THE REGIONAL WORKSHOP ON ADOPTION AND IMPLEMENTATION OF WHO POLICY GUIDANCE ON MALARIA ELIMINATION

26–27 November 2020
Virtual meeting
MEETING REPORT

REGIONAL WORKSHOP ON ADOPTION AND IMPLEMENTATION OF WHO POLICY GUIDANCE ON MALARIA ELIMINATION

Convened by:

WORLD HEALTH ORGANIZATION
REGIONAL OFFICE FOR THE WESTERN PACIFIC

Virtual meeting
26 and 27 November 2020

Not for sale

Printed and distributed by:

World Health Organization
Regional Office for the Western Pacific
Manila, Philippines

March 2021
NOTE

The views expressed in this report are those of the participants of the Regional Workshop on Adoption and Implementation of WHO Policy Guidance on Malaria Elimination and do not necessarily reflect the policies of the conveners.

This report has been prepared by the World Health Organization Regional Office for the Western Pacific for Member States in the Region and for those who participated in the virtual Regional Workshop on Adoption and Implementation of WHO Policy Guidance on Malaria Elimination from 26 to 27 November 2020.
CONTENTS

SUMMARY .. 1

1. INTRODUCTION ... 2
 1.1 Background .. 2
 1.2 Meeting objectives .. 2

2. PROCEEDINGS ... 2
 2.1 Opening session of day 1 .. 2
 2.2 Session 1: Align country field actions with Framework for Malaria Elimination and the
 Global Technical Strategy for Malaria 2016-2030 ... 2
 2.2.1 A Framework for Malaria Elimination and the Global Technical Strategy for Malaria
 2016–2030 ... 2
 2.2.2 Results from Malaria Elimination Audit Tool/country evaluation 3
 2.2.3 Best practices in malaria elimination and prevention of re-introduction in GMS countries .. 4
 2.3 Session 2: Provide key principles underlying malaria elimination, which should be tailored to local contexts ... 6
 2.3.1 The sensitivity and specificity of surveillance system for malaria elimination 6
 2.3.2 Surveillance system for malaria elimination in Cambodia 6
 2.4 Opening session of day 2 ... 7
 2.4.1 Effectiveness of reactive case detection and mass screening in GMS 7
 2.5 Session 3: Interventions and activities suggested in areas of low transmission that are progressing to zero transmission (elimination) ... 8
 2.5.1 Malaria transmission and stratification ... 8
 2.5.2 Plasmodium vivax elimination .. 8
 2.5.3 Thailand: Experience in G6PD fluorescent spot tests and quantitative point-of-care
 test ... 10
 2.6 Questions and answers ... 11
 2.7 Session 4: Defining the steps required to maintain elimination: principle to prevent of re-establishment of malaria, role of quality assurance and reference laboratories in malaria elimination .. 11
 2.7.1 Required steps to maintain elimination and principles to prevent re-establishment of malaria .. 11
 2.8 Session 5: Overview of the process for obtaining malaria-free certification from WHO
 and role for a WHO Malaria Elimination Certification Panel (MECP) 12
 2.8.1 Overview of the process for obtaining malaria-free certification from WHO 12

3. CONCLUSIONS AND RECOMMENDATIONS .. 13
 3.1 Conclusions .. 13
 3.2 Recommendations ... 14
 3.2.1 Recommendations for Member States .. 14
 3.2.2 Recommendations for WHO ... 15

ANNEXES
 Annex 1. Programme agenda
 Annex 2. List of participants

KEYWORDS

Malaria – epidemiology, prevention and control / Policy / Sentinel surveillance
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACD</td>
<td>active case detection</td>
</tr>
<tr>
<td>CIFIR</td>
<td>malaria case notification, investigation and responses</td>
</tr>
<tr>
<td>CNM</td>
<td>Cambodian National Center for Parasitology, Entomology and Malaria Control</td>
</tr>
<tr>
<td>DVBD</td>
<td>Thailand Division of Vector Borne Disease</td>
</tr>
<tr>
<td>FSAT</td>
<td>focal screen and treatment</td>
</tr>
<tr>
<td>FST</td>
<td>fluorescent spot test</td>
</tr>
<tr>
<td>G6PD</td>
<td>glucose-6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GMP</td>
<td>Global Malaria Programme</td>
</tr>
<tr>
<td>GMS</td>
<td>Greater Mekong Subregion</td>
</tr>
<tr>
<td>HC</td>
<td>health centre</td>
</tr>
<tr>
<td>ICMV</td>
<td>integrated community malaria volunteers</td>
</tr>
<tr>
<td>IEC</td>
<td>information, education and communication</td>
</tr>
<tr>
<td>IMP</td>
<td>RAI-RSC Independent Monitoring Panel</td>
</tr>
<tr>
<td>IPT</td>
<td>intermittent preventive treatment</td>
</tr>
<tr>
<td>IRS</td>
<td>indoor residual spraying</td>
</tr>
<tr>
<td>LLHIN</td>
<td>long-lasting insecticidal hammock net</td>
</tr>
<tr>
<td>LLIN</td>
<td>long-lasting insecticidal net</td>
</tr>
<tr>
<td>MEAT</td>
<td>Malaria Elimination Audit Tool</td>
</tr>
<tr>
<td>MECP</td>
<td>Malaria Elimination Certification Panel</td>
</tr>
<tr>
<td>MME</td>
<td>Mekong Malaria Elimination programme</td>
</tr>
<tr>
<td>MMW</td>
<td>mobile malaria worker</td>
</tr>
<tr>
<td>NMP</td>
<td>national malaria programme</td>
</tr>
<tr>
<td>PCD</td>
<td>passive case detection</td>
</tr>
<tr>
<td>RACD</td>
<td>reactive case detection</td>
</tr>
<tr>
<td>RAI</td>
<td>Regional Artemisinin-resistance Initiative</td>
</tr>
<tr>
<td>RDT</td>
<td>rapid diagnostic test</td>
</tr>
<tr>
<td>RSC</td>
<td>Regional Steering Committee</td>
</tr>
<tr>
<td>TDA</td>
<td>targeted drug administration</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
The Regional Workshop on Adoption and Implementation of WHO Policy Guidance on Malaria Elimination was convened virtually from 26 to 27 November 2020. Organized by the World Health Organization (WHO) Mekong Malaria Elimination (MME) programme, it brought together participants from the six Greater Mekong Subregion (GMS) countries — Cambodia, China, Lao People’s Democratic Republic, Myanmar, Thailand and Viet Nam — and the Global Malaria Programme (GMP), as well as technical experts and partners to discuss the Framework for Malaria Elimination and the Global Technical Strategy for Malaria 2016–2030.

The main discussion points included outlining areas of improvement based on the country self-assessments of the Malaria Elimination Audit Tool, presenting best practices in malaria elimination, and defining the steps needed in the GMS to eliminate malaria and obtaining malaria-free certification.

The key points of the meeting included:

- **Malaria elimination guideline:** WHO is engaged in reviewing evidence to inform recommendations for several possible malaria elimination strategies. At this stage, protocols for systematic reviews and meta-analysis of evidence are being developed. WHO will be combining existing guidelines on vector control and case management into a consolidated malaria guideline that will be published in January 2021. By June 2021, WHO will add new elimination recommendations to the consolidated guideline.

- **Malaria Elimination Audit Tool:** WHO developed the Malaria Elimination Audit Tool to help countries evaluate the implementation status of their elimination programme with respect to the guidance provided in the Framework for Malaria Elimination. Before this workshop, GMS countries completed a self-audit exercise to review their malaria programme implementation.

- **Best practices in malaria elimination:** The GMS has developed examples of effective, localized best practices for malaria elimination. In light of the findings from the Malaria Elimination Audit Tool, countries should continue to review these models, conduct systematic evaluations of their effectiveness and consider how these could be adapted to their national contexts.

- **Malaria Surveillance Assessment Toolkit:** This single, standardized set of tools for malaria aims to support the identification of key actionable gaps in malaria surveillance for any malaria-endemic setting. The elimination content of the toolkit and a web app are in development and will be available in 2021.

- **Malaria stratification for elimination:** Stratification for elimination allows for focused, tailored responses by assigning specific intervention packages and deploying strategies to designated strata. This type of stratification is based on multiple evidence-based and relevant data points. Intervention packages may include enhanced vector control and surveillance activities as well as systems that help identify, investigate and clear remaining foci through community-level strategies.

- **Plasmodium vivax elimination:** Many of the interventions used for malaria are not as effective against *P. vivax* as they are against *P. falciparum*. Successful control and elimination of *P. vivax* malaria, therefore, call for specific, additional interventions, especially against the hypnozoites.

- **Malaria surveillance in elimination settings:** Excellent surveillance and response are vital to achieving, documenting and maintaining malaria elimination. Good-quality passive case detection should serve as the backbone of any surveillance system. As countries progress towards elimination, the information obtained must become increasingly granular. The evaluation of surveillance systems for malaria elimination can identify actionable recommendations that countries can use.

- **Certification of malaria elimination:** Documentation of an effective malaria programme should start before elimination is achieved so that the evidence for certification is already prepared. Completing the process of certification of malaria elimination helps to strengthen the programme to prevent re-establishment of transmission.
1. INTRODUCTION

1.1 Background

The Regional Workshop on Adoption and Implementation of World Health Organization (WHO) Policy Guidance on Malaria Elimination was convened with the intention of aligning country field actions with the Framework for Malaria Elimination and the Global Technical Strategy for Malaria 2016–2030. The workshop provided an opportunity to review ongoing activities in consideration of global guidance and principles. Country exercises on the Malaria Elimination Audit Tool (MEAT) were conducted with national malaria programmes (NMPs) prior to the workshop in order to generate concrete and practical recommendations to support malaria elimination.

1.2 Meeting objectives

The objectives of the meeting were:

1) to align country field actions with the Framework and the Global Technical Strategy;
2) to provide key principles underlying malaria elimination, which should be tailored to local contexts;
3) to describe the interventions and activities suggested in areas of low transmission that are progressing to zero transmission (elimination), including additional interventions to accelerate *Plasmodium falciparum* and *P. vivax* elimination;
4) to define the steps required to maintain elimination: principle to prevent re-establishment of malaria, role of quality assurance and reference laboratories in malaria elimination; and
5) to give an overview of the process for obtaining malaria-free certification from WHO and role of the WHO Malaria Elimination Certification Panel (MECP) (including documenting malaria elimination, certification and verification of malaria elimination).

2. PROCEEDINGS

2.1 Opening session of day 1

Dr Ailan Li, WHO Representative, Cambodia, delivered the welcome address to the workshop participants. In the welcome address, she emphasized that GMS countries are at the stage where they can critically review the fundamental principles underlying malaria elimination and consider the steps involved in the process of obtaining malaria-free certification. Following this, Dr Pedro Alonso, Director of the WHO Global Malaria Programme, provided the opening remarks for the workshop. In his address, he emphasized that country ownership, country leadership and strong data are crucial for reaching malaria elimination and certification. As GMS countries prepare to achieve the upcoming elimination targets, WHO will provide technical support to adapt recommendations to the local contexts.

Dr Luciano Tuseo from the MME programme provided a briefing of the meeting objectives. This was followed by the nomination of Dr Aung Thi, Director of the Myanmar National Malaria Programme, as the chair of the meeting for day 1.

2.2 Session 1: Align country field actions with Framework for Malaria Elimination and the Global Technical Strategy for Malaria 2016–2030

2.2.1 A Framework for Malaria Elimination and the Global Technical Strategy for Malaria 2016–2030

Dr Kimberly Lindblade, Team Leader for the Malaria Elimination Unit within the Global Malaria Programme, outlined the *Global Technical Strategy for Malaria 2016–2030*. The strategy is built on
three pillars with two supporting elements that guide global efforts to move closer to malaria elimination. The first pillar aims to ensure universal access to malaria prevention, diagnosis and treatment. This covers a WHO-recommended package of core interventions, namely quality-assured vector control, chemoprevention, diagnostic testing and treatment. The second pillar focuses on accelerating efforts towards elimination and attainment of malaria-free status. Attaining this objective will entail targeting both parasites and vectors in well-defined transmission foci, guided by active case detection (ACD) and case investigations as part of a malaria surveillance and response programme. The third pillar concerns the transformation of malaria surveillance into a core intervention.

In support of these three pillars, countries where malaria is endemic and the global malaria community should strengthen enabling environments, harness innovation, and engage in basic, clinical and implementation research. The strategy includes four technical goals:

1. Reduce malaria mortality rates globally compared with 2015
2. Reduce malaria case incidence globally compared with 2015
3. Eliminate malaria from countries in which malaria was transmitted in 2015
4. Prevent re-establishment of malaria in all countries that are malaria-free.

WHO developed new guidance for malaria elimination in 2017. The Framework for Malaria Elimination encourages all countries to accelerate towards malaria elimination. It provides a clear and simplified process for WHO certification of malaria elimination. Programme actions are highlighted across the continuum of transmission intensity from high to zero and prevention of re-establishment. WHO developed the MEAT within this Framework to help countries compare the implementation status of their elimination programme to the guidance developed by WHO. Elimination training materials have been drawn from the Framework and relevant WHO guidance and will soon be available on the OpenWHO platform.

In an elimination setting, the surveillance objectives are centred around three areas: 1) early detection, diagnosis and treatment of all malaria infections; 2) investigation of cases to determine the likely location of infection and case classification; and 3) tailored and focused responses. In an elimination setting, some infections are less likely to provoke health-care seeking, symptomatic individuals may self-treat or health-care workers may fail to consider malaria in their differential diagnosis because they do not see enough cases. To minimize this, NMPs should use a combination of ACD, community mobilization and community-based surveillance, case definition, training and sensitization. The purpose of case investigations is to determine the likely location of infection. This is needed to allow NMPs to respond where the case originated in order to interrupt transmission. The location is determined through careful interviews to identify where people spent their time during the likely period of infection. When cases are low, determining the location of the infection needs to be precise. Very careful investigation is needed for 9–14 days before infection. Evidence of a response on this is needed for certification. Response plans must be tailored to the situation. A focus investigation should be conducted when there is either a new case in an area where no cases have occurred in a long time, a resurgence of cases, persistence of cases despite good intervention coverage, or the appearance of novel or unusual malaria species. Hypotheses should drive the focused investigation, and micro-response plans should be developed, implemented and monitored.

WHO is engaged in the process of reviewing evidence to inform recommendations for several possible malaria elimination strategies. These include a combination of nine accelerator, targeted and reactive strategies. At this stage, protocols for systematic reviews and meta-analysis of evidence are being developed. WHO will be combining existing guidelines on vector control and case management into a consolidated malaria guideline that will be published in January 2021. By June 2021, WHO will add new elimination recommendations to the consolidated malaria guidelines.

2.2.2 Results from Malaria Elimination Audit Tool/country evaluation

Before the workshop, GMS countries completed a self-audit exercise based on the MEAT to review their malaria programme implementation. Representatives from the NMPs of Cambodia, China, the Lao
PDR, Myanmar, Thailand and Viet Nam presented their findings according to the MEAT. Common areas of improvement identified from the country self-assessments included:

- 2: Some countries noted that a shift is still needed to annual stratification.
- 3: Diagnosis should be strengthened by improving the effectiveness of diagnostic networks and microscopy quality assurance systems.
- 4: Case management could be enhanced especially in terms of patient follow-up and integrated monitoring of drug efficacy.
- 5: Surveillance should be strengthened for case detection and case investigations at subnational levels.
- 8: Accelerator strategies may be considered to rapidly reduce transmission, and WHO is currently reviewing evidence for the efficacy of these strategies in order to prepare recommendations. WHO currently recommends mass drug administration (MDA) in the GMS. ¹ Several countries noted that the implementation of population-wide parasite clearance was pending.
- 9: Prevention of re-establishment, as more focus is needed on multisectoral approaches and community engagement. Some countries still need to develop national plans to prevent re-establishment.
- 10: Documentation for certification of elimination was in progress, but most countries needed to ensure complete documentation of their activities and prepare plans to prevent re-establishment.

2.2.3 Best practices in malaria elimination and prevention of reintroduction in GMS countries

The GMS has developed examples of effective, localized best practices for malaria elimination. In light of the findings from the MEAT, countries were invited to present best practices in malaria elimination and prevention of reintroduction.

China (Yunnan province): Dr Zhou Sheng, representative from the Division of Infectious Diseases of China, provided an overview of China’s efforts to prevent the re-establishment of malaria. This strategy prioritizes detecting and responding to every malaria case in a timely manner. In order to maintain prevention, China implements a four-pillar approach, which includes the 1-3-7 strategy, case tracing investigation, foci investigations and ACD among at-risk populations (such as workers returning from overseas, workers at temporary constructions sites and residents in foci). These strategies are supported by maintaining the capacity of laboratories and the diagnosis and treatment facilities of hospitals. However, an ongoing challenge is maintaining the expertise among health providers to detect and respond promptly to every malaria case. In the coming year, China (Yunnan province) will also place more emphasis on managing imported malaria cases, particularly from border areas.

Cambodia: Dr Siv Sovannaroth, representative from the Cambodia National Centre for Entomology and Parasitology Control (CNM), gave a presentation of the lessons from Cambodia’s intensification plan. Following a peak in malaria transmission in 2017, the country mobilized the Malaria Intensification Plan for Hard to Reach Populations to halt and reverse this trend. The Plan involved strengthening surveillance and implementing more aggressive interventions for travellers to forested areas and migrant populations. It also includes a combination of ACD, test/treat services, commodity supplies, information, education and communication (IEC), activities, and record-keeping. Mobile malaria workers (MMWs) play an important role in providing these services. Following the implementation of this strategy, testing increased by 14% from 2018 to 2019. One lesson from this programme was the need to implement more aggressive approaches to eliminate *P. falciparum* in malaria hotspots in six provinces. The aggressive approach was formally launched in November 2020 and includes a synergized approach consisting of:

¹ Given the threat of multidrug resistance and the WHO call for malaria elimination in the GMS, MDA may be considered as a component of accelerated malaria elimination efforts in areas of the GMS with good access to treatment, vector control and surveillance.: https://www.who.int/malaria/publications/atoz/role-of-mda-for-malaria.pdf?ua=1
• the implementation of targeted drug administration (TDA) and intermittent preventive treatment (IPT) for travellers to malaria-risk areas to interrupt transmission and accelerate malaria elimination;
• house-to-house (H2H) fever-screening every week to ensure every fever is tested for malaria and treated if positive;
• top-up distributions of long-lasting insecticidal nets (LLINs), long-lasting insecticidal hammock nets (LLIHNs) and repellent to ensure vector control measures are in place;
• community engagement and social mobilization activities to raise awareness of the synergized approach; and
• pharmacovigilance surveillance to monitor adverse events;

Dr Siv outlined other lessons from the implementation of the intensification plan. The high positivity rate among tested cases means that all individuals presenting a fever are tested and diagnosed. All *P. falciparum* and mixed cases receive a single low dose of primaquine and focus supervision visits are conducted to health centres (HCs) with high positivity rates. The NMP set a testing target of 10 tests per positive case and ensures that there are sufficient stocks of rapid diagnostic tests (RDTs). In order to map hotspots, the CNM conducts planning and mapping meetings in the areas with the highest cases. HCs and civil society organizations are responsible for assisting MMWs to review the results of outreach activities.

The following are key recommendations from Cambodia’s Intensification Plan:

- Forest packs should contain LLHINs, insect repellent and information, education and communication materials as these products have shown to encourage good prevention behaviours among forest goers.
- Capacity-building should target the subnational level so that activities can be carried out independently.
- Strong financial management and planning are needed to ensure that disbursement is completed and activities are implemented on schedule.
- Rapid responses are needed to halt any suspected outbreaks.

Lao People’s Democratic Republic: Dr Odai Sichanthongthip, representative from the Lao Center for Malaria, Parasitology, and Entomology (CMPE) presented an overview of the country’s system for monitoring outbreaks. He noted that the District Health Information System, or DHIS2, includes outbreak monitoring dashboards, which were rolled out in 2018. The dashboards automatically update graphs with monthly cases (all species) against epidemic thresholds. The outbreak response intervention package includes six key components:

1. Village malaria worker and HC assessment and refresher training
2. ACD and treatment for infected cases for the whole village
3. LLIN coverage assessments and top-up
4. Indoor residual spraying (IRS) (targeted and if village transmission is indicated)
5. IEC materials and community mobilization
6. Targeted entomological surveillance.

The systematic monitoring of outbreaks that is linked to a standard response package has allowed provinces and districts to understand and adopt a more proactive footing. Responses were slow to start with but have improved, although timely and fund release can still be an issue. Routine focal test and treat ACD has also been implemented to complement outbreak response. This has provided higher test positivity rates. Dr Odai noted that the outbreak alert system now needs to graduate to weekly monitoring at a more granular level (health facility catchment level). In addition, the outbreak response interventions need to graduate to a more aggressive approach that better targets forest-going populations (such a TDA, IPT for forest goers). In 2021, the Lao People’s Democratic Republic expects to upgrade its outbreak and response system.
Myanmar: Dr Wyint Pho Than, representative from the Myanmar National Control Malaria Programme, presented an outline of Myanmar’s intensification plans and outbreak response systems. Myanmar’s intensification plan for high transmission areas is at the heart of the programme to flatten the curve and accelerate elimination. This plan includes hotspot identification, ensuring full coverage of malaria services, full implementation of malaria activities (including case management, vector control, surveillance) and elimination activities (case and foci investigation). From January to September 2020, Myanmar conducted passive case detection (PCD) in 5315 villages covering 20 townships. This was combined with intensified case finding in 116 identified hotspot villages and worksites. In terms of vector control activities, 20 townships received 1,037,636 LLINs through mass distributions in 2019. In 2020, an assessment of LLIN coverage and utilization was conducted in eight townships. The findings led to the distribution of 29,566 LLINs, which covered hotspots and outbreak areas. The primary targets of this activity were migrants and forest goers and risk groups (such as pregnant women and positive cases). Additionally, supervision and monitoring support has been provided to 835 health staff and integrated community malaria volunteers (ICMVs). In 2021, Myanmar will focus on optimizing intensification plans by harnessing the strength of civil society organizations, ethnic health organizations and ICMVs. The ICMVs will take on a role to conduct household censuses, promote awareness among local populations on malaria, check and top up LLINs and forest packs, and conduct fever screening and tracking. This will be complemented by regular reporting duties and supervisory and monitoring visits. Other priorities include identifying malaria case notification, investigation and responses (CIFIR) for all *P. falciparum* and mixed cases and adopting approaches for conflict-affected areas and COVID-19.

2.3 Session 2: Provide key principles underlying malaria elimination, which should be tailored to local contexts

2.3.1 The sensitivity and specificity of surveillance system for malaria elimination

Dr Amanda Tiffany, Epidemiologist from the Global Malaria Programme, delivered the presentation on surveillance systems for malaria elimination. Surveillance is defined as the continuous and systematic collection, analysis and interpretation of disease-specific data as well as the use of those data in the planning, implementation and evaluation of public health practice. Surveillance is critical to support reduction of the burden of malaria and to contribute to the elimination of malaria and prevention of re-establishment. A malaria surveillance system relies on patients, communities, HC staff and decision-makers and implies a commitment to record, report and analyse malaria cases and take appropriate action. In contexts of malaria elimination, surveillance is used to identify infections early to prevent onward transmission, determine the most likely location of infection, and identify, investigate and eliminate foci of continuing transmission. A robust surveillance system should be coupled with an evaluation plan that covers both organizational and functional components. Differences in surveillance systems themselves, including data collection and activity implementation, make assessment challenging. Commonly identified challenges include documentation, data quality, coverage, vigilance, and the simplicity and sensitivity of the structure so that it is functional for health workers. The GMP has developed the Malaria Surveillance Assessment Toolkit, which is a single, standardized set of tools for malaria that aims to support the identification of key actionable gaps in malaria surveillance for any malaria-endemic setting. The elimination content of the toolkit and a web app are in development and will be available in 2021.

2.3.2 Surveillance system for malaria elimination in Cambodia

Dr Siv Sovannaroth, representative from the Cambodia CNM, delivered a presentation on the national surveillance system. ACD is conducted in line with case investigation and classification guidelines, which are outlined in Cambodia’s 2017 Surveillance Operational Manual. Foci management is based on receptivity and vulnerability scores resulting from foci investigation and classification. From January to June 2020, Cambodia implemented reactive case detection (RACD) for neighbouring households of index cases and co-travellers. In total, 5853 persons were tested, of which 0.8% had malaria. RACD was complemented by focal screen and treatment (FSAT) services through MMWs. During the same
period, the MMWs conducted FSAT for 26,389 forest goers across six provinces. Malaria was detected in 21% of all tested individuals.

2.4 Opening session of day 2

Dr Tuseo opened the session of the second day and nominated Dr Xiao Ning, Deputy Director from the National Institute of Parasitic Diseases of China, as the chairperson. Dr Xiao accepted the nomination and started the introductions for the agenda.

2.4.1 Effectiveness of reactive case detection and mass screening in GMS

Dr Jim Tulloch, Chair of the Regional Artemisinin-resistance Initiative (RAI)-Regional Steering Committee (RSC) Independent Monitoring Panel (IMP), delivered a presentation on IMP’s recommendations on RACD and mass screening in the GMS. Dr Tulloch noted that the IMP is an independent body that monitors the RAI grant implementation and reviews particular topics at the request of the RSC. This is to help the Committee and the Global Fund ensure that RAI grant resources are used for maximum impact. He reminded participants that IMP findings and suggestions/recommendations are made to the RSC according to its mandate. The IMP does advise WHO or provide guidelines to countries. The IMP conducted a review of CIFIR guidelines and procedures in the GMS by comparing national malaria guidelines/data and scientific publications from the region in relation to WHO guidelines. The review covered published data in the GMS from 2010 to 2020 as well as unpublished information from NMPs. The findings indicated that CIFIR is time and labour intensive with overall low yields. Screening is inefficient and diagnostic tests do not detect all parasitaemia. IMP did highlight that there were limitations for the review, given the availability and varying methodologies for the data.

The IMP suggested that CIFIR is best deployed as an endgame approach (required for WHO certification of elimination). It is very labour intensive and, in some cases, countries struggle to implement high-quality CIFIR. Countries near elimination and already implementing CIFIR at a manageable level could continue to recommend simplified guidelines and forms and conduct CIFIR at the national or subnational level. Countries struggling to carry out CIFIR in more endemic areas and countries not yet carrying out CIFIR nationwide should reconsider the criteria for applying. WHO recommends CIFIR in elimination areas with fewer than three cases per week (per investigation team). NMPs should maintain a record and six-monthly summaries of foci investigations conducted and what response activities were carried out. In the meantime, emphasis could be placed on: strengthening PCD and treatment; providing basic health services at the community level to encourage continued care for malaria; and implementing aggressive interventions to rapidly reduce the burden in endemic areas. If RACD, proactive case detection or mass surveys are continued, NMPs and nongovernmental organizations doing CIFIR should systematically record the number of index cases investigated, which group of people were screened, the type of test and the number of new cases detected. RACD could be changed from “screening of contacts” to “presumptive treatment of contacts” using appropriate schizontocidal antimalarials. It could also include co-travellers and co-workers, aside from household contacts of index cases. CIFIR should be conducted where caseloads are sufficiently low, and personnel and logistics are adequate, for it to be practicable. This will vary depending on the country and context. The 1-3-7 approach could be collapsed down to a 1-7 approach whereby case investigation happens within 1 day of detection and, if required, focus investigation and initiation of confirmed focus response within 7 days of case detection. Other recommendations include simplifying reporting forms and to only conduct wide-scale ACD in endemic areas or receptive areas. His would allow CIFIR to be less labour intensive, cost effective and more productive in terms of secondary cases. In the closing remarks, Dr Tulloch noted that the IMP is not suggesting to standardize surveillance procedure in the GMS countries, as each is adapted to the local health system, local culture and the different malaria transmissions.

During the discussion, the IMP noted that providing six monthly summaries of case and foci investigations would be valuable for monitoring purposes. The RAI grant would particularly benefit
from more qualitative information about what is happening at the country level in terms of case and foci investigations.

2.5 Session 3: Interventions and activities suggested in areas of low transmission that are progressing to zero transmission (elimination)

2.5.1 Malaria transmission and stratification

Dr James Kelley, Technical Officer in the WHO Regional Office for the Western Pacific, delivered a presentation on malaria stratification in elimination settings. Malaria stratification is the classification of geographical areas according to the epidemiological, ecological, social and economic determinants for the purpose of guiding malaria interventions. Macro-stratification characterizes higher-level geographical units such as provinces or districts, with relatively lower resolution, for phasing-in of malaria interventions over time. Micro-stratification characterizes lower-level geographical units, such as localities or health facility catchment areas, with higher resolution, for implementation of tailored interventions and responses based on the local context. Dr Kelley noted that in an elimination setting, stratification should be consistent with foci classification. It is important to note that there is a distinction between malaria stratification and mapping. Stratification should be understood as the classification of geographic units by single or multiple variables to answer questions, or to make a decision. Mapping relates to the visualization of data on a map.

Stratification is important because it allows for the classification of geographical units according to their current transmission intensity. When transmission intensity has been reduced, according to their vulnerability and risk of importation of malaria. Stratification is critical to accelerate progress towards elimination as it allows for better targeting and efficiency, assignment of specific packages of interventions and the deployment of strategies to designated strata. Malaria transmission categories should be based on the levels of local transmission and the capacity to implement response activities. Stratification should differentiate receptive from non-receptive areas and identify receptive areas in which malaria transmission has already been curtailed by current interventions. It should also distinguish between areas with widespread transmission and those in which transmission occurs only in discrete foci. Distinction should also be made on transmission intensity, particularly if different intensities are being addressed by different sets of interventions. Lastly, stratification should determine geographical variations and population characteristics that are associated with the risk of importation.

Dr Kelley also provided examples from Malaysia’s foci-based responses and Cambodia’s strata-based interventions.

In the concluding remarks Dr Kelley noted that stratification allows for better targeting and efficiency, as it allows for the assignment of specific intervention packages and deployment strategies to designated strata. A package of stratification can enhance and optimize vector control, accelerate the clearance of parasites and vectors, identify, investigate and clear remaining malaria foci, ensure optimal coverage of commodities such as LLINs and contribute to other vector control interventions such as larval source management. In addition, an intervention package can include: information, detection and response systems to identify, investigate and clear remaining malaria foci; and community-level strategies to accelerate clearance of parasites or vectors in order to reduce transmission rapidly when possible. Other vector control interventions may also be conducted in addition to insecticide-treated bed nets, LLINs and/or IRS according to the principles of integrated vector management and evidence-based WHO-recommended strategies.

2.5.2 Plasmodium vivax elimination

Dr Risintha Gayan Premaratne, Technical Officer in the WHO Regional Office for South-East Asia, presented an overview of malaria programming for *P. vivax* elimination. He provided an outline of malaria cases globally and in South-East Asia, noting that the Region has the largest decline globally. Although *P. vivax* cases are often eliminated after *P. falciparum*, Timor-Leste is an example of a country that was successful in eliminating both simultaneously. Similarly, Sri Lanka has eliminated malaria despite the prevalence of armed conflict in the country. During the elimination period, most of the foci
were recorded in conflict areas and cases were among the armed forces. The \textit{P. vivax} outbreaks were predominately caused by relapsing cases. Targeted work with the soldiers including training, provision of parasitological testing, high-quality surveillance, ACD and rapid responses enabled Sri Lanka to end \textit{P. vivax} outbreaks and eliminate malaria. The basic principles for controlling \textit{P. vivax} malaria are the same as for \textit{P. falciparum}; however, many of the interventions used for controlling \textit{P. falciparum} malaria are not as effective against \textit{P. vivax}. Thus, in areas where these species coexist, the incidence of \textit{P. falciparum} has been seen to decrease more rapidly than \textit{P. vivax}, which may then persist as the principal cause of malaria and pose the main challenge to eliminating malaria. Successful control and elimination of \textit{P. vivax} malaria therefore call for specific, additional interventions, notably against the liver stage of the parasite or hypnozoites.

Vector control is critical in reducing transmission of \textit{P. vivax} malaria, because the \textit{P. vivax} gametocytes often appear before a patient develops symptoms and seeks treatment. Thus, transmission can continue despite the best efforts at prompt diagnosis and treatment of cases. It is particularly important to prevent infections in pregnant or lactating women and infants, because these populations cannot be treated with primaquine, and are thus more liable to relapse and to experience repeated episodes of malaria after the initial (primary) infection. Migrant populations also represent high-risk groups that require special attention. The greatest impact on vector control is likely to come from a mix of different strategies targeting different life stages, based on local vector abundance, ecology and behaviour.

Vector surveillance should collect information on the presence, abundance and behaviour of vector species, to develop and monitor the strategies for vector control and personal protection. Breeding sites and risk areas should be mapped, and susceptibility patterns of vectors to insecticides should be monitored. To maintain malaria-free status, vector surveillance activities should continue after malaria elimination has taken place, to monitor the receptivity of areas. An understanding of local human behaviour patterns will allow adaptation of strategies and application of tools that are both socially acceptable and effective.

The use of preventive chemotherapy of \textit{P. vivax} malaria may include a full therapeutic course of primaquine to the whole population at risk, to prevent relapses from the hypnozoite reservoir. The mass primaquine preventive treatment has been applied in areas where transmission is seasonal, to prevent onward transmission from relapses. Chloroquine prophylaxis may be given to prevent \textit{P. vivax} malaria in pregnant women in endemic areas where transmission is high. Chemoprophylaxis could be an important strategy in selected population subgroups in which glucose-6-phosphate dehydrogenase (G6PD) deficiency testing can be undertaken, such as the military, and in groups that have high exposures to malaria and present a high risk of introducing malaria into populations otherwise exposed to very low risk or no risk of infection. WHO does not currently recommend the use of mass primaquine preventive treatment as a general strategy.

\textit{P. vivax} frequently presents at a lower parasite density (typically 10 times lower) than \textit{P. falciparum}, making \textit{P. vivax} infections more difficult to detect with RDTs and microscopy. Thus, low-density, single-species infections with \textit{P. vivax} may remain undiagnosed and be recorded as testing negative, whereas mixed infections may be recorded as \textit{P. falciparum}. In order to diagnose \textit{P. vivax} infection, the parasitological confirmation by microscopy or by RDT is recommended in all patients suspected of malaria before a course of treatment is started. Efforts should be made to ensure access to diagnostic testing in the private sector as well as the public sector. The results of parasitological diagnosis should be available within a short period of time (less than 2 hours) of the patient presenting. In the absence or delay of parasitological diagnosis, patients with suspected severe malaria and other high-risk groups should be treated immediately on presumptive clinical grounds.

Where feasible, all patients should be tested for G6PD deficiency before administering primaquine. Testing for G6PD deficiency in \textit{P. vivax} malaria should be considered an integral part of ensuring universal access to diagnosis and treatment. G6PD testing should be incorporated into treatment guidelines, and services made available as tools are developed. Where no G6PD test is available, it is difficult to generalize the correct approach to patient management, because each individual assessment depends on the risk of adverse consequences and the potential benefits. In some circumstances, the
assessment will favour withholding primaquine, and in others it will favour starting radical treatment after educating the patient about the possible risks, and informing the patient that they should stop the drug if they become ill or their urine becomes red or black.

The treatment recommendations to prevent relapses of uncomplicated *P. vivax* malaria is primaquine for 14 days together with, or after schizonticidal treatment, having excluded G6PD deficiency. In order to minimize the risk of haemolysis health providers should obtain a past history or family history of haemolysis in response to medication. Counselling should be provided on the risks and how to recognize the earliest signs of haemolysis. Medication should be stopped if there is evidence of haemolysis. At the same time, NMPs should assess the prevalence of G6PD deficiency. If the risk is high or unknown, health providers should use an eight-week course of 0.75 mg/kg per week of primaquine. It is essential that cases adhere to a full 14-day treatment. There is evidence that when care is taken to explain the importance of the 14-day course of treatment and its potential associated risks, adherence is as high as it is with directly observed treatment or DOT.

Dr Premaratne concluded his presentation by noting that a major barrier to the successful control and elimination of *P. vivax* malaria is a lack of tools that address the specific biological challenges posed by the parasite. The development and deployment of new tools is also constrained by gaps in knowledge surrounding the biology and epidemiology of *P. vivax* malaria. Therefore, more effort is needed on supporting innovations on eliminating *P. vivax* malaria. However, there are also examples of countries that have managed to eliminate malaria with the existing tools and this is very much contextual. He concluded the presentation by referring participants to two WHO publications: *Control and Elimination of Plasmodium Vivax* and the *Guide to G6PD Deficiency Rapid Diagnostic Testing to Support P. vivax Radical Cure*.

During the discussion, Dr Premaratne noted that one of the major challenges with anti-relapse therapy is the duration of treatment regimes. The compliance for treatment for *P. vivax* can be improved by various methods including, directly observed treatment or one-on-one consultations. However, he noted that this depends on the particularities of the context and population.

2.5.3 Thailand: Experience in G6PD fluorescent spot tests and quantitative point-of-care test

Dr Darin Areechokchai, representative from the Thailand Division of Vector Borne Disease (DVBD), delivered an outline of Thailand’s experience in implementing G6PD fluorescent spot test (FST) and quantitative tests at point of care. The national treatment guidelines for uncomplicated *P. vivax* malaria cases is chloroquine for three days and a low dose of primaquine for 14 days. Individuals with a G6PD deficiency receive chloroquine for three days and eight weekly doses of primaquine. However, in practice, a G6PD test is not performed in most health facilities, particularly in rural areas, because of time and procedural constraints. Therefore, Thailand developed a modified G6PD FST for Thai health facilities. The modified FST uses a low-cost ultraviolet box developed by the DVBD as well as microtubes, two pasture pipettes, filter paper and a sterile loop for blood samples. It has proven to be cost and time effective and can be installed in health facilities in remote areas or used within communities. The modified G6PD FST takes 15 minutes to provide a result and has shown 100% accuracy. Notably, it is more accurate than methylene blue oxidation, which is a method most commonly used in Thai HCs.

The DVBD is conducting a feasibility study of the appropriate *P. vivax* radical cure with tafenoquine. The study findings include quantitative tests and will be used to determine the appropriate use of tafenoquine in line with G6PD activity. This will also provide guidance on the acceptable frequency of drug-induced acute haemolytic anaemia. Prior to the research activity, the DVBD delivered a series of training workshops and on-site trainings on the quantitative test for health workers and hospitals in Yala province (which has been selected as the study site). Upon completion of the training, the DVDB conducted assessments with hospital laboratories in Yala province on malaria diagnosis and quantitative G6PD testing. The DVBD also completed quality controls to ensure the testing procedures are being accurately implemented.
Dr Darin also noted the key challenges for FST and quantitative tests. FST and quantitative tests have a short shelf life and require low temperatures for storage, which increases the risk of expiration. In addition, most of the reagents expire particularly in the low malaria incidence areas. Commercial quantitative tests provide one code chip that is specific to 25 strips per box, and this confounds the ability to share the strips among health facilities. The high price of commercial quantitative tests also means they cannot be distributed to all health facilities. On the other hand, the DVBD’s FST is more cost effective, but it needs a good system for assay and distribution. To minimize this issue, the DVBD is planning to develop a lyophilized reagent for the FST to improve distribution in the country.

During the discussion, Dr Darin outlined that the DVBD’s FST has not been compared with the spectrophotometric assay because the latter is not commonly used at the provincial level. The FSTs are available to provincial hospitals, community hospitals at the district level and malaria clinics at the sub-district level. The quantitative tests are available to hospitals which will administer tafenoquine in Yala province.

2.6 Questions and answers

Dr Xiao led the question-and-answer session for the presenters from the second day. During this discussion, Dr Premaratne noted that Sri Lanka did not use seasonal malaria chemoprevention as a strategy during its elimination phase. When malaria was endemic, pregnant women in affected provinces were given chloroquine prophylaxis throughout the pregnancy. The only other prophylactic medication is provided (mefloquine) to armed forces conducting peace missions abroad. Individuals who are travelling abroad can also access this medication free of charge from the NMP if they are travelling to malaria-endemic regions. In order to prevent the reintroduction of malaria, Sri Lanka coordinates with the International Organization for Migration to ensure that health screening is provided to stranded Sri Lankan nationals when they return from endemic countries in Africa. Health screenings were also provided by the United Nations High Commissioner for Refugees for returning Sri Lankan nationals after the cessation of the conflict. Similarly, authorities also screen any apprehended irregular migrants who have entered Sri Lankan territory.

2.7 Session 4: Defining the steps required to maintain elimination: principle to prevent of re-establishment of malaria, role of quality assurance and reference laboratories in malaria elimination

2.7.1 Required steps to maintain elimination and principles to prevent the re-establishment of malaria

Dr Kim Lindblade outlined the steps required to maintain elimination and the principles to prevent the re-establishment of malaria. The concept of reintroduction of malaria and re-establishment of transmission are based on the definitions of introduced cases and indigenous cases. Reintroduction of malaria is defined as: introduced cases in a country or area where the disease had previously been eliminated. The re-establishment of malaria transmission is defined as sustained transmission, suggested by the occurrence of three or more indigenous malaria cases of the same species per year in the same focus, for three consecutive years. Malaria elimination is more likely to be sustained in some areas or countries. For example, where vectoral capacity is naturally low or decreased by improving socioeconomic factors, and in geographically isolated areas with limited cross-border population movement and importation of parasites. In the context of preventing the re-establishment of transmission, the concept of receptivity is related to the vector, while the risk of importation refers to the parasites. Receptivity is defined as the degree to which an ecosystem in a given area at a given time allows for the transmission of malaria. This definition means that receptivity varies across different areas and might change over time. This concept reflects vectoral capacity, the susceptibility of the human population to malaria infection and the strength of the health system, including malaria interventions. It also depends on vector susceptibility to particular species of Plasmodia, as some cannot be transmitted by certain species of anophelines. Ecological and climatic factors influence transmission, and these factors also influence receptivity.
The risk of importation is defined as the risk or potential influx of parasites via infected individuals or infected *Anopheles* mosquitoes. The infected individuals could be residents infected while visiting endemic areas or infected immigrants. Vector control should be implemented on the basis of continually updated information on the local situation. In the longer term, it is preferable to use interventions that durably reduce the risk of transmission in these areas, without repeated application of chemicals. Different interventions can be used in different areas based on the level of risk:

- In areas with zero risk of re-establishment of transmission, good case management, namely, quality assured diagnosis and treatment should be provided to patients, should cases occur.
- In areas with low receptivity and vulnerability, early case detection by a vigilant general health service, complemented by epidemiological investigation of every suspected local case and focus of origin may be sufficient provided that rapid and appropriate curative and preventive measures are in place.
- In areas with higher receptivity and vulnerability, it may be necessary to supplement these activities with ACD, which could be combined with other regular activities involving house visits.
- In localities that are highly receptive and have high risk of importation, it may be necessary to reduce receptivity during the transmission season by using timely, targeted vector control measures, including IRS and, where applicable, larvicide.

Indication of receptivity may be derived from a number of factors including the history of malaria, original endemicity, the vectoral capacity (before and after vector control), environmental changes, regression in health services and infectivity. The risk of importation can be determined through passive or active surveillance data, call detail records, participatory mapping or key informant interviews. These data can allow NMPs to conduct stratification and target strategies by maliariogenic potential. Dr Lindblade provided an overview of cross-border collaboration between Argentina and Bolivia to demonstrate strategies that were employed to support elimination efforts. The prevention of re-establishment must be sustainable and continue until malaria is eradicated. Multisectoral collaboration will be essential and it often requires some activities to be integrated into routine health services. A country’s subnational areas should be stratified by maliariogenic potential to permit tailoring of appropriate intervention packages. In addition, systems must be put in place to re-evaluate maliariogenic potential periodically and maintain health system quality and vigilance.

In the conclusion of the presentation, Dr Lindblade reiterated that once countries or areas have eliminated malaria, the programme must pivot to preventing re-establishment. Preventing re-establishment must continue until malaria is eradicated and systems need to be established to ensure the quality of PCD, case management, surveillance, cross-border activities and vector control.

2.8 Session 5: Overview of the process for obtaining malaria-free certification from WHO and role for a WHO Malaria Elimination Certification Panel (MECP)

2.8.1 Overview of the process for obtaining malaria-free certification from WHO

Dr Li Xiaohong, Technical Officer from the Global Malaria Programme, presented an overview of the process for obtaining malaria-free certification from WHO. The Organization was given the mandate by its Member States to certify a country’s malaria-free status. Before a country is entered in the official register, its malaria-free status must be certified by WHO. Certification of malaria elimination requires that local transmission is interrupted for all human malaria parasites. Although certification is granted by the WHO Director-General, the independent Malaria Elimination Certification Panel (MECP) advises WHO on certification. The MECP assesses whether malaria transmission been interrupted throughout the country, resulting in zero incidence of indigenous cases for at least the past three consecutive years. This requires proof that an adequate surveillance and response system to prevent re-establishment of indigenous transmission is fully functional throughout the territory of the country. The evidence used by the MECP to determine this includes documentation of a malaria programme, submission of the national elimination report, an independent evaluation mission and documentation from other sources.
The malaria documentation should include a combination of documents and records. The documents provide written information on policies, processes and procedures and consist of essential guidelines for all the operations and activities of a programme. The records are information captured during the process of performing, reporting or evaluating a malaria activity. Records can include databases, sample logs, records of supervision and foci registers.

The national elimination report is the main document used by the MECP to consider whether certification of malaria elimination should be granted to an applicant country. It is a narrative report that provides data and information to demonstrate that the country has met the two criteria for certification. This report is required to provide evidence to substantiate the claim of elimination and identify any potential gaps. WHO has developed a template that gives detailed instructions to countries on how to write a national elimination report.

It is important to note that certification of malaria elimination can be lost should malaria transmission be re-established. The minimum indication of possible re-establishment of transmission would be the occurrence of three or more indigenous malaria cases of the same species per year in the same focus, for three consecutive years. A careful national investigation and consultation with WHO will be required before a country loses its malaria-free certification.

Dr Li ended the presentation by referring participants to WHO’s Framework for Malaria Elimination and guidance document on preparing for certification of malaria elimination.

During the question-and-answer session, Dr Li noted that countries are encouraged to use online systems for data collection and these can be used as evidence of records to submit to WHO. The important element is to validate the data to avoid duplications and discrepancies. Considering COVID-19 restrictions, there have been some modifications in the WHO’s certification missions to include a combination of virtual and field assessments. This approach will be used in an upcoming certification mission to El Salvador.

3. CONCLUSIONS AND RECOMMENDATIONS

Dr Kelley thanked the GMS country participants, donors and partners for their comments and support. He encouraged country programmes to review the recommendations so that swift action can be taken in accelerating elimination.

3.1 Conclusions

- **Malaria elimination guidelines**: WHO is engaged in the process of reviewing evidence to inform recommendations for several possible malaria elimination strategies. At this stage, protocols for systematic reviews and meta-analysis of evidence are being developed. WHO will be combining existing guidelines on vector control and case management into a consolidated malaria guideline that will be published in January 2021. By June 2021, WHO will add new elimination recommendations to the consolidated malaria guideline.

- Elimination requires problem-solvers who seek to understand why transmission is occurring or continuing in a given area, and then respond appropriately. Focus investigations should be seen as “focused” investigations and used under certain circumstances when additional information is needed to inform the response.

- WHO is currently reviewing the evidence for three “reactive” strategies, including RACD and reactive focal drug administration, to determine whether they reduce transmission of malaria. Recommendations on these interventions will be available mid next year. In the meantime, WHO recommends that countries monitor the effectiveness of their reactive strategies to determine whether the approach is useful.
- **Malaria Elimination Audit Tool**: WHO developed the MEAT to help countries evaluate the implementation status of their elimination programme with respect to the guidance provided by WHO in the *Framework for Malaria Elimination*. Before this workshop, GMS countries completed a self-audit exercise to review their malaria programme implementation. Common areas of improvement were identified from the country self-assessments (see section 2.2.2).

- **Best practices in malaria elimination**: The GMS has developed examples of effective, localized best practices for malaria elimination. In light of the findings from the MEAT, countries should continue to review these models, conduct systematic evaluations of their effectiveness and consider how these could be adapted to their national contexts.

- **Malaria Surveillance Assessment Toolkit**: This is a single, standardized set of tools for malaria that aims to support the identification of key actionable gaps in malaria surveillance for any malaria-endemic setting. The elimination content of the toolkit and a web app are in development and will be available in 2021.

- **Case investigation, foci investigation and response**: The IMP advises the RSC and was established as part of the Regional Artemisinin Initiative 2 Elimination programme. The IMP noted that completing CIFIR can be time and labour intensive and costly. In settings with limited health staff, investigating even moderate numbers of cases is sometimes not feasible. Therefore, they recommend that the criteria for conducting CIFIR should be context specific and realistic. The yield of new cases from RACD across the GMS is low but might be improved by targeting certain groups. Screening with RDTs misses many infections. In addition, all documentation is time-consuming and not always fully used. Monitoring of RACD and CIFIR more broadly, including qualitative information, would help evaluate how to improve it in given settings.

- **Malaria stratification for elimination**: Stratification for elimination allows for focused, tailored responses by assigning specific intervention packages and deploying strategies to designated strata. This type of stratification is based on multiple evidence-based and relevant data-points. Intervention packages may include enhanced vector control and surveillance activities as well as systems that help identify, investigate and clear remaining foci through community-level strategies.

- **Plasmodium vivax elimination**: Many of the interventions used for malaria are not as effective against *P. vivax* as they are against *P. falciparum*. Successful control and elimination of *P. vivax* malaria, therefore, call for specific, additional interventions, especially against the hypnozoites.

- **Malaria surveillance in elimination settings**: Excellent surveillance and response are vital to achieving, documenting and maintaining malaria elimination. Good-quality PCD should serve as the backbone of any surveillance system. As countries progress towards elimination, the information obtained must become increasingly granular. The evaluation of surveillance systems for malaria elimination can identify actionable recommendations that countries can use.

- **Certification of malaria elimination**: Documentation of an effective malaria programme should start before elimination is achieved so that the evidence for certification is already prepared. Completing the process of certification of malaria elimination helps to strengthen the programme to prevent re-establishment of transmission.

3.2 Recommendations

3.2.1 Recommendations for Member States

Member States are encouraged to consider the following:

1) Clarify the objectives for the elements of surveillance as an intervention.

2) Transform malaria surveillance into a core intervention.

3) Continue to stratify the intensity of surveillance activities at the subnational level, depending on the number of malaria cases and the capacity of the response system.
4) Suspected case definition: Compare the sensitivity, specificity and ease of implementation of different suspected case definitions.

5) Case notification: Make malaria a mandatory, case-based notifiable disease.

6) Case detection: Ensure quality and optimal coverage of passive detection, including diagnosis, with quality assurance as a priority.

7) Case investigation: Focus on identifying the location of the case during the likely period of infection to define the “likely location of infection” where most of the response activities should take place to interrupt transmission.

8) When using innovative acceleration strategies, carefully monitor activities to generate evidence that the chosen method is effective.

9) Utilize the findings from the MEAT exercise completed for this workshop as a baseline. Complete the MEAT regularly to assess progress.

3.2.2 Recommendations for WHO

WHO is requested to consider the following:

1) Continue to technically support countries at all three levels (country, regional, headquarters) to achieve the agreed-upon GMS malaria elimination targets.

2) Provide recommendations on the targeting and use of vector control tools (LLIN, LLHINs, IRS, repellents, others) in the GMS.

3) Support countries to conduct surveillance assessments through defined protocols.

4) Provide guidance for countries on the practical classification of P. vivax cases.

5) Simplify some aspects of the audit tool and make self-assessment exercises more accessible. The tool could be modified by:
 a. Including questions on targeted interventions to accelerate elimination. WHO could revise the section on acceleration strategies to separate:
 i. population-wide acceleration of reduction of transmission
 ii. targeted acceleration of elimination including TDA, FSAT or chemoprevention (which is particularly relevant for the GMS).
 b. Providing further guidance and clarifications on completing the section relating to the prevention of re-establishment.
Programme agenda

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>Agenda</th>
<th>Speaker/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, 26 November 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opening Ceremony</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-13:10</td>
<td>Welcome address by WR, Cambodia</td>
<td>Dr Ailan Li (WHO)</td>
</tr>
<tr>
<td>13:10-13:25</td>
<td>Open Remarks by Director, Global Malaria Programme</td>
<td>Dr Pedro Alonso (WHO)</td>
</tr>
<tr>
<td>13:25-13:35</td>
<td>Objectives of the meeting and Overview of epidemiology in GMS Nomination of chair and group photo</td>
<td>Dr Luciano Tuseo (WHO)</td>
</tr>
</tbody>
</table>

Chairperson for Day 1: Dr Aung Thi, Director, Vector-Borne Disease Control, Myanmar

Session 1: Aligning country field actions with Framework of Malaria Elimination and the Global Technical Strategy for Malaria 2016-2030

| 13:35-14:05 | Framework of Malaria Elimination and the Global Technical Strategy for Malaria 2016-2030 | Dr Kimberly Ann Lindblade (WHO GMP) |
| 14:05-15:35 | Result from Malaria Elimination Audit Tool/country evaluation
- China
- Cambodia
- Lao PDR
- Myanmar
- Thailand
- Viet Nam | NIPD
CNM
CMPE
NMCP
DVBD
NIMPE |

| 15:35-15:45 | Coffee/tea break | |
| 15:45-16:45 | Share best practices in malaria elimination and prevent to reintroduction in GMS Countries
- Cambodia: Intensification Plan and Aggressive Approaches for *Pf* malaria elimination
- China: Maintain elimination and principle to prevent of re-establishment of malaria
- Lao PDR: Malaria outbreak monitoring
- Myanmar: Intensification plan and experience with outbreak response amidst COVID-19 pandemic | CNM
China CDC
CMPE
NMCP |

Session 2: Providing key principles underlying malaria elimination, which should be tailored to local contexts.

<p>| 16:45-17:00 | The sensitivity and specificity of surveillance system for malaria elimination | Dr Amanda Tiffany (WHO GMP) |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00-17:20</td>
<td>Surveillance System for Malaria Elimination in Cambodia</td>
<td>CNM (Dr Siv Sovannaroth)</td>
</tr>
<tr>
<td>17:20-18:00</td>
<td>Question and discussion</td>
<td></td>
</tr>
</tbody>
</table>

Friday, 27 November 2020

Chairperson for Day 2: Prof. Xiao Ning, Deputy Director of NIPD, China

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:00-13:15</td>
<td>Effectiveness of Reactive Case Detection and Mass Screening in GMS</td>
<td>RAI-RSC Independent Monitoring Panel – IMP (Dr Jim Tulloch)</td>
</tr>
</tbody>
</table>

Session 3: Interventions and activities suggested in areas of low transmission that are progressing to zero transmission (elimination).

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:15-13:45</td>
<td>Malaria Transmission and Stratification</td>
<td>Dr James Kelley</td>
</tr>
<tr>
<td>13:45-14:15</td>
<td>Plasmodium Vivax Elimination</td>
<td>Dr Risintha Gayan Premaratne</td>
</tr>
<tr>
<td>14:15-14:45</td>
<td>Thailand: Experience in G6PD FST and quantitative point of care test</td>
<td>DVBD (Dr Darin Areechokchai)</td>
</tr>
<tr>
<td>14:45-15:00</td>
<td>Question and answers</td>
<td></td>
</tr>
<tr>
<td>15:00-15:15</td>
<td>Coffee/tea break</td>
<td></td>
</tr>
</tbody>
</table>

Session 4: Defining the steps required to maintain elimination: principle to prevent re-establishment of malaria, role of quality assurance and reference laboratories in malaria elimination

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:15-16:15</td>
<td>Required steps to maintain elimination and principle to prevent re-establishment of malaria</td>
<td>Dr Kimberly Ann Lindblade (WHO GMP)</td>
</tr>
</tbody>
</table>

Session 5: An overview of the process for obtaining malaria-free certification from WHO and role for a WHO Malaria Elimination Certification Panel (MECP)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:15-17:00</td>
<td>Overview of the process for obtaining malaria-free certification from WHO</td>
<td>Dr Li Xiao Hong (WHO GMP)</td>
</tr>
</tbody>
</table>

Conclusion and closing

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00-17:15</td>
<td>Conclusions</td>
<td>Dr Luciano Tuseo</td>
</tr>
<tr>
<td>17:15-17:30</td>
<td>Closing Remarks</td>
<td>Prof. Xiao Ning</td>
</tr>
</tbody>
</table>
ANNEX 2

List of participants, temporary advisers, representatives, international partners and Secretariat

COUNTRY PARTICIPANTS

Dr Chea Huch, Deputy Director, National Centre for Entomology and Parasitology Control, N° 372, Preah Monivong, corner Street 322, Phnom Penh, Cambodia, email: huch.cnm@gmail.com

Prof. Lek Dysoley, Deputy Director, National Centre for Entomology and Parasitology Control, N° 372, Preah Monivong, corner Street 322, Phnom Penh, Cambodia, email: soleycn@gmail.com

Dr Siv Sovannaroth, Chief of Technical Bureau, National Centre for Entomology and Parasitology Control, N° 372, Preah Monivong, corner Street 322, Phnom Penh, Cambodia, email: sivsovannaroths@gmail.com

Professor Xiao Ning, Deputy Director of National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 6 Xiyuan Road, Simao District, Puer, Yunnan 665000, P.R. China, email: xiaoning@nipd.chinacdc.cn

Dr Xia Zhigui, Researcher/Chief of Malaria Department, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 6 Xiyuan Road, Simao District, Puer, Yunnan 665000, P.R. China, email: xiazg@nipd.chinacdc.cn

Dr Huang Fang, Researcher of National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 6 Xiyuan Road, Simao District, Puer, Yunnan 665000, P.R. China, email: huangfang@nipd.chinacdc.cn

Dr Yin Jianhai, Researcher of National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 6 Xiyuan Road, Simao District, Puer, Yunnan 665000, P.R. China, email: yinjh@nipd.chinacdc.cn

Dr Zhou Xingwu, Associate Researcher, Yunnan Institute of Parasitic Diseases, 6 Xiyuan Road, Simao District, Puer, Yunnan 665000, P.R. China, email: Zhou_xingwu@qq.com

Dr Boualam Khamlome, Deputy Director of CPME, Centre for Malaria, Parasitology and Entomology, N° 365, Unit 22, DongDok village, Xaythany district, Vientiane, Lao PDR, email: drboualamkhamlome@gmail.com

Dr Keobouphaphone Keochinda, Head of Malaria Diagnosis and Treatment, Centre for Malaria, Parasitology and Entomology, N° 365, Unit 22, DongDok village, Xaythany district, Vientiane, Lao PDR, email: Chinda07@gmail.com

Dr Sonsay Ounkham, M&E Technical Officer, Centre for Malaria, Parasitology and Entomology, N° 365, Unit 22, DongDok village, Xaythany district, Vientiane, Lao PDR, email: sonesayk@yahoo.com

Dr Phoutnalong Vilay, Vice Head, Malaria Surveillance Unit, Centre for Malaria, Parasitology and Entomology, N° 365, Unit 22, DongDok village, Xaythany district, Vientiane, Lao PDR, email: phoutnalongvilay@gmail.com

Dr Kay Thwel Han, Deputy Director, Department of Medical Research, Office No. 4, Nay Pyi Taw, Myanmar, email: drkaythwehan@yahoo.com
Dr Wint Phyo Than, Director, Programme Manager, Malaria, Office No. 4, Nay Pyi Taw, Myanmar, email: wintphyothan@gmail.com

Dr Moe Kyaw Myint, Director, Department of Medical Research (Pyin Oo Lwin Branch), Office No. 4, Nay Pyi Taw, Myanmar, email: dr.myintmoekyaw@gmail.com

Dr Aung Thi, Director VBDC, National Malaria Prevention and Control Program, Department of Public Health, Office No. 4, Nay Pyi Taw, Myanmar, email: aunghth08@gmail.com

Dr Kyawt Mon Win, Assistant Director, National Malaria Prevention and Control Program, Department of Public Health, Office No. 4, Nay Pyi Taw, Myanmar, email: kyawtmonwin@gmail.com

Dr Cheewanan Lertpiriyasuwat, Director, Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, 88/21 Taladkwan Sub-district, Muang District, Nonthaburi, Thailand, email: cheewananl@gmail.com

Dr Darin Areechokchai, Medical Physician, Expert Level, Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, 88/21 Taladkwan Sub-district, Muang District, Nonthaburi, Thailand, email: rinfetp@gmail.com

Dr Rungrawee Tipmontree, Public Health Technical Officer, Senior Professional Level, Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, 88/21 Taladkwan Sub-district, Muang District, Nonthaburi, Thailand, email: rtipmontree@gmail.com

Dr Nguyen Quang Thieu, Vice Director of NIMPE, National Institute of Malariology, Parasitology and Entomology, 245 Luong The Vinh Street, Nam Tu Liem District, Hanoi, Viet Nam, email: thieunq@gmail.com

Dr Ngo Duc Thang, Head of Epidemiology Department, National Institute of Malariology, Parasitology and Entomology, 245 Luong The Vinh Street, Nam Tu Liem District, Hanoi, Viet Nam, email: thangnimpevn@yahoo.com

Dr Huynh Hong Quang, Vice-Director, Institute of Malariology, Parasitology and Entomology, Quy Nhon, 483 Nguyen Thai Hoc street, Quy Nhon City, Binh Dinh province, Viet Nam, email: thangnimpevn@yahoo.com

Dr Nguyen Thi Yen, Head of Planning Department, Institute of Malariology, Parasitology and Entomology, 699 Tran Hung Dao, Ward 1, District 5, Ho Chi Minh City, Viet Nam, email: nguyenthuyen.tchc@gmail.com

Mr Tran Quang Vu, Head of Planning Department, Institute of Malariology, Parasitology and Entomology, 699 Tran Hung Dao, Ward 1, District 5, Ho Chi Minh City, Viet Nam, email: tranquangvu81@gmail.com

Ms Nguyen Thi Dinh, Head of Planning Department, Institute of Malariology, Parasitology and Entomology, 699 Tran Hung Dao, Ward 1, District 5, Ho Chi Minh City, Viet Nam, email: phamdinh178@gmail.com

Ms Nguyen Van Hoan, Head of Planning Department, Institute of Malariology, Parasitology and Entomology, 699 Tran Hung Dao, Ward 1, District 5, Ho Chi Minh City, Viet Nam, email: nguyenvanhoan248@yahoo.com
REPRESENTATIVES

Dr Jonathan Cox, Senior Program Officer, Malaria, Global Health Program, 440 5th Ave N., Seattle, WA 98109, Washington, USA, email: jonathan.cox@gatesfoundation.org

Dr Rida Slot, Project Management Specialist (Malaria, Office of Public Health and Education, USAID-Cambodia, American Embassy, #1, Street 96, Sangkat Wat Phnom, Khan Daun Penh, Phnom Penh, Cambodia, email: rslot@usaid.gov

Dr Michael Thigpen, Captain, US Public Health Service, Resident Advisor, Office of Public Health and Education, American Embassy, #1, Street 96, Sangkat Wat Phnom, Khan Daun Penh, Phnom Penh, Cambodia, email: mthigpen@usaid.gov

Dr Lenna Neat Arango, Resident Advisor, Office of Public Health and Education, American Embassy, #1, Street 96, Sangkat Wat Phnom, Khan Daun Penh, Phnom Penh, Cambodia, email: lneat@usaid.gov

Dr Saad El-Din Hassan, Resident Advisor, Office of Public Health and Education, American Embassy, #1, Street 96, Sangkat Wat Phnom, Khan Daun Penh, Phnom Penh, Cambodia, email: shassan@usaid.gov

Dr Nu Nu Khin, Project Management Specialist (Health Program Manager), U.S. President's Malaria Initiative (PMI), Global Health Security, American Embassy, 110 University Avenue Road, Yangon, Myanmar, email: nnkhin@usaid.gov

Dr Mark Maire, CDC Resident Advisor, Division of Parasitic Diseases and Malaria, Center for Global health, U.S. Centers for Disease Control and Prevention, American Embassy, 110 University Avenue Road, Yangon, Myanmar, email: mmaire@usaid.gov

Dr Gunawardena Dissanayake, USAID/PMI, U.S. President's Malaria Initiative (PMI), Global Health Security, Office of Public Health, USAID/ Burma, 110 University Avenue Road, Yangon, Myanmar, email: gdissanayake@usaid.gov

Dr David Sintasath, Resident Advisor for Malaria, Regional Development Mission for Asia (RDMA), Athenee Tower, 25th Floor, 63 Wireless Road, Bangkok, Thailand, email: dsintasath@usaid.gov

Ms Niparueradee Pinyajecerapat, Project Management Specialist (Public Health), Regional Development Mission for Asia (RDMA), Athenee Tower, 25th Floor, 63 Wireless Road, Bangkok, Thailand, email: npinyajecerapat@usaid.gov

Ms Izaskun Gaviria, Senior Fund Portfolio Manager, High Impact Asia Grant Management Division, Global Health Campus, Chemin du Pommier 40, 1218 Le Grand-Saconnex, Geneva, Switzerland, email: Izaskun.Gaviria@theglobalfund.org

Ms Estrella Lasry, Senior Malaria Advisor, High Impact Asia Grant Management Division, Global Health Campus, Chemin du Pommier 40, 1218 Le Grand-Saconnex, Geneva, Switzerland, email: Estrella.Lasry@theglobalfund.org

Ms Anna Sarkissian, Senior Program Officer, High Impact Asia Grant Management Division, Global Health Campus, Chemin du Pommier 40, 1218 Le Grand-Saconnex, Geneva, Switzerland, email: Anna.Sarkissian@theglobalfund.org

Ms Rosie Ameyan, Senior Program Officer, High Impact Asia Grant Management Division, Global Health Campus, Chemin du Pommier 40, 1218 Le Grand-Saconnex, Geneva, Switzerland, email: Rosie.Ameyan@theglobalfund.org
Ms Sandra Kuzmanovska, Senior Specialist, Public Health and M&E, High Impact Asia Grant Management Division, Global Health Campus, Chemin du Pommier 40, 1218 Le Grand-Saconnex, Geneva, Switzerland, email: Sandra.Kuzmanovska@theglobalfund.org

Dr Doungkamon Oeuvray, High Impact Asia Grant Management Division, Global Health Campus, Chemin du Pommier 40, 1218 Le Grand-Saconnex, Geneva, Switzerland, email: Doungkamon.Oeuvray@theglobalfund.org

Mr Soso Getsadze, Specialist, Health Products Management, High Impact Asia Grant Management Division, Global Health Campus, Chemin du Pommier 40, 1218 Le Grand-Saconnex, Geneva, Switzerland, email: Soso.Getsadze@theglobalfund.org

Dr Jim Tulloch, Independent Monitoring Panel (IMP) Chair, RAI-Regional Steering Committee Secretariat, email: jimtulloch09@gmail.com

Dr Sean Hewitt, Independent Monitoring Panel (IMP) Member, RAI-Regional Steering Committee Secretariat, email: sean.hewitt@vbc-consulting.com

Dr Jacqueline Deen, Independent Monitoring Panel (IMP) Member, RAI-Regional Steering Committee Secretariat, email: deen.jacqueline@gmail.com

Mr Matteo Dembech, Technical Officer, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeng Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: dembechm@who.int

Dr Faisal Mansoor, Head of the Programme Principal Recipient for The Global Fund, UNOPS, 12 (O)m Pyithu Lane, Township, Yangon, Myanmar, email: FaisalM@unops.org

Dr Eisa Hamid, Regional Senior Programme, M&E and Health Systems Specialist, UNOPS, 12 (O)m Pyithu Lane, Township, Yangon, Myanmar, email: eisah@unops.org

Dr Muhammad Farooq Sabawoon, Programme and M&E Specialist, UNOPS, Samdech Sothearos Blvd (3) Corner of Shihanouk (Street 274), Center 6th Floor Room 628 1230, Phnom Penh, Cambodia, email: farooqs@unops.org

Dr Naeem Durrani Mohammad, Senior Program Coordinator, UNOPS, Samdech Sothearos Blvd (3) Corner of Shihanouk (Street 274), Center 6th Floor Room 628 1230, Phnom Penh, Cambodia, email: naeemd@unops.org

Dr Yu Nandar Aung, Program and M&E Specialist, UNOPS, Office of the Resident Coordinator UN House, Lane Xang Avenue, PO Box 345, Vientiane, Lao PDR, email: YunandarA@unops.org

Dr Zaw Win Tun, Public Health Officer, UNOPS, 12 (O)m Pyithu Lane, Township, Yangon, Myanmar, email: zawwint@unops.org

Dr Min Min Zin, Monitoring and Evaluation Officer (Malaria), UNOPS, 12 (O)m Pyithu Lane, Township, Yangon, Myanmar, email: MinZ@unops.org

Dr Myat Yi Lwin, Programme Management Specialist, UNOPS, 12 (O)m Pyithu Lane, Township, Yangon, Myanmar, email: myatyil@unops.org

Mr Patrick Bergman, Team Leader/FP LFA team Myanmar and Lao PDR, Unit 02,04,06,08,10, Level 11, Tower 1, Myanmar Centre Tower, No 192, Kabar Aye Pagoda Road, Bahan Township, Yangon, Myanmar, email: patrick.jm.bergman@mm.pwc.com
Mr Jan de Jong, LFA Team Leader, 58C Sihanouk Blvd, Chamkar Mon, Phnom Penh, Cambodia, email: jan.dejong@pwc.com

Dr Orenn Ginzburg, Fund Director, Access to Health Fund, UNOPS Myanmar, 12 (O), Pyi Thu Lane, Mile, Mayangone Township, 11062, Yangon, Myanmar, email: orenng@unops.org

Dr Lei Lei Swe, Health Analyst, Access to Health Fund, UNOPS Myanmar, 12 (O), Pyi Thu Lane, Mile, Mayangone Township, 11062, Yangon, Myanmar, email: LeiLeiS@unops.org

Dr Masatoshi Nakamura, Consultant on Malaria Control, JICA, Sakura Tower, 339 Bo Gyoke Rd, Kyauktada Township, Yangon, Myanmar, email: mnakamura8823@gmail.com

Ms Cecilia Hugo, Executive Coordinator, ACT Malaria Foundation, 12th Floor Regus Centre, Times Plaza Bldg, Corner UN and Taft Avenue, Ermita, Manila, Philippines, email: cecil_hugo@actmalaria.net

Ms Inessa Ba, Regional Malaria Manager, CHAI, 7th Floor, No. 49 Kyun Taw Street, Sanchaung Township, Yangon, Myanmar, email: iba@clintonhealthaccess.org

Ms Evelyn Wong, Regional Case Management Advisor, CHAI, 7th Floor, No. 49 Kyun Taw Street, Sanchaung Township, Yangon, Myanmar, email: ewong@clintonhealthaccess.org

Dr Patrick Duigan, Regional Migration Health Adviser, IOM, Rajanakam Building, 18th floor, 183 South Sathorn Road, Bangkok, Thailand, email: pduigan@iom.int

Dr Montira Inkochasan, Regional Migration Health Programme Support Officer, Regional Migration Health Unit, Rajanakam Building, 18th floor, 183 South Sathorn Road, Bangkok, Thailand, email: minkochasan@iom.int

Dr Myo Set Aung, Director-Program Implementation, PR-GFATM, Save The Children International, 126/A Damahzedi Road, Bahan Township, Yangon, Myanmar, email: MyoSet.Aung@savethechildren.org

Dr Min Min Thein, Head of Malaria, PR-GFATM, Save The Children International, 126/A Damahzedi Road, Bahan Township, Yangon, Myanmar, email: minmin.thein@savethechildren.org

Ms Kathryn Rosecrans, Senior Manager, Strategic Information, PR-GFATM, Save The Children International, 126/A Damahzedi Road, Bahan Township, Yangon, Myanmar, email: kathryn.rosecrans@savethechildren.org

Dr Lorina McAdam, Director, GMS Elimination of Malaria through Surveillance (GEMS) Program, PSI, No.16 Shwe Gon Taing Street 4, Yangon, Myanmar, email: lmacadam@psi.org

Dr Kemi Tesfazghi, Program Director, GMS Elimination of Malaria through Surveillance (GEMS+), PSI, No.29, Street 334, P.O.Box 153, Boeung Keng Kang I, Chamkar Mon, Phnom Penh, Cambodia, email: ktesfazghi@psi.org

Mr Bram Piot, Senior Evidence & Monitoring Advisor, No.29, Street 334, P.O.Box 153, Boeung Keng Kang I, Chamkar Mon, Phnom Penh, Cambodia, email: bpiot@psi.org

Ms Amita Chebbi, Senior Director, APMEN, 11 Biopolis Way, #04-01/02 Helios, Singapore, Singapore, email: achebbi@aplma.org

Dr Wai Lwin, Health Adviser, British Embassy, 80 Strand Road, Yangon, Myanmar, email: W-Lwin@dfid.gov.uk
Dr Promboon Panitchpakdi, Executive Director, Raks Thai Foundation Office Bangkok: +662-265-6888, Bangkok, Thailand, email: promboon@raksthai.org

Mr Shreehari Acharya, Project Manager, Regional malaria CSO platform, GMS South East Asia Program, 87/2 Wireless Road, 36th Floor Office 18 CRC Tower, All seasons Place, Lumpini, Pathumwan, Bangkok, Thailand, email: ShreehariA@arcrelief.org

Dr Sai Nay Min Shein, Technical and Communication Coordinator, Regional Malaria CSO, 87/2 Wireless Road, 36th Floor Office 18 CRC Tower, All seasons Place, Lumpini, Pathumwan, Bangkok, Thailand, email: Sai.Shein@arcrelief.org

Dr James K Tibenderana, Technical Director, Malaria Consortium, The Green House, 244-254 Cambridge Health Road, London, E2 9DA, United Kingdom, email: j.tibenderana@malariaconsortium.org

Dr Arantxa Roca, Head of Surveillance, Monitoring and Evaluation, Malaria Consortium, London Development House, 56-64 Leonard Street, London, EC2A 4LT, United Kingdom, email: a.roca@malariaconsortium.org

Dr Htin Kyaw Thu, Technical Specialist, Malaria Consortium, The Green House, 244-254 Cambridge Health Road, London, E2 9DA, United Kingdom, email: h.thu@malariaconsortium.org

Dr Anne-Sophie Stratil, Epidemiologist, Malaria Consortium, The Green House, 244-254 Cambridge Health Road, London, E2 9DA, United Kingdom, email: a.stratil@malariaconsortium.org

Dr Prudence Hamade, Senior Technical Advisor, Malaria Consortium, The Green House, 244-254 Cambridge Health Road, London, E2 9DA, United Kingdom, email: p.hamade@malariaconsortium.org

Dr Mark Debackere, Malaria Advisor, Malaria Consortium Cambodia, House #91, St. 95, Boeung Trabek Chamkarmon, Phnom Penh, Cambodia, email: m.debackere@malariaconsortium.org

Dr Lieven Vernaeye, Programme Manager, Malaria Consortium Cambodia, House #91, St. 95, Boeung Trabek Chamkarmon, Phnom Penh, Cambodia, email: l.vernaeye@malariaconsortium.org

Dr Louis da Gama, Director, Princess Of Africa Foundation, email: ldagama@gmail.com

Dr Frank Smithuis, Associate Professor Oxford University, Director, Medical Action Myanmar (MAM), Myanmar Oxford Clinical Research Unit (MOCRU), Yangon, Myanmar, email: frank.m.smithuis@gmail.com

Prof. Arjen M. Dondorp, Deputy Director and Head, Global Fund Regional Artemisinin Resistance Initiative’s Regional Steering Committee, Bangkok, Thailand, email: arjen@tropmedres.ac

Dr Thet Myo Tun, Programme Manager, ARC, email: ThetT@arcrelief.org

Dr Spike Nowak, Regional Advisor, PATH, PO Box 900922, Seattle, WA 98109 USA, email: snowak@path.org

Dr Nhu Nguyen, Director of Global Health Security, PATH, #1101, 11th Floor, Hanoi Towers, 49 Hai Ba Trung Hoan Kiem District, Hanoi, Viet Nam, email: nnguyen2@path.org

Dr Kishori Mahat, Director of Infectious Diseases, PATH, Yangon, Myanmar, email: kmahat@path.org
Dr Caroline Lynch, Regional Advisor- Asia Pacific, MMV, Bangkok, Thailand, email: lynchc-consultants@mmv.org

Dr Iwagami Moritoshi, Parasitology Laboratory, Institute Pasteur, Samsenthai Road, Ban Kao-Gnot, Sisattanak District, P.O. Box 3560, Vientiane, Lao PDR, email: iwagami@hotmail.com

Dr Patrice Piola, Head of Epidemiology Unit, Institute Pasteur, 5 Preah Monivong Blvd (93), Phnom Penh, Cambodia, email: ppiola@pasteur-kh.org

Dr Benoit Witkowski, Head of Malaria Molecular Epidemiology Unit, Institute Pasteur, 5 Preah Monivong Blvd (93), Phnom Penh, Cambodia, email: bwitkowski@pasteur-kh.org

Dr Jean Popovici, Institute Pasteur, 5 Preah Monivong Blvd (93), Phnom Penh, Cambodia, email: jpopovici@pasteur-kh.org

Dr Julie Tartaggia, Burnet Institute, 226 4th Floor, U Wisara Road,Wizaya Plaza, Bahan Township 11201, Yangon, Myanmar, email: julie.tartaggia@burnet.edu.au

Dr Phone Myint Win, Country Representative, Burnet Institute, 226 4th Floor, U Wisara Road,Wizaya Plaza, Bahan Township 11201, Yangon, Myanmar, email: phonemyint.win@burnet.edu.au

Dr Win Han Oo, Senior Program Manager (Health Security), Burnet Institute, 226 4th Floor, U Wisara Road,Wizaya Plaza, Bahan Township 11201, Yangon, Myanmar, email: WinHan.Oo@burnet.edu.au

Prof Freya Fowkes, Deputy Program Director, Maternal, Child and Adolescent Health, Malaria and Infectious Disease Epidemiology, NHMRC Fellow, 85 Commercial Road, Melbourne, VIC 3004, Australia, email: freya.fowkes@burnet.edu.au

Dr Win Htike), Burnet Institute, 226 4th Floor, U Wisara Road,Wizaya Plaza, Bahan Township 11201, Yangon, Myanmar, email: win.htike@burnet.edu.au

Mr Thomas Cai, Country Director, HPA, #46, Street 103, Sangkat Phsar Doem Thkov, Khan Chamcarmorn, Phnom Penh, Cambodia, email: t.cai@healthpovertyaction.org

Mr Bangyuan Wang, HPA, #46, Street 103, Sangkat Phsar Doem Thkov, Khan Chamcarmorn, Phnom Penh, Cambodia, email: B.Wang@healthpovertyaction.org

Mr Sovanda Lun, HPA, #46, Street 103, Sangkat Phsar Doem Thkov, Khan Chamcarmorn, Phnom Penh, Cambodia, email: s.lun@healthpovertyaction.org

Dr Chris Cotter, Senior Research Manager, Surveillance Research & Regional Elimination, Asia Pacific Malaria Elimination Initiative, Global Health Group, Institute of Global Health Sciences, 550 16th Street, 3rd Floor, Box 1224, San Francisco, USA, email: Chris.Cotter@ucsf.edu

Dr Adam Bennett, Institute of Global Health Sciences, 550 16th Street, 3rd Floor, Box 1224, San Francisco, USA, email: Adam.Bennett@ucsf.edu

Dr Timothy P Finn, Institute of Global Health Sciences, 550 16th Street, 3rd Floor, Box 1224, San Francisco, USA, email: Timothy.Finn@ucsf.edu

Dr Ivo Mueller, WEHI, 1G, Royal Parade, Parkville VIC 3052, Melbourne, Australia, email: mueller@wehi.edu.au
Dr Soy Ty Kheang, Director, HSD, VTRUST Building # 10 (4th floor), Street 109, Mittapheap Sangkat, Prampir Meakkakra Khan, Phnom Penh, Cambodia, email: ksoyty@hsdcambodia.org

Ms Srey Sophy, HSD, VTRUST Building # 10 (4th floor), Street 109, Mittapheap Sangkat, Prampir Meakkakra Khan, Phnom Penh, Cambodia, email: ssophy@hsdcambodia.org

Prof Shunmay Yeung, Technical expert from LSHTM, Keppel St, Bloomsbury, London WC1E 7HT, London, United Kingdom, email: Shunmay.Yeung@lshtm.ac.uk

Prof Richard J Maude, Head of Epidemiology Department, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, email: Richard@tropmedres.ac

Dr Lorenz von Seidlein, Associate Professor, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, email: Lorenz@tropmedres.ac

Dr Tom Peto, Co-investigator, Faculty of Tropical Medicine, Mahidol University, (Viet Nam based), email: Tom@tropmedres.ac

Dr James Callery Co-investigator, Faculty of Tropical Medicine, Mahidol University, (Viet Nam based), email: James.C@tropmedres.ac

Dr Rupam Tripura, Co-investigator, Faculty of Tropical Medicine, Mahidol University, (Viet Nam based), email: Rupam@tropmedres.ac

Prof Francois Nosten, Director, SMRU, Mahidol University, 68/30 Ban Toong Road #46, Mae Sot, Tak, Thailand, email: francois@tropmedres.ac

Dr Cindy Chu, Clinical Researcher, Shoklo Malaria Research Unit, Mahidol University, 68/30 Ban Toong Road #46, Mae Sot, Tak, Thailand, email: cchumd@gmail.com

Dr Khin Maung Lwin, Country Representative, Shoklo Malaria Research Unit, Mahidol University, 68/30 Ban Toong Road #46, Mae Sot, Tak, Thailand, email: drkhin_mg_lwin@shoklo-unit.com

Dr Aung Myint Thu, Medical Coordinator, Shoklo Malaria Research Unit, Mahidol University, 68/30 Ban Toong Road #46, Mae Sot, Tak, Thailand, email: aungmyinthu@shoklo-unit.com

Dr Florian Girond, Shoklo Malaria Research Unit, Mahidol University, 68/30 Ban Toong Road #46, Mae Sot, Tak, Thailand, email: florian.girond@gmail.com

Dr Vincent Herbreteau, Shoklo Malaria Research Unit, Mahidol University, 68/30 Ban Toong Road #46, Mae Sot, Tak, Thailand, email: vincent.herbreteau@ird.fr

Dr Jordi Landier, Shoklo Malaria Research Unit, Mahidol University, 68/30 Ban Toong Road #46, Mae Sot, Tak, Thailand, email: jordi.landier@ird.fr

Dr Mariusz Wojnarski, Head of Clinical Operations, Assistant Chief, Department of Bacterial and Parasitic Diseases, AFRIMS, 15/6 Rajvithi Rd., Rajthevee, Phayathai, Bangkok, Thailand, email: Mariusz.Wojnarski.mil@afirms.org

Dr Norman C. Waters, Colonel, Medical Service Corps Chief, Department of Bacterial and Parasitic Diseases, AFRIMS, 15/6 Rajvithi Rd., Rajthevee, Phayathai, Bangkok, Thailand, email: Norman.Waters.mil@afirms.org

Dr Kobylinski, Kevin, AFRIMS, 15/6 Rajvithi Rd., Rajthevee, Phayathai, Bangkok, Thailand, email: Kevin.Kobylinski.gst@afirms.org
Dr Han Win Htat, Deputy Country Director, PSI, No.16 Shwe Gon Taing Street 4, Yangon, Myanmar, email: hwhtat@psimyanmar.org

Dr Si Thu Thein, Senior Director, Strategic Information Division, PSI, No.16 Shwe Gon Taing Street 4, Yangon, Myanmar, email: stthein@psimyanmar.org

Dr Khaing Wai Wai Phyo, Program Manager, PSI, No.16 Shwe Gon Taing Street 4, Yangon, Myanmar, email: kwwphyo@psimyanmar.org

Dr Sharon Thangadurai, Chief of Party, USAID Contractor, Building #31, St 352, Sangkat Beugkengkang 1, Khan Chankamon, Phnom Penh, Cambodia, email: sthangadurai@urc-chs.com

Dr Nguon Sokomar, Senior technical Specialist, Building #31, St 352, Sangkat Beugkengkang 1 Khan Chankamon, Phnom Penh, Cambodia, email: nsokomar@urc-chs.com

Prof Ric Price, Professor of Global Health, Global and Tropical Health Division, Menzies School Of Health Research, GPO Box 41096, Casuarina, Darwin, Australia, email: ric.price@menzies.edu.au

Dr Benedikt Ley, Senior Researcher, Menzies School Of Health Research, GPO Box 41096, Casuarina, Darwin, Australia, email: benedikt.ley@menzies.edu.au

Dr Kamala Thriemer, Senior Researcher, Menzies School Of Health Research, GPO Box 41096, Casuarina, Darwin, Australia, email: kamala.ley-thriemer@menzies.edu.au

Ms Christel van den Boogaard, CQI coordinator-Tuberculosis and Malaria, Menzies School Of Health Research, GPO Box 41096, Casuarina, Darwin, Australia, email: Christel.vandenBoogaard@menzies.edu.au

Dr Emily Groves, Researcher, Menzies School Of Health Research, GPO Box 41096, Casuarina, Darwin, Australia, email: emily.groves@menzies.edu.au

Ms Varunika Ruwanpura, Menzies School Of Health Research, GPO Box 41096, Casuarina, Darwin, Australia, email: varunika.ruwanpura@menzies.edu.au

SECRETARIAT

Dr Pedro Alonso, Director, Global Malaria Programme, WHO, 20 Avenue Appia, Geneva, Switzerland, email: aponsop@who.int

Dr Pascal Ringwald, Coordinator, Drug Resistance and containment, Global Malaria Programme, WHO, 20 Avenue Appia, Geneva, Switzerland, email: ringwaldp@who.int

Ms Charlotte Rasmussen, Technical Officer, Global Malaria Programme, WHO, 20 Avenue Appia, Geneva, Switzerland, email: rasmussenc@who.int

Dr Kimberly Ann Lindblade, Team Leader, Global Malaria Programme, WHO, 20 Avenue Appia, Geneva, Switzerland, email: lindbladek@who.int

Dr Amanda Tiffany, Epidemiologist, Global Malaria Programme, WHO, 20 Avenue Appia, Geneva, Switzerland, email: tiffanya@who.int

Dr Li Xiao Hong, Technical Officer, Global Malaria Programme, WHO, 20 Avenue Appia, Geneva, Switzerland, email: lixia@who.int
Dr Andrea Bosman, Coordinator, Global Malaria Programme, WHO, 20 Avenue Appia, Geneva, Switzerland, email: bosmana@who.int

Dr James Kelley, Technical Officer, Regional Office for the Western Pacific, WHO, P.O. Box 2932, Manilla, Philippines, email: kelleyj@who.int

Dr Neena Valecha, Regional Advisor, Malaria, Department of Communicable Diseases, Regional Office For South East Asia, WHO, I.P. Estate, Mahatama Gandhi Marg, 110002, New Delhi, India, email: valechan@who.int

Dr Risintha Gayan Premaratne, Technical Officer, Department of Communicable Diseases, Regional Office For South East Asia, WHO, I.P. Estate, Mahatama Gandhi Marg, 110002, New Delhi, India, email: premaratner@who.int

Dr Maria Bustos, Technical Officer, Malaria, WHO, 88/20 Permanent Secretary Building, Ministry of Public Health Tiwanon Road 11000, Nonthaburi, Thailand, email: bustosm@who.int

Dr Deyer Gopinath, Medical Officer, Malaria, WHO, 88/20 Permanent Secretary Building, Ministry of Public Health Tiwanon Road 11000, Nonthaburi, Thailand, email: gopinathd@who.int

Dr Badri Thapa, Scientist (Malaria Control), WHO, No. 403 (A1), Shwe Taung Kyar Street, Bahan Township, Yangon, Myanmar, email: THAPAB@who.int

Dr Matthew Shortus, Medical Officer, WHO, 125 Saphanthong Road, Unit 5 Ban Saphangthongtai, Sisattanak District, Vientiane, Lao PDR, email: shortusm@who.int

Dr Chitsavang Chanthavisouk, Technical Officer WHO, 125 Saphanthong Road, Unit 5 Ban Saphangthongtai, Sisattanak District, Vientiane, Lao PDR, email: chanthavisoukc@who.int

Dr Tran Cong Dai, Technical Officer, Malaria, WHO, 63 Tran Hung Dao Street, Hoan Kiem District, Ha Noi, Viet Nam, email: TranCongD@who.int

Ms Ding Wei, National Professional Officer, WHO, 401 Dongwai Diplomatic Office Building 23, Dongzhimenwai Dajie Chaoyang District, Beijing, China, email: dingw@who.int

Dr Luciano Tuseo, Mekong Malaria Elimination programme Hub Coordinator, Mekong Malaria Elimination programme, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: tuseol@who.int

Mr Rady Try, Technical Officer (Database Manager), Mekong Malaria Elimination programme, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: tryr@who.int

Ms Elodie Kiriana Jacoby, Consultant, Communication and Programme Management Officer, Mekong Malaria Elimination programme, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: jacobye@who.int

Ms Sreyleak Kheng, Assistant, Mekong Malaria Elimination programme, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: khengs@who.int

Dr Jean-olivier Guitran, Medical Officer, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: guintranj@who.int
Ms Giulia Manzoni, Consultant, Project Specialist, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: giulia.manzoniwho@gmail.com

Ms Ellen Dahl, Consultant, Epidemiologist, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: ellendahlwho@gmail.com

Ms Guddu Kaur, Consultant, Epidemiologist, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: guddu.kaur.who@gmail.com

Ms Céline Christiansen-Jucht, Consultant, Epidemiologist, WHO, No. 61-64, Preah Norodom Blvd. (corner St. 306), Sangkat Boeung Keng Kang I, Khan Chamkamorn, Phnom Penh, Cambodia, email: celinechrjucht.who@gmail.com