Diagnostic methods for the control of strongyloidiasis

Virtual meeting, 29 September 2020
Diagnostic methods for the control of strongyloidiasis

Virtual meeting, 29 September 2020
Contents

1 Background
2 Objective of the meeting
3 Presentations
 3.1 Molecular diagnostics
 3.2 Serological diagnostics
 3.3 Coprological methods
 3.4 Panel discussion
 3.5 General discussion
4 Summary of considerations and decisions
5 Next steps
References
Annexes
 Agenda
 List of participants
 Presentations
A meeting on diagnostic methods for the control of strongyloidiasis was organized by the World Health Organization (WHO) Department of Control of Neglected Tropical Diseases (Geneva, Switzerland) in collaboration with the WHO Collaborating Center on strongyloidiasis and other neglected tropical diseases (Negrar, Italy) and the Federation University (Melbourne, Australia). Children Without Worms (Decatur (GA), USA) provided logistic support. The agenda is attached as Annex 1 and the list of participants as Annex 2.

Dr Zeno Bisoffi and Dr Antonio Montresor welcomed the participants and reported that there were no conflicts of interest to be declared by participants.

In his opening presentation, Dr Montresor shared the good progress in preventive chemotherapy coverage for *Ascaris lumbricoides*, *Trichuris trichiura* and hookworms. The main reason why no specific activities for *Strongyloides stercoralis* had been implemented so far was because of the poor availability of ivermectin outside the context of elimination programmes for lymphatic filariasis and onchocerciasis. He expects this to change soon, as two generic formulations of ivermectin are in the prequalification process with WHO. Moreover, strongyloidiasis is now included in the WHO road map for neglected tropical diseases for 2021−2030 as an additional soil-transmitted helminth parasite targeted for control.

WHO hopes to enable rapid expansion of strongyloidiasis control programmes using the existing infrastructure for other neglected tropical disease (NTD) control or elimination programmes, as was done to add schistosomiasis.

The preliminary steps for implementing a strongyloidiasis control programme were shared, namely:

- gain knowledge of the epidemiology of *S. stercoralis*;
- conduct a field evaluation of the proposed intervention. Pilot interventions should evaluate the impact and feasibility of the proposed strategy (a pilot study is planned in Ethiopia); and
- find a standard diagnostic tool to enable assessment of the public health burden of the disease and exchange of information among different research and control groups; for many countries there is no epidemiological information at all, so we need recommendations for assessment of baseline prevalence.
2 Objective of the meeting

The meeting addressed the last key area, that is, determining the best method or combination of diagnostic methods for a control programme for *S. stercoralis* infections in humans.

Dr Montresor’s presentation highlighted that while there is currently no “gold standard” for the diagnosis of *S. stercoralis*, there is a felt urgency to optimize diagnostic regimens that are currently available, and in the context of population-based testing (as opposed to individual focused diagnostics in clinical settings). In other words, the diagnostic test(s) should have good accuracy, but we should remember that in public health we do not aim at individual diagnosis: rather, we need a tool that should help to estimate the prevalence in a population (see *Annex 3: presentation 1*).
After the meeting was opened and its objective was clarified the invited experts presented their perspectives and analysis of each category of currently available diagnostic tests.

3.1 Molecular diagnostics

Dr Richard Bradbury presented an overview of molecular diagnostics, the highlights of which are summarized below (see also Annex 3: presentation 2).

1. We should consider not only the predictive values of the tests but also their ease of use for field deployment.

2. Many molecular tests have not been clinically validated. For instance, two loop-mediated isothermal amplification (LAMP) tests and a real-time polymerase chain reaction (PCR) by Pilotte have been implemented, but all were compared only to Verweij’s PCR. None has been widely validated in population-based settings, which is a limitation.

 (a) LAMP (Watts) offers good analytical sensitivity but is not yet fully clinically validated; LAMP (Fernández-Soto) is promising but not yet widely validated, though an early version has been used in field trials in Angola.

3. The evaluation of test sensitivity depends on the method used for comparison (only the Verweij real-time PCR has been tested against high sensitivity and specificity parasitological methods such as Baermann and agar plate culture). Several studies have evaluated the diagnostic sensitivity and specificity of the Verweij PCR using either the agar plate culture or the Baermann sedimentation as the reference standard. These resulted in a different range of sensitivity results between 17.4% and 97.2%, the majority reporting a sensitivity of between 84.7% and 97.2%.

4. A factor in the wide variation in the reported sensitivity of Verweij’s real-time PCR across different studies may be the use of non-standardized DNA extraction and PCR reagents and standard operating procedures.

5. It is crucial to standardize the DNA extraction method to avoid variable and unreliable results. A specific extraction should be recommended along with the PCR test. **Quality control schemes become critical** for programme-wide implementation, so results are comparable across laboratories. **Caution:** Using a single DNA extraction method for all laboratories will be challenging as each laboratory will likely have a preferred extraction method already employed in their laboratory.
6. To avoid false-negative results due to DNA inhibitors, an internal DNA extraction/inhibition control is recommended. This would require adding a DNA extraction/inhibition control LAMP, so two LAMPs, or a multiplex PCR approach with both the *S. stercoralis* target and an extraction/inhibition control target. The group of Fernández-Soto tested LAMP in school-aged children in Angola (unpublished data), which demonstrated good accuracy. LAMP has advantages over PCR for use at district laboratory level. A hand-held LAMP device has also been developed.

7. LAMP can be used in a district level laboratory with only a water bath or heat block, while real-time PCR is only available at the reference laboratory level as it requires a real-time PCR cycler, and specialized capacity and competencies are not available in every country.

8. Cost is a factor to be considered for molecular diagnostics. In a work by Sultana, the Qiagen PowerSoil kit was found to be the optimal extraction method; unfortunately, it is expensive.

3.2 Serological diagnostics

Professor Siddhartha Mahanty presented an overview of the available serological tests and their advantages and disadvantages for public health diagnostic use in a strongyloidiasis control programme. The key points are summarized below (see also Annex 3: presentation 3).

1. Serology offers high sensitivity, but specificity is less assured. Additionally, there are concerns about cross-reactivity. Professor Mahanty showed the accuracy of various assays (see presentation 3).

2. There is a question about whether there has been any independent assessment of quality assurance of serological diagnostics. This assessment is needed before deployment of currently used diagnostic assays.

3. Serological methods should be considered in the context of the different phases of the immunological response, with immunoglobulins developing at different stages of an infection (unlike in most other parasitic infections, post-treatment reversion of seropositivity has been demonstrated for strongyloidiasis, so serology can be used for response monitoring in target populations following treatment).

4. Serology has several advantages for deployment in the field: easy to establish and maintain in small laboratories; high sensitivity and specificity that is acceptable, albeit not optimal; high throughput testing is possible; point-of-care testing is possible; it can measure the effect of treatment.

5. There are two types of target antigens in use at present for serological diagnosis: (i) extracts of the larval stages of *S. stercoralis* or related parasites (referred to as “crude antigens”) or (ii) *S. stercoralis* genetically engineered proteins (referred to as “recombinant antigens”). The assays can be performed on samples of serum and blood spots (the latter is particularly attractive for use in control programmes).
Recently, lateral flow tests have been implemented, and they would be ideal for control programmes but still need to be validated.

6. Issues are with diagnostic confidence with serological assays: (i) diagnostic accuracy is hampered by the lack of a gold standard for diagnosis; and (ii) accuracy depends on the antigen used; there is trade-off between higher sensitivity and acceptable specificity among available assays.

3.3 Coprological methods

Dr Alejandro Krolewiecki presented the various coprological diagnostic methods available, their comparison with the current one used for other soil-transmitted helminth parasites (Kato−Katz) and the advantages and disadvantages. These are summarized below (*Annex 3: presentation 4*).

1. Diagnostic tools utilized for other control programmes are not totally accurate (for example, Kato−Katz has only 64% sensitivity for *A. s. lumbricoides*) but nevertheless allow a proper estimation of baseline prevalence and proper monitoring of the control programme.

2. For *S. stercoralis*, Kato−Katz is not suitable, and neither is FLOTAC, direct smear or McMaster (they all have very low sensitivity). Could Baermann be done initially for a basic assessment in view of integration with other programmes for control of soil-transmitted helminthiases?

3. Koga agar plate and Baermann have better sensitivity, but they do not permit quantification and need fresh stool. However, quantification of larval load is not needed for strongyloidiasis control in public health; it is more for clinical use for individuals. It can be used for baseline monitoring and evaluation purposes.

4. Harmonization of protocols is required for Baermann and agar plate culture: there are different protocols under the same name, resulting in incomparable results raising quality control issues.

5. The agar plate method takes a long time, and the Baermann method requires a large space in the laboratory. However, a modified Baermann method showed at least equal sensitivity than a traditional one and is less demanding in terms of laboratory space.

6. Key aspects to be considered: accuracy, reproducibility, cost, time and laboratory space. Sensitivity is not the key issue for a control programme. Stools are ideal for integration with other soil-transmitted helminthiases but inconvenient for other NTDs.

3.4 Panel discussion

Dr Montresor asked the panellists for their opinion about the best diagnostic tool to be used. Their responses are summarized below.
R. Bradbury considers the NIE enzyme-linked immunosorbent assay (ELISA) to be the most efficient method for population screening for the following reasons:

- a finger-prick is easily obtained;
- the test it is relatively simple to perform;
- recombinant antigen can be easily produced at large scale, enabling production of the needed quantity of kits for a control programme of global scale;
- prices can be probably negotiated for large quantities;
- equipment for conducting ELISA tests is available in all endemic countries, even if not always at very peripheral level; and
- additional faecal tests may be added to this in specific areas according to the programme or epidemiological situation.

Z. Bisoffi favours serology plus a faecal test because:

- serology is sensitive and good for assessment, but once a low prevalence is reached the lower specificity of serology would find a high proportion of false-positives;
- there is still not enough evidence for identifying the best serological method. NIE has advantages (supply for instance) but there are no studies supporting its accuracy as high;
- the NIE luciferase immunoprecipitation system is better in terms of accuracy, but the technology is not affordable for in-field evaluation;
- modified Baermann could play a role;
- collection of faeces for PCR could be implemented, and they could both be tested in a reference laboratory.

For S. Mahanty:

- serology alone can likely accomplish the goals of estimating prevalence and monitoring intervention. However, because of issues with specificity, once low prevalence is achieved, it should be combined with a direct parasitological diagnostic method (such as molecular diagnosis).

According to A. Krolewiecki:

- integration of S. stercoralis testing may be more efficient and feasible with NTDs other than soil-transmitted helminthiases as serology offers that option (the collection of serum on filter paper is already done for other NTDs);
- NIE ELISA seems the best candidate but others can be considered;
- simplicity and availability to upscale the tests should be kept in mind.
Dora Buonfrate presented three possible diagnostic scenarios for the participants to choose which would be most applicable and accurately predictive for a population-based control programme (Fig. 1).

Fig. 1. Suggested scenarios for *S. stercoralis* diagnostic approaches

Population diagnostic approaches: scenarios

1. **OPTION 1**
 - Baseline assessment: Faecal test (random sample)
 - “Regular” monitoring: Faecal test (random sample)
 - When prevalence close to/under threshold for preventive chemotherapy: Faecal test (random sample)

2. **OPTION 2**
 - Baseline assessment: Serology (random sample)
 - “Regular” monitoring: Serology (random sample)
 - When prevalence close to/under threshold for preventive chemotherapy: Serology (random sample)

3. **OPTION 3**
 - Baseline assessment: Serology (random sample) + Faecal test
 - “Regular” monitoring: Serology (random sample) + Faecal test
 - When prevalence close to/under threshold for preventive chemotherapy: Faecal test

4. **OPTION 4**
 - Baseline assessment: Serology (random sample) + Faecal test
 - “Regular” monitoring: Serology (random sample) + Faecal test
 - When prevalence close to/under threshold for preventive chemotherapy: Faecal test

3.5 General discussion

The following points emerged from the general discussion.

1. **Serology may be the best initial approach, with additional tests added in later phases of the control programme.** However, no single serological test was identified clearly as outstanding in accuracy.

2. **Additional faecal testing can be added** to a smaller sample of serological tests for increased accuracy. A combination of methods would be important for the comparison of prevalence at baseline and later on. Programmes need more sensitive tests when prevalence gets low. However, a pragmatic approach is essential, and we do not need a perfect test initially. Also, screening more people may be more important than having two tests (higher accuracy) on a smaller sample. **A flexible approach, with a minimum standard** that is cognizant of cost and feasibility should be recommended. It should have flexibility and comparability to include additional technologies later according to the programme phases and diagnostic advances.

3. **Samples collected for other NTD programs could be tested for *S. stercoralis* also.**
 (a) Integration with other NTD programmes is important.
(b) Can consider collecting samples for multi-NTD diagnostics and, possibly,
(c) Existing bio-banks could be utilized to assess *S. stercoralis*. This will help the
investment case.

4. Quality control for DNA extraction and PCR and external quality assurance services
are essential areas for investment to support any diagnostic strategy. A preliminary
step to compare different methods and compare results across laboratories will be
highly advisable.

5. While selecting the recommended diagnostic approach, the threshold for action (for
interventions by countries) should be considered. Diagnostic approaches should be
linked to action thresholds.

6. Another approach to consider is CASCADE (available from the World
Gastroenterological Organizaton): based on availability of resources and programme
phases, different combination of tests can be applied.

7. An independent assessment of the quality of different serological tests should be
conducted.

8. There are opportunities to assess impact indirectly where ivermectin was used for
other purposes.

Dr Montresor closed the meeting by thanking all the participants from across the many
time zones. He will share the draft report for participants’ input when ready and then
proceed with agreed next steps.

*After the virtual meeting, the organizing committee considered the different issues discussed
and issued the following suggestions that were shared with all the participants for discussion
and approval.*
Lack of a standard diagnostic approach for strongyloidiasis is presently a major impediment for the direct comparison of research results from different groups and for the conduct and evaluation of pilot activities.

The participants considered it essential to provide guidance to researchers and managers of NTD control programme potentially interested in including strongyloidiasis in the portfolio of the NTDs targeted based on the available diagnostics. If more efficient diagnostic methods will be developed in the future, these will be evaluated and incorporated in the suggestions.

The following points should therefore be considered as interim guidance with the aim of facilitating the conduct of operational research activities and comparison of the results obtained and as the starting of pilot control activities targeting strongyloidiasis with the available tools.

1. Serological assessment is the best available option, even though no perfect serological test is available yet. In addition, the serological approach would enable easy assessment of the prevalence of \textit{S. stercoralis} in areas where sera banks have been established for other NTDs.

2. Currently, the best choice among the different serological tests is considered to be NIE ELISA because the kit is available commercially and can be produced in large quantities for field use. Also, because it is based on recombinant antigen, it can be procured at an affordable cost.

3. Whenever possible, the serological assessment of \textit{S. stercoralis} prevalence should be accompanied by a Baermann or agar-plate method (according to the preference of the laboratory). However, if two methods are coupled (i.e. serology plus faecal examination), the results should be reported separately for each method (to facilitate comparability with other interventions where for example only serology is used).

It is suggested to conduct pilot projects applying preventive chemotherapy interventions when the serological prevalence of \textit{S. stercoralis} exceeds 15% with the present sensitivity of the NID ELISA test. This would correspond to a 10% actual prevalence in the population and a test with 91% sensitivity and 94% specificity (Bisoffi et al., 2014).
5 Next steps

1. The WHO Department of Control of Neglected Tropical Diseases, in collaboration with the WHO Collaborating Centre in Negrar (Italy), will conduct an evaluation of the NIE ELISA and other serological tests in two ways by:
 (a) assessing the sensitivity and specificity of the commercial kit on sera bank specimens available in the Center (protocol to be developed by the Collaborating Centre); and
 (b) organizing a multi-centre longitudinal evaluation study on migrants and in endemic countries (protocol to be developed by the Collaborating Centre and shared with potentially interested research groups).

2. The University of Salta (Argentina) and the Federation University (Australia) will develop standard operating procedures for Baermann, modified Baermann and Harada-Mori methods. The procedures will be developed from the existing standard operating procedures in the WHO bench aids for the diagnosis of intestinal parasites.

3. The WHO Department of Control of Neglected Tropical Diseases will contact the group commercializing the NIE ELISA and discuss the production capacities and preferential prices.

4. The WHO Department of Control of Neglected Tropical Diseases will continue to follow up the prequalification process of generic ivermectin and discuss possible preferential prices for large-scale use in control programmes and for use in research settings. Endemic countries and all the participants of this meeting will be kept informed about the results.

5. The WHO Department of Control of Neglected Tropical Diseases will promote pilot projects for the control of strongyloidiasis to validate the suggested diagnostic approach and supportive evidence for suggested action thresholds.

6. The WHO Department of Control of Neglected Tropical Diseases will promote the collection of epidemiological information on strongyloidiasis whenever epidemiological collection of other NTDs is conducted. For this purpose, WHO will issue guidance on the specimen to be collected, the laboratory analysis to be conducted to identify strongyloidiasis and the interpretation of the results.

7. The WHO Department of Control of Neglected Tropical Diseases will promote integration of control of strongyloidiasis with other preventive chemotherapy programmes targeting other soil-transmitted helminthiases or other NTDs.
References

Presentation 2 (R. Bradbury)

Presentation 3 (S. Mahanty)

Presentation 4 (A. Krolewiecki)

Annex 1

Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:25</td>
<td>Login to meeting</td>
<td>Chair: Z. Bisoffi</td>
</tr>
<tr>
<td>13:30−13:45</td>
<td>Welcome (including declaration of conflict of interest); opening remarks on diagnostic need from a public health perspective</td>
<td>A. Montresor</td>
</tr>
<tr>
<td>13:45−14:00</td>
<td>Current molecular diagnostics (advantages and cons)</td>
<td>R. Bradbury</td>
</tr>
<tr>
<td>14:00−14:15</td>
<td>Current serological diagnostics (pro and cons)</td>
<td>S. Mahanty</td>
</tr>
<tr>
<td>14:15−14:30</td>
<td>Current coprological diagnostics (pro and cons)</td>
<td>A. Krolewiecki</td>
</tr>
<tr>
<td>14:30−14:45</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>14:45−15:30</td>
<td>Panel discussion: Which is the best diagnostic method (or combination of diagnostic methods) to respond to the needs of a control programme?</td>
<td>A. Montresor D. Buonfrate R. Bradbury S. Mahanty A. Krolewiecki</td>
</tr>
<tr>
<td>15:15−16:15</td>
<td>Discussion (continued) contribution from participants: Which is the best diagnostic method (or combination of diagnostic methods) to respond to the needs of a control programme?</td>
<td>Chair</td>
</tr>
<tr>
<td>16:15−16:30</td>
<td>Summary and next steps</td>
<td>Chair</td>
</tr>
<tr>
<td>16:30−16:45</td>
<td>Close of meeting</td>
<td>Zeno Bisoffi Antonio Montresor</td>
</tr>
</tbody>
</table>
Annex 2
List of participants

Participants

Dr A. Amor
Mundo Sano Foundation
Madrid
Spain

Dr V. Belizario
University of the Philippines
Manila
Philippines

Professor Z. Bisoffi
Ospedale Sacro Cuore Don Calabria
Negrar
Italy

Dr R. Bradbury
Federation University
Melbourne
Australia

Dr D. Buonfrate
Ospedale Sacro Cuore Don Calabria
Negrar
Italy

Dr L. Getaz
University of Geneva
Geneva
Switzerland

Dr B. Grau Pujol
IsGlobal
Barcelona
Spain

Dr C. Hanson
Bill & Melinda Gates Foundation
Seattle (WA)
United States of America

Dr R. Imtiaz
Children Without Worms
Decatur (GA)
United States of America

Dr T. Kearns
Menzies School of Health Research
Tiwi
Australia

Dr V. Khieu
Ministry of Health
Phnom Penh
Cambodia

Dr A. Krolewiecki
National University of Salta
Salta
Argentina

Dr P. Lammie
Task Force for Global Health
Decatur (GA)
United States of America

Professor B. Leveke
University of Ghent
Ghent
Belgium

Dr L. Levina
Ministry of Health
Jakarta
Indonesia
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor S. Mahanty</td>
<td>Doherty Institute</td>
<td>Melbourne, Australia</td>
</tr>
<tr>
<td>Dr D. Martin</td>
<td>Centers for Disease Control and Prevention</td>
<td>Atlanta (GA), United States of America</td>
</tr>
<tr>
<td>Dr M. Aneagarie</td>
<td>Mundo Sano Foundation</td>
<td>Madrid, Spain</td>
</tr>
<tr>
<td>Dr M. Mukaigawara</td>
<td>Harvard Kennedy School</td>
<td>Cambridge (MA), United States of America</td>
</tr>
<tr>
<td>Dr J. Muñoz</td>
<td>IsGlobal</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Professor S. Njenga</td>
<td>Kenya Medical Research Institute</td>
<td>Nairobi, Kenya</td>
</tr>
<tr>
<td>Dr S. Nogaro</td>
<td>Foundation for Innovative New Diagnostics</td>
<td>Geneva, Switzerland</td>
</tr>
<tr>
<td>Dr T. Nutman</td>
<td>National Institutes of Health</td>
<td>Bethesda (MD), United States of America</td>
</tr>
<tr>
<td>Dr P. Odermatt</td>
<td>Swiss Tropical and Public Health Institute</td>
<td>Basel, Switzerland</td>
</tr>
<tr>
<td>Dr W. Page</td>
<td>Miwatj Health Aboriginal Corporation</td>
<td>Nhulunbuy, Australia</td>
</tr>
<tr>
<td>Dr K. Parajuli</td>
<td>Ministry of Health and Population</td>
<td>Kathmandu, Nepal</td>
</tr>
<tr>
<td>Professor V. Periago</td>
<td>Mundo Sano Argentina</td>
<td>Tartagal, Argentina</td>
</tr>
<tr>
<td>Ms L. Renata Sianipar</td>
<td>Ministry of Health</td>
<td>Jakarta, Indonesia</td>
</tr>
<tr>
<td>Professor L. Rinaldi</td>
<td>University of Naples</td>
<td>Naples, Italy</td>
</tr>
<tr>
<td>Dr F. Salvador</td>
<td>Vall d’Hebron University Hospital</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Dr H. Sheorey</td>
<td>St. Vincent’s Hospital</td>
<td>Melbourne, Australia</td>
</tr>
<tr>
<td>Dr B. Singh Tinkari</td>
<td>Ministry of Health and Population</td>
<td>Kathmandu, Nepal</td>
</tr>
<tr>
<td>Dr D. De Souza</td>
<td>Foundation for Innovative New Diagnostics</td>
<td>Geneva, Switzerland</td>
</tr>
</tbody>
</table>
Secretariat

WHO headquarters

Dr D. Dagne
Prevention, Treatment and Care
Department of Control of Neglected Tropical Diseases
World Health Organization
Geneva
Switzerland

Dr C. Ducker
Consultant
World Health Organization
Geneva
Switzerland

Dr A. Gabrielli
Strategic Information and Analytics
World Health Organization
Geneva
Switzerland

Dr A. Garba-Djirmay
Prevention, Treatment and Care
Department of Control of Neglected Tropical Diseases
World Health Organization
Geneva
Switzerland

Dr J. King
Prevention, Treatment and Care
Department of Control of Neglected Tropical Diseases
World Health Organization
Geneva
Switzerland

Mr A. Moloo
Strategic Information and Analytics
World Health Organization
Geneva
Switzerland
Dr A. Montresor
Prevention, Treatment and Care
Department of Control of Neglected Tropical Diseases
World Health Organization
Geneva
Switzerland

Dr D. Mupfasoni
Prevention, Treatment and Care
Department of Control of Neglected Tropical Diseases
World Health Organization
Geneva
Switzerland

Dr A. Solomon
Office of the Director
Department of Control of Neglected Tropical Diseases
World Health Organization
Geneva
Switzerland

Dr A. Luciañez
Neglected Infectious Diseases
WHO Regional Office for the Americas
Washington (DC)
United States of America

Dr P. Mwinzi
Communicable and Noncommunicable Diseases
WHO Regional Office for Africa
Brazzaville
Congo

Dr S. Nicholls
Neglected Infectious Diseases
WHO Regional Office for the Americas
Washington (DC)
United States of America

Dr M. Rebollo Polo
WHO Regional Office for Africa
Brazzaville
Congo

Dr S. Warusavithana
Neglected Tropical Disease Control
WHO Regional Office for the Eastern Mediterranean
Cairo
Egypt

Dr A. Yajima
Malaria and Neglected Tropical Diseases
WHO Regional Office for the Western Pacific
Manila
Philippines

WHO regional offices

Mr E. Gasimov
Malaria, NTDs and other Vector-borne Diseases
WHO Regional Office for Europe
Copenhagen
Denmark

Dr M. Jamsheed
Neglected Tropical Disease Control
WHO Regional Office for South-East Asia
New Delhi
India

Dr Z. Lin
Neglected Tropical Disease Control
WHO Regional Office for South-East Asia
New Delhi
India
Annex 3
Presentations

Presentation 1 (Antonio Montresor)

Standardizing diagnostic approaches for the control of strongyloidiasis

Antonio Montresor
Department of Control of Neglected Tropical Diseases
World Health Organization, Geneva

Control of STH

In the last 10 years:
- Good progress in control of A. lumbricoides, T. trichiura and hookworms

- No specific control activities for strongyloidiasis…

The limitation factor for the establishment of a strongyloidiasis control programmes was the poor availability of ivermectin.

At the moment 2 generic ivermectin for human use are in prequalification and the drug is expected to be available at accessible cost soon.
Window of opportunity

WHO/NTD included the control of strongyloidiasis among the targets of the Road Map for 2030 because the expected availability of ivermectin open a window of opportunity for the control of the infection:

Several PC programmes are in place reaching million of individuals with other drugs, this would provide a no cost infrastructure to distribute ivermectin.

The establishment and scaling up of a strongyloidiasis control programme could be much more rapid than for other NTD

Additional tools needed to establish PC control programme

- Knowledge of the global epidemiology to estimate needs and discuss with potential donors
- Field evaluation of the proposed intervention to convince potential donors and MoH in the endemic countries in investing on it
- Standard diagnostic methods to decide if the control intervention is needed and to monitor the impact
Important characteristics of a diagnostic method for use in control programme

The ideal diagnostic tool should:

- have good sensitivity and specificity
- have stable performances
- be relatively simple to perform
- be available in sufficient quantities
- have affordable cost

Diagnostic needs in public health are different than in clinical practice

Sensitivity/specificity:

- In clinical practice we are interested that a positive individual is constantly correctly identified by the diagnostic tool.
- In public health we need that a population at risk is correctly classified by a survey conducted with the diagnostic tool.

In public health, even if a diagnostic tool is not completely sensitive, we can take this into account and estimate the "real" prevalence

EXAMPLE (method with 70% sensitivity)
if the prevalence measured by this diagnostic in a population is 10% we can estimate the "real" prevalence at 14.5%:

we do not need to know which individual is positive.
A the moment no standard method for diagnosis of *S. stercoralis* is identified.

There are multiple coprological, serological and molecular diagnostic methods described, mainly developed for clinical use.

Objective of this meeting

To determine which of the existing diagnostic methods (or combination of methods) will be the best for use in a strongyloidiasis control programme based on PC.

Urgency

Strongyloidiasis is causing enormous suffering in endemic countries.

Waiting years for the perfect diagnostic tool would exclude a generation of infected individuals from the benefits of the control intervention.

We feel that, despite not being perfect, the available diagnostics are sufficiently performant to guide decisions in the establishment and monitoring of a control programme.

If new and more performant tools will became available, these will be evaluated and incorporated in the control programme.
Additional slide on cost

Low cost is always an advantage.

However, we should consider that we are conducting the survey in a fraction of the population benefiting for the intervention.

Investing 10$ for each diagnostic test in a survey (for example covering 250 individuals) may be acceptable if this provide information on a much larger population (for example 50 000 individuals).

In this example the diagnostic cost for each individual benefiting from the intervention will be of 5 cent.
Current Molecular Diagnostics for *Strongyloides*

Richard Bradbury
Federation University Australia
r.bradbury@federation.edu.au

PCR & LAMP represent a versatile tool for the diagnosis of strongyloidiasis

- Their utility for control programs will depend on:
 - The sensitivity and specificity of the assay
 - The ease of faeces collection and preservation
 - The DNA extraction method recommended
 - The internal/inhibition control recommended
 - The laboratory facilities and expertise available
 - The cost and time per sample
 - The context of the control program
Commonly Recognised Molecular Diagnostic Tests

- The only clinically validated Molecular Test, with the most rigorous analytical specificity testing is the real-time PCR described by Verweij, et al. in 2009.

- A real-time PCR published by Pilotte, et al. in 2016 has been scientifically validated, but not yet clinically validated

- Two LAMP assays have been described, both have been scientifically validated, but not yet clinically validated

Real-time PCR by Verweij, et al. 2009:

- Target: 18s rRNA

- Analytical sensitivity (LoD) on a single larva: 10^{-2} (4/5)

- Sensitivity*: ![Sensitivity Graph]

- Specificity*: ![Specificity Graph]

- Cost estimate**: USD$7-10

Has been used extensively in surveillance studies globally

* Validated against Baermann and/or agar plate culture

**Including DNA extraction
Real-time PCR by Pilotte, et al. 2016:

- Target: Repetitive DNA elements
- Analytical sensitivity (LoD) on a single larva: 10^{-3}
- Sensitivity: nd**
- Specificity: nd**
- Cost: USD$7-10

Has been used in surveillance studies on samples from the Mississippi, Kenya and Bangladesh

* Calculated – based on estimated concentration of 1 pg DNA per larva
** Good percentage agreement to Verweij 2009 real-time PCR in 78 samples but insufficient positive DNA samples (n=1) were available for accurate calculation

LAMP by Watts, et al. 2014:

- Target: 28s rRNA
- Analytical sensitivity (LoD) on a single larva: 10^{-1} (4/5)
- % +ve Agreement*:
- % -ve Agreement*:
- Cost estimate**: USD$6-9

% Agreement to Verweij, et al. 2009 real-time PCR on stored samples from samples from Australia and Bangladesh

* Compared to Verweij 2009 real-time PCR
** Including DNA extraction
LAMP by Fernandez-Soto, et al. 2016:

- **Target:** 18s rRNA
- **Analytical sensitivity (LoD):** 10 larvae*
- **% +ve Agreement**: 100%§
- **% -ve Agreement**: not performed
- **Cost estimate**: USD$6-9

No validation on large number of samples from endemic region

* Calculated – based on estimated concentration of 1 pg DNA per larvex
** Compared to Verweij 2009 real-time PCR
§ One LAMP positive in a real-time PCR negative sample
¶ Including DNA extraction

DNA extraction protocols affect results!

Comparison of five DNA extraction protocols for *Strongyloides* real-time PCR

<table>
<thead>
<tr>
<th>Extraction Method</th>
<th>No. S. ratti third-stage larvae spiked in stool (no. positive/no. tested)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ct (n+/n)</td>
</tr>
<tr>
<td>PowerSoil kit (Qiagen)</td>
<td>25 (4/4)</td>
</tr>
<tr>
<td>Ultra Clean Fecal DNA kit (MoBio)</td>
<td>27 (4/4)</td>
</tr>
<tr>
<td>QIAamp Tissue kit (Qiagen; modified with polyvinylpolypyrrolidone)</td>
<td>28 (4/4)</td>
</tr>
<tr>
<td>Repeated bead beating plus Ultra Clean Fecal DNA kit (MoBio)</td>
<td>34 (2/4)</td>
</tr>
<tr>
<td>semi-automated DNA extraction method using repeated bead beating combined with NuclISENS easyMAG</td>
<td>31 (4/4)</td>
</tr>
</tbody>
</table>

Pros and Cons – Real-time PCR

Pros:
- Good sensitivity & high specificity
- Can be performed on preserved stool (not formalin) & urine
- Reproducible & comparable across sites
- No specialist parasitology skills required

Cons:
- Cost (~$7-10 per test with extraction)
- DNA extraction labour intensive
- Requires technical skills in molecular biology
- Requires expensive specialist equipment (reference lab level)
- Requires faecal sample
- Pilette method needs clinical validation

Pros and Cons - LAMP

Pros:
- High analytical specificity
- Can be performed on preserved stool (not formalin) & urine
- Reproducible & comparable across sites
- No specialist parasitology skills required
- Does not require expensive specialist equipment (district lab level)

Cons:
- Needs clinical validation
- Current validations are vs Verweij 2009 PCR
- Cost (~$6-9 per test with extraction)
- DNA extraction labour intensive
- Requires technical skills in molecular biology
- Requires faecal sample
Further important considerations

- Internal extraction/inhibition controls are important
 - ~5% faecal samples inhibitory, local diet dependent

- This means multiplex PCR or 2 LAMPs per sample to ensure against false negatives

- Require specialised kits and reagents, including resupply and cold chain

- Require technical expertise to perform

- Susceptible to laboratory contamination (false positives) unless strict protocols are followed

Summary

- The Verweij 2009 real-time PCR is the only comprehensively validated molecular assay.
 - A wide range of sensitivity values have been reported

- The Pilotte real-time PCR and the Watts LAMP have only been compared to the Verweij PCR. The Fernandez-Soto LAMP has had very limited comparison to other methods thus far.
 - All three of these assays require validation before they could be considered

- Molecular methods are relatively expensive, need fresh or preserved stool, and require molecular laboratory expertise

- Any recommended PCR method must also include a standard kit and protocol for DNA extraction
Questions?

r.bradbury@federation.edu.au
WHO Meeting on the Diagnostic Methods for the Control of Strongyloidiasis

Serological Diagnosis of *Strongyloides* infections

Siddhartha Mahanty
Associate Professor, Department of Medicine
The Peter Doherty Institute for Infection and Immunity
Royal Melbourne Hospital
University of Melbourne
Melbourne, Australia

The Human Antibody Response to *Strongyloides*

- IgM and IgA detectable in acute infection
- IgE and IgG rise together and IgE declines while IgG persists during chronic illness
- IgG declines ~12 months post-treatment

Ariffin 2019
Why should we use serological assays for diagnosis?

In individuals with Strongyloides infections, antibody detection tests --
• Have high diagnostic sensitivity and specificity
• Potential for point-of-care translation
• Can identify infection at all stages (early and late)
• Can demonstrate effect of treatment

Serological diagnosis: Methodology

• Antibody ELISA
 • Larval extracts (“crude” Ags) – IgG, IgG4, IgE
 IVD/DRG (5s L3), Bordier™ (Sr L3)
 • Recombinant Ags
 • NIE
 • SsIR
• Formats
 • Serum
 • Blood spots
 • Lateral flow (“strip test”)
 • IgG, IgE
Key publications

Comparison of 5 serologic assays

- N=399
- 3 study groups (confirmed POS, exposed, HIV POS)
- 5 assays
 - IFAT (in-house, filariform larvae)
 - IVD ELISA (Ss somatic Ag)
 - Bordier ELISA (Sr somatic Ag)
 - NIE ELISA (rNIE)
 - NIE LIPS (Ruc-NIE fusion protein)

Table 2. Test accuracy on samples from subjects with certain diagnosis (denominator for sensitivity: 114 subjects with Ss larvae in stool; denominator for specificity: 115 subjects with no Ss larvae in stool and no exposure).

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity (IC 95%)</th>
<th>Specificity (IC 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIE ELISA</td>
<td>75.4 (67.5-83.3)</td>
<td>94.8 (90.7-98.9)</td>
</tr>
<tr>
<td>NIE LIPS</td>
<td>85.1 (78.6-91.6)</td>
<td>100.0 (100.0-100.0)</td>
</tr>
<tr>
<td>IFAT</td>
<td>93.9 (89.3-98.3)</td>
<td>92.2 (87.3-97.1)</td>
</tr>
<tr>
<td>NO ELISA</td>
<td>91.2 (88.0-94.4)</td>
<td>99.1 (97.4-100.0)</td>
</tr>
<tr>
<td>BORDER ELISA</td>
<td>91.5 (83.8-95.1)</td>
<td>98.3 (95.0-100.0)</td>
</tr>
</tbody>
</table>

Bisoffi PLoS NTD 2015
Comparison of diagnostic serology for Strongyloides

Table 1: Accuracy of serological methods for Strongyloides stercoralis diagnosis according to selected studies published after 2005

<table>
<thead>
<tr>
<th>Reference (year)</th>
<th>Tests assessed</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Study characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>[16] (2014)</td>
<td>Bordier ELISA*</td>
<td>95.6</td>
<td>97.6</td>
<td>Study using a computer reference standard of faecal and serological test determinator for positive samples with positive stool in 1/3 positive serological test in 1/3 positive serological test en caps with the lack of a reference standard. Limit: retrospective study design.</td>
</tr>
<tr>
<td></td>
<td>NIE ELISA</td>
<td>96.4</td>
<td>97.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IFN</td>
<td>96.4</td>
<td>97.1</td>
<td></td>
</tr>
<tr>
<td>[17] (2014)</td>
<td>SoftPack ELISA</td>
<td>89.9</td>
<td>97.9</td>
<td>Study mainly aimed to assessing percentages agreement of the three tests. Reference standard for positive samples with 1/3 positive serological test.</td>
</tr>
<tr>
<td></td>
<td>IFI</td>
<td>97.9</td>
<td>100</td>
<td>Study mainly aimed to assessing percentages agreement of the three tests. Reference standard for positive samples with 1/3 positive serological test.</td>
</tr>
<tr>
<td>[18] (2007)</td>
<td>IFI</td>
<td>91.6</td>
<td>95.6</td>
<td>Study using a panel of serum specimens from a population composed of patients with proven strongyloides infection, healthy controls, and patients with various parasitic and other diseases.</td>
</tr>
<tr>
<td>[19] (1999)</td>
<td>IFI</td>
<td>92.7</td>
<td>97.2</td>
<td>Specifics predetermined as 100% for all methods for the size of cut-off value obtained from each, but for no samples more positive were positive tests and no negative controls.</td>
</tr>
<tr>
<td></td>
<td>NIE ELISA</td>
<td>89.9</td>
<td>97.9</td>
<td></td>
</tr>
<tr>
<td>[20] (2009)</td>
<td>NIE ELISA</td>
<td>96.4</td>
<td>97.1</td>
<td>Study using a panel of serum specimens from a population composed of patients with proven strongyloides infections, healthy controls, and patients with various parasitic and other diseases.</td>
</tr>
<tr>
<td>[21] (2006)</td>
<td>Bordier ELISA</td>
<td>83.9</td>
<td>97.2</td>
<td>Study using a panel of serum specimens from a population composed of patients with proven strongyloides infections, healthy controls, and patients with various parasitic and other diseases.</td>
</tr>
<tr>
<td></td>
<td>NIE ELISA</td>
<td>96.4</td>
<td>97.1</td>
<td>Study using a panel of serum specimens from a population composed of patients with proven strongyloides infections, healthy controls, and patients with various parasitic and other diseases.</td>
</tr>
<tr>
<td>[22] (1999)</td>
<td>IFI</td>
<td>97.0</td>
<td>98.6</td>
<td>Study using a panel of serum specimens from a population composed of patients with proven strongyloides infections, healthy controls, and patients with various parasitic and other diseases.</td>
</tr>
<tr>
<td>[23] (2006)</td>
<td>IFI</td>
<td>95.6</td>
<td>97.9</td>
<td>Study using a panel of serum specimens from a population composed of patients with proven strongyloides infections, healthy controls, and patients with various parasitic and other diseases.</td>
</tr>
</tbody>
</table>

Buonfrate Clin Micro Infect, 2015

Diagnostic performance of serological tests

<table>
<thead>
<tr>
<th>Assay</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bordier</td>
<td>91 (86-96)</td>
<td>93 (90-96)</td>
</tr>
<tr>
<td>IFN</td>
<td>95 (87-97)</td>
<td>47 (84-60)</td>
</tr>
<tr>
<td>NIE Elisa</td>
<td>95 (75-97)</td>
<td>93 (90-96)</td>
</tr>
<tr>
<td>NIE-Lumines</td>
<td>83</td>
<td>38</td>
</tr>
</tbody>
</table>

References:
- Agbota, 2018 PMID 30577567
- Biosoff, 2014 PMID 2442732
- Buonfrate, 2015 25668740

Buonfrate. 2015. PMID 30577567

Buonfrate Clin Micro Infect, 2015
Which diagnostic assay is best for a control program? Sensitivity vs. specificity

Figure 8. Scatter plot of sensitivity versus specificity values of the Index diagnostic tools for screening strongyleidiasis.

Agata et al., 2018

Effect of treatment on seropositivity

Table 2. Number of samples which demonstrated cure of follow-up for each test.

<table>
<thead>
<tr>
<th>Test</th>
<th>Positions at Baseline</th>
<th>Response</th>
<th>%</th>
<th>Negativization</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA</td>
<td>98</td>
<td>88</td>
<td>98.0</td>
<td>12</td>
<td>77.3</td>
</tr>
<tr>
<td>SCID ELISA</td>
<td>63</td>
<td>66</td>
<td>97.0</td>
<td>20</td>
<td>62.5</td>
</tr>
<tr>
<td>SS-ELDA</td>
<td>86</td>
<td>78</td>
<td>91.0</td>
<td>14</td>
<td>51.2</td>
</tr>
<tr>
<td>SS-ELDA</td>
<td>86</td>
<td>71</td>
<td>82.7</td>
<td>18</td>
<td>54.7</td>
</tr>
</tbody>
</table>

Page 2006, Ruonfrate, 2015, Kaarns 2017,
The Trouble with Serodiagnosis for Control Programs

- Issues with diagnostic ‘confidence’
 - Sensitivity 85-95%
 - Specificity 29-99%
 - Highly dependent on Ag used
- Absence of gold standard
 - Difficulty in calculating diagnostic efficiency

Pros and cons of serological diagnostic assays

Pros
- High sensitivity
- Can be performed on dried blood spots
- Commercial kits
- Easy harmonization between labs

Cons
- Possible cross-reactions
- Accuracy depends on type of assay
- Needs equipment (reader) not present in all labs
Potential applications of serology in elimination programs

- What does serology uniquely offer?
 Standardised, sensitive tests for prevalence screening
- What is it better for than direct diagnostic techniques?
 High throughput screening for prevalence
- How can serology be applied to control programs?
 To determine prevalence and monitor effectiveness of interventions

Potential application in control programs

Screening → Monitoring

Serology

Faecal microscopy

Summary

Serological diagnosis has a useful role in monitoring infection in control programs

- More sensitive than direct diagnostic tests
- High throughput/less labour-intensive

Limitations of serological diagnostic testing

- Supply chain for reagents
- High sensitivity/suboptimal specificity of crude Ag-based assays
- Sensitivity of recombinant Ag-based ELISAs
Questions for discussion

• Why should serology be considered in a control program?
• What circumstances recommend use of serology (vs direct diagnostics)?
• What are the best strategies for combining serology with other diagnostic assays?

Thank you for your attention!

Questions?

smahanty@unimelb.edu.au
Summary

• Stool methods should be fresh for detection of *S. stercoralis*.
• Sensitivity is improved by multiple sampling.
• Intermittent larval expulsion lowers sensitivity of any stool method.
• Methods aiming for eggs are useless.
• Different protocols are used under the same name.
What is the sensitivity required for implementation?

Nikolay et al. IJP, 2014

<table>
<thead>
<tr>
<th>Method</th>
<th>Ascaris lumbricoides</th>
<th>Trichuris trichura</th>
<th>Hookworm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity (%)</td>
<td>95% CI</td>
<td>Sensitivity (%)</td>
</tr>
<tr>
<td>Liddle Ratio-Ratio</td>
<td>55.8</td>
<td>58.1-66.0</td>
<td>82.2</td>
</tr>
<tr>
<td>1-sample Ratio- Ratio</td>
<td>65.6</td>
<td>59.7-71.6</td>
<td>84.8</td>
</tr>
<tr>
<td>2-sample Ratio- Ratio</td>
<td>70.4</td>
<td>64.9-75.9</td>
<td>88.7</td>
</tr>
<tr>
<td>Blant microscopy</td>
<td>52.1</td>
<td>46.6-57.7</td>
<td>62.8</td>
</tr>
<tr>
<td>Formol-ether concentration</td>
<td>56.9</td>
<td>51.3-64.5</td>
<td>81.0</td>
</tr>
<tr>
<td>FLOTAC</td>
<td>79.7</td>
<td>72.8-86.0</td>
<td>89.0</td>
</tr>
<tr>
<td>McManus McManus</td>
<td>75.5</td>
<td>64.6-85.9</td>
<td>76.2</td>
</tr>
<tr>
<td>McMaster</td>
<td>61.1</td>
<td>56.3-65.9</td>
<td>83.8</td>
</tr>
</tbody>
</table>

Nikolay et al. IJP, 2014

Sensitivity on different infection intensities for STH

Cools et al. PNTD, 2019
What is available on coproparasitologic methods for *S. stercoralis*?

- Direct smear.
- Kato-Katz.
- McMaster's
- MiniFLOATAC
 - Formol-Ether Concentration.
 - Spontaneous sedimentation.
 - Harada Mori.
 - Koga’s Agar plate.
 - Baermann.
 - Bearmann with charcoal preincubation.

Requirements

- Methods looking for larvae rather than eggs.
- Fresh stools.
- No SAF or formalin.
- No need for quantification.

Harmonization of protocols

Everybody in every lab following the same protocol with the same materials

The Baermann example:
High variability of estimations and little correlation

<table>
<thead>
<tr>
<th>Baermann test</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>19</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>Baermann test positive</td>
<td>19</td>
</tr>
<tr>
<td>Baermann test negative</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
</tr>
</tbody>
</table>

The sensitivity of the Baermann plate test was 60.5% and that of the Baermann method was 100%. If the combined results from both tests are considered as diagnostic yield standard.

<table>
<thead>
<tr>
<th>Parasites</th>
<th>Lutz</th>
<th>Formalin-ethyl acetate</th>
<th>Baermann Agar plate culture</th>
<th>Harada-Mori culture</th>
<th>Total no. parasite infections (n=101)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. stercoralis</td>
<td>14</td>
<td>42.4</td>
<td>16 48.5</td>
<td>16 48.5</td>
<td>23 60.7</td>
</tr>
</tbody>
</table>

Baermann: principle

- The technique is used based on the active migration or movement of larvae downward from fresh stool samples to water of warmer temperature.
- Feces are suspended in water
- After permitting sufficient time to allow migration, the warm water is drained off, centrifuged, and examined microscopically for the presence of the larvae

STOP Consortium SOPs. https://stoptheworm.org/
A modified Baermann

- Simplified procedure.
- Less lab space.
- Shorter time.
- Improved sensitivity with charcoal preincubation.

Meurs et al, 2017. PNTD

Agar Plate

- Petri dish
- 3grams of fresh stools.
- Incubation for 2 to 9 days.
- Daily review of plates.
- Requires microscopic identification

Repetto, 2010. AJTMH
Key aspects to be considered

• Features
 ✓ accuracy, reproducibility, cost, time, lab space, complexity.

• Integration capacity.
 ✓ stools are ideal for integration with STH, but inconvenient for any other NTDs.

• Epidemiologic question.
 ✓ baseline, assess progress, approaching control.

Thanks
alekrol@hotmail.com
<table>
<thead>
<tr>
<th>Gold standard (Composite result)</th>
<th>Positive (%)</th>
<th>Negative (%)</th>
<th>Total (%)</th>
<th>Sensitivity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>131 (100)</td>
<td>233 (100)</td>
<td>364 (100)</td>
<td></td>
</tr>
<tr>
<td>Traditional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>35 (26.7)</td>
<td>0 (0)</td>
<td>35 (9.6)</td>
<td>26.7 (19.9 – 34.9)</td>
</tr>
<tr>
<td>Negative</td>
<td>96 (73.3)</td>
<td>233 (100)</td>
<td>329 (90.4)</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>29 (22.1)</td>
<td>0 (0)</td>
<td>29 (8)</td>
<td>22.1 (15.9 – 30.0)</td>
</tr>
<tr>
<td>Negative</td>
<td>102 (77.9)</td>
<td>233 (100)</td>
<td>335 (92)</td>
<td></td>
</tr>
<tr>
<td>Modified+charcoal preincubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>114 (87)</td>
<td>0 (0)</td>
<td>114 (31.7)</td>
<td>87 (80.2 – 91.7)</td>
</tr>
<tr>
<td>Negative</td>
<td>17 (13)</td>
<td>233 (100)</td>
<td>250 (68.7)</td>
<td></td>
</tr>
</tbody>
</table>