transcription, initiation or termination processes favouring the expression of other genes in the vector or the host cell.

(2) Biologically active extraneous components such as DNA, proteins and any adventitious agents, including retroviruses, derived from the host-cell system may be found in the final product.

(3) Agents used in the purification process (column matrices, column ligands, e.g., antibodies) may give rise to specific contaminants in the final product.

Therefore the methods used for the purification and to identify and characterize the product must be described.

The product arising from the recombinant system should have biological activity in a cell line sensitive to the given interferon in conjunction with the appropriate international standard.

Each of the following sections constitutes a recommendation. The parts of each section that are printed in large type have been written in the form of requirements, so that, if a health administration so desires, these parts as they appear may be included in definitive national requirements. The parts of each section that are printed in small type are comments and recommendations for guidance.

Should individual countries wish to adopt these requirements as the basis of their national regulations concerning interferon made by recombinant DNA techniques, it is recommended that a clause should be included that would permit modifications of the
manufacturing requirements on the condition that it can be
demonstrated to the satisfaction of the national control authority
that such modified requirements ensure that the degree of safety and
the potency of the recombinant interferon product are at least equal
to those provided by the requirements formulated below. The World
Health Organization should then be informed of the action taken.
The terms "national control authority" and "national control
laboratory" as used in these Requirements always refer to the
country in which the interferon is manufactured.

PART A. MANUFACTURING REQUIREMENTS

1. Definitions

1.1 International name and proper name

The international name shall be *Interferon humanum
recombinatum*. The proper name shall be the equivalent of the
international name in the language of the country of origin.

The use of the international name should be limited to
interferons that satisfy the requirements formulated below.

1.2 Descriptive definition

Interferon humanum recombinatum is a preparation of purified
interferon that has been derived through recombinant DNA
techniques. The preparation shall satisfy all the requirements
formulated below.

1.3 International standards and reference preparations

International standards and reference preparations shall be used
for the control of interferon for use in the determination of potency.

For example, the International Standard for Interferon,
Human, rDNA (HuIFN-α2(αA)) is intended for comparison of
the sensitivity of the bioassays in different laboratories for the
measurement of the antiviral activity of interferon made by
recombinant DNA techniques. This preparation was established
in 1984 (/).

This standard should be used for the calibration of only those
national preparations of HuIFN-α2 that have dose–response
curves parallel to the dose–response curve of this preparation.

162
Interferon standards and reference reagents, are held and distributed by the National Institutes of Health, Bethesda, MD, USA, and the National Institute for Biological Standards and Control, Potters Bar, England.

Samples from one or more final lots of material that has been shown to be active in clinical use, or samples directly related to such material, shall be fully characterized in ways to be specified by the national control authority and suitably stored to serve as manufacturer's reference material. For certain critical tests, such reference material shall be included in parallel with each lot of production material, which must match the specification of the reference batch with limits to be agreed by the national control authority.

1.4 Terminology

The following definitions are given for the purposes of these Requirements only.

Cell seed: a quantity of cells of uniform composition, stored frozen at −70 °C or below in aliquots, one or more of which would be used for the production of a manufacturer's working cell bank.

Several national control authorities have drafted documents on cell substrates used in the manufacture in their countries of biological products for human use.

Manufacturer's working cell bank (MWCB): a quantity of cells derived from one or more aliquots of the cell seed, that are of uniform composition and have been dispensed in a single working session into a number of ampoules, one or more of which would be used for the production of each single harvest.

In normal practice a cell seed is expanded by serial subculture up to a passage number (or population doubling, as appropriate) selected by the manufacturer and preserved cryogenically to form the MWCB.

Production cell culture: a collection of cell cultures being used for biological production that has been derived from one or more ampoules of the MWCB.

Single-harvest: the biological material prepared from a single production run.

Purified interferon bulk solution: interferon purified from one or more single harvests.

163
Final bulk: The finished biological material prepared from the purified interferon bulk solution present in the container from which the final containers are filled.

Final lot: a collection of sealed final containers that derive from the same final bulk and are homogeneous with respect to the risk of contamination during filling or preparation of the finished product. A final lot consists therefore of finished material dispensed into containers in one working session and processed as a single lot.

2. General Manufacturing Requirements

The general manufacturing requirements contained in the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply to establishments manufacturing interferon, with the addition of the following directives.

Production areas shall be decontaminated before they are used for the manufacture of interferon.

The production of human interferon shall be conducted by staff who have not handled animals or infectious microorganisms in the same working day. The staff shall consist of persons whose state of health does not compromise the quality of the product.

No culture of any microorganism or eukaryotic cells, other than those required for the manufacturing process and approved by the national control authority, shall be introduced or handled in the production area at any time during the manufacture of the interferon including the establishment of the cell seed.

Persons not directly concerned with the production processes, other than official inspectors, shall not be permitted to enter the production area without valid reason and specific authorization.

Particular attention shall be given to the recommendation in Part A, section 1, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) regarding the training and experience of persons in charge of production and testing and of those assigned to various areas of responsibility in the manufacturing establishment, as well as to the registration of such personnel with the national control authority.

The use of the seed lot system shall be strictly adhered to, and a description of the system used shall be provided, including the
number of vials of seed available and details of their storage. Particular attention shall be paid to the stability of the expression vector and to the plasmid copy number in the seed stock under conditions of storage and recovery.

Full details of the cell culture process used in manufacture shall be provided to the national control authority, with particular reference to tests to monitor the presence of microbial contamination. Information on the sensitivity of methods to detect such contamination and the frequency of the tests shall be provided, together with information on the criteria for the rejection of contaminated materials. All tests shall be validated to the satisfaction of the national control authority.

The yield of interferon shall be monitored during the course of individual production runs. Criteria, based on yield, for the acceptance of single harvests for further processing into a final lot shall be defined; and consistency of production shall be established by testing a number of consecutive lots prepared by the same procedures, which shall be determined by the national control authority.

3. Validation and Control of Manufacturing Procedures

The general production precautions formulated in Part A, section 3, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply to the manufacture of interferon.

3.1 Strategy for cloning and expressing the gene

A full description of the biological characteristics of the host cell and expression vectors used in production shall be given. This shall include details of: (a) phenotypic and genotypic markers of the host cell; (b) the construction, genetics, and structure of the expression vector; (c) the analysis of host cell for viral particles and viral nucleic acid, where appropriate; and (d) the origin, identification and sequencing of the gene that is being cloned, including its flanking regions.

The association of the vector and host cell may be permanent, allowing continuous expression of the product, or self-limiting
— for example, where the vector is an acceptable cytopathic virus.

The physiological measures used to promote and control the expression of the cloned gene in the host cell shall be described in detail.

Data that establish the stability of the expression system during storage of the MWCB and beyond the maximum level used for production shall be provided. The stability of the expression system shall be monitored at intervals to be established by the national control authority. Any instability of the expression system that occurs in the seed culture or after a production-scale run, for example involving rearrangements, deletions or insertions of nucleotides, must be documented. Unstable preparations must not be used until approval to continue use has been obtained from the national control authority.

3.2 Biochemical characterization of recombinant vector

The nucleotide sequence of the gene insert and of adjacent segments of the vector and restriction enzyme mapping of the vector containing the gene inserts shall be provided in respect of the cell seed, the manufacturer’s working cell bank, and the cells at the end of fermentation, as required by the national control authority.

3.3 Purification procedures

The methods used to purify the interferon from culture harvests shall be fully described. The capacity of each step of the purification procedure to remove substances other than interferon that may be derived from the host cell or culture medium, including in particular virus particles, proteins, and nucleic acids, shall be evaluated.

If individual contaminants are difficult to monitor, the results of pilot-scale studies to follow the removal of individual, deliberately added contaminants at appropriate stages of purification will provide valuable information in this respect.

If any substance is added during purification, it shall be reduced to an insignificant concentration during further purification or shown not to affect the safety and efficacy of the final product to the satisfaction of the national control authority.

If antibodies are used in the purification procedures, their origins and characteristics shall be fully described. The degree of purity of
monoclonal antibodies produced from hybridoma cell lines and the criteria for freedom from cell-derived or virus-derived DNA and from murine viruses shall conform to the regulations set by the national control authority.

3.4 Characterization of the gene product (interferon)

3.4.1 Protein quantification

The protein content of purified interferon bulk solution shall be established by quantitative amino acid analysis or by another accurate method in comparison to a reference reagent.

3.4.2 Protein characterization

The characterization of interferons shall be established by techniques approved by the national control authority, which will specify the procedures to be applied to one or more reference batches of purified interferon bulk solution and those to be applied to each purified interferon bulk solution.

The protein composition shall be analysed by techniques such as sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) performed under both reducing and non-reducing conditions and/or high-performance liquid chromatography (HPLC). In the case of SDS–PAGE, the stained gels shall be analysed by an appropriate method, such as scanning densitometry, to quantify the percentage purity of the interferon preparation. If bands other than the interferon monomers are observed on the gel, Western blot analysis using antibodies shall be used to identify which species are the interferon products (e.g., oligomers, fragments) and which are non-interferon contaminants.

The following tests have also been found useful in characterizing the protein product: isoelectric focusing, size-exclusion chromatography, amino acid analysis, ultraviolet spectroscopy, affinity chromatography, circular dichroism, and neutralization by anti-interferon antibody.

Peptide mapping under reducing and non-reducing conditions shall be performed to provide confirmatory evidence that the structure of the product has not been altered.

The amino acid sequence of the amino terminal shall be analysed to confirm product identity and purity.
3.4.3 Consistency of production

Data on the consistency of the production process shall be provided in terms of the specific activity (units of biological activity per mg of protein) at different stages in the production process and in terms of the purity (percentage content of extraneous protein) of each lot of purified interferon bulk solution. The national control authority shall approve the criteria for an acceptable production run.

4. Cell Seed and Manufacturer’s Working Cell Bank (MWCB)

4.1 Origin of cell seed

Only cells approved by and registered with the national control authority shall be used to produce human interferon. If continuous cell lines are used, they shall be characterized as specified in the Requirements for Biological Substances No. 37 (Requirements for Continuous Cell Lines) (3). The national control authority shall have responsibility for approving the cell seed.

4.2 Characterization of cell seed and MWCB

The characteristics of the cell seed and manufacturer’s working cell bank (host cell in combination with the expression vector system) shall be fully described, and information given on the absence of adventitious agents, and on genetic homogeneity. The nucleotide sequence of the human interferon gene insert and its flanking regions and the restriction mapping of the vector shall be given.

4.3 Phenotypic indicators of purity and genetic consistency of the recombinant cultures

Cells must be maintained in a frozen state that allows recovery of viable cells without alteration of genotype. Recovery of the cells from the frozen state shall be accomplished, if necessary, in selective media such that the genotype and phenotype are consistent with the characteristics of the original host-vector system. The identity of the cells shall be determined by the use of appropriate tests.
5. Controls for Mammalian Cell Cultures

If serum is included in the medium for the production cell cultures, it shall be tested to demonstrate freedom from bacteria, fungi, and mycoplasmas according the requirements in Part A, section 5.2 and 5.3 of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (4) and to demonstrate freedom from viruses. The methods used shall be approved by the national control authority.

Suitable tests for the detection of bovine viruses in serum are given in Appendix 3 of the revised Requirements for Biological Substances No. 7 (Requirements for Poliomyelitis Vaccine (Oral)) (5).

Alternatively, the serum may be processed in various ways, such as by filtration together with irradiation or chemical treatment(s), which eliminate or inactivate any bacteria, fungi, viruses, or mycoplasmas that might be present in the untreated serum. The supporting data should be presented to the national control authority, and, if accepted, it may be agreed by the national control authority that tests on each batch of serum for production are not needed.

Beta-lactam antibiotics shall not be used at any stage in the production process.

6. Controls for Additives

Any additives, including any inducers and enhancers, shall be defined and approved by the national control authority. If the inducer is a virus, this shall be derived according to a seed lot system under approved manufacturing conditions.

Any additives used shall be added to the production cell cultures at a concentration within a range previously shown to yield a satisfactory crude product from cultures incubated at a temperature and for a period specified. These details shall be agreed with the national control authority. The manufacturer shall demonstrate to the satisfaction of the national control authority that the presence of inducers or enhancers in the crude product does not adversely affect its stability.
7. Production Precautions

7.1 Production cell cultures

Only cell cultures derived from the MWCB shall be used for production. All processing of cells shall be done in an area in which no other cells or organisms are handled, other than those directly required for the process.

7.2 Cultural conditions for production cell cultures

Production cell cultures shall be grown under conditions agreed with the national control authority. These conditions shall include details of the culture system used, the cell doubling time, the number of subcultures or the duration of the period of subcultivation permitted, and the incubation temperature.

Cell cultures shall be monitored for freedom from microbial contamination as required by the national control authority.

8. Single Harvests

The single harvests shall have been processed to remove cells and cell debris.

8.1 Sterility

The degree and nature of any microbial contamination shall be monitored during and at the end of the production runs by methods approved by the national control authority. The sensitivity of the test methods and criteria for the rejection of harvests shall be approved by the national control authority.

8.2 Consistency of yield

The yield of human interferon following production shall be shown to be within the limits approved by the national control authority (see Part A, section 3.4.3, of these Requirements).

8.3 Stability of the expression system

The method to assess the stability of the expression system used shall be approved by the national control authority.
8.4 Cell identification

Samples from each production run shall be tested to confirm the identity of the cells by a method and at intervals specified by the national control authority.

9. Purification

The purification procedure to be applied at any stage of the manufacturing process shall be approved by the national control authority. Human interferon shall be purified prior to formulation. Adequate purification may require several purification steps based on different principles; this will minimize the possibility of copurification of extraneous cellular materials. The methods used for purification of the human interferon shall be appropriately validated (see Part A, section 3.3, of these Requirements) and approved by the national control authority. The purified bulk solution may be stabilized by the addition of protein or other substances of a nature and at a concentration approved by the national control authority. If the stabilizing substance is of human origin, it shall be manufactured in such a way as to ensure its freedom from adventitious agents. Any substances added shall not impair the safety and efficacy of the product.

The samples required for certain tests such as those for protein content, purity and composition analysis (e.g., SDS-PAGE), residual cellular DNA, peptide mapping, HPLC, and amino acid sequencing must be taken before any proteinaceous stabilizer is added. The test methods used shall be approved by the national control authority. Tests, to be approved by the national control authority, shall be made for any materials of animal origin (e.g., serum protein) or plant origin (e.g., lectin) used at any stage of production and purification; and the national control authority shall determine the acceptable levels of such materials in the interferon preparation.

In batches of HuIFN-α, produced by manufacturers, the purity of HuIFN-α, was greater than 95% as determined by photometric scanning of gels following reducing and non-reducing SDS-PAGE, the relative molecular mass was estimated to be 19,000, and the specific activity was approximately 2×10^8 International Units per mg of protein, as determined by protection against the cytopathic effect of virus.
Cell debris and nucleic acids were flocculated and removed by centrifugation. HuIFN-α₂ in the supernatant fluid was purified by a series of procedures involving affinity chromatography on immobilized anti-interferon monoclonal antibodies, ion-exchange chromatography, and molecular-exclusion chromatography.

9.1 Assay for protein content

The total protein content of the human interferon shall be quantified (see Part A, section 3.4.1, of these Requirements).

9.2 Test for human interferon content

The human interferon content of the purified preparation shall be determined by an appropriate biological method.

Tests that have been found suitable include SDS-PAGE, radiolmmunoassay, enzyme-linked immunosorbent assay (ELISA), and single radial immunodiffusion with comparison to a known standard. Analysis of the data by the parallel-line method has been found suitable for most of these techniques.

9.3 Test for additives used during purification or other phases of manufacture

A test shall be made for the presence of any potentially hazardous additives used in manufacture. The method used and the permitted concentration shall be approved by the national control authority.

9.3.1 Monoclonal antibody

When a monoclonal antibody is used in the preparation procedure (e.g., for use in immunosorbent affinity chromatography to purify HuIFN-α₂) the product shall be tested for residual antibody. The method used and the permitted concentration of antibody shall be approved by the national control authority.

Several national control authorities have drafted monographs on the control of monoclonal antibody preparations used for the manufacture of biological products for human use.

9.3.2 Antibiotics

A test shall be made as required by the national control authority for the presence in the interferon preparation of any antibiotics used
in the manufacturing process. The assay methods shall be described, and the permitted concentration in the final product shall be approved by the national control authority.

9.4 Test for identity (molecular and immunochemical identity)

Tests shall be made for the identity of the human interferon product by SDS–PAGE and/or neutralization of biological activity, as required by the national control authority.

9.5 Protein purity

The purity of each purified interferon bulk solution before the addition of any stabilizing solutions shall be established by methods approved by the national control authority.

Techniques that are useful include SDS–PAGE under reducing and non-reducing conditions, HPLC, Western blot analysis, isoelectric focusing, size-exclusion chromatography, peptide mapping, amino acid composition and sequence analysis, ultraviolet spectroscopy, and circular dichroism.

Procedures used for HuIFN-α2b and HuIFN-α2a have included SDS–PAGE, amino acid analysis and sequencing, peptide mapping, and isoelectric focusing. Purity of greater than 95% has been established for these preparations.

9.6 Test for serum proteins

If serum is used in the medium for the production cell cultures, or at any stage in the purification process, for example, as a reagent in immunosorption chromatography, tests shall be made for any residual serum in the purified interferon bulk blend by radioimmunoassay, ELISA, or another test agreed with the national control authority.

9.7 Test for residual DNA

The amount of residual DNA in each batch of product shall be determined by sensitive methods, which must be validated and approved by the national control authority. The acceptable level of DNA per human dose shall be determined by the national control authority.

A WHO Study Group on Biologicals concluded that the probability of risk associated with heterogeneous contaminating
DNA in a product derived from a continuous cell line is negligible when the amount of such DNA is 100 pg or less in a single dose given parenterally.

10. Final Bulk

Substances such as diluent, stabilizers and/or preservatives added to the purified interferon bulk solution shall be approved by the national control authority.

10.1 Test for sterility

The final bulk shall be tested for bacterial and mycotic sterility according to the requirements in Part A, section 5.2, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (4).

10.2 Test for pyrogenic substances

The pyrogen content shall be determined by a method agreed with the national control authority.

11. Filling and Containers

The requirements concerning filling and containers in Part A, section 4, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply.

Care shall be taken to ensure that the materials of which the container and closure are made do not react with interferon.

12. Control of the Final Lot

Samples shall be taken from each final lot for the following tests.

12.1 Tests for sterility

Each final lot shall be tested for sterility according to the requirements in Part A, section 5, of the revised Requirements for
12.2 Test for identity

Human interferon made by recombinant DNA techniques shall be identified as human interferon by appropriate methods approved by the national control authority.

Radioimmunoassay, ELISA, and neutralization assay are useful methods.

12.3 Test for potency

The test for potency, which shall be based on a biological activity and approved by the national control authority, shall be performed on samples representative of the final filling lots. The essential information to be provided shall be that indicated in WHO Technical Report Series, No. 687, Annex 1 (7). An appropriate reference preparation shall be tested in parallel. Statistical analysis of the data must show that the mean potency value obtained has confidence limits within a range accepted by the national control authority.

12.4 Tests for innocuity

Each final lot shall be tested for innocuity in mice and guinea-pigs by methods approved by the national control authority.

12.5 Test for pyrogenic substances

Each final lot shall be tested for pyrogenic substances by a method approved by the national control authority.

12.6 Test for preservative

Each final lot shall be tested for the presence of preservative. The test used and the permitted concentration shall be approved by the national control authority.
12.7 Tests for additives

Each final lot shall be tested for the presence of additives. The tests used and the permitted concentrations shall be approved by the national control authority.

12.8 Moisture content

For lyophilized products, the moisture content per vial shall not exceed a level approved by the national control authority.

12.9 pH and clarity

The pH and degree of clarity of the interferon solution in the final container or in the reconstituted final container shall be within the limits approved by the national control authority.

13. Records

The requirements in Part A, section 6, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply.

14. Samples

The requirements in Part A, section 7, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply.

15. Labelling

The requirements in Part A, section 8, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply, with the addition of the following directive.

The leaflet accompanying the package shall include the following information:
(a) description of the product,
(b) clinical pharmacology,
(c) indications and usage,
(d) contraindications,
(e) warnings,
(f) precautions,
(g) use during pregnancy,
(h) adverse reactions,
(i) dosage and administration,
(j) directions for use,
(k) how supplied,
(l) storage conditions,
(m) references.

16. Distribution and Shipping

The requirements in Part A, section 9, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply.

17. Storage and Expiry Date

The requirements in Part A, section 10, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply.

17.1 Storage conditions

Filled containers of human interferon intended for clinical use shall be stored under conditions such that the product conforms with the specification agreed with the national control authority during the claimed shelf life.

17.2 Expiry date

The expiry date shall be fixed with the approval of the national control authority on the basis of evidence for stability supplied by the manufacturer.
PART B. NATIONAL CONTROL REQUIREMENTS

1. General

The general requirements for control laboratories contained in Part B of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (2) shall apply. The national control authority shall:

(a) approve the methods for producing human interferon by recombinant DNA techniques;
(b) approve the tests for human interferon concentration and define the minimum acceptable value of that concentration;
(c) approve the cell seed and manufacturer’s working cell bank (MWCB);
(d) approve the methods for purification;
(e) approve the tests for the purity of the product;
(f) approve the tests for extraneous substances and total protein;
(g) approve the tests for preservative and for the agents used for purification or other aspects of manufacture;
(h) approve the tests for freedom from abnormal toxicity in the final product;
(i) approve the types of tests used in the assay of potency; and
(j) approve the data to establish clinical activity and safety in humans.

The national control authority shall be satisfied that the results of all tests, including those done on individual batches during the process of manufacture, are satisfactory and that consistency has been established.

2. Release and Certification

Human interferon made by recombinant DNA techniques shall be released only if it fulfils the above requirements.
A statement signed by the appropriate official of the national control authority shall be provided at the request of the manufacturing establishment and shall certify whether or not the final lot of human interferon in question meets all national requirements as well as the above requirements. The certificate shall state the date of the last satisfactory human interferon potency test, the lot number, the number under which the lot was released, and the number appearing on the labels of the containers. In addition, a copy of the official national release document shall be attached.

The purpose of the certificate is to facilitate the exchange of human interferon between countries.

AUTHORS

The first draft of the Requirements for Human Interferons made by Recombinant DNA Techniques was prepared in 1986 by:

Dr V. Grachov, Biologicals, World Health Organization, Geneva, Switzerland
Dr J. Petricciani, Chief, Biologicals, World Health Organization, Geneva, Switzerland

The second draft of these Requirements was formulated in March 1987 by WHO staff together with:

Dr K. Zoon, Chief, Laboratory of Immunology, Center for Drugs and Biologies, Food and Drug Administration, Bethesda, MD, USA (Consultant)

The third draft of these Requirements was formulated by the following participants in a WHO Informal Consultation on the Standardization of Interferons, Geneva, 23–25 March 1987:

Dr O.G. Andzhaparidze, Director, Moscow Research Institute for Viral Preparations, Moscow, USSR
Dr T.T. Ayres, Quality Assurance Division, Wellcome Research Laboratories, Beckenham, Kent, England
Dr E. De Maeyer, CNRS Director of Research, Biology Section, Curie Institute, Orsay, France
Dr N. Finter, Development Division, Wellcome Research Laboratories, Beckenham, Kent, England
Professor R. Friedman, Chairman, Department of Pathology, Uniformed Services University of the Health Services, Bethesda, MD, USA
Professor S.E. Grossberg, Department of Microbiology, Medical College of Wisconsin, Milwaukee, WI, USA
Dr S.M. Kramer, Genentech Inc., San Francisco, CA, USA
Dr C.A. Laughlin, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
Dr P.J. Leibowitz, Director, Molecular and Analytical Biology, Schering-Plough, Bloomfield, NJ, USA
Dr A. Meager, Division of Immunobiology, National Institute for Biological Standards and Control, London, England
Mr M. Narachi, Amgen, Thousand Oaks, CA, USA
Dr M. Truehaft, Section Head, Biological Assay Research, Schering-Plough, Bloomfield, NJ, USA
Professor J. Vileek, Department of Microbiology, New York University Medical Center, New York, NY, USA
Dr S. Yamazaki, Director, Central Virus Diagnostic Laboratory, National Institute of Health, Tokyo, Japan
Dr K. Zoon, Chief, Laboratory of Immunology, Center for Drugs and Biologics, Food and Drug Administration, Bethesda, MD, USA

WHO secretariat

Dr J. Esparza, Microbiology and Immunology Support Services, World Health Organization, Geneva, Switzerland
Dr V. Grachev, Biologicals, World Health Organization, Geneva, Switzerland
Dr P. Sizaret, Biologicals, World Health Organization, Geneva, Switzerland

REFERENCES

Annex 8

REQUIREMENTS FOR HEPATITIS B VACCINE PREPARED FROM PLASMA

(Requirements for Biological Substances No. 31)
(Revised 1987)

INTRODUCTION

Viral hepatitis is a major public health problem occurring endemically in all parts of the world. There is substantial evidence that hepatitis B may progress to chronic liver disease, including chronic persistent hepatitis, chronic active (aggressive) hepatitis, and cirrhosis. About 80% of hepatocellular carcinomas are ascribed to chronic infection with hepatitis B virus. In some regions of the world, delta virus coinfection and superinfection have been associated with a high morbidity and mortality in hepatitis-B-positive individuals.
Hepatitis B virus (HBV) has been identified as a 42-nm particle (known as the Dane particle) containing double-stranded DNA. At least three antigenic components are produced during infection with hepatitis B virus as a result of replication of the virus in hepatocytes. These components are hepatitis B surface antigen (HBsAg), the core antigen (HBCAg), and the e antigen (HBeAg). Infection also produces high titres of anti-HBcIgM. The surface antigen is most frequently found as 20–22 nm spherical particles (sometimes slightly larger or smaller) and as tubular forms, and possesses common determinants a and generally at least two mutually exclusive subdeterminants d or y and w or r. Other subspecificities have also been recognized.

The protein moiety of hepatitis B surface antigen particles consists of a polypeptide of relative molecular mass 23 000, existing in glycosylated and non-glycosylated forms. Minor components are also present which contain amino acid sequences referred to as pre-S1 and pre-S2 as well as this polypeptide. The importance of these additional sequences in immunization is under investigation.

Hepatitis B virus has not yet been cultivated in cell culture and small laboratory animals are not susceptible to infection. The infection can be transmitted to certain of the apes, of which the chimpanzee is the only available susceptible animal model.

Transmission of hepatitis B infection from carrier mothers to their babies can occur during the perinatal period and among children in the first years of life and is an important factor determining the prevalence of the virus infection in some regions. Such transmission can be interrupted by the use of vaccine.

Because of the urgent need for a hepatitis B vaccine, particularly for groups that are at increased risk of acquiring infection (1), WHO Requirements were formulated in 1980 (2) and revised in 1984 (3). Since it has been shown that the separated viral coat proteins, containing hepatitis B surface antigen, lead to the production of protective antibody, it is possible to use purified, non-infectious 22-nm spherical hepatitis B surface antigen particles, or subunits derived from the surface antigen, as vaccines. However, the preparation of such vaccines for use in man from human viral antigens not grown in cell culture, but obtained from the plasma of infected persons—namely, from persistent carriers of hepatitis B antigens—demands special consideration in the tests applied to the production and quality control of the vaccines. Still more important, it has now been shown that human blood and plasma may harbour
a number of infectious agents in addition to hepatitis B virus. Particular attention, therefore, must be given to the selection of the donors of the plasma, the process of separation of the antigen, and the inactivation procedures to ensure that all potential infectious agents that may still be present after the purification of the antigen have been inactivated.

The development of vaccines

A number of laboratories have prepared vaccines using HBsAg purified from plasma obtained from antigenaemic carriers of hepatitis B. Vaccines of varying degrees of purity and technological complexity have been prepared and some have been tested in humans.

Source plasma could contain infectious agents that possess a wide range of physico-chemical and biological characteristics and various degrees of susceptibility or resistance to different modes of inactivation. Consequently, to ensure as far as possible the inactivation of a wide range of infectious agents, it is desirable that, in addition to separation and purification, a procedure or procedures that will inactivate all infectious agents that may be present in human blood should be applied during the vaccine manufacturing process.

Whatever the procedure used, it is universally accepted that the vaccines must be safe (i.e., free from demonstrable virus and other microbial agents), potent (i.e., capable of eliciting antibody against the virus in animals and in man by the administration of a standardized dose of antigen) and efficacious (i.e., protective against the disease).

There have been a number of significant findings in the production of hepatitis B vaccine since the WHO Requirements were first formulated in 1980. In choosing methods of purification and inactivation, it is important to appreciate that hepatitis B surface antigen is a relatively stable glycoprotein that can withstand fairly harsh treatment. This permits the production of an essentially pure vaccine for which assurances as regards safety can be given. The consistency of vaccine production, including in particular uniformity of composition and potency of the final product and effectiveness of virus inactivation procedures applied during manufacture, is most readily achieved for highly purified materials. Consequently it is desirable that the manufacturing procedure
adopted enables a high degree of purification of HBsAg to be reliably achieved.

Hepatitis B vaccines prepared to date have been adjuvanted, and all are assayed for their ability to stimulate anti-HBs in small laboratory animals. An immunogenicity test performed in mice has been developed for quantification of the immunizing potency of batches of vaccine, and an International Reference Reagent has been established for this purpose.

Controlled studies in chimpanzees have shown the efficacy of several vaccines in preventing hepatitis B following challenge with human hepatitis B virus. Cross-protection studies carried out in chimpanzees have shown that subtypes are not of major importance in vaccine composition. In one country, the use of the vaccine in the staff of a renal dialysis unit has shown considerable protection against ay infection by ad vaccine. The reverse is also true because of the common a components.

Each of the following sections constitutes a recommendation. The parts of each section that are printed in large type have been written in the form of requirements, so that, if a health administration so desires, these parts as they appear may be included in definitive national requirements. The parts of each section that are printed in small type are comments and recommendations for guidance.

Should individual countries wish to adopt these requirements as the basis of their national regulations concerning hepatitis B vaccine, it is recommended that a clause be included permitting modifications of manufacturing requirements on the condition that it can be demonstrated, to the satisfaction of the national control authority, that such modified requirements ensure that the degree of safety and the potency of the vaccine are at least equal to those provided by the requirements formulated below. The World Health Organization should then be informed of the action taken.

The terms “national control authority” and “national control laboratory”, as used in these requirements, always refer to the country in which the final vaccine is manufactured.
PART A
MANUFACTURING REQUIREMENTS

1. Definitions

1.1 International name and proper name

The international name shall be *Vaccinum hepatitidis B explosa humanum*. The proper name shall be the equivalent of the international name in the language of the country of origin.

The use of the international name should be limited to vaccines that satisfy the requirements formulated below.

1.2 Descriptive definition

Vaccinum hepatitidis B explosa humanum is a preparation of purified hepatitis B surface antigen (HBsAg) that has been treated to inactivate HBV and other viruses known to be present in human blood. The preparation shall satisfy all the requirements formulated below.

1.3 International reference materials

For the assessment of immunogenicity of vaccines, an international reference reagent exists in the form of an adjuvanted vaccine, for injection into animals (see Part A, section 5.6). This preparation is in the custody of the National Institute for Biological Products and Control, Potters Bar, England.

For the assay of antigenic content by techniques such as radioimmunoassay, ELISA, or single radial immunodiffusion, a purified international reference reagent without adjuvant is required (see Part A, section 3.6.2).

For the measurement of antibody to hepatitis B vaccines, an international reference preparation is available. This preparation is calibrated in terms of anti-HBs. The International Reference Preparation of Hepatitis B Immunoglobulin (established in 1977) is dispensed in ampoules containing 50 IU of hepatitis B immunoglobulin (fractionated human plasma, freeze-dried). This preparation is in the custody of the Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, Netherlands.
1.4 Terminology

The following definitions are given for the purposes of these Requirements only.

Whole blood (sometimes referred to as blood): the blood collected in an anticoagulant solution.

Plasma: the liquid part of blood collected in a receptacle containing an anticoagulant.

HBV: hepatitis B virus. A 42-nm enveloped virus, originally known as the Dane particle.

HBsAg: hepatitis B surface antigen, the complex of antigens associated with the virus envelope and subviral forms (22-nm spherical and tubular particles). Native HBsAg is coded for by envelope gene sequences S plus pre-S of HBV DNA.

HBeAg: hepatitis B core antigen. The hepatitis B antigen found within the core of the virus.

HBeAg: the e antigen has now been identified as a cryptic HBe antigen.

Anti-HBs: antibody to hepatitis B surface antigen.

Anti-HBe: antibodies to the e antigen(s).

Single donor plasma: plasma obtained from a single donation of whole blood or obtained by plasmapheresis.

Plasma pools: pools of single-donation plasmas that have been shown to be satisfactory before pooling.

Purified HBsAg batch: purified HBsAg prepared from one or more plasma pools by suitable procedures that inactivate HBV and any other viruses that may be present in human blood.

Final aqueous bulk: the final bulk before the addition of an adjuvant.

Final bulk: the finished biological material prepared from one or more batches of purified HBsAg that have been treated to inactivate HBV and any other viruses that may be present in human blood from which the final containers are filled.

Final lot: a collection of sealed final containers that are homogeneous with respect to the risk of contamination during filling or preparation of the finished vaccine. A final lot must therefore consist of finished material dispensed into containers in one working session from a single final bulk.
2. General Manufacturing Requirements

The general manufacturing requirements contained in the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4) shall apply to establishments manufacturing hepatitis B vaccine, with the addition of the following directives:

Production areas shall be decontaminated before they are used for the manufacture of hepatitis B vaccine. Completely separate areas shall be used for the separation and inactivation steps. All separation and inactivation steps shall be carried out in closed systems and closely monitored.

The production of hepatitis B vaccine shall be conducted by staff who have not handled other infectious microorganisms or animals in the same working day. The staff shall consist of persons who shall be examined medically and found to be healthy and not carriers of hepatitis B.

Steps should be taken to ensure that all such persons in the production areas are immune to hepatitis B as shown by the presence of anti-HBs, either as a result of natural infection or by immunization.

Persons not directly concerned with the production processes, other than official representatives of the national control authority, shall not be permitted to enter the production area.

Particular attention shall be given to the recommendations in Part A, section 1, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 13) regarding the training and experience of persons in charge of production and testing and of those assigned to various areas of responsibility in the manufacturing establishment, as well as to the registration of such personnel with the national control authority.

3. Production Control

The general production precautions formulated in Part A, section 3, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 15) shall apply to the manufacture of hepatitis B vaccine.
3.1 The collection of blood and plasma

3.1.1 The selection of donors

Source materials for further processing are obtained from donations of blood or plasma. The medical criteria for accepting donors—criteria relating to the safety, purity, potency, and efficacy of the final products—must be the same for donors of whole blood (see Part A, section 3.1.2) components or blood components collected by plasmapheresis (6, Annex 1, p. 38), except that the donors must be antigenaemic and need not meet the exclusions relating to hepatitis. Only plasma from donors who are seronegative in appropriate tests for human immunodeficiency virus (HIV) shall be used (5).

In some countries separate areas or special times are set aside for the collection of plasma known to be HBsAg positive.
In some countries donors with a high HBsAg content but negative for HBcAg are selected for the donation of plasma.
Records should be kept of the identity of the donors for the identification of each batch of vaccine.

3.1.2 Donors of whole blood

The physical fitness of a donor shall be determined by a licensed physician or a person under the direct supervision of a licensed physician. Donors shall be asymptomatic persons of either sex between the ages of 18 and 65 years, except that the findings in liver function tests may exceed normal limits provided that the values obtained are stable.

When plasma is collected from regions or populations with a high prevalence of hepatitis delta virus infection, screening of individual donors for evidence of chronic delta virus infection should be considered.

3.1.3 Medical history

General. Before each donation questions shall be asked to determine that the donor is asymptomatic and has not suffered, or is not suffering, from any serious illness—e.g., malignant disease, diabetes, epilepsy, hypertension, renal disease, malaria.
Any donor who appears to be suffering from symptoms of acute or chronic disease, or who is receiving oral or parenteral medication, with the exception of vitamins or oral contraceptives, may not be
accepted for donation unless approved by a physician. The values obtained in liver function tests may exceed normal limits provided that the values obtained are stable.

Any donor who appears to be under the influence of alcohol or any drug or who does not appear to be providing reliable answers to medical history questions shall not be accepted.

National health authorities shall develop policies designed to prevent the transmission of other infectious diseases based on the prevalence of these diseases in the donor population and the susceptibility of recipients to the same diseases.

Minor surgery. Donors shall not have a history of tooth extraction or other minor surgery during a period of 72 hours prior to donation.

Pregnancy. Pregnant women shall be excluded from blood donation. In general, mothers shall also be excluded for the period of lactation and for at least 6 months after full-term delivery.

Immunization. Symptom-free donors who have recently been immunized may be accepted with the following exceptions:

— those receiving attenuated vaccines for measles (rubeola), mumps, yellow fever, or poliomyelitis shall be excluded until 2 weeks after the last immunization or injection;
— those receiving attenuated rubella (German measles) vaccine shall be excluded until 8 weeks after the last injection;
— those receiving rabies (therapeutic) vaccine or rabies immunoglobulin shall be excluded until 1 year after the last injection;
— those receiving passive immunization using animal serum products shall be excluded until 4 weeks after the last injection.

3.1.4 Physical examination

Donors shall have a weight, blood pressure, pulse rate, and temperature within normal limits. Donors with any measurements outside the established normal limits of weight, blood pressure, and pulse rate may be accepted only if approved by the responsible licensed physician.

The following recommendations may be useful for guidance:

1. Blood pressure. Systolic blood pressure between 12 and 24 kPa (90 and 180 mmHg); diastolic blood pressure between 6.7 and 13.3 kPa (50 and 100 mmHg).
2. Pulse. Between 50 and 100 beats per minute and regular.
3. Temperature. Oral temperature not exceeding 37.5°C.
(4) Weight. Donors weighing less than 50 kg may be bled proportionately less than 450 ml per unit, provided all other donor requirements are met.

In some countries it is not required to take the body temperature, but the decision to do so or not should be made by the national control authority.

Donors shall be free from any infectious skin disease at the venepuncture site and from skin punctures or scars indicative of addiction to narcotics.

3.1.5 Determination of haemoglobin or erythrocyte volume fraction

The haemoglobin shall not be less than 125 g/l of blood for women and 135 g/l of blood for men. If erythrocyte volume fraction measurement is substituted for haemoglobin measurement the values shall be not less than 0.38 and 0.41 for men and women, respectively.

These limits are not universally accepted, and the national control authorities should raise or lower them when considered to be appropriate.

3.1.6 Donors for plasmapheresis

All phases of plasmapheresis, including explaining to donors what is involved in the process and obtaining their informed consent, shall be performed under the direct supervision of a licensed physician.

There are two groups of plasmapheresis donors: those who donate at a frequency comparable to that allowed for whole blood donations and those who donate more frequently. The former group shall be accepted on the basis of the above criteria for donors of whole blood.

In addition to these criteria, donors participating in the plasmapheresis programme shall be examined by a licensed physician on the day of the first donation, or no more than 1 week prior to the first donation. This examination shall include urine analysis and blood sampling for liver function tests, and determination of plasma proteins by electrophoresis or another suitable method.

On the day of each donation, in addition to meeting the requirements for whole blood donors, plasmapheresis donors shall be shown to have a total serum protein of no less than 60 g/l.
The medical evaluation of plasmapheresis donors shall be repeated at monthly intervals, or as specified by the national control authority.

Whenever a laboratory value other than a liver function test is found to be outside the normal limits or any important abnormalities are noted in a donor's history or on physical examination, the donor shall be removed from the programme. The donor shall not return to the programme until the abnormal finding has returned to normal and the responsible physician has given approval.

If a plasmapheresis donor donates a unit of whole blood or does not have the red blood cells returned from a unit taken during the procedure, further plasmapheresis of the donor shall be deferred for 8 weeks unless special circumstances warrant approval by the responsible physician of earlier plasmapheresis. Plasmapheresis of donors of HBsAg-positive plasma will be permitted by the responsible physician, even if the liver function test values are above normal limits in individual donors, provided that the values obtained are stable.

The upper limits of these values should be specified by the national control authority.

Appropriate guidelines to define donor changes significant to justify discontinuation of plasmapheresis should be established by the responsible physician (6, p. 43).

The maximum volume of blood or plasma that may be taken in 1 year from chronic hepatitis B carriers shall be determined by the national control authority.

No guidelines have been established for the maximum volume of plasma that can be taken in any year from a chronic hepatitis B carrier.

In some countries it is permitted to take 500 ml per week.

Where plasmapheresis is regularly performed on HBsAg-positive donors, it is advisable to have equipment set aside specifically for this purpose.

3.2 Tests on single-donation plasma

Each single-donation plasma, whether obtained from whole blood or by plasmapheresis, shall be tested for HBsAg content by a method approved by the national control authority.
Several tests are suitable for this purpose (I). Potency should be established with reference to an appropriate potency standard included in all assays.

An international standard is available for the calibration of working reference reagents.

In some countries, unless the subtype of a particular donor has been identified, each single donation is tested for HBsAg subtype by a method approved by the national control authority. The national control authority may require the data on the subtype composition.

In some countries the tests are done on plasma pools, when this is approved by the national control authority.

3.3 Pooling of single-donation plasma

Only acceptable plasma shall be included in a plasma pool.

3.4 Tests on plasma pools

3.4.1 Sterility tests

A volume of at least 10 ml of each plasma pool shall be tested for sterility according to the requirements in Part A, section 5, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (7, p. 48).

In some countries it is required that each plasma pool shall be tested for the presence of mycobacteria by culture methods approved by the national control authority.

3.4.2 Tests for extraneous viruses

3.4.2.1 Tests in animals and fertile eggs

(a) Tests in adult mice

Each plasma pool shall be tested in adult mice for adventitious agents pathogenic to mice. Each of at least 10 adult mice, of 15–20 g weight, shall be inoculated intracerebrally with 0.03 ml and at least 10 mice intraperitoneally with at least 0.5 ml of the plasma pool. The mice shall be observed for at least 21 days. All mice that die after the first 24 hours of the test or that show signs of illness shall be autopsied and examined for evidence of viral infection, both macroscopically by direct observation and by subinoculation of
appropriate tissue suspensions by the intracerebral and intra-peritoneal route into at least 5 additional mice, which shall be observed for 21 days.

The plasma pool passes the test if at least 80% of the original inoculated mice survive the observation period and if no mice show evidence of infection with adventitious transmissible agents attributable to the plasma pool.

(b) Tests in suckling mice

Each plasma pool shall be tested in suckling mice for adventitious agents pathogenic to mice. Each of at least 20 mice less than 24 hours old shall be inoculated intracerebrally with 0.01 ml and intra-peritoneally with at least 0.1 ml of the plasma pool. The mice shall be observed daily for at least 14 days. All mice that die after the first 24 hours of the test or that show signs of illness shall be autopsied and examined to determine the cause of death or illness.

In some countries a subinoculation is suggested and in others an additional blind passage is made of a suspension of the pooled emulsified tissue (minus skin and viscera) of all mice surviving the original 14-day test.

The plasma pool passes the test if at least 80% of the original inoculated mice survive the observation period and if no mice show evidence of infection with adventitious transmissible agents attributable to the plasma pool.

(c) Tests in embryonated eggs

A sample of at least 5 ml of each plasma pool shall be tested in a group of embryonated hens' eggs by the allantoic route of inoculation and a similar sample in a separate group of eggs by the yolk-sac route of inhibition, using at least 0.25 ml of the pool per egg for each route of inoculation. The incubation of the eggs and the observation time shall be approved by the national control authority. The embryo shall remain normal throughout the observation period.

The plasma pool passes the test if there is no evidence of the presence of any adventitious agents attributable to the plasma pool.

3.4.2.2 Tests in cell cultures

A sample of at least 5 ml of each plasma pool shall be tested for adventitious agents by inoculation into simian cell cultures. Similar
volumes of the plasma pool shall likewise be tested in human diploid cell cultures. The inoculated cell cultures and uninoculated control cultures shall be observed for at least 14 days. At the end of this observation period a subculture in the same cell system shall be made and cultures observed for at least 14 days.

In some countries larger volumes of the plasma pool are required to be tested.

Suitable simian cell cultures are prepared from the kidneys of Cercopithecus monkeys or from Vero cells. For the human cell cultures, either WI-38 or MRC-5 may be used.

The plasma pool passes the test if none of the cell cultures shows evidence of the presence of any adventitious agent attributable to the plasma pool.

3.4.2.3 Other tests

It may be desirable to carry out tests on the plasma pools for HBV DNA by sensitive DNA hybridization assays to monitor the elimination of HBV DNA by subsequent purification steps.

3.5 Concentration, purification, and inactivation

Each plasma pool shall be subjected to procedures that concentrate and purify HBsAg consistently and result in the inactivation of residual HBV and any extraneous agent that may be present in human blood. The methods used shall remove the bulk of extraneous substances and inactivate infectious agents so that the resultant purified product is safe when administered to humans.

In some countries the required HBsAg content of vaccines is not less than 95% of total protein content of the finished vaccine.

The national control authority shall approve the methods used for concentration and purification of HBsAg and for inactivation of HBV and other potential contaminating agents. The national control authority shall approve the number of inactivation steps that shall be used.

The national control authority shall ensure that the production process, including purification and inactivation, is reproducible and will give rise to consecutive lots that do not differ with respect to safety.
When new processes for HBV vaccine manufactured from human plasma are introduced, the efficiency of hepatitis B DNA removal at each step during the purification process shall be validated.

Removal of HBV DNA can be monitored by DNA hybridization assays.
Chimpanzee studies may be carried out to validate the inactivation process. In such tests titrated HBV stocks containing approximately 10^6 chimpanzee infectious doses are added to the material prior to inactivation and residual infectivity in the inactivated material is detected by the inoculation of two chimpanzees. Titrated HBV stocks are available from The New York Blood Center.

Should proteins other than HBSAg remain in the vaccine, the national control authority shall take into consideration data which identify such proteins and which show that they do not compromise the safety of the product.

In assessing the efficiency of a procedure or procedures for inactivation the national control authority shall take into consideration data demonstrating the ability of each method to inactivate infectious agents that may be found in human blood.

Precipitation by ammonium sulfate and polyethylene glycol has been found suitable for the concentration of HBSAg.

Much experience has now been gained in the consistent production of safe batches of vaccine. Reliance is placed predominantly on different methods (chemical treatment, physical separation, and heat treatment).

A procedure that has been successfully used includes purification by zonal centrifugation, followed by three chemical treatment procedures:
(i) pepsin, 1 μg/ml at pH 2.0 held at 37°C for 18 hours;
(ii) urea, 8 mol/litre held at 37°C for 4 hours; and
(iii) formalin 1:4000 (1:10000 formaldehyde) at 37°C for 3 days.

A second method involves the separation of the HBSAg, including isopyknic zonal centrifugations through cesium chloride, followed by treatment with 1:4000 formalin (1:10000 formaldehyde) at 30°C for 48 hours.

A third approach includes 3 isopyknic zonal centrifugation steps with KBr and rate zonal centrifugation through sucrose followed by heat treatment of the HBSAg at 60°C for 10 hours and treatment with 1:2000 formalin (1:5000 formaldehyde) at 37°C for 4 days.

One manufacturer uses differential precipitation with polyethylene glycol and ultracentrifugation, followed by heat inactivation for 90 s at 103°C. After adsorption to aluminium phosphate, the product is heated for 10 hours at 65°C. Another
manufacturer uses differential precipitations with polyethylene glycol, selective adsorption on hydroxypatite and isopyknic centrifugation in KBr followed by 2 heating steps under defined conditions: first at 102°C for 2 min 40 s, then at 65°C for 10 hours.

3.6 Tests on purified, inactivated HBsAg batches

3.6.1 Sterility tests

A volume of at least 10 ml of each batch shall be tested for sterility according to the requirements in Part A, section 5, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (7, p. 48).

3.6.2 Tests for HBsAg and total protein

After purification, the protein content shall be measured for both total protein and HBsAg-specific protein. The latter shall be compared with that of a suitable reference preparation.

It has been found suitable to measure the total concentration of protein by means of extinction coefficient \(\varepsilon_{280} \), or by the micro-Kjeldahl technique, the Lowry test or another appropriate method.

The content of HBsAg shall be determined by a serological test in comparison with a suitable reference preparation. It is important that the method of production gives a reproducible content of HBsAg. The lower limit of concentration permitted shall be determined by the national control authority.

Both radioimmunoassay and ELISA methods have been shown to be suitable for this purpose. Other tests such as single radial immunodiffusion may be used.

The concentration of HBsAg shall be related to the total protein.

3.6.3 Tests for extraneous substances

Tests shall be made for the presence of blood group substances and other blood proteins, including liver-specific membrane proteins, by methods approved by the national control authority.

Agglutinins and agglutinogens are tested for by haemagglutination. Immunoassays, such as immunoelectro-
phoresis, agar gel diffusion, radioimmunoassay and ELISA, and polyacrylamide gel electrophoresis have been used to test for other extraneous proteins.

The preparation shall be free from detectable blood group substances.

The permitted concentration of non-HBsAg proteins present in the vaccine shall be determined by the national control authority.

3.6.4 Test for HBV DNA

The preparation shall be free from HBV DNA, as determined by a sensitive hybridization assay approved by the national control authority.

DNA is extracted from a volume of aqueous bulk concentrate that corresponds to 10 adult doses and tested for HBV DNA sequences using a sensitive and specific hybridization assay. The assay should be capable of detecting at least 1 pg of HBV DNA per 10 adult doses.

3.6.5 Test for antigen purity

A test shall be made for purity of HBsAg by polyacrylamide gel electrophoresis (PAGE).

In reduced preparations there should be 2 bands shown by polyacrylamide gel electrophoresis, one at 22,000-23,000 and another at 28,000-30,000 relative molecular mass. Additional HBV-specified or non-HBV-specified bands may also be present.

The national control authority shall determine the electrophoretic pattern permitted as a demonstration of purity.

3.6.6 Tests for reagents used during manufacture

A test shall be made for the presence of any potentially hazardous reagent, including inactivating reagents, that may have been used during the manufacture of the HBsAg.

The method used and the permitted concentration shall be approved by the national control authority.

3.7 Final aqueous bulk

The final aqueous bulk consists of one or more purified, concentrated HBsAg batches that have been treated to inactivate
infectious agents that may be present in human blood. Only batches that have satisfied the requirements in Part A, sections 3.5 and 3.6, shall be included in the final bulk.

3.7.1 Safety test

In view of the concern about the possibility of infectious agents being present in the plasma used for the production of hepatitis B vaccine, the national control authority shall ensure that the procedures for the collection of plasma and the production process, including purification and inactivation, are reproducible and will give rise to consecutive lots that will not differ with respect to safety.

The national control authority shall determine whether initial lots of vaccine shall be tested for the presence of infectious hepatitis B viruses in chimpanzees. The test shall be approved by the national control authority.

If a test in chimpanzees is not or cannot be carried out, alternative approaches may be considered by the national control authority. For example, clinical studies in man have been carried out that demonstrated the production of a vaccine acceptable to the national control authority.

When a chimpanzee safety test is used, the first 5 consecutive lots prepared by the same production procedures shall be tested in chimpanzees. These 5 lots shall be tested individually without pooling. If these 5 lots pass this test, safety testing of subsequent lots in chimpanzees may be discontinued. If an established manufacturing process is altered or the same process transferred under controlled conditions from one manufacturer to another after initial safety validation in chimpanzees, the national control authority may elect to reduce the number of chimpanzee safety tests required for the new production lots to less than 5.

Aqueous bulks that fail the test shall not be used to prepare vaccine for use in man. In such a case it shall be considered that the consistency has not been established and a further 5 consecutive lots must be tested. The reasons for failing the test shall be investigated and reported to the national control authority.

The chimpanzees used for testing shall have been under observation for at least 6 months before inoculation and shown to satisfy the conditions listed below. The chimpanzees shall:
(a) be free from hepatitis B virus infection, past or present, as shown by sensitive techniques (negative tests for HBsAg, anti-HBs, and anti-HBc);

(b) have normal levels of aminotransferases in at least 8 specimens taken during the 8 weeks that immediately precede the start of the study;

(c) have had at least 2 normal liver biopsies taken during the 8 weeks that precede the start of the study;

(d) be housed in adequate isolation quarters and attended by persons free from hepatitis B infection;

(e) have never received blood or blood products of human origin.

A satisfactory test involves 2 chimpanzees. One animal shall receive 1 human dose and the other shall receive 10 human doses by intravenous injection.

During the observation period of 6 months after inoculation the tests shall include:

(a) weekly determination of alanine aminotransferase (ALT), which shall remain normal for each individual chimpanzee; any abnormal finding shall be demonstrated to be unrelated to viral hepatitis;

(b) weekly determinations of the markers of HBV infection, using sensitive serological methods;

(c) antibody assays for HIV before inoculation and 4 and 6 months after inoculation;

(d) weekly weight determinations and daily checks of general health;

(e) biopsies for light microscopic examination to search for evidence of hepatitis taken monthly and at any time that the chimpanzees show any abnormality.

If after 6 months' observation the chimpanzees have shown normal alanine aminotransferase values throughout with no histological evidence of hepatitis or serological evidence of hepatitis B virus infection, the vaccine passes the chimpanzee safety test. If an animal develops only anti-HBs the test of this animal is invalidated, and an additional animal shall be added to the test.

In such circumstances consideration should be given to decreasing the amount of antigen administered.
3.7.2 Sterility tests

A volume of at least 10 ml of the final aqueous bulk shall be tested for bacterial and mycotic sterility according to the requirements in Part A, section 5.2, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (7, p. 49).

3.7.3 Test for HBsAg

The quantity of HBsAg compared with the total protein in the final aqueous bulk shall be determined by a quantitative serological procedure in comparison with a suitable reference reagent. The lower limit of HBsAg and the limit of total protein per human dose shall be approved by the national control authority.

The tests referred to in Part A, section 3.6.2, have been found to be suitable. The samples for this test should be taken before the addition of preservative.

3.7.4 Pyrogenicity test

Each final bulk shall be tested for pyrogenicity by a suitable test. The test shall be approved by the national control authority.

3.8 Final bulk

3.8.1 Addition of adjuvant

Where the final bulk contains an adjuvant, the adjuvant and the concentration used shall be approved by the national control authority. Where aluminium salts are used, the concentration of aluminium shall not exceed 1.25 mg per single human dose.

At this stage more preservative may need to be added.

In some countries the alum used as an adjuvant is formed in the presence of the HBsAg, whereas in others preformed alum salts are added to the aqueous bulk. Where preformed aluminium adjuvants are used, it may not be possible to resolubilize the aluminium compound, and the testing for purity and concentration of the HBsAg in the final bulk may not be possible.
3.8.2 Test for completeness of adsorption to adjuvant

Tests shall be carried out to confirm that all HBsAg is adsorbed to the adjuvant. The tests shall be approved by the national control authority.

3.8.3 Tests for sterility

A volume of at least 10 ml of the final bulk shall be tested for bacterial and mycotic sterility according to the requirements given in Part A, section 5.2, of the revised Requirements for Biological Substances No. 6 (General Requirements for Sterility of Biological Substances) (7, p. 49).

3.8.4 Tests for preservative

The final bulk shall be tested for the presence of preservative. The method used and the permitted concentration shall be approved by the national control authority.

4. Filling and Containers

The requirements concerning filling and containers in Part A, section 4, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 16) shall apply.

Care should be taken to ensure that the material of which the container is made does not adversely affect the HBsAg under the recommended conditions of storage.

Adjuvanted HBsAg vaccine can only be stored at 5°C ± 3°C.

5. Control Tests on Final Product

Samples shall be taken from each final lot for the tests in the following sections.

5.1 Sterility tests

The final lot shall be tested for sterility according to the requirements in Part A, section 5, of the revised Requirements for
5.2 Innocuity tests

Each final lot shall be tested for innocuity by appropriate tests in mice and guinea-pigs, using parenteral injections. The tests shall be those approved by the national control authority.

5.3 Test for preservative

Each final lot shall be tested for the presence of preservative. The test used and the permitted concentration shall be approved by the national control authority.

5.4 Assay of adjuvant

Each final lot shall be assayed for the content of adjuvant. The method used and permitted concentration shall be approved by the national control authority. Where aluminium compounds are used, the concentration of aluminium shall not be greater than 1.25 mg per single human dose.

5.5 Pyrogenicity test

Each final lot shall be tested for pyrogenicity by a suitable test. The test shall be approved by the national control authority.

5.6 Potency and identity test

The vaccine shall be identified as HBsAg by appropriate methods. An appropriate quantitative potency assay shall be performed on each final lot irrespective of how many filling lots are made. The vaccine potency shall be compared with that of the international reference reagent.

A suitable quantitative extinction test in mice is as follows:
Each of a group of at least 20 suitable mice, 5 weeks of age, is vaccinated intraperitoneally with a graded dose of adjuvanted hepatitis B vaccine diluted in the adjuvant used in the vaccine. Similar groups of mice are inoculated with the adjuvanted reference preparation. The mice are bled 28 days later and the sera are kept separate. Antibody determinations are performed
by a sensitive quantitative test such as radioimmunoassay. The lower limit should be less than 25% response. The data are analysed according to seroconversion as well as according to the geometric mean titre of anti-HBs for each antigen dose. The strain of mice used for this test must give a steep dose-response curve to the reference antigen.

In some countries a quantitative extinction test in guinea-pigs has been shown to be suitable.

The potency shall be measured in terms of quantity of vaccine giving an antibody response in 50% of the animals. The national control authority shall determine the lower limit of potency.

6. Records

The requirements in Part A, section 6, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 17) shall apply.

7. Samples

The requirements in Part A, section 7, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 18) shall apply.

8. Labelling

The requirements in Part A, section 8, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 18) shall apply, with the addition of the following directive.

The leaflet accompanying the package shall include the following information:

— the method used in the inactivation of the HBV;
— the nature and amount of any preservative, adjuvant, or stabilizer present in the vaccine;
— the volume of one recommended human dose, immunization schedules, and the recommended routes of administration; these
shall be given for newborn babies, children, adults, and immunosuppressed individuals and shall be the same for a given vaccine for all regions of the world;
— the amount of protein contained in one recommended human dose;
— the amount of HBsAg contained in one recommended human dose.

9. Distribution and Shipping

The requirements in Part A, section 9, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 18) shall apply.

In addition, the condition of shipping shall be such that the vaccine does not freeze.

Temperature indicators should be packaged with each vaccine shipment to show that freezing did not occur.

If freezing has occurred, the vaccine should not be used.

10. Storage and Expiry Date

The requirements given in Part A, section 10, of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 19) shall apply.

In addition, the conditions of storage shall be such that the vaccine does not freeze.

10.1 Storage conditions and stability

Before being distributed by the manufacturing establishment, or before being issued from a depot for the maintenance of reserves of vaccines, all vaccines in bulk form or in final containers shall be kept at 5 ± 3°C. After distribution or issue, the vaccine shall be stored at a temperature not exceeding 8°C. The vaccine shall have been shown to maintain potency for a period equal to that between the date of issue and the expiry date. During storage the vaccine shall not be frozen.
10.2 Expiry date

The expiry date shall be fixed with the approval of the national control authority and shall relate to the date of the last satisfactory potency test, the date of this test being that on which the test system was inoculated.

PART B

NATIONAL CONTROL REQUIREMENTS

1. General

The general requirements for control laboratories in Part B of the revised Requirements for Biological Substances No. 1 (General Requirements for Manufacturing Establishments and Control Laboratories) (4, p. 19) shall apply.

The national control authority shall:

— approve the medical evaluation of donors;
— approve the methods of sterility control;
— approve the tests for HBsAg concentration and define its minimum value;
— approve the methods for concentration, purification, and inactivation;
— approve the purity of the final product;
— approve the tests for extraneous substances and total protein;
— approve the tests for the agents used for concentration and purification, free formaldehyde, and other inactivating agents and preservatives;
— approve the test for the presence of infectious hepatitis B virus;
— approve the tests used for freedom from abnormal toxicity in the final product;
— approve the adjuvant assay and define the permitted concentration of adjuvant in the final product; and
— approve the animals used in the assay of potency.

The national control authority shall also provide national reference preparations for the expression of activity of HBsAg contained in a given quantity of protein.

205
Where chimpanzees are not used in the proof of safety of the production process, the national control authority must accept responsibility for the use of the vaccine in man.

2. Release and Certification

A hepatitis B vaccine shall be released only if it fulfils Part A of the present Requirements.

A statement signed by the appropriate official of the national control laboratory shall be provided at the request of the manufacturing establishment and shall certify whether or not the final lot of vaccine in question meets all national requirements as well as Part A of the present Requirements. The certificate shall state the date of the last satisfactory HBsAg potency test, the lot number, the number under which the lot was released, and the number appearing on the labels of the containers. In addition, a copy of the official national release document shall be attached.

The purpose of the certificate is to facilitate the exchange of hepatitis B vaccine between countries.

AUTHORS

The revised Requirements for Hepatitis B Vaccine (1987) were formulated by the participants in a WHO informal meeting on hepatitis B vaccines in London:

Dr W.G. van Aken, Medical Director, Central Laboratory, Netherlands Red Cross Blood Transfusion Service, Amsterdam, Netherlands
Dr W.T. Chang, Lifeguard Pharmaceutical Inc., Hsinchu, China (Province of Taiwan)
Dr R.J. Gerety, Executive Director, Virus and Cell Biology Research, Merck, Sharp & Dohme Research Laboratories, West Point, PA, USA
Dr J. Gerin, Department of Microbiology, Georgetown University School of Medicine, Rockville, MD, USA
Dr M. Girard, Pasteur Vaccins, Marnes-la-Coquette, France
Dr K.H. Kim, Korean Green Cross Research Foundation, Seoul, Republic of Korea
Dr J.E. Maynard, Assistant Director for Medical Research, Division of Viral Diseases, Centers for Disease Control, Atlanta, GA, USA
Dr R. Netter, Director-General, National Health Laboratory, Paris, France
Dr A.M. Prince, Lindsay F. Kimball Research Institute, New York Blood Center, New York, NY, USA
Dr G.C. Schild, Director, National Institute for Biological Standards and Control, Potters Bar, Herts., England
Dr S.I. Shin, Eugene Technical International Inc, Allendale, NJ, USA

206
REFERENCES

Annex 9

REQUIREMENTS FOR YELLOW FEVER VACCINE

(Requirements for Biological Substances No. 3)
(Revised 1975)

Addendum 1987

Since the suggestion was made 12 years ago in the Requirements for Yellow Fever Vaccine to investigate the stability of lyophilized yellow fever vaccines, much experience has been gained by manufacturers, resulting in increased stability. The Requirements should therefore be modified as follows. Page numbers refer to WHO Technical Report Series, No. 594, 1976.

Control tests on final product (pages 38–41)

On page 41, after the third line (small print) insert the following new section:

"5.6 Stability

Many national control authorities require that 3 final containers, selected at random from the filling lot, shall be held at 37 °C for 2 weeks and tested for potency as defined in section 5.5. The result of the test should comply with the requirements of section 5.5. The mean loss in titre after heating should be not more than 1.0 log 10."

Renumber the existing section 5.6 on page 41 to read:

208
“5.7 Protein nitrogen content”

Storage conditions (pages 42–43)

In the paragraph in small print at the foot of page 42 delete the second sentence (“Since storage below −25°C ... stability of the vaccine.”)

On page 42, delete also footnote 2.

On page 43 after the 4th line delete the two paragraphs in small print (“Distributed vaccines ... section 5.5 page 39.”).
Annex 10

LABORATORIES APPROVED BY WHO FOR THE PRODUCTION OF YELLOW FEVER VACCINE

(This list supersedes the appendix in WHO Technical Report Series, No. 658, 1981, Annex 1, p. 53.)

<table>
<thead>
<tr>
<th>Commonwealth Serum Laboratories</th>
<th>Federal Laboratory Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkville, Victoria</td>
<td>Lagos</td>
</tr>
<tr>
<td>Australia</td>
<td>Nigeria</td>
</tr>
</tbody>
</table>

Robert Koch Institute	Pasteur Institute of Dakar
Berlin (West)	Dakar
	Senegal

Oswaldo Cruz Institute	National Institute for Virology
Rio de Janeiro	Sandringham, Transvaal
Brazil	South Africa

The Wellcome Research Laboratories	Connaught Laboratories Inc.
Beckenham, Kent	Swiftwater, PA
England	USA

Pasteur Institute	Institute of Poliomyelitis
Paris	and Viral Encephalitides
France	Moscow
	USSR

| Central Research Institute | |
| Kasauni, Himachal Pradesh | |

210
Annex 11

REQUIREMENTS FOR ANTIMICROBIC SUSCEPTIBILITY TESTS
1. AGAR DIFFUSION TESTS USING ANTIMICROBIC SUSCEPTIBILITY DISCS

(Requirements for Biological Substances No. 26)
(Revised 1981, 1 1982, 2 1985) 3

Addendum 1987

At its thirty-third meeting, 2 the WHO Expert Committee on Biological Standardization adopted a revised list of the codes used to identify antimicrobials contained in susceptibility test discs. The list of codes was again revised at the thirty-sixth meeting of the WHO Expert Committee on Biological Standardization 3 in order to incorporate additions, deletions and changes in nomenclature. Since that time, further requests have been received by the WHO Secretariat for the allocation of codes for new antimicrobial substances. In order to incorporate the new entries that have been agreed, the following further additions should be made to the list of codes given in Part A, Section 1.6 of the WHO Requirements (WHO Technical Report Series, No. 687, 1983, Annex 5, pp. 175–178):

Add

carumonom CAR
cefepime FEP
cefixime CFM
cefminox CNX
flucytosine FCT
ornidazole ORN
sulbactam/ampicillin SAM

Annex 12

REQUIREMENTS FOR DRIED BCG VACCINE

(Requirements for Biological Substances No. 11)
(Revised 1985)

Amendment 1987

In view of the progress that has been made in maintaining the stability of lyophilized BCG vaccines, Part A, section 10.2, of the Requirements for Dried BCG Vaccine (Revised 1985) (WHO Technical Report Series, No. 745, 1987, Annex 2, p. 81) should be replaced by the following.

“10.2 Expiry date

The date after which dried BCG vaccine should not be used shall be determined in relation to the experimental evidence referred to in Part A, section 5.6, and with the approval of the national control authority. Unless there is evidence of a greater stability, the expiry date shall be not more than 24 months after the date of distribution by the manufacturer, provided that this is not more than 36 months from the date of the last satisfactory test for viability referred to in Part A, section 5.5, and provided that the vaccine has been stored continuously at the specified storage temperature and protected from daylight. In any event, the expiry date shall be not more than 4 years after the date of harvest. Each manufacturer shall test the stability of the vaccine to ensure that it satisfies these conditions.”

212
Annex 13

BIOLOGICAL SUBSTANCES: INTERNATIONAL STANDARDS AND REFERENCE REAGENTS

A list of international biological standards, international biological reference preparations, and international biological reference reagents is issued as a separate publication.1 Copies may be obtained from the agents shown on the back cover of this report, or they may be ordered from: World Health Organization, Distribution and Sales Service, 1211 Geneva 27, Switzerland.

The Expert Committee made the following changes to the previous list.

Additions

Blood products and related substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human protein C</td>
<td>0.82 IU/ampoule</td>
<td>First International</td>
</tr>
<tr>
<td>Human blood coagulation factors II, IX, and X</td>
<td>10.8 IU factor II/ampoule</td>
<td>First International</td>
</tr>
<tr>
<td>X in concentrates</td>
<td>10.7 IU factor IX/ampoule</td>
<td>Standards 1987</td>
</tr>
<tr>
<td></td>
<td>9.8 IU factor X/ampoule</td>
<td></td>
</tr>
<tr>
<td>Human tissue plasminogen activator</td>
<td>850 IU/ampoule</td>
<td>Second International</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard 1987</td>
</tr>
</tbody>
</table>

(These substances are held and distributed by the International Laboratory for Biological Standards, National Institute for Biological Standards and Control, Potters Bar, Herts EN6 3QG, England.)

Antibodies
Varicella zoster immunoglobulin 50 IU/ampoule First International Standard 1987

(This substance is held and distributed by the International Laboratory for Biological Standards, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Plesmanlaan 125, Amsterdam, Netherlands.)

Endocrinological and related substances
Human atrial natriuretic factor 2.5 IU/ampoule First International Standard 1987
Growth hormone, human 4.4 IU/ampoule First International Standard 1987
Human interleukin-2 100 IU/ampoule First International Standard 1987

(These substances are held and distributed by the International Laboratory for Biological Standards, National Institute for Biological Standards and Control, Potters Bar, Herts EN6 3QG, England.)

Miscellaneous
Interferon, human, recombinant, α₁(αD) 8000 IU/ampoule First International Standard 1987
Interferon, human, recombinant, α₂(α₂b) 17 000 IU/ampoule First International Standard 1987

(These substances are held and distributed by the International Laboratory for Biological Standards, National Institute for Biological Standards and Control, Potters Bar, Herts EN6 3QG, England.)

Interferon, human fibroblast, β 15 000 IU/ampoule Second International Standard 1987
Interferon, human, recombinant, β₁σ 6000 IU/ampoule First International Standard 1987

¹ Formerly established and distributed as the First International Standard for Human Growth Hormone for Bioassay; change in name only.

214
Interferon, murine, α 16 000 IU/ampoule First International Standard 1987
Interferon, murine, β 15 000 IU/ampoule First International Standard 1987
Interferon, murine, γ 1000 IU/ampoule First International Standard 1987

(These substances are held and distributed by the Research Resources Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.)

Discontinued

Growth hormone, human, for immunoassay 0.35 IU/ampoule First International Reference Preparation 1968

(These substances were held and distributed by the International Laboratory for Biological Standards, National Institute for Biological Standards and Control, Potters Bar, Herts EN6 3QG, England.)
Annex 14

REQUIREMENTS FOR BIOLOGICAL SUBSTANCES
AND OTHER SETS OF RECOMMENDATIONS

The specification of requirements to be fulfilled by preparations of biological substances is necessary in order to ensure that these products are safe, reliable, and potent prophylactic or therapeutic agents. International recommendations on requirements are intended to facilitate the exchange of biological substances between different countries and to provide guidance to workers responsible for the production of these substances as well as to others who may have to decide upon appropriate methods of assay and control.

Recommended requirements and sets of recommendations concerned with biological substances are formulated by international groups of experts and are published in the Technical Report Series of the World Health Organization, as listed here.

<table>
<thead>
<tr>
<th>No.</th>
<th>Year of Publication</th>
<th>Requirements for Biological Substances:</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>1959</td>
<td>* 1. General Requirements for Manufacturing Establishments and Control Laboratories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 2. Requirements for Poliomyelitis Vaccine (Inactivated)</td>
</tr>
<tr>
<td>179</td>
<td>1959</td>
<td>* 3. Requirements for Yellow Fever Vaccine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 4. Requirements for Cholera Vaccine</td>
</tr>
<tr>
<td>180</td>
<td>1959</td>
<td>* 5. Requirements for Smallpox Vaccine</td>
</tr>
<tr>
<td>200</td>
<td>1960</td>
<td>* 6. General Requirements for the Sterility of Biological Substances</td>
</tr>
<tr>
<td>237</td>
<td>1962</td>
<td>Requirements for Biological Substances:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 7. Requirements for Poliomyelitis Vaccine (Oral)</td>
</tr>
<tr>
<td>274</td>
<td>1964</td>
<td>WHO Expert Committee on Biological Standardization:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 8. Requirements for Pertussis Vaccine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 9. Requirements for Procaine Benzylpenicillin in Oil with Aluminium Monostearate</td>
</tr>
</tbody>
</table>

* Replaced by revised Requirements.
293 1964 WHO Expert Committee on Biological Standardization:
* 10. Requirements for Diphtheria Toxoid and Tetanus Toxoid

323 1966 WHO Expert Group:
Requirements for Biological Substances (Revised 1965):
1. General Requirements for Manufacturing Establishments and Control Laboratories
* 2. Requirements for Poliomyelitis Vaccine (Inactivated)
5. Requirements for Smallpox Vaccine
* 7. Requirements for Poliomyelitis Vaccine (Oral)

329 1966 WHO Expert Committee on Biological Standardization:
* 11. Requirements for Dried BCG Vaccine
* 12. Requirements for Measles Vaccine (Live) and Measles Vaccine (Inactivated)

361 1967 WHO Expert Committee on Biological Standardization:
9. Requirements for Procaine Benzylpenicillin in Oil with Aluminium Monostearate (Revisions adopted 1966)
13. Requirements for Anthrax Spore Vaccine (Live—for Veterinary Use)
14. Requirements for Human Immunoglobulin
15. Requirements for Typhoid Vaccine

384 1968 WHO Expert Committee on Biological Standardization:
* 16. Requirements for Tuberculins
* 17. Requirements for Inactivated Influenza Vaccine

413 1969 WHO Expert Committee on Biological Standardization:
† 4. Requirements for Cholera Vaccine (Revised 1968)
18. Requirements for Immune Sera of Animal Origin

444 1970 WHO Expert Committee on Biological Standardization:
19. Requirements for Rinderpest Cell Culture Vaccine (Live) and Rinderpest Vaccine (Live)
† 20. Requirements for Brucella abortus Strain 19 Vaccine (Live—for Veterinary Use)

444 1970 WHO Expert Committee on Biological Standardization:
* Development of a National Control Laboratory for Biological Substances (A guide to the provision of technical facilities)

463 1971 WHO Expert Committee on Biological Standardization:
21. Requirements for Snake Antivenins

486 1972 WHO Expert Committee on Biological Standardization:
* 7. Requirements for Poliomyelitis Vaccine (Oral) (Revised 1971)

530 1973 WHO Expert Committee on Biological Standardization:
4. Requirements for Cholera Vaccine (Revised 1968) (Addendum 1973)

* Replaced by revised Requirements.
† Refer also to subsequent Addendum.
6. General Requirements for the Sterility of Biological Substances
 (Revised 1973)
 * 17. Requirements for Inactivated Influenza Vaccine (Addendum 1973)
 * 22. Requirements for Rabies Vaccine for Human Use
565 1975 WHO Expert Committee on Biological Standardization:
 Recommendations for the Assessment of Binding-Assay Systems
 (Including Immunoassay and Receptor Assay Systems) for Human
 Hormones and their Binding Proteins (A guide to the formulation
 of requirements for reagents and assay kits for the above assays and
 notes on cytochemical bioassay systems).
 Development of national assay services for hormones and other
 substances in community health care
594 1976 WHO Expert Committee on Biological Standardization:
 † 3. Requirements for Yellow Fever Vaccine (Revised 1975)
 20. Requirements for Brucella abortus Strain 19 Vaccine (Live—for
 Veterinary Use) (Specification of tests used in the Requirements)
 (Addendum 1975)
 † 23. Requirements for Meningococcal Polysaccharide Vaccine
610 1977 WHO Expert Committee on Biological Standardization:
 Report of a WHO Working Group on the Standardization of Human
 Blood Products and Related Substances
610 1977 WHO Expert Committee on Biological Standardization:
 † 23. Requirements for Meningococcal Polysaccharide Vaccine
 (Addendum 1976)
 † 24. Requirements for Rubella Vaccine (Live)
 25. Requirements for Brucella melitensis Strain Rev. 1 Vaccine (Live
 —for Veterinary Use)
 † 26. Requirements for Antibiotic Susceptibility Tests. 1. Agar Diffusion
 Tests using Antibiotic Susceptibility Discs
626 1978 WHO Expert Committee on Biological Standardization:
 * 17. Requirements for Inactivated Influenza Vaccine (Addendum 1977)
 † 23. Requirements for Meningococcal Polysaccharide Vaccine
 (Addendum 1977, incorporating Addendum 1976)
 27. Requirements for the Collection, Processing, and Quality Control
 of Human Blood and Blood Products
626 1978 WHO Expert Committee on Biological Standardization:
 * Guidelines for the Preparation and Establishment of Reference
 Materials for Biological Substances
638 1979 WHO Expert Committee on Biological Standardization:
 † 8 & 10. Requirements for Diphtheria Toxoid, Pertussis Vaccine,
 Tetanus Toxoid, and Combined Vaccines (Revised 1978)
 * 11. Requirements for Dried BCG Vaccine (Revised 1978)

* Replaced by revised Requirements.
† Refer also to subsequent Addendum.
17. Requirements for Influenza Vaccine (Inactivated) (Revised 1978)
28. Requirements for Influenza Vaccine (Live)

658 1981 WHO Expert Committee on Biological Standardization:
* 7. Requirements for Poliomyelitis Vaccine (Oral) (Addendum 1980)
† 8 & 10. Requirements for Diphtheria Toxoid, Pertussis Vaccine, Tetanus Toxoid, and Combined Vaccines (Addendum 1980)
22. Requirements for Rabies Vaccine for Human Use (Revised 1980)
23. Requirements for Meningococcal Polysaccharide Vaccine (Addendum 1980)
29. Requirements for Rabies Vaccine for Veterinary Use
* 31. Requirements for Hepatitis B Vaccine
* 26. Requirements for Antibiotic Susceptibility Tests (Suggested changes 1980)
24. Requirements for Rubella Vaccine (Live) (Addendum 1980)
* 30. Requirements for Thromboplastins and Plasma used to Control Oral Anticoagulant Therapy
Guidelines for Quality Assessment of Antitumour Antibiotics
The National Control of Vaccines and Sera
Requirements for Immunoassay Kits
† Procedure for Approval by WHO of Yellow Fever Vaccines in Conjunction with the Issue of International Vaccination Certificates

673 1982 WHO Expert Committee on Biological Standardization:
† 2. Requirements for Poliomyelitis Vaccines (Inactivated) (Revised 1981)
† 8 & 10. Requirements for Diphtheria Toxoid, Pertussis Vaccine, Tetanus Toxoid, and Combined Vaccines (Addendum 1981)
* 12. Requirements for Measles Vaccines (Live) (Addendum 1981)
† 26. Requirements for Antimicrobial Susceptibility Tests (Revised 1981)
32. Requirements for Rift Valley Fever Vaccine
A Review of Tests on Virus Vaccines

687 1983 WHO Expert Committee on Biological Standardization:
† 7. Requirements for Poliomyelitis Vaccine (Oral) (Revised 1982)
30. Requirements for Thromboplastins and Plasma used to Control Oral Anticoagulant Therapy (Revised 1982)
33. Requirements for Louse-Borne Human Typhus Vaccine (Live)
The Standardization of Interferons
† 26. Requirements for Antimicrobial Susceptibility Tests (Addendum 1982)

700 1984 WHO Expert Committee on Biological Standardization:
† 8 & 10. Requirements for Diphtheria Toxoid, Pertussis Vaccine, Tetanus Toxoid, and Combined Vaccines (Addendum 1983)
35. Requirements for Rift Valley Fever Vaccine (Live, Attenuated) for Veterinary Use
34. Requirements for Typhoid Vaccine (Live Attenuated, Ty 21a, Oral)

* Replaced by revised Requirements.
† Refer also to subsequent Addendum.
WHO Expert Committee on Biological Standardization:

725 1985
- 31. Requirements for Hepatitis B Vaccine prepared from Human Plasma (Revised 1984)
- 36. Requirements for Varicella Vaccine (Live) Informal Consultation on the Standardization of Interferons

745 1987
WHO Expert Committee on Biological Standardization:
- 2. Requirements for Poliomyelitis Vaccine (Inactivated) (Addendum 1985)
- 11. Requirements for Dried BCG Vaccine (Revised 1985)
- 16. Requirements for Tuberculins (Revised 1985)
- 26. Requirements for Antimicrobial Susceptibility Tests
 - 1. Agar Diffusion Tests Using Antimicrobial Susceptibility Discs (Addendum 1985)
- 37. Requirements for Continuous Cell Lines Used for Biologicals Production

760 1987
WHO Expert Committee on Biological Standardization:
- Guidelines for the Preparation and Establishment of International and other Standards and Reference Reagents for Biological Substances
- 7. Requirements for Poliomyelitis Vaccine (Oral) (Addendum 1986)
- 38. Requirements for Mumps Vaccine (Live)
- 39. Requirements for Hepatitis B Vaccines made by Recombinant DNA Techniques in Yeast
- 40. Requirements for Rabies Vaccine (Inactivated) for Human Use Produced in Continuous Cell Lines
- Procedure for Evaluating the Acceptability in Principle of Vaccines Proposed to United Nations Agencies for Use in Immunization Programmes
- Report of a WHO Meeting on Hepatitis B Vaccines Produced by Recombinant DNA Techniques

771 1988
WHO Expert Committee on Biological Standardization:
- 3. Requirements for Yellow Fever Vaccine (Addendum 1987)
- 7. Requirements for Poliomyelitis Vaccine (Oral) (Addendum 1987)
- 11. Requirements for Dried BCG Vaccine (Amendment 1987)
- 12. Requirements for Measles Vaccine (Live) (Revised 1987)
- 26. Requirements for Antimicrobial Susceptibility Tests
 - 1. Agar Diffusion Tests Using Antimicrobial Susceptibility Discs (Addendum 1987)

* Replaced by revised Requirements.
† Refer also to subsequent Addendum.
31. Requirements for Hepatitis B Vaccine prepared from Plasma
(Revised 1987)
41. Requirements for Human Interferons made by Recombinant DNA
Techniques
43. Requirements for Japanese Encephalitis Vaccine (Inactivated) for
Human Use
Laboratories approved by WHO for the production of yellow fever
vaccines
Modification for Lyophilized BCG vaccine of the Procedure for
Evaluating the Acceptability in Principle of Vaccines Proposed to
United Nations Agencies for Use in Immunization Programmes
Model Certificate for the Release of BCG Vaccines Acquired by United
Nations Agencies
Standardization of Interferons: report of a WHO informal consultation
Recent reports:

No.	Title	Subtitle	Page(s)	Price
712 | (1984) Malaria control as part of primary health care | Report of a WHO Study Group | 73 pages | 8.00
714 | (1985) Identification and control of work-related diseases | Report of a WHO Expert Committee | 71 pages | 7.00
716 | (1985) Epidemiology of leprosy in relation to control | Report of a WHO Study Group | 60 pages | 6.00
717 | (1985) Health manpower requirements for the achievement of health for all by the year 2000 through primary health care | Report of a WHO Expert Committee | 92 pages | 8.00
720 | (1985) Safe use of pesticides | Ninth report of the WHO Expert Committee on Vector Biology and Control | 60 pages | 6.00
721 | (1985) Viral haemorrhagic fevers | Report of a WHO Expert Committee | 126 pages | 10.00
725 | (1985) WHO Expert Committee on Biological Standardization | Thirty-fifth report | 140 pages | 11.00
729 (1985) WHO Expert Committee on Drug Dependence
Twenty-second report (31 pages) ... 4.—
730 (1986) Dementia in later life: research and action
Report of a WHO Scientific Group (74 pages) 10.—
731 (1986) Young people's health—a challenge for society
Report of a WHO Study Group on Young People's Health and
"Health for All by the Year 2000" (117 pages) 16.—
732 (1986) Community prevention and control of cardiovascular diseases
Report of a WHO Expert Committee (62 pages) 9.—
733 (1986) Evaluation of certain food additives and contaminants
Twenty-ninth report of the Joint FAO/WHO Expert Committee on
Food Additives (59 pages) ... 9.—
734 (1986) Recommended health-based limits in occupational exposure to
selected mineral dusts (silica, coal)
Report of a WHO Study Group (82 pages) 12.—
735 (1986) WHO Expert Committee on Malaria
Eighteenth report (104 pages) ... 14.—
736 (1986) WHO Expert Committee on Venereal Diseases and Treponematoses
Sixth report (141 pages) ... 18.—
737 (1986) Resistance of vectors and reservoirs of disease to pesticides
Tenth report of the WHO Expert Committee on Vector Biology and
Control (87 pages) ... 12.—
738 (1986) Regulatory mechanisms for nursing training and practice: meeting
primary health care needs
Report of a WHO Study Group (71 pages) 10.—
739 (1986) Epidemiology and control of African trypanosomiasis
Report of a WHO Expert Committee (127 pages) 16.—
740 (1986) Joint FAO/WHO Expert Committee on Brucellosis
Sixth report (132 pages) ... 18.—
741 (1987) WHO Expert Committee on Drug Dependence
Twenty-third report (64 pages) .. 9.—
742 (1987) Technology for water supply and sanitation in developing coun-
tries
Report of a WHO Study Group (38 pages) 7.—
Report of a WHO Scientific Group (229 pages) 32.—
744 (1987) Hospitals and health for all
Report of a WHO Expert Committee on the Role of Hospitals at the
First Referral Level (82 pages) ... 12.—
745 (1987) WHO Expert Committee on Biological Standardization
Thirty-sixth report (149 pages) .. 20.—
746 (1987) Community-based education for health personnel
Report of a WHO Study Group (89 pages) 12.—
747 (1987) Acceptability of cell substrates for production of biologicals
Report of a WHO Study Group (29 pages) 5.—
748 (1987) WHO Expert Committee on Specifications for Pharmaceutical
Preparations
Thirtieth report (50 pages) ... 9.—
749 (1987) Prevention and control of intestinal parasitic infections
Report of a WHO Expert Committee (86 pages) 12.—
Report of a WHO Expert Committee (58 pages) 9.—
751 (1987) Evaluation of certain food additives and contaminants
Thirtieth report of the Joint FAO/WHO Expert Committee on Food
Additives (57 pages) ... 9.—
752 (1987) WHO Expert Committee on Onchocerciasis
Third report (167 pages) .. 24.—
753 (1987) Mechanism of action, safety and efficacy of intruterine devices
Report of a WHO Scientific Group (91 pages) 12.—
754 (1987) Progress in the development and use of antiviral drugs and interferon
Report of a WHO Scientific Group (25 pages) 5.—
755 (1987) Vector control in primary health care
Report of a WHO Scientific Group (61 pages) 9.—
756 (1987) Children at work: special health risks
Report of a WHO Study Group (49 pages) .. 9.—
757 (1987) Rational use of diagnostic imaging in paediatrics
Report of a WHO Study Group (102 pages) .. 14.—
758 (1987) The hypertensive disorders of pregnancy
Report of a WHO Study Group (114 pages) .. 16.—
759 (1987) Evaluation of certain food additives and contaminants
Thirty-first report of the Joint FAO/WHO Expert Committee on Food
Additives (53 pages) ... 9.—
760 (1987) WHO Expert Committee on Biological Standardization
Thirty-seventh report (203 pages) .. 28.—
761 (1988) WHO Expert Committee on Drug Dependence
Twenty-fourth report (34 pages) ... 6.—
762 (1988) Training and education in occupational health
Report of a WHO Study Group (47 pages) .. 6.—
763 (1988) Evaluation of certain veterinary drug residues in food
Thirty-second report of the Joint FAO/WHO Expert Committee on
Food Additives (40 pages) ... 6.—
764 (1988) Rheumatic fever and rheumatic heart disease
Report of a WHO Study Group (58 pages) .. 8.—
765 (1988) Health promotion for working populations
Report of a WHO Expert Committee (49 pages) 8.—
766 (1988) Strengthening ministries of health for primary health care
Report of a WHO Expert Committee (110 pages) 12.—
767 (1988) Urban vector and pest control
Eleventh report of the WHO Expert Committee on Vector Biology and
Control (77 pages) .. 9.—
768 (1988) WHO Expert Committee on Leprosy
Sixth report (51 pages) .. 8.—
769 (1988) Learning together to work together for health
Report of a WHO Study Group (72 pages) .. 9.—
Third report of the WHO Expert Committee on the Use of Essential
Drugs (63 pages) .. 8.—