TECHNICAL CONSIDERATIONS AND CASE DEFINITIONS TO IMPROVE SURVEILLANCE FOR VIRAL HEPATITIS
TECHNICAL CONSIDERATIONS
AND CASE DEFINITIONS TO
IMPROVE SURVEILLANCE
FOR VIRAL HEPATITIS
The chair of the Technical Consultation to Develop Guidelines for the Surveillance of Viral Hepatitis in Low- and Middle-income Countries was Arnaud Fontanet (Institut Pasteur and National Agency for AIDS Research [ANRS]).

The following experts participated in the technical consultation meeting:

Patricia Angeleri (Ministry of Health, Argentina), Rana Jawad Asghar (Field Epidemiology & Laboratory Training Programme, Pakistan), Silvano Barbosa de Oliveira (Ministry of Health, Brazil), Iacopo Baussano (International Agency for Research on Cancer, France), Fuqiang Cui (Chinese Center For Disease Control And Prevention, China), Erika Duffell (European Centre for Disease Prevention and Control, Sweden), Mohammad Mehdi Gouya (Ministry of Health & Medical Education, Iran), Janet Hatcher-Roberts (Canadian Society for International Health, Canada), Wolfgang Hladik (Centers for Disease Control and Prevention, USA), Sharon Hutchinson (Health Protection Scotland, UK), Ruth Jiles (Centers for Disease Control and Prevention, USA), Mark Kane (Consultant on Immunization Policy, USA), Ahmed Khatib (Ministry of Health, Tanzania), Mira Kojouharova (National Centre of Infectious and Parasitic Diseases, Bulgaria), Daniel Lavanchy (Consultant, Switzerland), Tinne Lernout (University of Antwerp, Belgium), Alison Marshall (Canadian Society for International Health, Canada), Nenette Motus (International Organization for Migration, Switzerland), Jane Njihia (Public Health Agency of Canada, Canada), Richard Njouom (Centre Pasteur of Cameroon, Cameroon), Gerson Fernando Pereira (Ministry of Health, Brazil), Aminata Sall Diallo (National Senegalese Programme against Hepatitis, Senegal), Maha Talaat (Global Disease Detection and Response Center, Egypt), Eysasu Teshale (Centers for Disease Control and Prevention, USA), Hla Hla (Rosie) Thein (University of Toronto, Canada), Anonh Xeuatvongsa (Ministry of Health, Lao People’s Democratic Republic).

WHO Staff

Isabel Bergeri, Jesus Maria Garcia Calleja, Hande Harmanci, Yvan Hutin, Selma Khamassi, Tim Nguyen, Nicole Seguy, Anita Sands, Alexander Spina, Amitabh Suthar and Stefan Wiktor

Miriam Sabin, WHO consultant, coordinated the preparation of these technical considerations, which was then revised by Eysasu Teshale, Stefan Wiktor and Yvan Hutin.
ABBREVIATIONS AND ACRONYMS

AIS AIDS Indicator Survey
ALT alanine aminotransferase
ANC antenatal care
anti-HAV antibody against hepatitis A virus
anti-HBc antibody against hepatitis B core antigen
anti-HDV antibody against hepatitis D virus
anti-HEV antibody against hepatitis E virus
ARV antiretroviral
CI confidence interval
DBS dried blood spot
DHS Demographic and Health Survey
EIA enzyme immunoassay
EQAS external quality assessment scheme
HAV hepatitis A virus
HBeAg hepatitis B E antigen
HB Ig hepatitis B immune globulin
HBsAg hepatitis B surface antigen
HBV hepatitis B virus
HCC hepatocellular carcinoma
HCV hepatitis C virus
HDV hepatitis D virus
HEV hepatitis E virus
IARC International Agency for Research on Cancer
IBBS integrated HIV biobehavioural surveillance
ICD International Statistical Classification of Diseases and Related Health Problems
IDSR Integrated Disease Surveillance and Response
IgM immunoglobulin M
IHR International Health Regulations
MICS Multiple Indicators Cluster Survey
MIS Malaria Indicator Survey
MSM men who have sex with men
NAT nucleic acid testing
NGO nongovernmental organization
PHIA population-based HIV impact assessment
PWID people who inject drugs
QA quality assurance
RDS respondent-driven sampling
RDT rapid diagnostic test
SAGE Strategic Advisory Group of Experts (of WHO)
SOP standard operating procedure
STI sexually transmitted infection
WHO World Health Organization
Viral hepatitis is a global public health problem of epidemic proportions that causes 1.46 million deaths each year. New infections caused by the five known hepatitis viruses – A, B, C, D and E (HAV, HBV, HCV, HDV and HEV) – can be prevented. In addition, testing and treatment can improve the health of persons with chronic infections. Unfortunately, many countries do not have the epidemiological information needed to plan, implement, monitor, evaluate and update national strategies for the prevention and control of viral hepatitis. The technical aspects associated with viral hepatitis surveillance are perceived as complex, and little guidance is available. In the absence of a sound evidence base, viral hepatitis remains a silent epidemic. Tools are available, however, to optimize surveillance and generate information that can effectively direct prevention, control and treatment policies.

In 2010 and 2014, World Health Assembly resolutions called for stronger surveillance of viral hepatitis. In response, the World Health Organization (WHO) has developed these technical considerations to assist and guide Member States in implementing and/or optimizing viral hepatitis surveillance.

KEY ELEMENTS OF THE EPIDEMIOLOGY OF VIRAL HEPATITIS

1. **Multiple disease outcomes:** infection with the hepatitis viruses may be asymptomatic or cause acute and chronic hepatitis. Although death can occur from fulminant acute hepatitis, it is most often secondary to chronic hepatitis. After a number of years, chronic hepatitis B or C can lead to cirrhosis, liver failure and/or hepatocellular carcinoma (HCC). Decompensated cirrhosis (e.g. chronic liver failure) and the consequences of HCC commonly result in death. Thus, surveillance will need to address acute hepatitis, chronic infections and their sequelae.

2. **Similar clinical presentation:** the symptoms and signs of acute and chronic viral hepatitides are similar for all the hepatitis viruses. In addition, new infections are difficult to differentiate clinically from chronic infections. Thus, in vitro diagnosis, including laboratory and point-of-care tests, is key to diagnosing the type of hepatitis (HAV, HBV, HCV, HDV or HEV infection) and differentiating recent from chronic infection.

3. **Asymptomatic nature of most infections:** many new or chronic infections are asymptomatic, because of which affected persons do not seek medical care. They are neither reported nor counted. Thus, estimating the burden of chronic infection requires biomarker surveys to identify those with chronic infection and the type of virus causing it.

4. **Multiplicity of modes of transmission and population at risk:** while HAV and HEV are transmitted through the fecal–oral route, HCV and HBV are transmitted through exposure to blood and body fluids. Thus, surveillance approaches need to be tailored to each country so that the relevant populations are included. This will help identify the modes of transmission that account for the majority of new infections and direct prevention activities.

PURPOSES OF SURVEILLANCE FOR VIRAL HEPATITIS (SEE TABLE 1, PAGE 9)

1. **Detect outbreaks, monitor trends in incidence and identify risk factors for new, incident infections**
 This is achieved through surveillance for acute hepatitis. Surveillance for acute hepatitis may be done in two ways.
A basic approach is to do surveillance for unspecified acute hepatitis (referred to as “syndromic surveillance”) defined on the basis of clinical signs and symptoms. Surveillance for unspecified acute hepatitis in all health-care facilities allows for the detection and investigation of outbreaks.

If resources allow, surveillance with quality in vitro diagnosis will help to detect clusters and describe trends. If combined with collection of epidemiological information, this type of surveillance can also identify risk factors for new infections. Surveillance that combines in vitro diagnosis and collection of epidemiological information is resource intensive. Hence, implementation in selected geographical areas and/or health-care facilities (referred to as “sentinel sites”) is often a preferred option, particularly in resource-limited settings.

Surveillance for acute hepatitis is conducted to some extent in many countries but may require technical improvement and clarification of objectives. Use of standardized case definitions based on the clinical presentation and on the presence of biomarkers allows cases of acute hepatitis to be separated from cases of chronic infection.

2. **Estimate the prevalence of chronic infections and monitor trends in sentinel groups**

This is done through biomarker surveys that estimate the proportion of the population that is chronically infected in order to plan for testing, management and care. These surveys are ideally integrated with surveys conducted for other purposes (e.g. HIV surveys) and may be repeated over time. Reporting of chronic HBV and HCV infections in health-care facilities can also be used to estimate the number of cases identified and managed in health-care services. This does not constitute a reliable method of estimating burden, as many chronically infected persons never seek care. Repeated visits to health-care facilities may lead to duplicate reporting that needs to be eliminated.

3. **Estimate the burden of sequelae of chronic hepatitis, including cirrhosis, liver failure and hepatocellular carcinoma**

This is achieved through the use of cancer registries, death certification, and estimates of the prevalence of HBV and HCV infection among cases of cirrhosis and HCC. This may be implemented in selected sentinel tertiary reference centres. Multiplying the estimated number of deaths from cirrhosis, HCC and liver failure by the fractions of sequelae attributable to HBV and HCV can estimate this burden.

VIRUS-SPECIFIC SURVEILLANCE

Surveillance principles are identical across hepatitis viruses. However, WHO proposes standardized case definitions for viral hepatitis A, B, C and E (see Table 2: WHO surveillance case definitions for viral hepatitis, p. 10). These technical considerations do not provide specific guidance or definitions for the surveillance of hepatitis D. However, the generic principles described in these technical considerations would apply to the surveillance of HDV infection.

- **Unspecified acute hepatitis** is defined clinically by the discrete onset of an acute illness with signs/symptoms of an infectious illness (e.g. fever, malaise, fatigue) and liver damage (e.g. anorexia, nausea, jaundice, dark urine, right upper quadrant tenderness, or levels of alanine aminotransferase [ALT] raised more than ten times the upper limit of normal of the laboratory). In the absence of a type-specific diagnosis, the usefulness of this syndromic surveillance is limited to early detection of outbreaks.

- **Confirmed type-specific acute hepatitis** is defined on the basis of the clinical case definition of acute hepatitis (as defined above) along with the following biomarker criteria:
 - **Hepatitis A** requires the demonstration of antibodies to hepatitis A virus (anti-HAV) immunoglobulin (Ig)M (or an epidemiological link with [a] confirmed case[s]).
- **Acute hepatitis B** requires the demonstration of antibodies to hepatitis B virus core antigen (anti-HBc).

- IgM.a

- **Acute hepatitis E** requires the demonstration of antibodies to hepatitis E virus (anti-HEV) IgM (or an epidemiological link with [a] confirmed case[s]).

- **Acute hepatitis C** requires either:
 - seroconversion to hepatitis C virus antibodies (anti-HCV);
 - presence of HCV RNA in the absence of anti-HCV;
 - positivity for anti-HCV and negativity for anti-HAV IgM, anti-HBc IgM and anti-HEV IgM;

- **Chronic HBV infection** is defined by the absence of acute hepatitis and the presence of HBsAg.a

- **Serological evidence of past or present HCV infection** is defined by the absence of acute hepatitis and the presence of anti-HCV.b The prevalence of serological evidence of past or present HCV infection is of interest to understand the annual risk of infection in a population. However, in practice, it has less implication in terms of treatment than the prevalence of chronic infection, which estimates the proportion of the population that needs to be assessed for treatment (see below).

- **Chronic HCV infection** is defined by the absence of acute hepatitis and the presence of HCV RNA or HCV core antigen.

USE OF VIRAL HEPATITIS SURVEILLANCE FOR PROGRAMME EVALUATION

- Surveillance of type-specific acute hepatitis may be used to evaluate the impact of programmes that prevent new infections, including hepatitis A immunization, water and food safety, condom use, injection safety, blood safety, infection control and harm reduction.

- Surveillance of chronic HBV and HCV infection may be used to evaluate the outcome of (a) universal hepatitis B immunization, (b) programmes preventing HBV and HCV infection through injection safety, blood safety, infection control and harm reduction, and (c) programmes for testing and treatment of HBV and HCV infection.

- Surveillance for sequelae may be used to evaluate the impact of prevention and treatment programmes on long-term sequelae (i.e. cirrhosis and HCC) and specific mortality.

IN VITRO DIAGNOSTIC SUPPORT

Viral hepatitis surveillance requires testing strategies for acute hepatitis and chronic infections in the context of quality assurance measures, including through the use of assays that meet safety, quality and performance standards.

ETHICAL ASPECTS

An ethical approach to viral hepatitis surveillance requires a trade-off between protecting individuals and generating information that will improve the health status of the community. Key principles to protect human subjects include (a) informed consent and autonomy, (b) maximizing the individual and community benefit (without compromising the right to privacy), and (c) reducing risks to individuals. Persons who are tested for viral hepatitis in the context of surveillance need to have provided informed consent. Testing must be linked to care and treatment, and confidentiality must be protected.

a Most testing strategies would also test for total anti-HBc. The combination of total anti-HBc and HBsAg is more specific of HBV infection than HBsAg alone.

b Wherever possible, the presence of anti-HCV needs to automatically lead to HCV RNA testing, as chronic infection is what matters from a clinical, epidemiological and public health point of view.
TABLE 1. Viral hepatitis surveillance: technical approaches that may be used to reach specific objectives for acute hepatitis, chronic infections and sequelae

<table>
<thead>
<tr>
<th>Technical approaches:</th>
<th>If the objective of hepatitis surveillance is to:</th>
<th>Preferred surveillance methods:</th>
<th>Population under surveillance:</th>
<th>Condition to look for:</th>
<th>Analysis and reporting will characterize:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect outbreaks</td>
<td>Describe trends in type-specific acute hepatitis and identify risk factors</td>
<td>Syndromic surveillance in the general population</td>
<td>Persons presenting with acute hepatitis in health-care facilities (discrete onset of symptoms)</td>
<td>Unspecified acute hepatitis</td>
<td>Acute hepatitis that reflects new infections</td>
</tr>
<tr>
<td></td>
<td>Estimate the proportion of chronically infected persons who have been identified</td>
<td>Enhanced case reporting (with in vitro diagnosis and collection of information on risk factors), countrywide or in sentinel sites</td>
<td>Persons without acute symptoms tested in health-care facilities/ laboratories</td>
<td>Type-specific acute hepatitis</td>
<td>Burden of chronic, prevalent infections</td>
</tr>
<tr>
<td></td>
<td>Estimate the burden of chronic infections</td>
<td>Case reporting from laboratories or health-care facilities</td>
<td>Persons without acute symptoms tested during population surveys</td>
<td>Biomarker evidence of past or present infection Chronic infection, irrespective of symptoms</td>
<td>Burden of sequelae</td>
</tr>
<tr>
<td></td>
<td>Model incidence trends</td>
<td>Regular surveys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimate the incidence of HCC and cirrhosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HBV: hepatitis B virus, HCC: hepatocellular carcinoma, HCV: hepatitis C virus

a In vitro diagnosis needs to be organized on a sample of cases when an outbreak is reported.

b High-quality data (i.e. reliable in vitro diagnosis, good information on risk factors) from a smaller number of tertiary centres is preferable and more efficient than poor-quality data from many sites.
Level of case definition	Acute hepatitis
Presumptive case: clinical criteria | Discrete onset of an acute illness with signs/symptoms of (i) acute infectious illness (e.g. fever, malaise, fatigue) and (ii) liver damage (e.g. anorexia, nausea, jaundice, dark urine, right upper quadrant tenderness, AND/OR raised alanine aminotransferase (ALT) levels more than ten times the upper limit of normal)\(^b\)

Confirmed case: clinical criteria AND biomarker or epidemiological criteria	Hepatitis A	Acute hepatitis E	Acute hepatitis B	Acute hepatitis C
IgM anti-HAV +ve OR Epidemiological link with a confirmed case\(^c\) | IgM anti-HEV +ve OR Epidemiological link with a confirmed case\(^c\) | IgM anti-HBc +ve\(^d\) | HCV RNA +ve and anti-HCV –ve OR Seroconversion to anti-HCV\(^e\) OR Anti-HCV +ve AND IgM anti-HBc –ve AND Anti-HEV IgM –ve AND Anti-HEV IgM -ve

Chronic HBV infection	**Hepatitis C**
Only confirmed cases that all require clinical and biomarker criteria

Clinical criteria | Person not meeting the case definition for acute hepatitis (e.g. person tested in the context of the evaluation of a chronic liver disease, a check-up or a survey)

Biomarker criteria	HBsAg +ve\(^a\)	Serological evidence of past or present infection	Chronic HCV infection
---|---|---
Anti-HCV +ve | HCV RNA +ve OR HCV Ag +ve

\(^a\) These case definitions are for the purpose of reporting and surveillance and may differ from criteria to be used for the management of patients.

\(^b\) Ten times the upper limit of normal (400 IU/L) is the threshold used by the State and Territorial Epidemiologists (CSTE). Countries may also select lower thresholds that could be more sensitive or higher thresholds that could be more specific.

\(^c\) Contact with a confirmed case-patient during the referent exposure period or context of an etiologically confirmed outbreak

\(^d\) Context of an etiologically confirmed outbreak

\(^e\) Hepatitis test panels usually include HBsAg with anti-HBc IgM test. The positive predictive value of anti-HBc IgM is higher if HBsAg is positive.

\(^f\) A specific test and/or threshold is needed to exclude transient presence of IgM during flares among patients with chronic HBV infection.

\(^g\) Among patients tested regularly at short time intervals, seroconversion to anti-HCV suggests a recent HCV infection, which may take place in the absence of clinical, acute hepatitis. Seroconversion to anti-HCV should be followed by a reflex RNA test (when available).

Ag: antigen, anti-HCV: antibody against hepatitis C virus, HBsAg: hepatitis B surface antigen, HBV: hepatitis B virus, HCV: hepatitis C virus, RNA: ribonucleic acid

\(^a\) Most testing strategies would also test for total anti-HBc. The combination of total anti-HBc and HBsAg is more specific of chronic HBV infection than HBsAg alone.