The purpose of this document is to provide interim guidance on laboratory biosafety related to the testing of clinical specimens of patients.

In this updated version of the Laboratory biosafety guidance related to SARS-CoV-2, the virus that causes coronavirus disease (COVID-19), the following topics were added: biosafety aspects for working with antigen-detecting rapid diagnostic tests, handling new variants of SARS-CoV-2 in the laboratory, updated assay decontamination before disposal, personal protective equipment (PPE) for specimen collection and, even though not directly a biosafety issue, this version of the guidance addresses chemical hazards and their safe disposal. Furthermore, the fourth edition of the WHO (World Health Organization) Laboratory biosafety manual (LBM4) (1) is now available and the terminology in this guidance was aligned with the LBM4.

Background

It is essential to ensure that health laboratories adhere to appropriate biosafety practices. Any testing for the presence of SARS-CoV-2 or of clinical specimens from patients meeting the suspected case definition (2) should be performed in appropriately equipped laboratories, by staff trained in the relevant technical and safety procedures. National guidelines on laboratory biosafety should be followed in all circumstances. For general information on laboratory biosafety guidelines, see the WHO Laboratory biosafety manual: fourth edition (1).

Key points

- Each laboratory should conduct a local (that is, institutional) risk assessment to ensure it is competent to safely perform the intended testing with appropriate risk control measures in place as exemplified in Annex II.
- Appropriate PPE for droplet or airborne precaution, as determined by a detailed local risk assessment, should be worn when laboratory personnel collect patient samples. Droplet precautions are necessary for most of the commonly performed sample collection procedures such as oropharyngeal and nasopharyngeal swabs. Airborne precautions, may be necessary, for example, for collection of nasopharyngeal wash/aspirate, sputum, tracheal aspirate, bronchioalveolar lavage fluid and pleural fluid (3,4). The minimum PPE for droplet precautions should include medical mask, eye protection (goggles, face shield etc.), disposable gloves and solid-front or wrap-around or back-fastening gown. Minimum PPE for airborne precautions should include gloves, long-sleeved gowns, eye protection, and fit-tested particulate respirators. A local risk assessment should also specify the PPE worn by all laboratory personnel handling these specimens.
- When handling and processing specimens, including blood for serological testing, laboratory practices and procedures that are basic to good microbiological practice and procedure (GMPP) (refer to Annex I) should be followed.
- The handling and processing of specimens from cases with suspected or confirmed SARS-CoV-2 infection that are intended for additional laboratory tests, such as haematology or blood gas analysis, should follow standard guidelines without additional measures.
• Non-propagative diagnostic laboratory work, including sequencing and NAAT, on clinical specimens from patients who are suspected or confirmed to be infected with SARS-CoV-2, should be conducted adopting the practices and procedures of “core requirements”,¹ as detailed in Annex I, and an appropriate selection of “heightened control measures”,² as informed by the local risk assessment.

• Handling of material with high concentrations of live virus (such as when performing virus propagation, virus isolation or neutralization assays) or large volumes of infectious materials should be performed only by properly trained and competent personnel in laboratories meeting additional essential containment requirements and practices, that is, heightened control measures (BSL-3).

• Initial processing other than POC/near-POC and Ag-RDTs of specimens that need RNA extraction, such as sequencing and NAAT, should take place in an appropriately maintained and validated BSC (biological safety cabinet) or primary containment device.

• The external lysis buffer of the listed common RNA extraction kits is effective in inactivating the SARS-CoV-2 virus without heat or other additional means (5).

• Appropriate disinfectants with proven activity against enveloped viruses should be used for the recommended contact time, at the correct dilution and within the expiry date after the working solution is prepared.

• All technical procedures should be performed in a way that minimizes the generation of aerosols and droplets (6).

• Patient specimens from suspected or confirmed cases should be transported as UN3373, “Biological Substance Category B”. Viral cultures or isolates should be transported as Category A UN2814, “infectious substance, affecting humans” (7).

Recommendations addressing minimal/essential working conditions associated with specific manipulations in laboratory settings

The additional recommendations provided in this section address the minimal/essential working conditions associated with specific manipulations in laboratory settings.

1. **Risk assessment**

 Risk assessment is a systematic process of gathering information and evaluating the likelihood and impact of exposure to or release of workplace hazard(s), and determining the appropriate risk control measures to reduce the risk to an acceptable level. Hazards alone do not pose a risk to humans or animals. The types of equipment used and the procedure(s) performed with the biological agent also play a role.

 It is highly recommended to start by conducting a local risk assessment for each process step, that is, from sample collection, sample reception, clinical testing, polymerase chain reaction (PCR), antigen detection (such as lateral flow assays or automated high throughput immunooassays) to virus isolation (only when and where applicable). Specific hazards will be identified for each process step, such as aerosol exposure during sample processing; eye splash during sample processing; infectious culture material spill; chemical hazards associated with reagents and leaking sample receptacles. Each process step has its own assessed risk. For each identified risk, appropriate risk control measures, including the following recommendations, should be selected and implemented, to mitigate the residual risks to an acceptable level.

 New knowledge about SARS-CoV-2 including the emergence of new mutations and variants, may require a risk re-assessment that may necessitate additional risk control measures.

 Particular consideration should be given to risks related to human factors. The likelihood of errors and incidents are higher when staff training is insufficient and staff members are under pressure to produce rapid results.

 A risk assessment template is provided in Annex II; this is intended to serve as an example and to facilitate the process.

 2. **Routine laboratory procedures, including non-propagative diagnostic work, and PCR analysis**

 Non-culture-based diagnostic laboratory work and PCR analysis on clinical specimens from patients who are suspected or confirmed to be infected with SARS-CoV-2 should be conducted adopting practices and procedures described for conventional clinical and microbiology laboratories as described in the “core requirements” (see Annex I).

 However, all manipulations of potentially infectious materials, including those that may cause splashes, droplets, or aerosols of infectious materials (for example, loading and unloading of sealed centrifuge cups, grinding, blending, vigorous shaking or mixing, sonic disruption, opening of containers of infectious materials whose internal pressure may be different from the ambient pressure) should be performed in appropriately maintained and validated BSCs or primary containment devices, by personnel with demonstrated capability.

 Examples of routine laboratory procedures include:

 • diagnostic testing of serum; blood (including haematology and clinical chemistry); respiratory specimens such as nasopharyngeal and oropharyngeal swabs, saliva, sputum and/or endotracheal aspirate or bronchoalveolar lavage; stool; or other specimens;

¹ **Core requirements**: A set of minimum requirements defined in the 4th edition of the WHO Laboratory biosafety manual to describe a combination of risk control measures that are both the foundation for, and an integral part of, laboratory biosafety. These measures reflect international standards and best practice in biosafety that are necessary to work safely with biological agents, even where the associated risks are minimal.

² **Heightened control measures**: A set of risk control measures that may need to be applied in a laboratory facility because the outcome of a risk assessment indicates that the biological agents being handled and/or the activities to be performed with them are associated with a relatively high risk that cannot be acceptable solely with the core requirements.
3. Point of care (POC), near-POC assay and Antigen-detecting rapid diagnostic tests (Ag-RDTs)

Point of care or near-POC assays, including those using polyvalent platforms such as GeneXpert, were recently released for SARS-CoV-2 testing of samples such as nasopharyngeal swab, nasal wash and aspirate (9). Each POC molecular platform uses different procedures to process samples and it is difficult to generalise the safety recommendations. Antigen-detecting rapid diagnostic tests are increasingly used for diagnostic purposes and include similar procedures (10).

There still are chances of spills, especially when staff are not adequately trained and at the same time are under immense pressure to deliver rapid results.

Current evidence suggests, however, that sample manipulation and the level of aerosol generation would be minimal (11). The United States Food and Drug Administration has authorized the use of the GeneXpert tests outside of heightened control measures (BSL-2) laboratories and patient care settings (9).

Thus, POC assays can be performed on a bench without employing a BSC, when the local risk assessment so dictates and the following conditions are fully met:

- performed on a diaper or large paper towel in a well-ventilated area free of clutter, where there are no documents, computers or personal stuff
- appropriate PPE worn similar to other manual testing, such as but not limited to a full-length long (elastic) sleeved lab coat, safety goggles or glasses, and suitable disposable gloves
- in circumstances where ventilation is insufficient, the use of respirators is encouraged (12)
- risk assessment should inform the use of respiratory protection as a supplementary precaution
- staff well trained in GMPP
- no rush or increased pressure for test turnaround time
- a validated infectious waste management including excess specimens

Not only does the biological agent contained in patient samples pose a risk, but certain test reagents might also be hazardous and require specific waste management practices for safe disposal. For example, guanidinium thiocyanate (reagent used in RNA extraction kits, including some POC/near-POC) produces toxic gas in the presence of bleach (sodium hypochlorite) so contact of these two chemicals must be avoided. Sodium azide, an ingredient of some immunoassays and Ag-RDTs, should not be poured down the drain or autoclaved. It is toxic to aquatic life and chelates to some metals in drainpipes and autoclaves to produce explosive metal azides (14).

If the existing GeneXpert or similar platform of the tuberculosis programme is to be temporarily shared for SARS-CoV-2 testing, the equipment should be already installed in a suitable area with sufficient ventilation (15). In this case, there is no particular need to relocate it. Should the equipment have been in use for non-respiratory disease programmes, such as HIV/AIDS, it is important to ensure proper ventilation before starting the test for SARS-CoV-2.

4. Use of appropriate disinfectants

SARS-CoV-2 is susceptible to disinfectants with proven activity against enveloped viruses, including sodium hypochlorite (bleach; for example, 1 000 parts per million [ppm] (0.1%) for general surface disinfection and 10 000 ppm (1%) for disinfection of sample spills); 70% ethanol; povidone-iodine (7.5%), chloroxylenol (0.05%), chlorhexidine (0.05%), benzalkonium chloride (0.1%), if used according to the manufacturer’s recommendations (13).

Particular attention should be paid not only to the selection of the disinfectant but also the contact time (for example, 10 minutes), dilution (that is, concentration of the active ingredient), shelf-life and expiry date after the working solution is prepared.

SARS-CoV-2 and human coronaviruses in general are known to persist on inanimate surfaces such as metal, glass or plastic for up to 7 and 9 days, respectively (16).

5. Viral isolation

Unless the country decides otherwise, viral isolation on clinical specimens from patients who are suspected or confirmed to be infected with SARS-CoV-2 should be performed only in laboratories capable of meeting the following additional containment criteria:

- a controlled ventilation system maintains inward directional airflow into the laboratory room;
- exhaust air from the laboratory room is not recirculated to other areas within the building. Air must be HEPA (high-efficiency particulate air) filtered, if reconditioned and recirculated within the laboratory. When exhaust air from the laboratory is discharged to the outdoors, it must be dispersed away from occupied buildings and air intakes. This air should be discharged through HEPA filters;
- a dedicated hand-wash sink is available in the laboratory;
- all manipulations of infectious or potentially infectious materials must be performed in appropriately maintained and validated BSCs;
• laboratory workers should wear protective equipment, including disposable gloves; solid-front or wrap-around gowns, scrub suits, or coveralls with sleeves that fully cover the forearms; head coverings; shoe covers or dedicated shoes; and eye protection (goggles or face shield). Risk assessment should inform the use of respiratory protection (fit-tested particulate respirator, for example, EU FFP2, US 6 NIOSH-certified N95 or equivalent, or higher protection);
• centrifugation of specimens should be performed using sealed centrifuge rotors or sample cups. These rotors or cups should be loaded and unloaded in a BSC.

6. Additional risks associated with virus isolation studies

Certain experimental procedures may carry additional risks of virus mutations with possible increased pathogenicity and/or transmissibility, or viruses with altered antigenicity or drug susceptibility. Specific risk assessments should be conducted, and specific risk-reduction measures adopted, before any of the following procedures are conducted:

• co-infection of cell cultures with different coronaviruses, or any procedures that may result in a co-infection and potential viral recombination;
• culture of viruses in the presence of antiviral drugs;
• deliberate genetic modification of viruses.

7. Work with animals infected with SARS-CoV-2

The following activities require an animal facility – heightened control measures (BSL-3) facilities and work practices, as detailed in the WHO Laboratory biosafety manual, 4th edition (1):

• inoculation of animals for potential recovery of SARS-CoV-2;
• any protocol involving animal inoculation for confirmation and/or characterization of SARS-CoV-2.

8. Referral of specimens to laboratories with appropriate risk control measures in place

Laboratories that are not able to meet the above biosafety recommendations should consider transferring specimens to national, regional, or international referral laboratories with SARS-CoV-2-detection capacity that can meet the biosafety requirements.

Packaging and shipment

All materials transported within and between laboratories should be placed in a secondary packaging, to minimize the potential for breakage or a spill. Specimens leaving the BSC should be surface decontaminated. Detailed guidance is provided in the WHO Biosafety video series (8), in particular, Good microbiological practices and procedures (GMPP) 7: transport.

Transport of specimens within national borders should comply with national regulations. Cross-boundary transport of specimens of SARS-CoV-2 should follow the United Nations model regulations, Technical instructions for the safe transport of dangerous goods by air (Doc 9284) of the International Civil Aviation Organization (17), for aircfrt transport, and any other applicable regulations depending on the mode of transport being used. More information may be found in the WHO Guidance on regulations for the transport of infectious substances 2019-2020 (applicable as from 1 January 2019) (7). A summary on transport of infectious substances can also be found in Tool box 4 of the WHO handbook, Managing epidemics: key facts about deadly diseases (18).

Patient specimens from suspected or confirmed cases should be transported as UN3373, “Biological Substance Category B”, when they are transported for diagnostic or investigational purposes. Viral cultures or isolates should be transported as Category A UN2814, “infectious substance, affecting humans” (7). All specimens being transported (whether UN3373 or UN2814) should have appropriate packaging, labelling, and documentation, as described in the documents mentioned earlier.

References

Acknowledgements
The following people contributed to this guidance:
Stuart Blacksell, Mahidol Oxford Tropical Medicine Research Unit, Thailand; Christina Scheel, Centers for Disease Control and Prevention, United States of America; Kathrin Summermatter, Institute for Infectious Diseases, University of Bern, Switzerland.

Declarations of interest were collected and reviewed and no conflict of interest was identified.

WHO Health Emergencies Programme: Kazunobu Kojima, Rica Zinsky, Karin von Eije, Mark Perkins, Céline Barnadas, Sébastien Cognat, Maria Van Kerkhove.
Annex I: Core requirements

1. Good microbiological practice and procedure (GMPP)

Best practice
• Never store food or drink, or personal items such as coats and bags in the laboratory. Activities such as eating, drinking, smoking, and applying cosmetics are only to be performed outside the laboratory.

• Never put materials, such as pens, pencils or gum in the mouth while inside the laboratory, regardless of having gloved hands or not.

• Wash hands thoroughly (19), preferably with warm running water and soap, after handling biological material and/or animals, before leaving the laboratory or when hands are known or believed to be contaminated.

• Ensure open flames or heat sources are never placed near flammable supplies and are never left unattended.

• Ensure that cuts or broken skin are covered before entering the laboratory.

• Before entering the laboratory, ensure that there are adequate supplies of laboratory equipment and consumables, including reagents, PPE and disinfectants, and that these items are suitable for the activities envisaged.

• Ensure that supplies are stored safely and according to storage instructions to reduce accidents and incidents such as spills, trips and falls.

• Ensure that all biological agents and chemical and radioactive material are properly labelled.

• Protect written documents from contamination using barriers (such as plastic coverings), particularly those that may need to be removed from the laboratory.

• Ensure that the work is performed with care and without hurrying. Avoid working when fatigued.

• Keep the work area tidy, clean and free of non-essential objects and materials.

• Prohibit the use of earphones, which can distract personnel and prevent equipment or facility alarms from being heard.

• Cover or remove any jewellery that could tear gloves, easily become contaminated or become fomites. Cleaning and decontamination of jewellery or spectacles should be considered, if such items are worn regularly.

• Refrain from using portable electronic devices (for example, mobile telephones, tablets, laptops, flash drives, memory sticks, cameras, or other portable devices, including those used for DNA/RNA sequencing) when not specifically required for the laboratory procedures being performed.

• Keep portable electronic devices in areas where they cannot easily become contaminated or act as fomites that transmit infection. Where close proximity of such devices to biological agents is unavoidable, ensure the devices are either protected by a physical barrier or decontaminated before leaving the laboratory.

Technical procedures
• Avoid inhalation of biological agents. Use GMPP techniques to minimize the formation of aerosols and droplets when manipulating specimens.

• Avoid ingestion of biological agents and their contact with the skin and eyes.

• Always wear disposable gloves when handling specimens.

• Avoid gloved hands coming into contact with the face.

• Shield or otherwise protect the mouth, eyes and face during procedures where splashes may occur.

• Wherever possible, replace any glassware with plasticware.

• If required, use scissors with blunt or rounded ends rather than pointed ends.

• Handle any sharps, syringes or needles with care in order to prevent injury and injection of biological agents.

• Use ampoule openers for safe handling of ampoules.

• Never re-cap, clip or remove needles from disposable syringes.

• Dispose of any sharps materials (for example, needles, needles combined with syringes, blades, broken glass) in puncture-proof or puncture-resistant containers fitted with sealed covers.

• Preventing dispersal of biological agents:
 – discard specimens and cultures for disposal in leak-proof containers with the tops appropriately secured before disposal in dedicated waste containers;
 – consider opening tubes with disinfectant-soaked pad/gauze;
 – decontaminate work surfaces with a suitable disinfectant at the end of the work procedures and if any material is spilled or obviously contaminated;
 – ensure that the disinfectant is efficacious against the pathogen being handled and is left in contact with infectious waste materials long enough for complete inactivation.

2. Personnel competence and training

General familiarization and awareness training
General training should include an introduction to laboratory layout, codes of practice, local guidelines, safety manuals, risk assessments, legislative requirements, and emergency response procedures.

Job-specific training
• Training requirements may vary depending on the job functions.

• However, in general, all personnel involved in the handling of biological agents must be trained on GMPP.
Competency and proficiency assessment must be used and verified before working independently, followed by regular review and refresher training.

Relevant information such as new procedures must be updated and communicated to applicable personnel.

3. Facility design

- Ample space and a designated hand-washing basin must be provided, with appropriate restriction of access.

- Doors must be properly labelled, and laboratory walls, floors, and furniture must be smooth, easy to clean, impermeable to liquids and resistant to the chemicals and disinfectants normally used in the laboratory.

- Laboratory ventilation, where provided (including heating/cooling systems and especially fans/local cooling split-system air-conditioning units – specifically when retrofitted) should ensure airflows do not compromise safe working. Consideration must be made for resultant airflow speeds and directions, and turbulent airflows should be avoided; this applies also to natural ventilation.

- Laboratory space and facilities must be adequate and appropriate for safe handling and storage of infectious and other hazardous materials, such as chemicals and solvents.

- Facilities for eating and drinking must be provided outside the laboratory, and first-aid-facilities must be accessible.

- Appropriate methods for decontamination of waste, for example disinfectants and autoclaves, must be available close to the laboratory.

- The management of waste must be considered in the laboratory design. Safety systems must cover fire, electrical emergencies, and emergency/incident response facilities, based on risk assessment.

- There must be a reliable and adequate electricity supply and lighting to permit safe exit.

- Emergency situations must be considered in the design, as indicated in the local risk assessment, and should include the geographical/meteorological context.

4. Specimen receipt and storage

- A specimen received by the laboratory must be accompanied by sufficient information to identify what it is, when and where it was taken or prepared, and which tests and/or procedures (if any) are to be performed.

- Consider unpacking the items in the BSC. Personnel unpacking and receiving specimens must be adequately trained on the hazards involved; how to adopt necessary precautions according to GMPP described earlier; how to handle broken or leaking containers; and how to handle spills and use disinfectants to manage any contamination.

- Specimens must be stored in containers with adequate strength, integrity, and volume to contain the specimen, and that are leakproof when the cap or stopper is correctly applied. Use plastic containers whenever possible that are free of any biological material on the outside of the packaging. In addition, containers should be correctly labelled, marked and recorded to facilitate identification, and made of an appropriate material for the type of storage required.

- Inactivation methods must be properly validated whenever an inactivation step is used, before transferring the specimens to other areas for further manipulation, such as PCR analysis.

5. Decontamination and waste management

- Any surface or material known to be, or potentially be, contaminated by biological agents during laboratory operations must be correctly disinfected to control infectious risks.

- Proper processes for the identification and segregation of contaminated materials must be adopted before decontamination or disposal.

- Where decontamination is not possible in the laboratory area, or onsite, contaminated waste must be packaged in a leakproof fashion, for transfer to another facility with decontamination capacity.

6. Personal protective equipment

- Laboratory coats must be used in laboratories to prevent personal clothing from getting splashed or contaminated by biological agents. Laboratory coats must have long sleeves, preferably with elasticated or fitted cuffs, and must be fastened when worn in the laboratory. Sleeves should never be rolled up. Coats must be long enough to cover the knees, but not trail on the floor. Where possible, the fabric of the laboratory coat should be splash-resistant. Laboratory coats must only be worn in designated areas. When not in use, they should be stored properly; they should not be hung on top of other laboratory coats or kept in lockers or on hooks with personal items.

- Appropriate disposable gloves must be worn for all procedures that may involve planned or inadvertent contact with blood, body fluids or other potentially infectious materials. They must not be disinfected or reused, as exposure to disinfectants and prolonged wear reduces the integrity of the glove and decreases protection to the user. Gloves should always be inspected before use, to check that they are intact.

- Safety glasses or goggles, face shields (visors) or other protective devices must be worn whenever necessary to protect the eyes and face from splashes, impacting objects or artificial ultraviolet radiation. Eye protection devices can be re-used but must be cleaned each time after use. If splashed, devices must be decontaminated with an appropriate disinfectant.
• Footwear must be worn in the laboratory and must be of a design that minimizes slips and trips and reduces the likelihood of injury from falling objects and exposure to biological agents.

• Respiratory protection is generally not among the core requirements. In the present COVID-19 context, however, a local risk assessment should be conducted to determine whether the use of respiratory protection is needed, especially when procedures that may create aerosols and droplets will be performed outside the BSC, for example, centrifugation and handling leaking samples. These also include procedures that can cause splashes, such as: loading and unloading of sealed centrifuge cups, grinding, blending, vigorous shaking or mixing, sonic disruption, opening of containers of infectious materials whose internal pressure may be different from the ambient pressure.

7. Laboratory equipment

When used effectively together with GMPP, the safe use of laboratory equipment will help to minimize the likelihood of exposure of personnel when handling or manipulating biological agents.

• To effectively reduce any associated risks with using laboratory equipment, the laboratory management must ensure that ample space is provided for its use. An adequate budget must also be available to operate and maintain the equipment. All staff working in the laboratory or who are responsible for maintaining equipment must be adequately trained and be able to demonstrate proficiency.

8. Emergency/incident response plan

• Even when carrying out low-risk work and following all core requirements for biosafety, incidents can still occur. To reduce the likelihood of exposure to/release of a biological agent, or to reduce the consequences of such incidents, a contingency plan must be developed that provides specific standard operating procedures (SOPs) to be followed in possible emergency scenarios that apply to the work and local environment. Personnel must be trained on these procedures and have periodic refresher training to maintain competency.

• First-aid kits, including medical supplies, such as bottled eye washes and bandages, must be available and easily accessible to personnel. These products must be checked routinely to ensure that they are within their use-by dates and are in sufficient supply.

• All incidents must be reported to the appropriate personnel promptly. Accidents and incidents must be documented, in line with national regulations where applicable. Any incident must be reported and investigated in a timely manner and taken into consideration when updating laboratory procedures and emergency response plans.

• Laboratory staff should have immediate access to spill kits, including those containing disinfectant. Depending on the size, location, concentration or volume of the spill, different protocols may be necessary. Written procedures for cleaning and decontaminating spills must be developed for the laboratory and followed by adequate training of personnel.

9. Occupational health

• The employer, through the laboratory director, must take responsibility for ensuring that the health of laboratory personnel is adequately monitored.

• Medical examination or health status information of the laboratory personnel may be required to verify whether it is safe for them to work in the laboratory.
Annex II: Risk assessment template

Although a qualitative approach to combining likelihood and severity parameters in a risk matrix is provided as a method for risk evaluation here, it is important to note that quantitative (for example, from simple numerical scoring schemes to complex mathematical models) and hybrid (semi-quantitative) methods can also be used for risk evaluation. Laboratories should use a risk-evaluation/assessment method that best meets their unique needs, including customized evaluation approaches, scoring methods and definitions of the parameters.

Although this template was primarily developed for biosafety risk assessment, it can also be used for general safety risk assessment of laboratory activities, especially when the biosafety and general safety risks are interlinked, for example, sample collection and transport.

Personnel on the risk assessment team may include but are not limited to, principal investigators, laboratory and quality managers, laboratory technicians and biosafety officers. Active involvement of the laboratory and/or organizational leadership is important in the risk assessment process.

If using this template, complete all sections following the instructions in the grey boxes. The instructions and bullet points in the grey boxes can be copied into the text boxes beneath the instructions and used as prompts to gather and record the necessary site-specific information. The grey instruction boxes can then be deleted, and the text remaining will form a risk assessment draft. This draft must be carefully reviewed, edited as necessary, and approved by the members of the risk assessment team.

STEP 1. Gather information (hazard identification)

<table>
<thead>
<tr>
<th>Instructions: Provide a brief overview of the laboratory work and summarize the laboratory activities to be conducted that are included in the scope of this risk assessment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe the biological agents and other potential hazards (for example, transmission, infectious dose, treatment/preventive measures, pathogenicity).</td>
</tr>
<tr>
<td>Describe the laboratory procedures to be used (for example, culturing, centrifugation, work with sharps, waste handling, frequency of performing the laboratory activity).</td>
</tr>
<tr>
<td>Describe the types of equipment to be used (PPE, centrifuges, autoclaves, biological safety cabinets [BSCs]).</td>
</tr>
<tr>
<td>Describe the type and condition of the facility where work is conducted.</td>
</tr>
<tr>
<td>Describe relevant human factors (for example, competency, training, experience and attitude of personnel).</td>
</tr>
<tr>
<td>Describe any other factors that may affect laboratory operations (for example, legal, cultural, socioeconomic).</td>
</tr>
</tbody>
</table>
STEP 2. Evaluate the risks

Instructions: Describe how exposure and/or release could occur.

| What potential situations are there in which exposure or release could occur? |
| What is the likelihood of an exposure/release occurring? |
| • Unlikely: to occur in the near future |
| • Possible: to occur in the near future |
| • Very likely: to occur in the near future |
| What is the severity of the consequences of an exposure/release (negligible, moderate, severe)? |

Instructions: Evaluate the risk and prioritize the implementation of risk control measures. Circle the initial (inherent) risk of the laboratory activities before additional risk control measures have been put in place.

Note:
- When assigning priority, other factors may need to be considered, for example, urgency, feasibility/sustainability of risk control measures, delivery and installation time and training availability.
- To estimate the overall risk, take into consideration the risk ratings for the individual laboratory activities/procedures, separately or collectively as appropriate for the laboratory.

<table>
<thead>
<tr>
<th>Likelihood of exposure/release</th>
<th>Unlikely</th>
<th>Possible</th>
<th>Likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence of exposure/release</td>
<td>Severe</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Moderate</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Negligible</td>
<td>Very low</td>
<td>Low</td>
<td>Medium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory activity/procedure</th>
<th>Initial risk (very low, low, medium, high, very high)</th>
<th>Is the initial risk acceptable? (yes/no)</th>
<th>Priority (high/medium/low)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select the overall initial risk.

- **Very low**
- **Low**
- **Medium**
- **High**
- **Very high**

Should work proceed without additional risk control measures?

- Yes
- No

STEP 3. Develop a risk control strategy

Instructions: List any requirements that have been prescribed by international and national regulations, legislation, guidelines, policies, and strategies on biosafety and biosecurity.

- Describe the measures required by national legislation or regulations (if any).
- Describe the measures advised by guidelines, policies and strategies (if any).
Instructions: Describe the resources available for risk control and consider their applicability, availability, and sustainability in the local context, including management support.

| Are resources sufficient to secure and maintain potential risk control measures? |
| What factors exist that may limit or restrict any of the risk control measures? |
| Will work be able to proceed without any of the risk control measures; are there alternatives? |

STEP 4. Select and implement risk control measures

Instructions: Describe where and when risk control measures are needed, the level of residual (remaining) risk when these risk control measures are in place, and an assessment of the availability, effectiveness, and sustainability of the risk control measures.

<table>
<thead>
<tr>
<th>Laboratory activity/procedure</th>
<th>Selected risk control measure(s)</th>
<th>Residual risk (very low, low, medium, high, very high)</th>
<th>Is the residual risk acceptable? (yes/no)</th>
<th>Are risk control measures available, effective, and sustainable? (yes/no)</th>
</tr>
</thead>
</table>

Instructions: Evaluate the residual risk that remains after risk control measures have been selected, to determine whether that level of risk is now acceptable and whether work should proceed.

Circle the residual risk of the laboratory activities after risk control measures are in place.

<table>
<thead>
<tr>
<th>Consequence of exposure/release</th>
<th>Likelihood of exposure/release</th>
<th>Unlikely</th>
<th>Possible</th>
<th>Likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>Medium</td>
<td>High</td>
<td>Very high</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Negligible</td>
<td>Very low</td>
<td>Low</td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

Overall residual risk:

- [] Very low
- [] Low
- [] Medium
- [] High
- [] Very high

If the residual risk is still unacceptable, further action is necessary, such as additional risk control measures, based on the initial risk evaluated in STEP 2, redefining the scope of work such that it is acceptable with existing risk control measures in place, or identifying an alternative laboratory with appropriate risk control strategies already in place that is capable of conducting the work as planned.

Should work proceed with selected risk control measures? [] Yes [] No

Approved by (name and title)

Approved by (signature)

Date

Instructions: Describe how to communicate risks and risk mitigation strategies to personnel. Provide a mechanism of communication within the laboratory. Describe the process and timeline for ensuring all identified risk control measures and that associated SOPs and training have been completed before starting the laboratory work.

Communication of the hazards, risks and risk control measures

- Implementation of risk control measures
- Training of personnel
- Operational and maintenance procedures

11
STEP 5. Review risks and risk control measures

<table>
<thead>
<tr>
<th>Instructions: Establish a periodic review cycle to identify: changes in laboratory activities, biological agents, personnel, equipment or facilities; changes in knowledge of biological agents or processes; and lessons learnt from audits/inspections, personnel feedback, incidents, or near misses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of the review</td>
</tr>
<tr>
<td>Person to conduct the review</td>
</tr>
<tr>
<td>Describe updates/changes</td>
</tr>
<tr>
<td>Personnel/procedures to implement the changes</td>
</tr>
<tr>
<td>Reviewed by (name and title)</td>
</tr>
<tr>
<td>Reviewed by (signature)</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

WHO continues to monitor the situation closely for any changes that may affect this interim guidance. Should any factors change, WHO will issue a further update. Otherwise, this interim guidance document will expire 2 years after the date of publication.

© World Health Organization 2021. Some rights reserved. This work is available under the [CC BY-NC-SA 3.0 IGO](https://creativecommons.org/licenses/by-nc-sa/3.0/igo) licence.

WHO reference number: [WHO/WPE/GIH/2020.3](https://www.who.int)