构建安全未来

2007年世界卫生报告

构建安全未来
世纪全球公共卫生安全

编者：世界卫生组织
出版发行：人民卫生出版社（中继线 010－67616688）
地址：北京市丰台区方庄芳群园3区3号楼
邮编：100078
网址：http://www.pmph.com
E-mail：pmph@pmph.com
购书热线：010－67605754 010－65264830
印刷：北京人卫印刷厂
经销：新华书店
开本：889×1194 1/16 纸张：6.5
字数：163千字
版次：2007年8月第1版 2007年8月第1版第1次印刷
标准书号：ISBN 978－7－117－09100－8/R·9101
版权所有，侵权必究，打击盗版举报电话：010－87613394
（凡属印装质量问题请与本社销售部联系退换）
© 世界卫生组织，2007 年

版权所有。世界卫生组织出版物可从世界卫生组织出版办公室（WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland）获取。欲获得复制或翻译世界卫生组织出版物的许可—无论是为了出售或非商业性分发—应向世界卫生组织出版办公室提出申请，地址同上（传真：+41 22 791 3264；电话：+41 22 791 4857；电子邮件：bookorders@who.int）。不得复制或翻译该出版物的任何部分，除非事先获得世界卫生组织的书面许可。

本出版物采用的名称和陈述的材料并不代表世界卫生组织对任何国家、地区、城市或地区或其当局的合法地位，或关于边界或分界线的规定有任何意见。地图上的虚线表示可能尚未完成或确认的一致或边界线。

凡提及任何公司或任何商标的产品时，并不意味着它们是世界卫生组织认可或推荐，或在其他未提及的类似公司或产品之上。凡专利产品名称均以大写字母，以示区别。

世界卫生组织已采取一切合理的预防措施来核实本出版物中包含的信息。但是，已出版材料的分发无任何明示或含蓄的保证。解释和使用材料的责任由读者自负。世界卫生组织对因使用这些材料造成的损失概不承担责任。

了解有关本出版物的信息：
World Health Report
World Health Organization
1211-Geneva 27, Switzerland
E-mail: whr@who.int

订购本出版物和报告全文者请致函：bookorders@who.int

本报告在总干事陈冯富珍的领导之下编写。主要传染病的助理总干事 David Heymann 任总编辑。主要作者为世界卫生组织小组的 Thompson Practice 和 Lisa Tucker Reinders。

本报告的翻译和编辑由 World Health Report 完成。感谢所有助理总干事、区域主任、世界卫生组织技术单位以及审阅文本并作出贡献的许多其他人的支持。

特别感谢作出贡献的以下人员：Tomas Allen, Penelope Andrea, Bruce Aylward, Anand Balachandran, Sosa Bari, Dharmid Campbell-Lendrum, Amina Charieh, Claire Lise Chaignat, May Chu, Albert Concha-Eastman, Otsutomo Cosivi, Alvaro Cruz, Kevin De Cock, Sophia DeSiltas, Pat Drury, Pierre Formeney, Keiji Fukuda, Fernando Gonzalez-Martin, Pascal Haeliwal, Max Hardiman, Mary Kay Kindhauser, Colin Mathers, Angela Merianos, Francois-Xavier Meslin, Michael Nathan, Maria Neira, Paul Nunn, Kevin O'Reilly, Andre Pinard-Clark, Gnaasler Roixier, Oliver Rosenbauer, Cathy Roth, Mike Ryan, Jorgen Schlundt, George Schmid, Ian Smith, Claudia Stein 和 Leo Vita-Finzi。

感谢所有媒体机构及 Dr. Ken Kamran 提供的协助，以及所有研究机构和参与研究的工作人员。特别感谢 Dr. Michael Ross 和 Dr. Arif Ali 提供的建议和反馈。特别感谢 Dr. Barbara Coad 提供的编辑和设计工作。本报告的翻译和编辑由 World Health Report 完成。感谢所有助理总干事、区域主任、世界卫生组织技术单位以及审阅文本并作出贡献的许多其他人的支持。

报告由 Diana Hopkins 的主持下撰写，数字、表格及其他插图由 Gaeo Kernen 提供，修编和制作了图像版本及其他电子媒体。历史研究由 Veronica Schoenenberger 协助进行。世界卫生组织小组的行政支持由 Soba Amnedalianz 提供。本报告的翻译和编辑由 World Health Report 完成。感谢所有助理总干事、区域主任、世界卫生组织技术单位以及审阅文本并作出贡献的许多其他人的支持。

插图： offender, 不知名的画家，伦敦韦尔科姆图书馆（第 12 页）；死亡之水，George Pinwell, 1866 年（第 13 页）；Edward Jenner 在 1796 年进行的第一次天花疫苗接种，Gaston Melingue, 1879 年，巴黎国家医学科学院图书馆（第 13 页）。

设计：Reda Sadi
版面：Steve Ewart 和 Reda Sadi
印刷：Christophe Gramier
印刷协作者：Raphael Cretus
中文翻译：王晓春 中文校对：吴雪梅 刘亚莉 唐文森 郑利萍 刘丽霞 任良民 金敏曦
目录

总干事致词 vi
概要 viii
21世纪全球公共卫生威胁 ix
易流行的疾病 x
食源性疾病 xi
意外的和蓄意制造的疾病暴发 xi
有毒化学物质的意外事件 xi
核放射意外事件 xii
环境灾难 xii
全球合作应对公共卫生安全威胁 xiv
各章小结

第一章 公共卫生安全的演变 1
大事记 2
鼠疫和隔离检疫 2
霍乱与卫生 4
天花和免疫 5
加强国际合作 6
国际卫生安全新标准 8
化学品突发事件的国际应对 10
剧烈变迁时代中的新卫生条例 12

第二章 公共卫生安全的威胁 16
导致公共卫生不安全的人为因素 17
投入不足 17
意外的政策改变 21
冲突所导致的公共卫生后果 21
微生物的演变和抗生素耐药性 23
畜牧业管理和食品加工 25
人类(牛)海绵状脑病 25
尼帕病毒 26
气候变化与传染病 27
其他的公共卫生突发事件 29
突发性化学事件和核放射事件 29
工业事故 30
自然现象 34
<table>
<thead>
<tr>
<th>章节</th>
<th>标题</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>三</td>
<td>21 世纪新的健康威胁</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>炭疽邮件</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>SARS: 暴露了防控能力的薄弱</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>有毒化学品的倾倒</td>
<td>46</td>
</tr>
<tr>
<td>四</td>
<td>汲取的教训和超前思考</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>流感大流行: 最严峻的国家安全威胁</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>WHO流感大流行战略行动计划</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>广泛耐药结核</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>对脊髓灰质炎国际传播风险和后果的管理</td>
<td>59</td>
</tr>
<tr>
<td>五</td>
<td>构建安全未来</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>帮助这些国家就是帮助整个世界</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>全球合作</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>加强国家能力</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>预防和应对国际性的突发公共卫生事件</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>法律问题和监测</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>结论和建议</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>索引</td>
<td>75</td>
</tr>
</tbody>
</table>
各章图例

图1.1 黑死病在欧洲的传播 3
图1.2 全球传染病暴发应对示例 (1998–1999年) 9
图1.3 国际公共卫生安全: 由国家卫生体系及技术伙伴构成的全球网络, 由世卫组织进行协调, 集中于4个主要工作方面 11
图1.4 1996–2004年部分新发和再发传染病 13
图2.1 艾滋病: 25年流行状况 18
图2.2 全球疫情，挑战，延迟报告和应对 19
图2.3 盘尼西林对金黄色葡萄球菌耐药性的演变 24
图3.1 2006年3月在CA112航班上发生的可能的SARS传播 42
图3.2 部分疾病暴发造成的直接经济影响, 1990–2003年 44
图4.1 WHO流感监测网络 50
图4.2 2003年以来, 报告WHO的人类禽流感A/(H5N1)病例累积确诊人数 53
图4.3 脊髓灰质炎病毒传播, 2003–2006年 60
图5.1 对可能引起国际关注的突发公共卫生事件进行评估和报告的决策工具 65
图5.2 按世卫组织区域分列的经核实的可能构成国际公共卫生关注的事件, 2003年9月–2006年9月 70

各章专栏

专栏1.1 公共卫生安全 1
专栏1.2 传染病控制的国际合作 7
专栏2.1 在军事冲突条件下，马尔堡出血热和卫生系统 22
专栏2.2 废弃使用化学试剂和生物试剂引发公共伤害 30
专栏3.1 SARS和流感大流行产生的经济影响 43
专栏3.2 大众媒体在风险认知上的作用 45
专栏4.1 WHO会议认为进行全球H5N1疫苗储备是可行的 56
专栏5.1 《国际卫生条例（2005）》早期的实施成果 68

各章表格

表2.1 1974–2006年较大的化学意外事件 31
表5.1 实施《国际卫生条例（2005）》的7个策略行动 66
自世卫组织在1951年发布旨在预防疾病国际传播的第一套具有法律约束力的条例以来，世界发生了巨大的变化。当时，疾病情况相对稳定。人们的关注集中于仅六种“检疫”疾病：霍乱、鼠疫、回归热、天花、斑疹伤寒和黄热病。新的疾病很少，而且特效药已经彻底改变了对许多有充分了解的感染的治疗。人们不进行国际旅行，新闻通过电报传播。

自那时以来，人类在地球上生活的方式发生了意义深远的变化。疾病情况绝不再是稳定的。人口增长、迁入以前无人居住的地区、迅速的城市化、密集性农业措施、环境恶化和滥用抗生素破坏了微生物世界的平衡。新疾病出现的速度达到史无前例的每年一种。航空公司运输的乘客现在每年超过20亿人，大大增加了传染因子及其传播媒介在国际上迅速传播的机会。

随着对健康和环境潜在危害认识的提高，对化学品的依赖性更大。工业化的食品生产和加工及全球化的市场营销和批发意味着一种被污染的成分就可以导致从几十个国家召回成吨的食品。一个特别不祥的趋势是主流抗生素失效的速度比替代药物的研制速度更快。

在以高度流动性、经济相互依赖和通过电子手段相互连接为特征的世界中，这些威胁已成为种大得多的危险。国家边境的传统防御工事不能防范疾病或传播媒介的侵入。实时新闻使恐慌情绪能同样容易地传播。对健康的打击在远远超出疫区的地域内对经济和商业连续性造成打击。脆弱性是普遍存在的。
《2007年世界卫生报告》致力于全球公共卫生安全，即减少人群对严重健康威胁的脆弱性。在今年4月庆祝世界卫生日时，发起了世卫组织关于全球公共卫生安全的讨论。世界各地的学者、学生、卫生专业人员、政治家和商界就如何使世界防范大流行性流感、冲突和自然灾害对健康的后果以及生物恐怖主义等威胁开展了对话。

在集体防御新工具的前提下，其中尤其包括修订的《国际卫生条例（2005）》。2007年世界卫生报告还提出了其他外处理了这些问题。《条例》是一份国际法律文书，目的是要针对疾病国际传播达到最大程度的安全性。《条例》还力图减轻突发公共卫生事件的国际影响。

《国际卫生条例（2005）》使集体防御的重点从少数“检疫”疾病扩大到包含在卫生方面可造成国际反响的任何突发事件，包括新出现和有流行趋势的疾病暴发、食源性疾病暴发、自然灾害以及化学和核放射事件（无论是意外或有意造成的）。

与以往显著不同的是，《国际卫生条例（2005）》不再将重点放在边界、机场和海港被动的屏障，而转向积极主动的风险管理战略。该战略的目的是有机会形成一种国际威胁之前尽早发现事件并从其根源予以制止。

鉴于当今对这种威胁的普遍脆弱性，要提高安全性就需要全球团结一致。国际公共卫生安全是一种集体的愿望，也是一种共同的责任。由于突发卫生事件的决定因素和后果越来越广泛，所以在安全议程中具有利害关系的行动者范围也越来越广泛。新的口号是交流、合作、透明和防备。《国际卫生条例（2005）》的成功实施符合政治家和商界领袖的利益，也符合卫生、贸易和旅游部门的利益。

我很高兴向我们的伙伴呈上2007年世界卫生报告，并期待该报告激发的讨论、方向和行动。

世界卫生组织总干事
陈冯富珍博士
概要
在世界面临众多新兴出现和重现的健康威胁时，今年《世界卫生报告》的雄伟目标是向大家展示全球公共卫生集体行动如何为人类构建一个更加安全的未来。

这是全球公共卫生安全的总体目标。在本报告中，全球公共卫生安全的定义是，为尽可能减少对一个国家的不同人群、不同团体、不同区域以及跨国性的群体健康的紧急公共卫生事件发生的可能性而采取的预见性和反应性行动。

如本报告中所述事件所展示，全球卫生安全的安全与否，可能对经济或政治稳定、贸易、旅游、商品和服务可及性等产生影响；这种事件如果频繁出现，还对人口结构稳定性产生影响。这些不安全因素包括从国际社会到个人家庭的各种各样复杂和棘手的问题，如贫困、战争和冲突、气候变化、自然灾害和人为灾难等对健康的影响。

所有这些因素都是世卫组织一贯工作的领域，将成为未来各类出版物的主题。例如2008年的《世界卫生报告》将关注个体的健康安全，主要讨论初级卫生保健和人道主义行动在满足基本卫生需要可及性方面所发挥的作用。

然而，本报告将重点讨论威胁全球人类群体健康的特定问题，这些问题包括于今年6月生效的重新修订的《国际卫生条例(2005)》所规定的传染病流行和大流行，以及其他突发急性卫生事件。

制定这些条例旨在预防疾病的跨国传播与蔓延，是全球公共卫生安全的重要立法文书，为预防、发现、评估可能构成国际关注的突发公共卫生事件，并在必要时采取协调一致的应对措施等提供了必需的全球性框架。

满足修订后的《国际卫生条例(2005)》的要求的确是一个挑战，这需要时间、承诺和积极改变的意愿。该条例拓宽了其所取代的原条例内容并提出了更高要求，强调所有国家有责任在2012年前建立并有效发现并控制公共卫生风险的系统。

世卫组织已制定了一项战略计划来指导各国履行条例所规定的义务，并帮助各国应对实施过程中的挑战。

21世纪
全球公共卫生威胁

现今快速流动、相互依赖和相互关联的世界为传染病的快速传播、核放射以及有毒物质的威胁创造了无数机会，同时也说明了对条例不断加以更新和扩充的必要性。目前，传染病跨境传播的速度比历史上任何时候都要快。据估计，2006年有21亿人次的航空旅客，所以世界上任何一个地方一旦发生疾病暴发或流行，那么仅仅几小时后就会使其他地区大难临头（见图1）
传染病不仅传播速度快，而且新病种出现的速度似乎也超过了过去的任何时期。自 20 世纪 70 年代开始，新出现的传染病即以空前地、每年新增一种或多种的速度被发现。现今有近 40 种疾病在一代人以前是不为人所知的。另外，在过去 5 年里，世卫组织还证实在全球范围内有 1100 多起疾病流行事件。

以下分类和事例说明了人类目前面临的公共卫生威胁的种类和范围。

易流行的疾病

霍乱、脊髓灰质炎和流行性脑膜炎球菌病在 20 世纪最后四分之一个世纪里死灰复燃，不得不重新采取监测、预防和控制措施。严重急性呼吸道综合征（SARS）以及人禽流感已引起国际上极大关注，向人类提出了新的科学挑战，使人类遭受极大苦难并且造成了巨大的经济损失。其它新出现的病理性疾病，例如埃博拉和马尔堡出血热以及尼帕病毒对全球公共卫生造成威胁，而且，因为其起病急的特性，可导致死亡和疾病发生，需要从其源头加以控制。在这些疾病暴发期间，需要快速评估和应对来限制其局部传播，而这方面通常需要国际援助才能实现。今后必须增强对这些新威胁的评估能力。

在传染病控制诸多方面取得的进步正受到抗生素耐药性流行的严重威胁。广泛耐药结核（XDR-TB）目前正成为一个严重的问题。耐药性也见于疟疾、腹泻病、呼吸道感染、脑膜炎、性
传播感染以及医院获得性感染，而且在 HIV 中也开始出现。

食源性疾病
过去 50 年中，食物链在发生了相当大的和迅速的变化，变得非常复杂和具有国际性。尽管食物安全水平整体上已有显著的提高，但各国的进展不平衡，所以微生物污染、化学物质和有毒物质造成的食源性疾病暴发在许多国家屡有发生。受污染食物在国家间的贸易增加了疫情传播的可能性。另外，新的食源性疾病的出现已引起了人们极大关注，例如发现了与牛海绵状脑病 (BSE) 相关的新变异型克雅氏病 (nvCJD)。

意外的和蓄意制造的疾病暴发
近年来，随着与传染病监控和实验室研究相关的活动逐年增加，与传播和因意外释放有关的疾病暴发也呈上升趋势。违反生物安全措施通常是导致这些意外事件的原因。同时，恶意释放危险病原菌的情况，过去曾经是匪夷所思的事情，如今却已成为现实。2001 年在美国出现的炭疽邮件即是一例。

另外，过去几年中出现了令人烦扰的由化学或核放射意外事件以及突发的环境变化导致的新的卫生事件，这在许多国家引起强烈关注。

有毒化学物质的意外事件
- 2006 年在非洲西部：在科特迪瓦阿比让市周围至少15个地点倾倒的约有500吨的石油化学废物，造成8人因暴露于此废物死亡以及将近9万人出现健康问题而需要寻求医疗救助。其他国家担忧，他们也可能因为在此地倾倒的废物或跨国界河流的化学污染而处于危险之中。
- 1981 年在欧洲南部：203人在食用了掺有工业菜籽油的食用油后死亡。共有15 000人受到这种毒油的危害，而且至今尚未发现可以逆转毒油综合征副作用的治疗方法。

核放射意外事件
- 1986 年东欧：切尔诺贝利核电站灾难被认为是核能历史上最严重的一次意外事故。核电站的爆炸造成周围地区的放射性污染，大片的放射性沉降物漂浮到了前苏联西部地区、东欧
和西欧、一些北欧国家和北美东部。乌克兰、白俄罗斯共和国和俄罗斯联邦的大片地区受到严重污染，导致336,000余人被疏散和重新安置。

环境灾难

- 2003年欧洲：席卷欧洲的热浪夺走了35,000人的生命，这一事件与同期在世界其他地区出现的极为未及的极端气候有关。
- 1986年中部非洲：尼奥斯火山湖这个火山口深湖释放出大量气体后，1700余人死于二氧化碳中毒。对此类事件需要做出快速评估，以确认其是否具有国际性威胁。

本概要总结了以上列举的一些事例，报告中对这些事件以及从中汲取的教训进行了广泛的讨论。该报告强调当今需要做出国际反应的事件不仅包括已知疾病，还包括未知疾病——即那些可能给数个国家的千百万人带来危险的、由环境或气候急剧变化以及工业污染和意外事件引发的疾病。

全球合作应对公共卫生安全威胁

对这些威胁需要采取紧急行动，世卫组织及其合作者可提供大量即时和长期的援助。这是一个从现在开始就可以在保护全人类方面获得实实在在进展的领域。这也是一个近代历史已证明的、某些对人类生存最严重的威胁很可能会没有先兆地突然袭来的领域。随着不再会出现另一种类似艾滋病的疾病、埃博拉病或严重急性呼吸道综合征将是十分遥远和自满的。

一个更安全的、可对全球卫生安全威胁做出共同反应的世界需要全球合作者的共同努力——召集所有国家和所有相关领域的利益攸关者，聚集顶尖技术支持并且调动必要的资源来有效、及时地实施《国际卫生条例（2005）》。这就需要各个国家具备发现疾病的核心能力建立对引起国际关注的突发公共卫生事件做出反应的国际合作。

尽管目前这些合作关系已经存在，但是仍然存在严重的差距，尤其是在许多国家的卫生系统中问题更明显。这将削弱全球卫生合作的连贯性。为了配对这些差距，世卫组织于1996年启用了一个高效的全球疫情警报和反应系统。该系统建立于与许多其他机构和技术单位进行国际合作的基本理念之上。它建立了可汇集流行病信息以及证实疾病暴发是否存在系统的性
机制，以此提高了风险评估、信息传播和快速现场反应。同时，还针对出血热、流感、脑膜炎、天花和黄热病导致的公共卫生事件，建立了疫苗、药物和专门调查以及防护设备的储存和快速分发的区域性和全球性机制。

如今，所有国家的公共卫生安全取决于各个国家的高效行动以及对整体安全做出贡献的能力。世界正在迅速变化。现今，没有任何事物的速度能超过信息。这使得共享重要卫生信息成为实现全球卫生安全的最可行方式之一。

即时的电子通讯意味着再也无法隐瞒疾病的暴发。正如以前的《国际卫生条例 (1969)》实施过程中常常发生的那样。由于疾病暴发可能通过贸易、旅行和旅游的中断而对经济造成损失，政府不愿报告疾病暴发。事实上，信息的滞留远远超过事实本身。信任要通过透明来建立，而且信任对卫生和发展的国际合作也是必须的（见图2）。

图2 全球疫情，挑战：延迟报告和应对

因此，面对全球公共卫生安全威胁必须采取的首要步骤是：提高各个国家发现和应对方面的核心能力，并且维持国家间的高水平合作以降低上述公共卫生安全风险。这使得各国必须加强其卫生体系并保证其有能力防控可能跨越国界甚至是在洲际快速传播的流行病。对于一些不能依靠自身力量防控流行病的国家，应提供快速和专业的国际疾病监测及反应网络来协调其工作，而且应确保这些网络组合成一个高效的安全网。最重要的是，这意味着所有国家遵守《国际卫生条例 (2005)》并从中受益。
各章小结

公共卫生安全的演变

第一章开篇即历史性地回顾了《国际卫生条例 (1969)》得以形成的一些初步措施，包括：公共卫生领域自检疫（这个14世纪发明的术语并被用于预防“外来”疾病，例如鼠疫）开始的具有里程碑意义的事件；19世纪卫生条件的提高有效地控制了霍乱爆发；以及20世纪疫苗的接种根除了天花并控制了许多其他传染病。了解国际卫生合作的历史，包括其成功和失败之处，对于理解其在新时期的意义和潜力非常必要。

第一章介绍了世卫组织在1996年如何启动了一个高效的全球疫情警报和反应系统，以及自此以后该系统如何被广泛地拓宽。该系统建立于与许多其他机构和技术单位进行国际合作的基本理念之上。这个被称为“全球疫情警报和反应网络（GOARN）”的合作伙伴关系提供了一个运作和协调框架，从中可获得专业知识和技术并使国际社会时刻警惕疾病暴发的威胁并准备好应对。由世卫组织负责协调，该网络由来自60余个国家的140余个技术伙伴组成。

另外，《全球消灭脊髓灰质炎行动》建立的独特的、大规模的高效监测网络正被用于支持监测许多其他疫苗可预防疾病，例如麻疹、脑膜炎、新生儿破伤风及黄热病。该网络同时常规地用于支持对报告中提及的其他紧急卫生事件和暴发的监测和反应活动。2002年，世卫组织建立了化学事件预警及反应系统，采用了与全球疫情警报和反应网络（GOARN）相似的运作方法。该系统于2006年被拓宽——包括了其他环境卫生紧急
事件，包括那些与环境卫生服务中断有关的事件，例如供水和
卫生设施以及放射事件和紧急事故。

修订的条例对突发事件的定义是：可国际传播或者可能需
要采取协调一致的国际应对措施的“不同寻常的事件”。缔约
国应利用决策文书对可能构成国际关注的突发公共卫生事件
做出评估，如果符合特定的标准，必须报告世卫组织。对于有
些疾病即使1例病例也可能威胁全球公共卫生安全，如天花、
野毒株引起的脊髓灰质炎、新亚型病毒引起的人流感以及严重
急性呼吸道综合征（SARS），规定必须进行单病例报告。

“国际关注的突发公共卫生事件”和“疾病”的宽泛定义使
得《国际卫生条例（2005）》中包含了传染病之外的威胁，包括
那些由意外和蓄意释放病原菌或化学、核放射性物质造成的威
胁。这就将《条例》的范围拓宽以更广泛地保护全球公共卫生
安全。

《国际卫生条例（2005）》对工作重点加以调整，从《国际卫
生条例（1969）》中要求的将几乎全部注意力放在港口和机场以
阻止疾病输入本国的措施，转变为在疾病暴发的源头地做出快
速反应。这些条例引入了一套各个国家必须达到的“核心能力要
求”，以发现、评估、通报和报告《国际卫生条例（2005）》包括
的事件，并且通过寻求提高能力并向各国证明遵守该条例符合
它们的最大利益，从而加强全球规模的合作。因此，遵守条例
具有三个令人信服的动机：减轻疾病暴发的破坏性后果、加快
其控制以及在国际社会中保持良好的声誉。

《国际卫生条例（2005）》明确地承认：关于疾病暴发的非
国家信息来源通常先于官方报告，这一事实是对此前的国际公
约和条例的一个重大革新。这包括了某些情况下一些国家不
愿披露的在其境内发生的事件。目前，世卫组织已经通过《国
际卫生条例（2005）》获得授权考虑非官方报告的信息来源。世
卫组织将始终在从有关国家获得对此类信息的官方核实后，才
会根据收到的信息采取任何行动。这反映了在一个即时通讯
的世界中出现的一个新的现实，对疾病暴发的隐瞒将不再是政
府的一个可行性选择。
公共卫生安全的威胁

第二章按照《国际卫生条例 (2005)》的定义，探讨了一系列全球公共卫生安全的威胁，这些威胁由人类自身行为或原因、人类与环境的相互作用、突发的化学和核放射事件包括工业意外事件及自然现象导致。本章开篇即阐释了因无传染病暴发的情况下形成的错误的安全感所造成的公共卫生方面投资不足，并导致了警惕性降低以及对执行有效的疾病预防控制规划的松懈。

例如，到了 20 世纪 60 年代后期，随着大规模、系统性疾病控制规划中杀虫剂的大面积使用，撒哈拉以南非洲，绝大多数重要的虫媒传染病不再被视为严重的公共卫生问题。之后，由于资源缩减，疾病控制计划被搁置，其结果造成在随后的 20 年内，许多重要的虫媒传染病，包括非洲锥虫病、登革热和登革出血热以及疟疾在另外一些地区出现或者在曾经的疫区卷土重来。都市化以及日益增长的国际贸易和旅游业也是造成登革热病毒以及其他虫媒迅速传播的原因。1998 年，登革热出现了前所未有的大流行，共有 56 个国家向世卫组织报告了 120 万病例。自此以后，登革热流行继续肆虐，从拉丁美洲到东南亚的千百万人受到感染。从全球而言，每年向世卫组织报告的平均病例数在过去的 40 年中，每 10 年就几乎增长一倍。

对建立可以监控国家卫生状况的高效卫生系统承诺的缺乏导致了监测不力。20 世纪 70 年代 HIV/AIDS 在全球迅速出现以及传播即说明了这一点。在许多发展中国家，本来薄弱的卫生系统没有发现这种新的卫生威胁的存在；直到在美国出现了首个病例后，才最终引起国际社会的重视，这时已经很迟了。除了缺乏疾病监控能力和资料外，在非洲国家、美国和其他工业国家，早期控制艾滋病流行的的努力也由于缺乏对性行为的可靠资料而受到严重影响。发展中国家几乎无法找到行为资料。在发展中的世界，从性、性别关系以及迁移角度理解 HIV/AIDS 经过了数年时间，而且目前对此知道得仍然很不够。

即使有了可靠的运作手段，对公共卫生规划的其他影响仍可具有致命性的和代价高昂的反响。例如，2003 年 8 月尼日利亚北部出现了无事实根据的传言，认为口服脊髓灰质炎疫苗 (OPV) 不安全，而且可以使幼儿以后不育，这些传言导致尼日利亚北部两个州暂停了脊髓灰质炎免疫接种，其他多个州脊髓灰质炎疫苗接种率也大幅降低。其结果导致脊髓灰质炎在尼日
利亚北部发生大面积暴发以及此病在该国南部此前实现了无脊髓灰质炎的地区再次流行。此次疾病暴发最终造成尼日利亚成千上万名儿童瘫痪，而且从尼日利亚北部向蔓延到了19个无脊髓灰质炎的国家。

第二章也考虑了冲突对公共卫生带来的不良后果，例如安哥拉1975年～2002年内战时发生的马尔堡出血热暴发，以及1994年卢旺达危机后刚果民主共和国发生的霍乱流行。1994年2月，约有50万～80万人越过国境在刚果城市戈马的市郊避难。在他们到达该市的第一个月内，将近5万难民死于霍乱和疟疾等疾病的大面积暴发。传播速度和极高的感染率与唯一的水源被霍乱弧菌污染，而且缺乏适当的住房和卫生条件有关。

本章也讨论了微生物的适应性、抗生素的使用和滥用以及动物传染病例如人类牛海绵状脑病和尼帕病毒等问题。尼帕病毒出现的历史提供了源于动物的新型人类病原体的另一个例证，最初导致动物传染病，之后演变为一种更加严重的人类病原体。这种趋势需要人类卫生、兽医卫生和野生动植物管理部门加强合作。

本章同时讨论了极端气候相关事件导致的传染病以及突发性化学和核放射事件对公共卫生造成的紧急影响。如果这些事件有可能造成国际规模的伤害，包括蓄意使用生物和化学因子以及工业事故等，均属于《国际卫生条例(2005)》范畴之内。本章中列举的若干个意外事件中的一例为1986年乌克兰发生的切尔诺贝利核电站事故，此次事故向大气中播散的放射性物质影响到了欧洲和斯堪的纳维亚岛的广大地区。本章中的所有事例揭示了20世纪末之前对全球卫生安全造成的令人担忧的各种威胁。
21世纪新的健康威胁

第三章研究了21世纪新出现的三种公共卫生威胁—2001年美国出现的以炭疽邮件为形式的生物恐怖、2003年出现的严重急性呼吸道综合征以及2006年科特迪瓦出现的大规模有毒化学废物的倾倒。

仅在2001年9月11日的恐怖事件发生后的数日内，利用美国邮政系统传递信件蓄意传播潜在致命性炭疽孢子事件将生物恐怖活动加入了现代社会的现实生活。除了造成人员伤亡（共有22人感染，其中5人死亡）外，炭疽病造成了巨大的经济损失以及公共卫生和公共安全危害。该事件提醒国际社会对生物恐怖活动继续关注，许多国家采取了应对措施，而且要求世卫组织提供更强大的咨询作用，导致更新《公共卫生对生物和化学武器的反应：世卫组织指南》这一出版物。

炭疽信件说明，生物恐怖活动可能导致的不只是死亡和伤残，而且会对社会和经济造成严重的破坏。另一个令人担忧的事实是，天花这个早在1979年即已被消灭的人类疾病，可能在20余年后作为故意暴力手段使用以达到致命效果。天花消失后，大规模天花疫苗接种就停止了，因此形成了未获得免疫力的易感人群以及对此病缺乏临床经验的下一代公共卫生从业人员。

自那时以来，世卫组织已参与了国际讨论和生物恐怖的模拟演练，主张发现蓄意制造的疾病暴发的最可靠方法是加强发现和应对自然暴发的系统，因为在流行病学和实验室原理上基本相同。关于正确应对生物攻击（尤其是天花病毒）的专家讨论可用于在全球范围内对世卫组织已启用的全球疫情预警和反应网络进行检验。

作为本世纪最先出现的新型严重疾病，2003年的严重急性呼吸道综合征证实了生物恐怖威胁引发的恐惧，即一种新的或对之不熟悉的病原体可对国内和国际的公共卫生和经济安全产生深远的意义。严重急性呼吸道综合征描述了某种疾病作为一种公共卫生安全威胁而具有国际意义的特点：该病人，无特殊媒介，特殊的地理学倾向，潜伏期1周以上，与许多其他疾病的症状类似，对医护人员造成严重的侵害以及感染者中病死率约为10%。这些特点意味着该病易于沿着国际航线传播，从而使拥有国际机场的每个城市都处于输入病例的风险之中。
作为一种新的、致命性以及起初知之甚少的疾病，严重急性呼吸道综合征引发的一定程度的公共焦虑，事实上造成了向疫区的交通终止，而且在整个区域内造成了数十亿美元的经济损失。该病挑战了对新发疾病和易流行疾病相关风险的公共和政治理解，并且将公共卫生整体水平提高到了一个新高度。并非所有国家都感觉到了未来生物恐怖的威胁，但是所有国家都关心类似严重急性呼吸道综合征的疾病的来临。

这说明新发疾病带来的危险是全球性的。无论贫富，没有一个国家能完全防止新发疾病进入其境内以及疾病入境后造成的破坏性后果。在被首次确认为一种国际性威胁后不到4个月的时间内，严重急性呼吸道综合征的传播即得到控制，这是公共卫生领域获得的一次全球性空前的成就。如果严重急性呼吸道综合征已成为一种永久存在的本地流行病威胁，那么不难想象在这个仍在奋力应付HIV/AIDS的世界里对全球公共卫生安全所产生的后果。

与人们在全球的流动一样，产品在全球的运输也可产生严重的卫生后果。2006年8月，在科特迪瓦作为全球贸易一部分的有害废物的国际运输和处理行动地表明了其存在的潜在致死性风险问题。500余吨化学废物被从一艘货船上卸下，用卡车在阿比让市内和周边的不同地点非法倾倒。其后果是在倾倒后的数日和数周内，几乎有9万人寻求医疗。尽管不到100人住院接受治疗，而且造成死亡的病例极少，但它对国内和国际层面而言都是一次公共卫生危机。国际社会关注的主要问题之一是该艘货船从北欧出发到达科特迪瓦前曾经停靠在数个港口，包括西部非洲的一些其他港口。在此事件的后果中还不清楚该货船是否在那些港口中的哪一个港口装载或卸载了化学废物。
汲取的教训和超前思考

第四章讲述了可引起国际关注的潜在突发公共卫生事件。其中最可怕的是流感大流行。人们早已对此威胁作出积极反应，《国际卫生条例 (2005)》的及早实施对此起到了促进作用。这是应对大流行的一次罕见的机会，它通过全面利用预警以及检测应对大流行的计划和准备的模型使防止该威胁成为可能。必须充分利用这个有利条件，在《国际卫生条例 (2005)》的框架内加强全球的准备。

紧随严重急性呼吸道综合征暴发之后，关于流感大流行的预测在全球立即拉响了警报。流感大流行的传播性更强，通过咳嗽和打喷嚏传播，而且在极短的潜伏期内（来不及追踪接触者和进行隔离）即可传播开，从而带来极大的破坏性后果。如果出现了一种全面传播的大流行病毒，那么将无法防止此病的传播。

基于过去发生的大流行中获得的经验，可以预测，大流行将能感染全球约25%的人口，即使15亿以上的人口发生感染。即使流感大流行病毒仅引起相对轻微的疾病，在如此大量人群中造成突发的疾病所带来的经济和社会破坏也将是巨大的。

由于下一次流感大流行很可能由禽流感病毒的变种导致，人们已经采取了许多干预措施来控制禽类的初期疫情暴发，包括杀灭数千万只禽类。第四章介绍了为了降低大流行风险所采取的关键性行动以及密切的国际合作。在采取的许多第一线行动中，世卫组织已追踪并核实了数十起关于人间病例的传言。已向许多国家发放现场调查工具包，并且强化了现场调查和反应的培训。全球疫情警报和反应网络机制被启用以支持世卫组织对10个国家发生了人和(或)禽类H5N1感染的国家派遣应对小组；同时，该组织派出了30余个评估小组调查其他国家H5N1的潜在感染情况。

为了达到推动全球准备的目的，世卫组织制定了一项针对流感大流行的战略行动计划，确定了五个关键性行动领域：

- 减少人类暴露于H5N1病毒。
- 加强早期预警系统。
- 强化快速遏制疫情行动。
- 应对大流行的能力建设。
协调全球的科学研究和开发工作。

截至 2007 年 5 月，有 12 个国家报告了 308 例人间病例，其中 186 例死亡。几乎所有国家都已经制备了禽流感和人类流感大流行的风险应急预案。世卫组织及其一些会员国共同努力建立了抗流感病毒药物储备。这些药物有可能在早期集中的人际传播时期终止疾病传播。制药业在继续研制流感大流行疫苗。2007 年，禽类流感暴发仍在继续，并在人类中散发，但是大流行病毒并未出现。然而，科学家们一致认为，H5N1 大流行的威胁仍然存在。而且，由于病毒或其他禽流感病毒造成流感大流行只是一个时间上的问题，而不是是否会发生的问题。

同时，第四章也重点介绍了非洲南部的广泛耐药结核 (XDR-TB) 状况，这个问题由于医疗卫生系统的不完善而日益恶化，而且造成规划管理的失败，尤其是对卫生工作人员和病人治疗方案的监督不力、药物供应中断以及低水平的临床管理。所有这些都使得病人无法完成治疗疗程。目前的这种现状对所有国家都具有警示作用，尤其是对非洲国家，以便确保基本的结核病防控工作达到国际标准，而且启动并加强对此疾病耐药菌株的管理。

由于尼日利亚控制不力（见第二章）导致的 2003～2005 年全球脊髓灰质炎病毒的传播是另一个警示。它强调了脊髓灰质炎可能在消灭后再次出现的风险以及将脊髓灰质炎列为《国际卫生条例 (2005)》中必须报告的一种疾病的重要性。《国际卫生条例 (2005)》规定的预警和报告机制是对已在全世界范围内存在的广泛监测网络所采取行动的必要补充，该网络可立即报告确诊的脊髓灰质炎病例并对潜在病例提供标准化的临床和病毒学调查。这种保持警惕并做出反应的能力对于消灭脊髓灰质炎至关重要，这是因为一旦将病毒从自然界中根除，全世界将必须保持警惕，以防止意外或蓄意的病毒释放。

最后，第四章还论及了自然灾害。仅在 2006 年，自然灾害就给 1.346 亿人带来了灾难，并夺去了 21342 人的生命。正如这些情况危及个人一样，它们同样也威胁了人们赖以生存的健康安全、已经不堪重负的卫生系统。自然灾害的间接后果包括传染病流行的风险、急性营养不良、人口流动失去、急性精神疾病及慢性病的恶化；所有这些都需要强有力的卫生系统来应对。
第五章强调了在维护全球公共卫生安全方面加强卫生系统的重要性。文章认为，如果有关卫生系统更加强有力、准备更完善，那么，本报告中描述的许多突发公共卫生事件完全可以避免或者得到更好的控制。由于缺乏必要的资源、投资不足和缺乏训练有素的卫生工作者造成的卫生基础设施崩溃，或者由于卫生基础设施在武装冲突或自然灾害中受到损害或破坏，这些国家将发现比其他国家更难以有效地应对公共卫生安全的威胁。

无论其多有能力、多么富有或者技术先进，任何一个国家都无法单独地预防、发现和应对所有公共卫生威胁。从一个国家的视角可能无法发现新出现的威胁，可能需要进行全球分析做出正确的风险评估，或者需要有效的国际合作。

这是《国际卫生条例（2005）》的基础，但因为并不是所有国家都有能力立即接受这个挑战，世卫组织必须要利用其作为全球公共卫生领导者所获得的长期经验、它的号召力以及它与各国政府、联合国机构、民间团体、学术机构、私营部门以及媒体的合作伙伴关系来维持其监测系统和全球警报和反应系统。

正如第一章中所述，世卫组织的监测网络和全球疫情警报和反应网络都是提供服务和安全网络的高效的国际性合作伙伴关系。全球疫情警报和反应网络有能力在24小时内向全世界派专家会小组，为国家当局提供直接的支持。世卫组织各个监测和实验室网络可以掌握全球的公共卫生风险情况并协助进行高效的病例分析。

这些系统结合起来可以缩小由于国家能力不足造成的严重差距，并在因政治或其他原因可能延迟报告疫情的情况下保护全世界。

但是，对这些系统的有效维护需要充足的人员、技术和财政支持等资源。各国能力的建设不会减少对世卫组织全球网络的需要。相反，随着《国际卫生条例（2005）》的全面实施，增强的合作伙伴关系、知识传播、技术进步、事件管理以及战略性交流将得到进一步提高。
结论和建议

为确保最高水平的全球公共卫生安全方面的努力，本报告的结尾对加强合作和增加透明度提出了指导性和启示性的建议。

- 所有国家全面实施《国际卫生条例(2005)》。对国家和全球公共卫生的保护必须在政府事务中具有透明度，必须作为一个跨领域议题来对待，并且成为经济和社会政策和系统中的一个重要组成部分。
- 政府、联合国机构、私营部门企业和社会组织、专业协会、学术机构、媒体及民间社团之间的监测、疫情预警和反应方面进行全球合作，尤其要以消灭脊髓灰质炎为基础，建立一个高效、全面的监测和预防基础设施。
- 为使全球公共卫生安全达到最高水平，应公开分享知识、技术和物资资源，包括分享病毒及其他实验室样本。如果疫苗、治疗方案、设施和诊断方法仅由富裕国家享有，那么这场全球公共卫生安全的战争将难以获得成功。
- 所有国家在公共卫生体系能力建设中的责任。必须加强国家系统，有效地预见和预测国际和国家层面的风险并制定有效准备的战略。
- 政府各部门间的透明合作。保护全球公共卫生安全需要依靠卫生、农业、贸易和旅游等各部门之间的信任和合作。为此，必须培养了解公共卫生安全和这些部门间复杂关系的能力，并在符合这一关系的最大利益的前提下采取行动。
- 增加全球和国家资源用于培训公共卫生人员、提高监测水平、建设和增强实验室能力、支持反应网络以及继续和推进疾病预防工作。

尽管本报告的主题是从全球角度考虑公共卫生安全问题，但是世卫组织并未忽略一个事实，即所有个人（妇女、男子和儿童）都受到健康威胁的影响。不要忽略全球卫生挑战带来的后果，这至关重要。这一启示促使1978年在初级卫生保健方面“人人享有卫生保健”的倡议。该倡议以及支持它的各项原则并未失去光辉，依然至关重要。在此基础上，初级卫生保健以及危机时刻的人道主义行动这两个确保个人和社区卫生安全的手段将在《2008年世界卫生报告》中作详尽的讨论。
第一章
公共卫生安全的演变
第一章 从追溯国际卫生条例（1969）的制定历史开始，这一条是自隔离检疫开始以来的公共卫生事业的一个里程碑。隔离检疫这个术语起源于14世纪，最初用来预防“外国”疾病，如鼠疫；19世纪，卫生条件的改善有效地控制了霍乱的暴发；疫苗的出现，引领了20世纪对天花和其他许多感染性疾病的根除。了解国际卫生合作的历史，理解其成功和失败，对于正确评价其关联性和潜力是非常重要的。

纵观历史，人类一直面临着传染病暴发以及各类疾病的。引起空前高死亡率的、威胁公共卫生安全的突发卫生事件的挑战（见专栏1.1）。由于没有找到更好的防范措施，人们只能是将患者隔离，坐以待毙，等待暴发流行进程的自然终结。

随着时间的推移，科技的进展，防疫措施也日趋完善，同时卫生条件的改善和疫苗的成功研发使得一些传染病暴发得到控制。但是微生物重新挑战，入侵新的生态环境或宿主，改变病毒或传播方式，出现抗药性。微生物正凭借着自身一天之内百万次的复制能力，显示了其强大的进化优势。因此无论何时，何地，也无论防疫措施多么完善和成熟，我们都无法完全杜绝传染病的发生。我们必须面对这样一个事实，那就是在与不断进化、适应性日益完善的微生物的斗争中，人类永远无法取得胜利。

自古以来，人类与微生物之间凭借世代的相互接触，免疫系统的暴露和人类行为的调节机制保持着微妙的平衡。而今天随着社会人口和人类行为的变化，经济的发展，土地的使用，国际旅行和商业的日益频繁，气候和生态系统的改变，贫穷，战争冲突，饥饿以及人为的生物化学恐怖事件的发生，人类与微生物之间平衡共存的局面面临着严峻的考验。这就增加了疾病暴发的风险。

据估计，2006年共有21亿人次搭乘飞机(1)。疾病在各国间的传播正以前所未有的速度加剧。某一地区暴发的疾病将在几小时内扩散和威胁其他地区人群的健康。

传染病传播速度加剧的同时，传染病的发生频次也日趋明显。自20世纪70年代以来，新发疾病以前所未有的速度出现，达到每年一种甚至多种。20多年来至少出现了40种新发传染病。最近五年经WHO证实的疫情超过1100件。

历史上曾经无情的、重复出现的危害人类健康的事件成为今天我们探讨卫生安全问题的切入点。尽管历经千年，但仍然有很多古老的传染病在
今天肆无忌惮地威胁着全世界人类的健康。

大事记
自直立行走以来，人类在与威胁他们健康、损害他们肌体功能，并最终导致他们死亡的疾病进行斗争中一直处于劣势。直到现代社会，人类才通过三次具有里程碑性质的历史事件取得了预防和控制传染病的长足进步。尽管这些进步与当今防控工作仍密切相关，但我们需要不断完善和强化这些防控措施才能面对今后的挑战。

鼠疫和隔离检疫
将传染病患者与健康人群进行隔离是一种古老的防疫手段，最早可以追溯到《圣经》和《古兰经》中对麻风病人的治疗记载。7世纪的中国已经针对感染鼠疫的船员和国外旅行者制定了完善的隔离措施。
14世纪的威尼斯共和国首先使用了“隔离检疫”一词，该国将从疫区来的人群隔离在了意大利的Ragusa港口。1397年时的隔离检疫期限为40天（英文的隔离检疫一词正是由意大利语的“四十”一词而来）。很快一些地中海国家纷纷效仿此法。随后的几个世纪，隔离检疫的手段在世界范围内流传起来，一些城市通常指定专门的委员会对隔离检疫进行协调（2）。图1.1描述了14世纪中叶黑死病（淋巴腺鼠疫）在欧洲的肆虐情况。

鼠疫和其他传染病定期暴发导致的持续破坏提示我们仅仅依靠原始的隔离检疫措施效果并不显著。17世纪时，为了阻止瘟疫在欧洲大陆的传播，从英国伦敦出发的船只被强制在泰晤士河至少停留40天。但是这一措施的效果并未奏效，1665年和1666年英格兰仍遭受鼠疫疫情的无情吞噬。18世纪，美国东海岸所有主要的城镇均通过了隔离检疫法，法律规定一旦疫情有可能暴发，将强制执行隔离检疫措施。
1994年印度五个省暴发了全球范围内近年来最严重的鼠疫，根据WHO于1969年颁布的《国际卫生条例》的规定，印度向WHO报告了700例疑似黑死病或肺炎型鼠疫病例以及56例死亡病例。印度暴发的鼠疫引起了国际媒体的注意，继而引发很多国家根据1969年的《国际卫生条例》采取了过激的防范措施以及不必要的旅游和贸易限制措施，最终严重干扰了印
图1.1 黑死病在欧洲的传播

度的经济发展。印度的这次疫情持续了两个月，在此期间超过两百万人次取消了旅行安排。1994年印度的鼠疫最终造成的经济损失约为17亿美元，并导致印度在当年出现贸易逆差(3)。之后阿尔及利亚、刚果民主共和国、马拉维和赞比亚也暴发了小规模、但与印度鼠疫无关的黑死病。
霍乱与卫生

约翰·斯诺医生在1854年伦敦霍乱暴发中采取的控制措施作为科研进展中浓墨重彩的一笔并非空穴来风，而是基于多年来对霍乱暴发的详细记录和暴发原因的探讨结果得出的。斯诺医生是这样记录1855年的霍乱的：“霍乱是随着人与人的交流传播的，它从未试图赶超人与人的交流速度，大多数时候霍乱的传播速度慢于人与人的交流速度。霍乱通常选择港口作为登陆一个新岛屿或内陆的突破口。除非船员在疫区的港口登陆，否则霍乱不会侵袭这些来自非疫区的船员” (4)。

斯诺医生描绘了伦敦霍乱暴发时出现死亡病例的家庭的地图并发现在Broad街区死亡病人的居所集中在某个特定的抽水井附近。水井附近有一条下水道，当地居民表示在霍乱暴发前曾经闻到水道有恶臭。在斯诺医生说服当地官员关闭了水井的阀门后，霍乱导致的死亡病例大幅下降。

在关闭水井阀门究竟与霍乱死亡率有何关系的争论中，斯诺医生认为霍乱是经水传播的，这一观点强有力地驳斥了当时认为有毒气体泄漏导致霍乱暴发的观点。斯诺医生的努力最终使得英国卫生条件得以改善，驳斥了霍乱是地方病的论点。尽管不像控制其他原因引起的地方性痢疾那么成功，但是卫生条件的改善也在一定程度上降低了霍乱对人群健康的威胁 (5)。19世纪80年代伦敦开始启用新的下水管道系统。

霍乱一直是威胁全球人类健康的一大卫生问题。在长达一百年的时间里，拉丁美洲没有发生过霍乱，然而1991年，在非洲、亚洲、欧洲很多国家已经流行了30年的严重威胁人类健康和经济发展的霍乱传播到了拉丁美洲，并造成了大量死亡和严重的经济后果。运往秘鲁的海鲜在船只舱底受到污染，继而将霍乱带到了拉丁美洲，最终导致拉丁美洲当年16个国家40万病例和4000人死亡。图1.2描述了这几次疫情的进展情况。截至1995年，美洲地区报告了超过一百万的霍乱病例和1万死亡病例 (6)。除此之外，霍乱还引发了社会恐慌、干扰了社会经济发展，威胁着疫区人群的生活，并带来不必要的但是极端的国际反应 (7)。秘鲁的邻国、欧盟一些国家以及美国对秘鲁制裁实施了旅游和贸易禁令。由于贸易禁运、旅游业损失、霍乱病人和死亡病例导致的劳动力丧失最终造成了15亿美元的损失 (8)。
今天的中国国家仍然面临着生活饮用水不洁净和卫生设施不健全的问题。11亿人无法获得安全的饮用水，26亿人的生活无法得到健全的卫生设施的保障。每天4500多名五岁以下儿童死于腹泻等本可以预防的疾病。大一些的儿童和成年人尤其是妇女，饱受健康问题的困扰，妇女生殖力下降并且无法获得受教育的机会。

天花和免疫

天花是人类社会一种古老的疾病。早在3000多年前的埃及就有证据表明天花已经出现，死于公元前1157年的埃及国王拉美西斯五世的木乃伊脸上就有由于感染天花造成的溃疡的痕迹。当时亚洲某些地区也发现了天花，公元500年天花传入中国，随后的几百年中天花又传入了欧洲，10世纪时天花传入西非，16世纪西班牙人占领美洲后，天花传入了美洲。

18世纪，在俄国，每7名儿童就有一人死于天花，在法国和瑞典这一数字为10。1796年爱德华·詹纳的尝试让人们
2007年世界卫生报告

构建安全未来

21世纪全球公共卫生安全

看到了防治天花的希望。这位英国医生发现他的病人如果感染了天花，那么这些病人将对天花产生一定的免疫。詹纳医生为一名8岁儿童接种了牛痘疫苗后观察其反应，随后再接种了天花病毒。该名儿童并没有发病，这证明接种牛痘能够预防天花的发生。詹纳医生的方法随后被广为接受，大大降低了天花的死亡率。

20世纪初，世界范围内各个国家均可以发现天花的踪影。20世纪50年代初，全球每年约有五千万人感染天花，其中一千五百万人死亡。随着预防接种的不断推广，1966年感染病例降至一千到一千五百万、死亡病例降至三百万。力图十年内在全球范围内消灭天花的战斗在1967年打响，最终在1979年证实天花在全球范围内已被根除。

自从1979年全球根除天花之后，发达国家一直在担心这样一个问题，那就是恐怖组织可能储存了天花病毒，并将其作为生物恐怖袭击的武器。当前正在进行新型的更安全的天花疫苗的研究，以备在应对人为生物恐怖袭击时大规模的使用。

成功根除天花三十年后，因担心天花病毒故意泄露引发的危害，天花再一次成为我们所面临的重要公共卫生问题。正如最近一份WHO的报告中指出，“目前面临的难题是我们尚不具备快速应对天花暴发的能力，天花可能再次在人间播散，我们之前的一切努力将不复存在”

加强国际合作

尽管以上三个具有里程碑意义的进步——隔离检疫、卫生条件改善和接种免疫——发生在不同时代，但人们逐步认识到，这些措施只有依靠国际协调与合作，才能最终保障全球公共卫生安全（参阅专栏1.1）。

19世纪末，疾病控制领域无数次国际会议的召开最终促成了1948年WHO的诞生以及1951年《国际卫生条例》的颁布（参阅专栏1.2）。

很明显，我们必须采取这些国际行动。一百多年前霍乱、鼠疫、黄热病等传染病以及霍乱、流感、疟疾、肺炎和结核以外一系列导致腹泻的疾病严重威胁着人群健康和公共卫生安全。这些疾病不但在局部地区肆虐，还传播到世界的各个角落。除了极个别特殊情况外，人们对于这些疾病几乎无能为力。直到20世纪上半叶，随着医学和公共卫生的迅猛发展，才
专栏 1.2 传染病控制的国际合作

重大公共卫生事件时间表

19 世纪中期越来越多的欧洲国家领导人认识到面对霍乱、瘟疫的流行，隔离检疫措施无效，必须加强国家间的合作。与此同时，国际会议召开多次，与隔离检疫法规相关的草案被签署 (8)。

1851 年到 1900 年间共召开了 10 次国际卫生大会，包括 12 个欧洲国家或政府在内的成员讨论了控制区域内疾病流行的议题。在巴黎举行的长达六个月的第一届大会确定了将卫生防护作为国际协商主题的重要原则。

19 世纪 80 年代，一小部分南美洲国家签署了首批在美洲范围内生效的国际公共卫生公约。除了大量来自欧洲的移民携带的霍乱和鼠疫外，公约还涵盖了一些美洲地方病，如黄热病。1892 年，第一个只针对霍乱的《国际卫生条例》被签署，五年后，在第十次国际卫生会议上又签署了一个有关鼠疫的条例。之后，越来越多新的政策出台，如一旦发现霍乱和鼠疫病例必须电话报告当局等。

1902 年，12 个国家出席了在意大利波尔托区召开的美国第一届国际卫生大会，促成了泛美卫生局（现泛美卫生组织）的诞生。1907 年，欧洲建立了名为 “国际卫生办事处” (OiHP) 的类似机构，总部设在巴黎 (11)。

第一次世界大战的暴发摧毁了公共卫生基础设施，多种传染病开始复苏。除了战争造成的直接人员伤亡外，俄国的斑疹伤寒传播到西欧，霍乱、天花、伤寒、伤寒在奥斯曼帝国暴发，在这一背景下，作为新成立的联合国组织的一部分，多国卫生组织联盟成立了。1920 年，卫生组织联盟成立了临时委员会，旨在直接帮助疫区开展防疫工作。

WHO 成立三年后，也就是 1951 年，WHO 修订了 1892 年通过的首部《国际卫生条例》。新颁布的条例主要针对霍乱、鼠疫、天花、伤寒和黄热病的控制。其方法仍基于 19 世纪形成的错误观念，即通过在各国边境地区采取防范措施就能阻止疾病的跨国传播。越来越多的证据表明《国际卫生条例》亟待修改，必须涵盖更多的疾病范畴，所采取的防控措施必须基于实时的流行病学证据而不再是因不变的预防手段，《国际卫生条例 (2005)》应运而生。目前生效 (12)。
出现了一些能够预防和治疗疾病的药物和疫苗。发达国家凭借着自身先进的科研能力消除和大幅度降低了传染病给人群造成的威胁。与此同时，发展地区卫生条件的改善也使得疾病的流行变得困难。

今天，尽管我们预防、控制或治疗传染病的手段越来越高明，但是传染病仍对公共卫生安全构成巨大威胁。这主要有两个原因：第一，一些疾病仍在发展中国家肆虐，但发展中国家发现和应对传染病的能力有限，这很有可能导致疾病在全球的快速传播。第二，人类与动物间物种屏障被打破导致新发传染病的散发，微生物从动物宿主迁移到人类宿主导致的疾病暴发均可能带来疾病在全球范围内的流行。因此21世纪必须强调采用国际合作的策略来防控传染病。

国际卫生安全新标准

2005年新版《国际卫生条例》强调了应对突发事件必须协同工作。在20世纪90年代人类社会、微生物界、自然环境、人类行为不断变化，这些都对全球公共卫生安全构成日益严峻的威胁（在第二章对这些事件有详细论证），首次颁布于1969年的卫生条例就是据此修订的。人类在应对这些变化的过程中积累了经验和知识，这些为我们颁布最新的条例提供了科学根据。我们制定的条例不仅要有效预防和控制疾病，还要确保在实施公共卫生应对措施的同时不会引起不必要的国际贸易和旅游损失。

1996年WHO第一次提出了全球疫情警报和反应的有效机制。WHO的行动贯彻了与其他机构和技术部门建立国际合作关系的理念，建立了传染病信息收集、暴发证实的工作机制，促进了危险评估、信息发布和现场快速应对措施。全球疫情警报和反应网络（GOARN）是基于现有的机构、人力资源、传染病快速识别、确认和快速应对等技术资源建立起来的一个技术合作网络。该网络提供一种可行的、相互协作的工作框架来获取专业和技能，同时保证全球范围内对疾病暴发的预警和及时反应。

在WHO的协调组织下，该网络由60多个国家的140多个技术合作伙伴组成。这些合作机构和网络为传染病的应对处理提供了快速的、全球的、多学科的技术支持。图1.2描绘了1998～1999年全球传染病暴发应对的一个例子。2000～2005年间，全球疫情警报和反应网络启动了70余次全球暴发
第一章 公共卫生安全的演变

应急处理任务，派出了500余名专家进行现场工作。我们已经在不同地区和全球范围内建立了疫苗、药物、专项调查、防护设备的储备和快速部署机制来应对出血热、流感、脑膜炎、天花和黄热病的可能暴发。与此同时，一支专项后勤保障和响应部门已经建立，旨在确保WHO及其合作伙伴在极端条件下应对突发事件。

为提高运作协调和信息管理能力，WHO正在更新其事件管理系统，以保障WHO具有实时通讯和获得关键疫情信息的能力。WHO将继续加强包括登革热、流感和鼠疫等危险病原体的特别监测网络。

此外，为全球消灭脊灰行动而启动的大范围主动监测网络也被应用于其他能够通过疫苗预防的疾病，如麻疹、脑膜炎、新生儿破伤风和黄热病。这一监测网络还定期地为包括禽流感、埃博拉、马尔堡热、SARS和黄热病等疾病和突发事件的暴发监测和应对提供支持。

消灭消灭脊灰行动网络涵盖了社区、卫生系统、政府在内的—系列因素，该网络具备规划和监督计划免疫项目的能力，其中卫生人员是整个卫生系统中一系列疾病和突发状况防范过程中的第一道防线。此外，消灭消灭脊灰行动网络在脑膜炎

图1.2 全球传染病暴发应对示例（1998～1999年）
和黄热病的暴发应对中的作用不可小视。在2004年12月东南亚海啸和2005年10月巴基斯坦地震发生时也起到了保障国家间和各国境内人群的健康的作用。该网络一旦实现了消灭脊灰的使命后，如果继续投资完善监测工作，也使人员和实验室的技能，这一网络将继续在疫苗预防疾病和其他可能暴发的传染病的监测和应对过程中起到重要作用。

在国家层面上，提供和接受帮助的国家之间的同情，尤其是保证所提供的技术和资源满足疾病检测和对症的实际需要，是确保今后国际公共卫生能力建设的重要环节。国家层面上的有效协作要求各国应该增加投入、完善管理能力和提升公共卫生系统内各个组成部分的功能。具体工作的开展可涉及流行病学监测、信息管理系统、公共卫生实验室技术和卫生和应对规划、信息交流和多部门合作。

为了最大程度地保障国家公共卫生安全，各国应通过与WHO以及其他相关国际组织合作来建立和加强本国的公共卫生和行政管理的整体能力，而不仅局限于国际港口、机场和边境处开展防疫。WHO各个部门和WHO成员国之间以及各个成员国之间必须紧密合作。只有多边合作才能更好地防范可能发生的公共卫生突发事件。

化学品突发事件的国际应对

很多国家发现和防范化学品突发事件的能力不足，某个国家的化学品事故可能会危害其他国家。各国已认识到加强国家和全球公共卫生防范和应对能力的必要性。世界卫生大会决议(WHA55.16)(13)敦促各成员国加强化学品、生物制剂以及放射物质泄漏的监测和此类突发事件防范和应对能力，从而减轻此类事件对全球公共卫生安全所可能造成的严重后果(详见第二章)。

2002年，WHO建立起与全球疫情警报和反应系统相似的化学品突发事件预警和反应系统。2006年，这一系统增加了环境健康相关突发公共卫生事件的范畴，包括破坏环境卫生服务(例如供水、卫生以及放射性事件等)的突发公共卫生事件。

该系统的重要组成部分是ChemNet网络，这个网络为可能发生的威胁国际公共卫生安全的环境卫生事件的识别、核实和应对提供人力和技术资源。ChemNet从成员国的研究所、机构、学术部门以及其他国际组织协调人力和技术资源(见图1.3)。

ChemNet旨在通过早期发现、评估、证实化学品突发事件和化学品因素导致的疾病，并提供快速、适宜和有效的暴发应
对支持，从而减轻事件和疾病带来的危害，保障国际公共卫生安全。与所有公共卫生突发事件应对的宗旨一样，ChemNet致力于长期的防范与能力建设。ChemNet与IHR(2005)一道为WHO提供可能威胁国际公共卫生安全的化学品突发事件或疾病暴发的信息资源。

ChemNet的常规工作是预防和准备应对突发的化学品泄漏事件，同时也包括事件的检测、应对和恢复工作。印度Bhopal曾经发生的大规模化学品突发事件震惊了世界(详见第二章)，人们从此次事件中学到了一些防范措施。即使是科技先进、资源充足的国家也面临着化学品突发事件，特别是人为化学品泄漏事件的严峻威胁。此类事件对任何国家都将造成无法挽回的损失。

防范措施包括合理规划和强化管理土地的使用，不在高密度人群居住区建设化工厂，对化工厂的运转强制实施高级别安全条例，对食物、水和空气实施监测以发现是否出现化学品污染。

防范措施还包括在所有利益相关者中进行化学品突发事件应对演习，向有化学品泄漏风险的下游区地方卫生机构进行宣传，提供排污和医疗救治设备。各国要建立针对化学品泄漏事件的24小时中毒中心。美国等一些国家已将中毒中心整合入公共卫生监测系统。

化学品泄漏可以扩散到周边地区，甚至超过国家边境，扩散至邻国，因此国际防范和应对尤为重要。目前，联合国欧洲经济委员会(UNECE)《关于工业事故越界影响公约》等一些国际协定(14)已经被颁布。

2005年颁布的《国际卫生条例》和世界卫生大会决议(WHA55.16)(13)为突发事件的准备
工作提出了一个框架。在此框架中，WHO 将应对威胁全球公共卫生安全的突发事件，迅速采取行动，与合作伙伴一起主动有效的为可能的突发事件做准备。第四章阐述了该框架如何应用于禽流感、广泛耐药结核 (XDR-TB) 和自然灾害等威胁。

剧烈变迁时代的卫生条例

正如我们之前所述，传染病在国家间的传播和突发事件造成的公共卫生安全危害并不是在现代社会才出现的。过去我们经常采取边境防范的强制措施。在 21 世纪全球化大潮推动下的今天，尽管在传染病防范过程中还会出现集团利益的观念，但是人们越来越意识到多边合作的重要性。最近的几十年中，随着旅行速度的加快和国家之间商品和服务贸易的增加，疾病的传播速度也在加快，而且疾病的传播通常出现在潜伏期，而并非等到出现疾病的症状时才传播。各国只有对疾病的暴发和其他引发疫情或全球传播的突发事件做出及时的预警和应对，同时具备检测和应对这些跨国传播疾病和事件的系统，才能防范疾病和突发事件在全球范围内的快速扩散。GOARN 和 ChemiNet 是值得推广的范例。

1969 年《国际卫生条例》建立的合作机制旨在最大程度地遏制疾病在全球的播散，同时使旅游和贸易造成的损失降到最低。1969 年《国际卫生条例》针对霍乱、鼠疫和黄热病的法定报告和应对措施颁布了法定工作框架，但是该框架在 WHO 合作成员国中的开展情况并不理想。

1996 年至 2005 年间，为了顺应新的发展需求，针对新发和再发传染病表现出的全球流行趋势和动物、物流交换导致的病原体播散的情况，成员国对《国际卫生条例》进行修订。《国际卫生条例》图 1.4 描绘了这一阶段新发和再发传染病的识别情况。此外，如何更好地管理包括手机、因特网在内的可能传播引发社会恐慌的即时通讯也是我们面临的一大挑战。即将出台的 2005 年《国际卫生条例》更新版条例 (12) 将于 2007 年 6 月生效。该条例为各国报告境内发现的重要公共卫生威胁和突发事件，和为遏制疫情跨国传播提出特别防范措施建议提供了法律框架，废除了 1969 年《国际卫生条例》仅为将疾病阻挡在国境口岸外而采取预先设定的防范措施的思路。

2005 年的《国际卫生条例》将突发事件定义为可能在国际间播散或需要各国协同应对的“特殊事件”。各缔约国通过评
第一章 公共卫生安全的演变

估发现某一事件符合可能构成国际关注的公共卫生突发事件的定义后必须向WHO进行通报。只要发现一例可能威胁全球公共卫生安全的疾病病例，如天花、野生毒株脊灰、变种人流感或SARS病例等就必须强制报告。某些历史上曾经发生过的但当时可能未造成国际影响的疾病也需要进行报告，包括埃博拉、霍乱、肺炎型鼠疫、黄热病、西尼罗热以及其他造成地区和国家危害的疾病。对于这类疾病也必须运用案例的决策工具对疫情可能出现国际播散的危险性进行评估。至此，各成员国为防范公共卫生突发事件造成的国际危害可以建立起两条基本的防线。

“构成国际关注的公共卫生突发事件”和“疾病”的宽泛定义使2005年国会通过的《国际卫生条例》不仅涵盖传染病，还将病原体、化学品、放射性物质意外或人为泄漏事件纳入其中。所有突发事件的防范都会运用到基础流行病学、实验室调查原理、事件识别和证实手段。此外，WHO和许多合作实验室网络、监测系统已经将突发事件纳入到常规全球监测工作中。国际公共卫生情报网络（GPHIN）作为一个电子情报收集库自动收集突

图 1.4 1996～2004年部分新发和再发传染病
发生事件，起到对未报告突发事件的补充作用（15）。涵盖了
传染病和突发事件公共卫生事件的新条例最大范围地保障了全球
公共卫生安全。

新条例调整了过去在港口和机场采取措施阻止病毒输出和
输入的策略，转而采取在事件爆发源头进行防控。条例为成员国
提供了“核心能力要求”规范，要求各国根据条例对事件进行
发现、评估、证实和报告。新条例并不针对条例违反者，而旨在
通过提高各国能力来加强全球范围的合作，并向各国展示遵守
条例是符合各国最大利益的。有三个因素可激励各国遵守新条
例：降低突发事件的严重后果，遏制突发事件的进程，使各国在
国际舞台上展现良好风貌。各成员国之间，尤其是发达和发展
中国家之间在技术和其他资源上的能力合作，不仅有效地贯彻条
例的需求，也是加强公共卫生能力和网络、系统建设以保障全
球公共卫生安全的需求。

《国际卫生条例（2005）》是一部顺应发展、具有变革性的条
例，它明确提出非官方信息有时可能先于官方信息产生的观
念。信息不公开的现象可能会在某些国家出现。WHO 在《国
际卫生条例（2005）》中明确指出，除非官方信息外，还应参考非官方信
息。WHO 对突发事件采取措施前将对所有信息来源
进行核实，这一策略的制定是我们从 SARS 暴发获得的经验教
训。在电子化和新闻媒体迅猛发展的今天，政府无法延缓信
息的发布。信息高速化道路使得信息资源在维护公众知情权和
实施防范措施方面起到重要作用。

2003 年 SARS 的暴发值得我们反思，一种传染病可以严
重威胁全球公共卫生安全，在威胁人类生存环境，对卫生体系和
能力建设以及经济发展造成不良后果。

第三章讨论了我们对 SARS 和其他疾病暴发应对所汲取
的重要经验，提示我们不但要建立一个及时报告和应对的监
测系统，还需要不断提高传染病的控制能力。目前急性
传染病尚未远离我们，人类的防控能力仍然有限，而亟待加强。
我们应该思考这样一个问题，那就是：我们怎样能够做得
更好？

答案与导致疾病和突发事件发生的背景因素相关。这
些因素可能涉及自然、环境、工业、人类、意外和人事件等。
下一章节将重点讨论这其中最重要的因素和案例以及突发事件
在世界各地导致的严重后果。
参考文献

第二章
公共卫生安全的威胁
第二章探讨了一系列全球公共卫生安全威胁，正像《国际卫生条例(2005)》所定义的那样，这些威胁来自于人类行为、人类与环境相互作用，以及突发的化学和核放射事件，包括工业事故和自然现象。本章阐述了公共卫生投资是何等的不足，而这是由于在没有感染性疾病暴发时所产生的错误的安全感所引起的，结果导致了警惕性下降和对有效预防体系的放松。

新的《国际卫生条例(2005)》不再局限于6种原有的疾病——霍乱、瘟疫、回归热、天花、斑疹伤寒和黄热病，而是强调“任何对人类造成或可能造成严重伤害的疾病或病症，不论其病原或病源如何。”(1)。

这些对公共卫生安全的威胁，包括传染病、自然灾害、突发性化学事件或者是其他的突发性公共卫生事件，都可以寻找到一个或者多个起因。这些对公共卫生安全的威胁可能由自然、环境、工业、意外以及蓄意制造的事故所引起的——但是，更多的情况是——这些公共卫生安全的威胁是和人类的行为紧密相关的。

本章节将进一步阐释，正如《国际卫生条例(2005)》所定义的，全球公共卫生安全的威胁，是由于人类的行为、人类的所作所为，或者不作为，以及自然灾害所引起的。公共卫生安全隐患的更根本的原因，植根于社会和政治环境当中，这些社会和环境因素导致了不同人群的不平等问题，这个问题的重要性将在随后的出版物中进一步讨论。

导致公共卫生不安全的人为因素

对公共卫生安全有决定性作用的人类的行为，包括不同层次的人的决定和行动——例如，政治领袖，军事指挥家，公共卫生专家及普通人群——这些人决定和行为将会对公共卫生安全带来明显的影响，包括积极的影响和消极的影响。人类的行为取决于冲突的情形、被免职，或者是满足，缺乏承诺，猜疑、误传，稍后将一一举例来阐述这些因素对公共卫生安全影响的程度。

投入不足

由于近期没有出现传染病的暴发，因而带来的错误的安全感，造成对公共卫生投入不足，这导致了对传
染病的警惕性的下降，并且会逐渐放弃一些有效的预防传染病的项目。例如，随着大规模的、系统的控制虫媒传染疾病项目中大规模的使用杀虫剂，到了20世纪60年代末，除了在撒哈拉以南非洲地区，在全球的其他地区大部分由虫媒传播的疾病不再被认为是主要的公共卫生问题。很多疾病控制项目由于资源的减少而逐渐取消，相关的培训以及相关领域的专家也逐渐减少。其结果就是，在接下来的20年间，包括非洲猪瘟、登革热、登革出血热和疟疾等许多通过媒介传播的疾病，在新的地区爆发，或者在曾经流行过的地区死灰复燃。城市化进程、越来越频繁的国际贸易和旅行也加快了登革热病毒及其携带者的快速传播。1998年，登革热史无前例地爆发，全球有56个国家向世界卫生组织报告了登革热病例，病例数高达120万。从那以后，登革热的流行时有发生，波及范围从拉丁美洲到东南亚，导致了成百上千万人感染。在最近四十年，全球平均每年向世界卫生组织报告的登革热病例数每年都在双倍的增加。

由于政府缺乏建立能够监测国家卫生状态的有效卫生体系的承诺，导致了监测结果不全面。20世纪70年代，艾滋病在全球的出现和迅速蔓延，就很好地阐释了这个观点。艾滋病这个对公共卫生安全的新威胁，在许多发展中国家，由于其卫生系统的脆弱没有被及时发现，只有当美国出现了第一例艾滋病患者时，才引起国际对艾滋病的重视。图2.1显示了从20世纪80年代开始，至今25年间，艾滋病在全球的蔓延过程。

监测体系是保证公共卫生安全的基础。如果缺乏一个设计合理、有效的监测体系，就不可能发现一些异常的、但完全可以确认的公共卫生事件，也不能对这些公共卫生事件的影响、在
不同时间发生的频率以及针对这些事件的干预措施的有效性进行监控（图2.2）。

监测系统不能够发现新的疾病的发展趋势，这种现象不仅出现在发展中国家。例如，美国发现首例艾滋病患者，并对其特征进行了描述，但这并不是通过监测系统发现的，而纯属是意外发现的。美国疾病预防控制专家发现，向孤儿药品仓库申请抗生素来治疗卡氏肺囊虫肺炎的人数比较异常，卡氏肺囊虫肺炎在普通人中很少见，但是在艾滋病患者中却是常见的（2）。很快，“艾滋病”被发现了，但实际上很多年前艾滋病已经在非洲和海地出现了——却没有被发现是一种新的疾病，也没能对

图2.2 全球疫情，挑战：延迟报告和应对
这种疾病的特征进行描述和归纳。监测不力，监测系统不够识别异常的卫生事件，在低收入及中等收入的国家中是很常见的。相似的，由于这些国家对疾病监测系统的投入不足，诊断设施也存在限，监测系统无法及时发现疾病，并对疾病进行确诊，例如结核病。各国卫生部不得不双重妥协，因为没有更好的监测系统，很难采取有针对性的干预措施，并对干预措施的有效性进行衡。

早期控制艾滋病流行工作的延误，其原因不仅在于缺乏充足的数据监测能力和相关数据，还包括缺乏关于性行为的相关数据，不管是在非洲、海地，还是美国和其他工业化国家，情况都是如此。在工业化国家，20世纪60年代，科学获得了长足发展，社会发生了巨大的变化。口服避孕药的广泛使用，使得性行为变得更加的纵容、泛滥，与此同时，对于同性恋的态度也更加的宽容，处于性活跃期的男同性恋者的性行为也更加的随意，尤其是在美国的大城市，那时在几个主要的人口，出现了显著的男性同性恋的移民。自从20世纪50年代以来，尽管社会和人们对性态度发生了明显变化，但在美国，关于性行为及其与艾滋病之间的相关性的科学性研究还较少开展。当艾滋病作为一个主要的公共卫生的威胁显现时，20世纪50年代之前的关于性行为的研究结果已经明显过时了。

在工业化国家，关于人类行为的数据也是非常缺乏的，在发展中国家甚至没有相关的数据。在发展中国家，花了很多年才获得关于艾滋病和性活动相关关系的了解，目前对性的了解仍然还不够深入。只有近年来，在艾滋病被世人发现的25年后，才开始有以人群为基础的关于性行为的调查（人口学和健康调查），根据这些调查结果，才获得对艾滋病与性行为关系的了解——有效的科学依据作为支持——在很多国家，多性伴的行为，很容易导致艾滋病的感染。
意外的政策改变

在公共卫生系统方面，出乎意料的政策改变可能导致致命的和代价昂贵的疾病疫情的反弹。即使适当地实施可靠的措施也难以挽回损失。2003年8月，当来自尼日利亚的北部地区的缺乏事实根据的传言：认为口服脊髓灰质炎疫苗是不安全的，可导致儿童不育，这一传言导致两个州的政府下令取消口服脊髓灰质炎疫苗，并导致了在其他很多州的口服脊髓灰质炎疫苗覆盖率大幅下降。这最终导致了在尼日利亚北部地区大规模的脊髓灰质炎的暴发，而在南部地区很多已宣布消除脊髓灰质炎的地区也重新出现脊髓灰质炎的病例。这场脊髓灰质炎的暴发导致了在尼日利亚出现了成千上万的患小儿麻痹症的儿童，同时脊髓灰质炎也从尼日利亚北部蔓延到了周边19个国家。

在2003年初，全球只有阿富汗、埃及、印度、尼日尔、尼日利亚、巴基斯坦和索马里等7个国家没有宣告消除脊髓灰质炎。在2006年末，非洲、亚洲和中东的19个国家宣布消除脊髓灰质炎的国家，重新出现了脊髓灰质炎的流行，其流行病毒株和尼日利亚病毒株在基因上是相似的。这些国家共花费了4.5亿美元，来应对这场脊髓灰质炎的暴发。在2004年7月，一些诸如非洲联盟、伊斯兰教组织等机构的积极参与和强烈支持下，州和联邦政府、宗教领袖开展了广泛的合作，共同努力，口服脊髓灰质炎疫苗在尼日利亚北部重新获得了推广——这表明了，传统的卫生机构的参与，来自多个机构的广泛合作，能够为全球公共卫生安全带来巨大的改变。

冲突所导致的公共卫生后果

当政府和武装集团卷入冲突时，常常会对卫生系统带来的间接的影响，那就是会破坏和削弱公共卫生系统，导致公共卫生系统丧失发现、预防以及应对传染病的能力，这就必然导致人群获得卫生服务的可及性下降。安哥
2007年世界卫生报告
构建安全未来
21世纪全球公共卫生安全

拉就是一个典型的例子。安哥拉长达27年的内战（1975～2002），导致了2004年马尔堡出血热的暴发，这场暴发一直延续到2005年，导致200人受到感染，90%的感染者死亡（见专栏2.1）。马尔堡出血热是埃博拉病毒相关的疾病，在卫生条件较差的地方（人员拥挤、缺乏医护人员）以及医院和诊所投资不足而只能采用亚标准的感染控制措施的地方，都会加速马尔堡出血热的传播。

近年来，由于战争、武装冲突和自然灾害，大规模的人口迁移变得很常见。大量被迫迁移和离开家乡的人群不得不在拥挤、不卫生和贫穷的条件下生活，这也会导致他们成为传染病暴发的高危人群。这也是在1994年卢旺达暴发霍乱之后，刚果共和国发生霍乱流行的原因。在1994年7月，在刚果共和国戈马市的边界地区，500,000到800,000人跨越边界避难，在他们到达戈马市的第一个月内，将近50,000名难民死亡。当时难民每天患病负担率高达20%～35%。这些死亡是由霍乱和志贺氏菌病混合导致的。霍乱在难民营快速的传播，导致了很高的发病率，是由于难民唯一的水源——Kivu湖感染了霍乱弧菌，并且他们缺乏住所和良好的卫生设施（8）。

居住在密集的环境所带来的健康问题，不仅在难民营才会出现。21世纪，快速的城市化进程，在很多国家变得很司空见

专栏2.1 在军事冲突条件下，马尔堡出血热和卫生系统

安哥拉已经历了将近30年的军事冲突，除了人员伤亡，武装冲突还导致这个国家的很多卫生设施遭到破坏，医院的基本设备设施急需补充，通讯系统和交通系统不充足，以及由于经济状况人群体质变得十分虚弱。这些使得整个国家不能有效地阻止2005年马尔堡出血热的暴发，因为传染病的控制取决于一个积极的疾病监测机制，快速地发现新病例，并把他们隔离在有专门设备的医疗机构，以及能够快速的跟踪那些密切接触者（4）。为了改善人民的营养状态，在国际的支持下，安哥拉政府发动了大规模的重建卫生系统和交通系统的运动。尽管安哥拉政府尽了最大努力，安哥拉仍有70%的人口无法获得基本的

卫生保健服务（5）。

安哥拉的马尔堡出血热的暴发是有记录以来规模最大的，病死率最高的暴发。但安哥拉并不是在武装冲突之后唯一发生马尔堡出血热暴发的国家。另一次大规模的马尔堡出血热的暴发，1998年末发生在刚果民主共和国的东部地区，该地区由于武装冲突导致卫生援助很难到达，当时刚果报告了164例病例，其中128人死亡。在随后的2年内，还出现了少数的病例，形成了小型的传播链。战争延迟了评估和控制工作，导致在暴发地区所有的医疗机构的资源供应都极其的缺乏（7）。
惯，这意味着全世界已经有50%的人口居住在了城市里。无节制的城市化进程和快速扩张的都市地区，加剧了环境的恶化，不平等的增加，以及贫民窟和不正式的居住地的增加。实际上，全球城市中的三分之一人口，或者10亿人口，居住在贫民窟和不正式的居住地里，这些场所的居住空间狭促、拥挤，居住其中的人群常常无法获得安全的饮用水、良好的卫生条件、安全的食物、体面的居住场所以及能糊口的工作。

微生物的演变和抗生素耐药性

另一种对公共卫生安全的威胁是病原微生物持续不断地演变，对一些原本有效地抗生素产生了耐药性。这是导致传染病死灰复燃的主要因素(9)。通过自发的突变，和不同的类别之间的基因的交换和整合，细菌能够对抗生素产生耐药性。

细菌经常和栖居在地球上的其他生物和谐共处。但是，自从1942年，盘尼西林获得了广泛的应用，以及随后其他的抗生素也获得广泛的应用后，抗生素的灭菌作用和抑菌作用对细菌造成了选择的压力，导致敏感菌株的数量减少，而对耐药性的菌株数量增加(10)(细菌的这种选择方向以及耐药菌株的传播应该予以控制)，但与此自相矛盾的是，人类滥用或者不充
使用抗生素的不规范行为，以及缺乏足够的依从性，不遵照医嘱服
用适合的药量，非医疗机构在管制之外销售抗生素等行为，加速了耐药菌株的出现 (9)。抗生素最初的发明是为了治疗人类
的传染病，但是，同样抗生素也开始用于治疗动物和植物。经常
在人类、动物和农业工作人员之间出现相同的病原微生物的循
环，这样就为不同菌株之间相互交换耐药性基因提供机会，因此
帮助细菌加速耐药性演化，以及加速了耐药菌株的传播 (10)。

在盘尼西林的发明者 Alexander Fleming 一开始就被警告世人存
在发生细菌耐药性的危险 (11)。很快，就出现了令人惊讶的
证据。1946 年，英国的一所医院报告 14% 的奥丽斯葡萄球
菌感染病例对盘尼西林耐药。在 1950 年，奥丽斯葡萄球菌感
染病例中对盘尼西林耐药的比例达到了 59%。到 1990 年，奥
丽斯葡萄球菌感染病例中对盘尼西林耐药的比例已经超过了
80%，不仅在医院，在社区这个比例也是相似的 (图 2.3)。

不仅仅是细菌自身获得了对药物的耐药性，寄生虫也获得了
对药物的耐药性。1976 年，东南亚出现了由对氯喹耐药的
原副锥虫引起的疟疾流行，10 年之后，全球都出现了对氯喹
耐药的原副锥虫引起的疟疾。对氯喹耐药的原副锥虫引起的
疟疾不仅仅对氯喹耐药，而且对磺胺嘧啶和甲氟喹这两种备
选药物也耐药 (9)。寄生虫和细菌对治疗疟疾和结核病的药物
具有耐药性，对公共卫生安全造成了严重的威胁。而人类免疫
缺陷病毒 (HIV) 对抗 HIV 药物出现耐药的事实，表明了病毒也
同样可对抗病毒药物产生耐药性 (9)。

病原微生物对多种抗生素都同时具有耐药性是不常见的
(12)。耐药的产生将导致严重的后果，会导致病死率的上升，
据观察，耐药菌株感染会导致病死率加倍。同时，治疗耐药菌
株的感染，需要提高治疗的时间，并且使用更昂贵的抗生素，或
者联合使用多种抗生素。抗生素在农业和动物管理业中也获得

图 2.3 盘尼西林对金黄色葡萄球菌耐药性的演变

<table>
<thead>
<tr>
<th>年份</th>
<th>事件</th>
</tr>
</thead>
<tbody>
<tr>
<td>1928</td>
<td>发明盘尼西林</td>
</tr>
<tr>
<td>1942</td>
<td>使用盘尼西林</td>
</tr>
<tr>
<td>1945</td>
<td>Fleming 警告可能的耐药性</td>
</tr>
<tr>
<td>1946</td>
<td>14% 耐药菌株</td>
</tr>
<tr>
<td>1950</td>
<td>59% 耐药菌株</td>
</tr>
<tr>
<td>1960s-70s</td>
<td>耐药性扩散至社区</td>
</tr>
<tr>
<td>1980s-90s</td>
<td>社区耐药超过 80%，大多数医院为 95%</td>
</tr>
</tbody>
</table>
广泛的应用。使事情变得更复杂的是，很少有新抗生素投放市场，也没有新的广谱抗生素尽快出现。但是，公立机构和私立机构的建立合作，开始慢慢地填补新药缺少的渠道，比如抗生素药物和抗结核药物的研发。很多抗癌药物已经启动经费来自比尔和梅琳达·盖茨基金 (9)。

因为全球耐药性问题蔓延，各国必须共同努力尽快发现传染病患者，并且迅速做出应对，改善水和卫生系统，减少自然和人类的行为对资源的负面影响。有效地沟通关于预防传染性疾病的相关信息，以及合理的使用抗菌药物 (9)。如果能够更合理地使用抗菌药物的话，细菌演化的压力将会改变，敏感性菌株会重新增加 (12)。

畜牧业管理和食品加工

人类 (牛) 海绵状脑病

1995 年 5 月，英国一名 19 岁男孩的死亡，标志着全球第一例新变异型克雅氏病或者人类牛海绵脑病的发现。这位男孩的患病和死亡，提示世人 10 年以来畜牧业中不适当的饲养和加工的过程可能给人类带来严重的健康影响。简而言之，屠宰后做食物的畜体，包括那些被牛海绵脑病病毒感染后的组织，被用来饲养家畜 (牛)，家畜 (牛)食用后被感染，这样就会导致牛海绵脑病病毒的流行。由于感染后的牛通常会出现被激怒的表现，所以牛海绵脑病病毒通常被称为 “疯牛病”。从 1996 年 12 月到 2002 年 11 月，英国报告了 129 例新变异型克雅氏病患者，法国报告了 1 例新变异型克雅氏病患者，加拿大、爱尔兰、意大利和美国分别报告了 1 例患者。

人类最可能感染新变异型克雅氏病的来源是使用了被牛海绵脑病病毒污染了的肉。这场危机因此促使政府意识到，采取措施干预用于人类食物的牲畜的饲养过程，保证人类食品安全是非常必要的。牛海绵脑病病毒导致英国食品市场发生了巨大的变化，政府采取了管制措施，整个畜牧业也很快地适应了这些管制措施。

只有加强对人类健康和畜牧业的监测，才能够发现在 20 世纪八十年代和九十年代中期，被牛海绵脑病病毒感染后的牛肉，是如何通过欧洲为主的起源地，广泛地出口到世界各国。对其对公共卫生安全造成的影响是多么的深远。最近英国发现的第四例新变异型克雅氏病患者，是由于输入了被新变
异型克雅氏病感染的血液而感染的, 这事件引起了额外的关注 (13)。这个事件也提醒各国, 要考虑通过血液传播的疾病的危险, 需要充足的投入, 保证血液供给的安全性。

尼帕病毒

尼帕病毒是最近出现的一种可导致脑炎的病毒性病原微生物, 该病毒所导致的脑炎患者的致死率达 75%。1998 年 9 月马来西亚半岛暴发了一场脑炎，直至 1999 年 4 月脑炎流行才得以有效控制，这场脑炎的暴发使世人第一次认识了尼帕病毒。报告称，在这场脑炎的流行中，265 人发病，其中 105 例死亡 (14)。当这场严重的脑炎流行开始暴发时，随时报告病例数的增加，一开始被认为是日本脑炎导致的，因为日本脑炎是马来西亚的常见流行病。

由于一开始认为这是一场日本脑炎的暴发流行，当时马来西亚发起了大规模的免疫接种和灭蚊运动，并花了一定的金钱，也导致了一些破坏性的后果，这些控制的行动是无效的，因为它实际上是由于一种新的人类从未认识的新疾病引起的。

大部分感染尼帕病毒脑炎的患者和直接接触病猪或死猪，或者生的猪肉产品相关。最终认为，养殖场饲养的猪，经常建在果园周围，充当了这种新的病毒的间接宿主。目前认为，这种新的病毒在猪和人之间的传播是通过气溶胶途径，而猪和人之间的传播，则是通过人接触了被感染的猪的鼻咽分泌物。为了控制这种疾病的传播，超过 100 万头猪被焚烧。在新加坡，有一场尼帕病毒脑炎的小规模暴发，导致 11 人发病，1 人死亡。随后通过血清学检验发现有 89 人感染了该病毒，但是没有显示症状。在禁止从马来西亚进口猪肉之后，新加坡尼帕脑炎的暴发得到了控制。在马来西亚，通过大规模的处理被病毒感染的猪，才最终控制了尼帕脑炎的暴发。

继马来西亚和新加坡脑炎的暴发之后，来自其他地区的尼帕脑炎暴发的证据提示，尼帕病毒可能已经成为了一种威胁人类健康的新病毒。在这些暴发中，尼帕脑炎病毒似乎能够直接从人传人，而不需要以猪作为中间宿主，并且人和人之间的传播甚至通过偶然的接触就可以发生。这些证据还提示，医疗机构会扩大尼帕病毒的传播。在最近尼帕脑炎的暴发中，食用了被尼帕病毒感染的猪被证实是可能导致患者感染的途径。而且，果蝠对尼帕病毒感染的证据，已经在更多的国家发现了，这是前所未料的。
尼帕病毒出现及其演变，说明了很多新出现的病原体导致了很多的公共卫生问题，包括不能早期诊断新的疾病，从而导致延迟发现病例。可能采取不适当的措施，并由于缺乏有效的干预措施，而导致较高的病死率。如果有诸如猪等中间宿主的话，采取控制措施会变得更加困难。由于随着新的病原体的演变，导致疾病流行特征的改变，这就要强调要随时准备调整控制措施。

气候事件与传染病

环境、流行病及社会经济等一系列因素的相互作用，加快了气候条件的改变，导致人类暴露于不同的传染病之中。下面通过裂谷热的例子将进一步阐述。

厄尔尼诺热带太平洋经向风应力异常导致降水量会高于该地区的平均降雨量，此时会导致蚊子孳生地的增加，其结果会导致裂谷热的病例增加。从 1997 年 12 月到 1998 年 3 月，东非的肯尼亚、索马里和坦桑尼亚共和国报告了大规模的裂谷热暴发。仅仅肯尼亚的东北部省份和索马里南部的裂谷热患者的总人数就估计达到 89000 例，其中 478 例死亡，死因不明 (15)。裂谷热导致的并发症包括视网膜炎、失明、脑膜炎-
脑炎和以黄疸、皮肤瘀斑和死亡为特征的出血综合征。东非裂谷热的流行和高于平常的降雨量相关——更适于蚊虫卵的孵化。并且没有进行过免疫接种的牛和蚊虫的相互接触，会导致裂谷热病毒从动物向人传播，人一般是食用了感染了裂谷热病毒的牛肉而感染的。雌性蚊虫可以把裂谷热病毒传播给下一代，因此可能把病毒传播给叮咬过的动物，因而形成了裂谷热病毒传播的一个循环。

动物免疫接种在预防裂谷热暴涨方面只能起到部分的作用，因为必须在裂谷热病毒引起动物感染和流行前就开始免疫接种，如果在暴发的中途对动物进行接种的话，还可能导致通过重复使用针头和注射器而导致交叉感染。

在1997～1998年的裂谷热暴涨后，在两个组成部分的基础上发展了一个新的预防措施：其一是一个建立在气候条件基础上的精确的预警模型，能够提前3～4个月预测裂谷热的暴发，其二是，一个有效的兽医公共卫生体系，在预测到动物暴发裂谷热之前能够快速地执行大规模的动物免疫接种行动。

对裂谷热的预警模型和早期的预警系统，是建立在卫星图像和气候预报数据的基础之上的，能够成功地应对这些需求。在非洲和中东，受裂谷热影响的多个国家，太空机构、美国国家航空和空间管理局、联合国粮农组织、世界卫生组织等机构的相互合作，使得每月建立一个地图，标示出紧急的需要预警裂谷热的地区成为可能。这些地图可以告知需要预警裂谷热的国家，帮助这些国家早期发现病例。最终这些早期的预警能够帮助政府执行措施，通过在暴发出现之前，采取大规模的动物接种措施来预防疾病流行的产生，并帮助政府通过高效率的社会动员项目，改变人们的导致感染裂谷热的行为。

美国国家航空和空间管理局和世界卫生组织联合开发的关于裂谷热发热预警系统，能够在一个月之前预测动物暴发，以下两个例子可以说明。在2006年11月，非洲好望角收到了美国国家航空和空间管理局和世界卫生组织发来的裂谷热的警告信号。此外，在裂谷热预警地区，也报告了其他的虫媒病毒（登革热、西尼罗河和黄热病毒）导致的疾病的暴发。这些结果说明，裂谷热预警模型，对于预测和早期发现虫媒病毒导致的传染疾病的暴发也是非常有用的。这些地区需要进一步改善预警模型，但是应该鼓励这些地区充分利用气候学来预测虫媒传播的动物疾病的发生。

尽管这些疾病的流行导致的影响很难精确预测，但仍然是
会对公共卫生构成威胁，这一点是很明确的。在条件迅速改变的时候，最重要的是预防；如果没能及时采取预防措施，那么早期发现和及时应对则显得更加重要。

其他的公共卫生突发事件

2005年《国际卫生条例》包含的内容更广泛，就是纳入了可能在全球范围内引起事故的放射和化学事件，这些事件，不论起源，为了应对生物恐怖，保证公众健康，依赖的原则和控制传染病的原则是一样的，就是要监测、早期发现和及时应对。

突发性化学事件和核放射事件

在21世纪的今天，在地球上的大多数地方，已经极大地依靠化学加工过程和核能。因而公共安全也将取决于这些化学加工机构和核能机构的安全性，以及合理使用化学物品及核能。化学物质的溢出、泄露和倾倒，核爆炸，以及蓄意释放化学试剂和生物试剂，给公众安全带来另一种威胁。这些事件可能引起人们的恐慌心理，担心有人恶意蓄谋，导致出现意外事故，造成无辜的遇难者。公众的恐惧心理可能和实际面临的危险不成正比，往往会导致过度的恐惧。

绝大多数的国家遵守国际协定，禁用化学武器。但是，这些化学事件，例如1995年东京地铁沙林气体（能够伤害神经系统）的释放，提醒我们尽管化学恐怖袭击和生物恐怖袭击事件很少见，但是无论是个人、团体还是政府都应该具备应对恐怖事件的意识（见专栏2.2）。

相似的，化学和核工厂在遵守诸如《国际化学安全程序》等安全协议下运行，以保护该工厂的工人、工厂以及周围生活的人群不受伤害和损害（21）。但是，有时候人为和机械的出错，导致了事故的发生，会引起灾难性的后果。

当谈到化学事件可以导致疾病负担，并不仅仅指使用化学武器开展大规模的攻击，或者较大的工厂事故。其实经常发生的导致疾病，引起死亡的化学事故大部分是中等规模和小规模的化学事件，而且在全球范围内每年都在不断地演化。但是，通过对一些大规模的化学事故，世人也学会了如何更好地预防化学事故和核放射事件的发生，以及如何积极有效地做出应对，主要是通过工业的进步和采取针对性的策略（见表2.1）。主要的两种的工业事故，一是自然现象，二是森林火灾，将在下面的
章节中进行描述，所有这些都会指出需要建立一个应对突发性化学事件的全球网络，来有效地监测和早期预警，以减少这些事件对公共安全的负面影响。

工业事故

全球最严重的化学事件发生在 1984 年 12 月 2 日的午夜，在印度中部的 Bhopal 市，Union Carbide 最大的生产杀虫剂的工厂泄露了包含甲基异氰酸（methyl isocyanate）在内的大量有毒气体，而此时这个拥有 90 万人口的城市中的大部分人都在沉睡当中 (23)。

关于在这场事故中丧生及伤残的确切数字，一直存在争议。根据印度的官方数字，在有毒气体泄漏后的头几个小时内将近 3000 人死亡，成百上千人受到伤害，15,000 人由于受到毒气的影响在灾难过后死于癌症或者其他的疾病 (23, 24)。但是，有些估计数字认为死亡人数和受伤人数更多，估计约有 10,000 人在吸入毒气后的几个小时内就死亡，而 20,000 人由于毒气的影响患上后遗症在随后的年份中死亡 (25)。官方数

专栏 2.2 蓄意使用化学试剂和生物试剂引发公共伤害

化学试剂

大规模使用有毒的气体等化学试剂作为武器，可以上溯到第一次世界大战，那时候在欧洲战场上，催泪弹、芥子气以及硫酸氮被用于攻击军队，导致士兵死亡及伤残。据估计，双方共制造了 117 万至 125 万起化学武器事件，导致了 85,000 至 91,000 名士兵死亡，不包括那些由于化学武器致伤残，在战争结束后死亡的人数 (16)。1925 年日内瓦公约和 1933 年化学武器协定禁止在战争中使用包括芥子气在内的毒气，同时也禁止研发、制作和储存这些化学武器。

在现代历史中，大规模的针对平民的化学武器攻击发生在 1988 年。那时，伊拉克军队反复使用芥子气及其他的化学试剂攻击伊拉克北部的库尔德人。最悲惨的一次攻击，是 1988 年发生在 Halabja 的库尔德市，成群的飞机向库尔德人投掷化学炸弹，造成了大约 5000 人死亡，65,000 人遭受了严重的皮肤和呼吸道疾病，以及第二代出生缺陷和癌症等后果 (17, 18)。

生物试剂

生物试剂具有作为武器的潜力，可以运用于生物战争和生物恐怖中，1979 年前苏联的炭疽事件就是个生动的例子。这场发生在斯维尔德洛夫斯克的，一座距离莫斯科东部 1400 公里的城市，是有记载以来人类史上最严重的炭疽病例事件。在该事件中死亡的人数估计在 45 人到 100 人之间，总共 358 人受到感染。死亡患者从发病到死亡平均时间仅为 3 天。

政府官员开始认为是由于居民食用了被炭疽污染的肉类而导致的，后来才明了是由于前苏联军事微生物学研究机构意外释放了炭疽孢子而导致的。流行病学数据提示大多数的遇难者生活或居住在这个军队微生物学研究机构的附近地带，在军队微生物学研究机构工作，或是在这个机构以南的地带。在军队机构的更南部，在这个地带的中轴线的南部，牲畜因炭疽而死亡。这个地带在这场炭疽暴发前发生过一场短暂的北风。因此波及范围主要在军队机构的南部区域。及时运用抗生素和疫苗用于治疗感染者，以及预防感染，最终使暴发得以控制 (19, 20)。
表 2.1 1974～2006 年较大的化学意外事件

<table>
<thead>
<tr>
<th>年份</th>
<th>地点</th>
<th>事故类型</th>
<th>导致事故的化学物质</th>
<th>死亡人数</th>
<th>伤残人数</th>
<th>疏散人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>英国，Flixborough</td>
<td>化工厂爆炸</td>
<td>环己胺</td>
<td>28</td>
<td>104</td>
<td>3000</td>
</tr>
<tr>
<td>1976</td>
<td>意大利，Seveso</td>
<td>化工厂爆炸</td>
<td>二氧化(杂)苯</td>
<td>193</td>
<td>32</td>
<td>226000</td>
</tr>
<tr>
<td>1979</td>
<td>苏联，Novosibirsk</td>
<td>化工厂爆炸</td>
<td>尚未明确</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>西班牙，马德里</td>
<td>食品污染</td>
<td>尚未明确</td>
<td>430</td>
<td>20000</td>
<td>220000</td>
</tr>
<tr>
<td>1982</td>
<td>委内瑞拉，Tacoma</td>
<td>液气罐爆炸</td>
<td>石油</td>
<td>153</td>
<td>20000</td>
<td>40000</td>
</tr>
<tr>
<td>1984</td>
<td>墨西哥，San Juanico</td>
<td>液气罐爆炸</td>
<td>汽油</td>
<td>452</td>
<td>4248</td>
<td>200000</td>
</tr>
<tr>
<td>1984</td>
<td>印度，Bhopal</td>
<td>化工厂(泄露)</td>
<td>甲基异氰酸</td>
<td>2800</td>
<td>50000</td>
<td>200000</td>
</tr>
<tr>
<td>1992</td>
<td>韩国，Kwangju</td>
<td>加油站爆炸</td>
<td>汽油</td>
<td>163</td>
<td></td>
<td>20000</td>
</tr>
<tr>
<td>1993</td>
<td>泰国，曼谷</td>
<td>玩具厂起火</td>
<td>塑料</td>
<td>240</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>哥伦比亚，Remeios</td>
<td>泄露</td>
<td>原油</td>
<td>430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>海地</td>
<td>有毒药物</td>
<td>二甘醇</td>
<td>>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>喀麦隆，Yaoundé</td>
<td>交通事故</td>
<td>石油产品</td>
<td>220</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>刚果，Kinshasa</td>
<td>军需品仓库爆炸</td>
<td>军需品</td>
<td>109</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>荷兰，Enschede</td>
<td>工厂爆炸</td>
<td>烟火</td>
<td>20</td>
<td>950</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>法国，Toulouse</td>
<td>工厂爆炸</td>
<td>硝酸铵</td>
<td>30</td>
<td>>2500</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>尼日利亚，Lagos</td>
<td>军需品仓库爆炸</td>
<td>军需品</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>中国，Gaokiao</td>
<td>油井泄露</td>
<td>硫化氢</td>
<td>240</td>
<td>9000</td>
<td>64000</td>
</tr>
<tr>
<td>2005</td>
<td>中国，Huainan</td>
<td>货车泄露</td>
<td>氯气</td>
<td>27</td>
<td>300</td>
<td>10000</td>
</tr>
<tr>
<td>2005</td>
<td>美国，Graniteville</td>
<td>货车泄露</td>
<td>氯气</td>
<td>9</td>
<td>250</td>
<td>54000</td>
</tr>
<tr>
<td>2006</td>
<td>科特迪瓦，Abidjan</td>
<td>有毒废气</td>
<td>硫化氢, 硫醇, 氢氧化钠</td>
<td>10</td>
<td>>100000</td>
<td></td>
</tr>
</tbody>
</table>

*咨询人数并不一定等于实际致病人数
数据来源：[22]
字，估计 120,000 人由于吸入毒气，患上了慢性呼吸道疾病、眼部疾病、生殖系统、内分泌系统、胃肠道疾病、肌肉骨骼、神经系统疾病和心理疾病。这些泄漏的气体导致成千上万的人逃离这所城市，同时造成了当地的环境污染。

应对突发事件的系统和当地卫生保健体系，由于 Bhopal 市的化学事件，遭到了破坏。由于缺乏用于辨别气体的成分、气体可能导致的健康损害以及需要哪些门诊管理措施、如何减轻对患者的健康损害等相关信息，从而导致了更严重的健康后果。这次急性的工业事故使 Bhopal 市的所有人在很长时间内都被危机感笼罩着，印度政府和工业也不得不卷入了这场危机感当中。直至今天，由于这场化学灾难对当地所带来的对经济、环境和健康的影响，仍能感觉出来。

还可能发生这样相似的事件么？回答是肯定的。在过去的 30 年来，全球化学试剂的生产和使用数量增加了 10 倍，特别是在发展中国家 (26)。一些国家的政府已经从诸如 Bhopal 市毒气泄漏事件的化学事故中获得了教训——比如，1976 年，意大利 Seveso 市，大量的二恶英 (dioxin) 被释放入环境中——因此已经颁布了相关的法规来预防以及应对较大的化学事件。然而，在比贫穷的国家，仍然在为缺乏保证化学试剂安全管理的技术能力和管理的设备设施而努力。在这些国家，城市化的程度也不断地增加，具有危险性的工厂建设在人群居住地附近，导致越来越多人暴露于化学事件的危险之中，尤其是那些无法选择在什么地方居住的贫困人口。

1986 年 4 月 26 日，前苏联的乌克兰共和国北部的切尔诺贝利（Chernobyl）市第四座核电站的爆炸，导致了大量核放射物质释放到周围环境。这些核放射物质散布在欧洲的国家，主要是 Belarus、俄罗斯联邦和乌克兰的大部分地区。在 1986 至 1987 年，估计有来自军队、核电站、当地的警方和消防机构的 350,000 人参与了爆炸后的核放射残余物的清理工作。大约 240,000 位在核反应堆 30 公里范围内执行主要清理任务的人员，接受了高剂量的辐射。

后来登记的参与清理行动的人数已达 600,000 人，尽管只有部分人员暴露于高剂量的辐射。在 1986 年的上半年，116,000 人，从切尔诺贝利市核电站地区撤退，到没有被污染的地区重新生活。另外在接下来的几年内，又有 230,000 人重新到其他的地区安居。当时，大约有 500 万人生活在 Belarus 区域，俄罗斯联邦和乌克兰，这个区域有高强度的核放射的铯
元素的降解，浓度高于 37 kBq/m²(27)。其中，270 000 位居民生活在这被政府定为严格控制的区域，那里的铯辐射浓度超过 555 kBq/m²。

在 2006 年，当全球都在纪念切尔诺贝利核事件 20 周年时，世卫组织公布了一个报告，认为这个事件是历史上最严重的核污染事件 (27)。该报告给 Belarus、俄罗斯联邦和乌克兰在这次核爆炸事件中受到严重影响的几个国家的未来研究方向和公共安全措施提供了很明确的定义。在 1990 年到 2002 年，这些国家儿童和青少年的甲状腺癌的报告病例超过了 4000 例。这明显要高于比预测的数字，但是对于核放射可能导致甲状腺癌的危险度的精确估计还是不清楚。其中将近 40% 的病例是通过筛查项目发现，否则这些病例很可能不会被发现 (27)。在未来的几十年内，可能会报告更多的新的甲状腺癌的病例。

世卫组织的这个报告中也提出，这个事件对公众健康的最大影响是对遭受事件影响的居民的心理健康问题 (27)。在事故发生后的前几年，没有对受影响的居民提
供可靠的信息，此外，当前对官方信息的误解被广泛传播，而且常常将绝大多数的健康问题归因于受到切尔诺贝利的核暴露。当地的居民必须离开原地，到其他地方重新安居，证明了人们的心理经历了一场重创；他们的社会网络被迫中断，他们不可能再回到原来的家园。此外，许多人不得不面对社会对于“核暴露者”的歧视，这种社会歧视会导致这些居民增加一些危险的行为，导致抑郁和其他的精神和心理疾患。

世卫组织推荐，不论是主要的专家，还是普通的公众，都应该获得关于切尔诺贝利的核灾难所可能导致的健康问题的准确的数据，这也是使灾难地获得新生所需付出的努力之一。世卫组织还将继续努力，通过建立网络会诊以及远程教育项目，通过一些支持性研究，支持受到核灾难影响的人群获得卫生保健服务。

自然现象

一场大规模的、由自然现象而不是化学事件所引发的、导致很多人受到化学污染的事件发生在1986 年的8 月，喀麦隆的西北部省份，大约 160 万吨的二氧化碳气体突然从尼奥斯火山湖排入空气。这是由于巨大的山体滑坡沉入湖中，导致沉积于尼奥斯火山湖湖床的二氧化碳气体突然被释放入空气中。由于二氧化碳比空气重，大量的二氧化碳聚积在地面，下降的山体以每小时 50 公里的速度沿着火山口北部下降。厚厚的二氧化碳烟雾覆盖地面二十公里，使生活在附近的 Nyos, Kam, Cha, 和 Subum 等几个村庄的 1800 名居民由于窒息而死亡 (28, 29)，动物也窒息而死，其中牲畜死亡了 3500 头。

尽管许多像这样由突发的自然事件导致的灾难似乎是无法避免的，但是将来仍然可以采取一些措施来预防和应对，减少危险，减少人群的脆弱性。这可以通过从自然灾难获得教训，通过提供充足的资源和科学知识来实现。然而不幸的是，事实上总是做不到。这些罕见的自然事件总是被遗忘和忽视，当面临同样类型的自然事件时，人们还是毫无准备。

在尼奥斯火山湖自然事件发生之后，1984 年在其附近的 Monoun 湖，也遭受了相似的二氧化碳的大量释放，当时在 Monoun 湖安装了很多管道，使湖里的二氧化碳得以吸收。但是仍然存在可能出现另一次二氧化碳气体大量排放的危险，因为仍缺乏充足的管道来使二氧化碳被完全吸收。而且，
Monoun 湖的周围又重新安居了村落。如能意识到大量的二氧化碳气体的排放可能会引发灾难，认识到早期的预警信号，并且已经建立了一个预警系统，这一切都能够帮助当地居民避免类似灾难的重演。

森林火灾能够产生大量的生物烟雾，包括颗粒性物质、诸如一氧化碳、甲醛和丙烯醛、苯、二氧化硫和臭氧等有毒和刺激性的气体。森林烟雾颗粒很容易远距离传播（30）。这些小颗粒能够穿透正常的皮肤保护系统，穿透肺泡，从而损伤呼吸系统。

从 1997 年到 1998 年，发生了由烟雾引起的空气污染，并且这场污染穿越了边界，当时印度尼西亚发生了延续很长时间而无法控制的森林火灾，所产生的浓雾扩散到了菲律宾、新加坡和马来西亚、泰国和越南的部分地区，使 2 亿人口受到烟雾的危害。主要是位于苏门答腊岛（Sumatra）和加里曼丹（Kalimantan）的将近 100 万公顷的森林、植被、灌木丛等，从 1997 年 8 月持续燃烧到 10 月。在这种毁灭性的森林火灾之后，在 1998 年年初又发生了第二起。

而在此前和此后，印度尼西亚也发生过其他大规模的森林火灾。这些火灾多是由于经营种植园的公司为了清理用以发展农业的土地而焚烧植被所导致（31）。在 1997 年，森林火灾的迅速弥漫则是因为厄尔尼诺热带太平洋经向风应力异常引起的极端干燥的天气所引发的，在其他的年份也发生过类似的事件。而且，伐木等一系列活动也使得森林更容易受到火灾的影响——伐木可以留下一些易燃的碎片，而且伐木导致森林树木减少，导致更多的阳光照进森林，使得森林潮湿地面被烘干。

印度尼西亚森林火灾所引起的烟雾，给本国和邻国人们的健康带来了严重的影响，导致这些国家支气管哮喘、急性呼吸道感染和结膜炎的发病率增加。在印度尼西亚，有 12360000 人暴露于烟雾，据估计有 1800000 例支气管哮喘、支气管炎和急性呼吸道感染（32）。新加坡从 1997 年 8 月到 1997 年 11 月的监测数据表明，由于受到烟雾的影响到医院就诊就诊的人次数增加了 30%，到急诊的人次数也增加了 30%（33）。在马来西亚，以医院为基础的研究发现烟雾导致了呼吸道疾病的住院率明显增加，特别是慢性阻塞性肺病和哮喘。最易感的人群是 65 岁的人群（34）。而至于烟雾暴露对人群健康的短期影响尚未明确。
造成对公共卫生安全威胁的突发性事件的起因包括上述指出的传染病、战后和自然灾害后的紧急事件以及化学事件和核事件。本章列举了上个世纪很多这些事件的起因及其后果。

第三章将描述21世纪以来发生的最新的事件，来促进我们理解为什么边界控制和国际协议还是不够——应该建立强有力的国家监测系统和应对机制，来发现这些事件发生的时间和地点，同时和全球发现与应对机制协同努力，及时发现和应对那些可能成为威胁全球公共卫生安全的事件。

参考文献

第三章
21世纪新的健康威胁

chapter 3
在前面章节阐述了威胁公共健康的传染病和其他突发公共卫生事件的主要起因。在第三章我们继续阐述发生在 21 世纪初期的主要事件，这些事件代表了对国家和全球公共卫生安全新的威胁。例如，2001 年发生在美国的炭疽邮件事件，2003 年的严重急性呼吸道综合征（SARS）和 2006 年发生在科特迪瓦的大规模有毒化学废物倾倒事件。

这些事件表明了世界在面对新的健康威胁时变得如何脆弱。从时间发展的顺序上讲，其中最早的事件是国际舞台上出现的生物恐怖，即 2001 年发生在美国的炭疽邮件事件，随后是 2003 年的出现并在全球快速传播的致命性新疾病——严重急性呼吸道综合征（SARS）。该病的国际影响促进了修订和强化《国际卫生条例》（1969 年版）的政治意愿，并且对可能暴发的流感大流行以更积极的方式做好应对准备（详见第四章）。

2006 年，在科特迪瓦发生的非法倾倒成千上万吨化学废物的事件引发了数万例呼吸系统疾病和其他疾病，并且揭示了一种越来越多的现象——即全球化是怎样加重了有害废物在运输和处理中的潜在危险性。这一章节主要内容论述与环境相关的突发事件在中国的化学事件应对策略（详见第二章）。

炭疽邮件

仅在 2001 年 9 月 11 日的恐怖事件发生后的数日内，利用美国邮政系统通过信件蓄意传播潜在致命性炭疽孢子事件将生物恐怖活动加入了现代社会的现实生活（1）。除了造成人员伤亡（共有 22 人感染，其中 5 人死亡）外，炭疽病造成了巨大的经济损失以及公共卫生和公共安全危害（2）。该事件提醒国际社会对生物恐怖继续关注，使许多国家采取了应对措施，而且要求世卫组织提供更强大的咨询作用。这引发了 WHO 对《公共卫生对生物和化学武器的反应；世卫组织指南》进行更新（3）。

近年来，美国和其他工业化国家一直生活在恐慌之中——频繁地被类似这样的恐怖袭击的虚假电话和警报困扰。但众所周知，不少国家存储包括炭疽在内的生物武器，尽管没有证据表明他们使用过这些生物武器。对前苏联 1979 年前方炭疽生物武器设施事故造成的炭疽泄漏事件调查表明这些生物武器可能是十分致命的（详见第二章）。
1990年海湾战争期间，美国政府出于对潜在炭疽袭击的担忧，为十多万名军人注射了疫苗。1995年，联合国特别调查委员会提示，伊拉克曾经在科威特战争中研发和测试过炭疽武器，从而引发了对炭疽袭击的再度担忧。1998年，美国政府开始对所有军人注射疫苗，并为全体政府雇员提供专业指引，以应对在市民集中地区可能发生的人为生物或化学袭击。

至2001年，在联邦政府的帮助下，美国的多数州和大城市政府或当局都开始制定应对生物恐怖的计划，很多还进行模拟演练检验当地的应急反应能力。早在炭疽邮件袭击事件发生以前，有效针对皮肤炭疽和吸入性炭疽等炭疽的防治措施已发表在医学文献上。

不管怎样，在“9·11”事件当天寄出并且邮寄标记为7天后到达的炭疽信件引起了公众极大的震惊和强烈的公共卫生反应。最终，有22人被感染，其中11人为皮肤性炭疽病，11人为吸入性炭疽。5例死亡的病例全部为吸入性炭疽（3例）。22人中有20人是暴露于被炭疽孢子污染的場所而感染，9人在传送炭疽信件的邮政分拣系统工作。有潜在暴露危险的32000人得到了紧急药物，抗菌药物总发放量为375万片。在高危环境工作的人员建议的药物疗程长达60天，并可选择注射炭疽疫苗。美国疾病预防控制中心（CDC）派出了流行病、实验室和后勤人员组成的应急队伍帮助地方、州和联邦开展健康调查和药品分发。

环境样本、临床样本以及可疑事件标本的收集和检测工作给美国CDC、全国的公共卫生实验室以及政府机构带来了沉重的负担。要不是通过实验室反应网络（LBN）已经投放巨资扩展了实验室培训和能力，所承担的临床和环境样本检测工作早就将全国的检测能力压垮了。LBN把州和地方的公共卫生实验室与一些高水平实验室包括临床的、军队的、兽医的、农业的以及检测水质和食品的实验室联系了起来。

此次危机事件处理后留下的宝贵财富之一是全国邮件处理系统采用了常规消毒、检测和安全设备。为了减少处理中心潜在的灰尘和气体污染源，美国邮政系统装备了约16000台高
效空气过滤净化机，并从保险起见，对送往联邦政府机构的邮件进行常规电子束照射处理。在 2003 和 2004 两个财政年度，一共花费了 17 亿美元用于加强和改善美国邮政系统工作人员健康防护和防止病原体和其他有害物质通过邮件传播。

尽管人为散布炭疽事件只是针对美国一个国家，但这在整个美洲国家中产生了广泛的影响。特别是公共卫生系统需要重新分配资源，以满足可疑被污染的邮件和个人防护设备的实验室检测以及邮政设施消毒的巨大需求。

炭疽事件在 2001 年 9 月的恐怖袭击之后如此之快地发生，引起了对国家和国际安全的重新深刻反思。炭疽信件说明，生物恐怖主义可能导致的不只是死亡和伤残，而且还对社会和经济造成严重的破坏。

另一个令人担忧的事实是，天花这个早在 1979 年即已被消灭的人类疾病，可在 20 余年后作为生物武器使用达到致死效果。天花消灭后，大规模天花疫苗接种就停止了，因此形成了未获得免疫力的易感人群以及对此病缺乏临床经验的新一代公共卫生从业人员。一位曾领导天花根除运动的专家 1999 年 6 月警告说，“如果天花用作生物武器，它将对人类产生严重的生命威胁，因为它在未免疫人群中的致死率达到 30% 甚至更高，而且没有特别有效的治疗方案。尽管天花长期以来就被认为是传染性疾病中最具灾难性，但它在今天所具有的潜在破坏性比以往任何时候都大”（4）。

自那时以来，世卫组织已参与了国际讨论和生物恐怖的模拟演练，主张发现蓄意制造的疾病暴发的最可靠方法是加强发现和应对自然暴发的系统，因为在流行病学和实验室原理上基本相同。考虑如何正确地应对生物攻击，特别是天花病毒，目的是在全球范围内检验最近世界卫生组织启动的全球疫情警报和反应网络机制的有效性。此外，医学期刊、媒体、安全与防御的广泛争论有助于使政治领导人理解国家疾病监测和应对的能力的提高与国家及国际安全直接相关，促成了世卫组织出版物《生物和化学武器的公共卫生应对措施；WHO 指南》的更新。

SARS: 暴露了防控能力的薄弱

作为本世纪最先出现的新型严重疾病，2003 年的严重急性呼吸道综合征（SARS）证实了生物恐怖威胁引发的恐惧，即

1 根据在各国开展的证实活动，1979 年 12 月 WHO 专家委员会确认天花在全球根除，随后在 1980 年的世界卫生大会签署。
一种新的或对之不熟悉的病原体可对国内和国际的公共卫生安全和经济产生深远的影响。严重急性呼吸道综合征描述了某种疾病作为一种公共卫生安全威胁而具有国际意义的特点：该病人传人，无需媒介，无特殊的地理学倾向，潜伏期1周以上，与许多其他疾病的症状类似，对医护人员造成最严重的侵害以及感染者中病死率约为10%。这些特点意味着该病易于沿着国际航线传播，从而使拥有国际机场的每个城市都处于输入病例的风险之中（见图3.1）。

作为一种新的、致命性以及起初知之甚少的疾病，SARS引发的不确定性的公众焦虑，事实上造成了向疫区的交通终止，而且在整个区域内造成了数十亿美元的经济损失。专栏3.1详细列举了SARS流行带来的经济损失，并且推算出大规模流感暴发可能造成的经济后果。

SARS表明，全球性的国家交往和人口流动增加了新发疾病对健康和安全的危害及患病风险。纵观当今世界，2006年约21亿人次搭乘飞机（7）；金融市场和商业互相紧密影响；信息即时
专栏 3.1 SARS 和流感大流行产生的经济影响

2003 年 SARS 的流行是有史以来最严重的全球性大流行。然而，通过利用经典的监测和应对的流行病学方法，这次流行病的病例数被控制在 8422 例，病死率为 11%（5）。尽管如此，此次流行使亚洲国家 2003 年的国内生产总值 (GDP) 损失约 200 亿美元，或按总支出和商业损失计算则高达 600 亿美元 (6)。

SARS 的主要经济影响是旅游业和对非必需品的经济影响并不可能像 SARS 那样进行简单相乘就可以得到，如下图所示。

如果大流行如预料的那样持续一年以上，那么因失业和破产带来的长期影响产生的损害会持续多年。大流行持续时间越长，对生产力破坏造成的损失就更严重，并且伴随住院和其他医疗保健费用的增加。

当然，以被感染人口的比例来考虑，大流行的

流感大流行造成的经济损失估计

图：流感大流行年度经济损失与平均感染率

来源：Oxford Economic Forecasting Group.

消费信心、SARS 的病例实际数目相对较小，但是对传染的恐惧导致了国外旅游者选择其他旅游目的地，当地居民感到不安全和其他公共娱乐场所会更安全。这些方面对于很多国家来说是很重要的 GDP 来源。

对人和对经济造成的大部分影响都被限制在 2003 年的第二季度。尽管由于强有力的领导和国际公共卫生协作行动，使此次暴发流行的时间和产生的经济影响得到了有效的评估，但这次成功同时也提出了一个问题："当可能的后果究竟是什么样的？"

在亚洲国家，每个 SARS 感染者的平均费用超过 200 万美元。一个真正的流感大流行持续时间可能会超过三个月，因此一年甚至更长的流感大流行造成的规模越大，经济影响就越大。如果 1% 的世界人口被感染，GDP 的降低会达到 5%，患病人口每增加 1%，经济损失就会再多 1 个百分点 (6)。这种关系在达到一个关键的感染率之前将持续存在，直到经济崩溃的累积效应使全球经济发生停滞，就类似于 2001 年口蹄疫后对英国农业经济的影响。不过在流感大流行的情下，这种影响将是全球性的 (6)。

全球性流感大流行可能引发的灾难使控制该大流行代表着全球性的利益。目前疫苗和抗病毒药物的储备在任何一个国家都是不足的，更不必说发展中国家。"大流行"从其定义来看就是无国家和地区边界。流感大流行对健康和经济的影响将是全球性的。
可得（见图 3.2）。SARS 展示了具有适当特性的新发疾病在这样的世界可能造成的危害程度。

SARS 引发的应急反应和媒体关注在某种程度上考验了公众和政府对于新发和易于流行疾病的风险认识。这次暴发将公共卫生提升到了新的高度。无论是公众还是政府高层官员都无法忽略健康问题对经济、社会、政治和国际形象可能造成的负面影响。并不是所有国家都感受到了故意释放生物攻击的威胁，但所有国家都很关注 SARS 这样疾病的来临。

这说明新发疾病带来的危险是全球性的。不管其财富、教育水平、生活水平、卫生保健水平、边境所拥有的设备和人员情况如何，没有一个国家能完全防止新发疾病进入其境内以及疾病入境后造成的破坏性后果。SARS 发生繁华的中心城市，但结果与想象正好相反，在设备良好的城市医院里其传播也很快。

在被首次确认为一种国际性威胁后不到 4 个月的时间内，严重急性呼吸道综合征的传播即得到控制。这是公共卫生领域获得的一次全球性空前的成就。如果 SARS 在一个资源匮乏的地方扎根，很难相信能够调动足够的阻断传播链所需的措施、设施和技术。如果严重急性呼吸道综合征已成为一种永
专栏 3.2 大众媒体在风险认知上的作用

新闻传播速度快，并且从未像在当今即时信息社会传播得如此快速过。不论风险是来自新发疾病的流行，蓄意的攻击还是自然灾害，大众传媒对人们的风险认知都有着巨大的影响。互联网、电视、广播、报纸和杂志是涉及健康风险的最具影响力的日常信息来源。

媒体会怎样衡量和传播像流感或 SARS 这样的健康风险的相关信息呢？当面对这种复杂的科学问题和有利益冲突的政治目标时，对媒体来说是对其责任心的挑战。应该传播什么样的信息？对于不确定性和矛盾性的信息应该对大众解释到何种程度？

在健康问题方面，媒体有两个重要功能：他们解释和报告科学信息和政府的公共政策，并同时反映普通大众的关注。像化学事故、医疗研究进展、传染病流行和新药品的缺陷等健康相关事件都可能成为新闻的标题。政府新闻发布、科学家、国际科学杂志往往是他们主要的信息来源。记者们倾向于使用很好组织的信息源将专业信息概括为通俗形式发布出来的信息。另外，国际性的新闻组织经常收集全世界健康风险相关的事件（9）。

根据纳菲尔德财团的一项研究，在紧急公共卫生事件发生时，大众传媒可能加重大众的焦虑，也可能给公众以信心。像政府这样的权力机构可以利用大众传媒，但很少能对发布的信息进行控制。他们必须在说的过多或者说得过少之间寻求平衡：一种行动导致过度反应，另一种则可能造成隐瞒事实的形象（10）。

大众传媒对风险认知既可能有正面的影响，也可能有负面的影响。当官方渠道没有提供信息的时候，媒体会从其他地方找到消息，其报告可能会制造或加大大众的焦虑。对于当权者，什么都不做或什么都不说已经成为一种非常危险的策略。例如，疾病暴发的早期报道常常来源于“好事者”，就如同 2003 年 SARS 时那样。这样就会建立起一个已接受的“事实”或信念的基线，以致到后来有了更多信息特别是有更多准确信息的时候，可能很难去加以纠正。

“在另一方面，大众传媒可用于树立公众信心。在这方面，WHO 在 SARS 期间的作用很有启示意义。”纳菲尔德财团的研究指出，“作为一个值得信赖的国际组织，它通过与媒体和公众沟通并告知公众并给焦虑的大众以信心。实际上，当代信息的传递速度本身就是一种重塑信心的方式。如 SARS 发生，现代通信技术使得信息迅速交换，从而能采取更加有效的预防措施，同时通过安全的网站交换科学数据，使得 SARS 的病毒基因组很快得以攻克。”

这项研究指出，健康专家特别是专业机构在市场上报告风险时在重塑公众信心可以发挥很好的作用。但是这种反应需要敏感性，并要让人感觉到是独立的、权威的。
久存在的本地流行病威胁，那么不难想象在这个仍在奋力应付HIV/AIDS的世界里对全球公共卫生安全所产生的后果。

有毒化学品的倾倒

与全球人口流动一样，货物在全世界的运输也可产生严重的卫生后果。2006年8月，在科特迪瓦作为全球贸易一部分的有害废物的国际运输和处理深刻地表明了其存在的潜在致死性风险问题。500余吨化学废物被从一艘货船上卸下，用卡车在阿比让市（Abidjan）内和周围的不同地点非法倾倒。其后果是在倾倒后的数日和数周内，各医疗机构记录的与化学事故相关的医疗咨询将近85,000人，69人住院，其中8人死亡。

最初的倾倒事件是不为人觉察的，但是它导致了眼睛、鼻子和喉咙刺激，以及呼吸困难、头痛、恶心和呕吐，造成数千人的恐慌。最严重病例表现为呼吸困难、脱水以及鼻和肠道出血。最初几天报告了8个死亡病例（3名儿童和4名成人），但是更多的患者因原有的疾病如哮喘、呼吸系统疾病和心血管疾病病情加重而死亡。即使在倾倒事件几个星期后，在白天的某些时段仍然有浓重的气味，人们还在因为眼睛、鼻子和喉咙刺激，以及不适、恶心、胃肠道症状等到提供免费诊疗的医院就诊。

废物被证实是用于清洗油轮储槽的化学混合物，包括氢氧化钠、酚、硫醇、硫化氢、碳水化合物和其他化学物质，所有这些物质都有严重毒性和腐蚀性，需要进行对症治疗。

这起事件产生了严重的公共卫生、社会和经济后果。它发生在一个社会动荡、政治不稳定的国家，这起事件导致的群众不满行为使得情况更加糟糕。每天都有街头游行和暴力事件发生。

数千人来到医院，要么是身体出现健康问题，要么是担心暴露于化学品对将来可能产生的影响，尤其是那些孕妇们，很快就使常规的医疗服务能力利用到了极致。药物储备、X射线胶片实验室试剂和其他物资很快出现短缺。医务人员短缺，只好招募更多的人员来应对大量的就诊者。公共卫生系统陷入危机，不能为人们提供所需要的医疗服务。

此外，潜在的水和食品污染也越来越引起当地和国际的关注，因为附近池塘出现死鱼，在被污染地区附近生长的蔬菜仍在当地市场上销售。有些污染地区由于安全原因被关闭，而这些地区恰恰是处理垃圾的场所，结果正常的垃圾处理系统陷入瘫痪，家庭垃圾在城市中不同地区堆积如山。
这种情况需要政府的最高水平的介入，同时需要国内和国际组织的援助。WHO 为国家权力部门提供了技术建议，为超负荷工作的医院提供所需的药品和其他资源，提供了计算机和病例表，准备和发放了信息通告，并且和联合国其他组织保持联系。

邻近国家关注河流和海域的可能污染，一直保持警惕。国际社会关注的主要问题之一是该艘货船从北欧出发到达科特迪瓦前曾经停靠在数个港口，包括西部非洲的一些其他港口。在此次事件的后果中还不清楚该艘货船是否在那些港口中的哪一个港口装载或卸载了化学废物。

当今社会，公共卫生安全需要通过政府、企业部门、民间团体、媒体和个人的相互之间及其内部的协调和合作来共同完成。没有任何一个机构或者国家有能力来单独应对流行病、自然灾害、环境危机、化学或生物攻击以及新发传染病引发的国际公共卫生突发事件。只有在第一时间发现并及时报告，才能及时调遣最合适的专家和资源，预防或者制止疾病的国际间传播。

第四章将就近期禽流感的预警和应对经验、广泛耐药结核（XDR）的新威胁和极端天气事件造成的自然灾害等内容。

参考文献

第四章 汲取的教训和超前思考
第四章讨论了国际上关注的公共卫生紧急事件，最担忧的仍是流感大流行。对这种威胁的反应一直很积极，并且已经成为一个少有的应对大流行和阻止该威胁变为现实的机会。

《国际卫生条例（2005）》为此提供了一个政策性框架，即通过国家核心能力的加强，各国携手共同应对跨国界公共卫生突发事件。第四章通过阐述《国际卫生条例（2005）》在流感大流行预警中的早期应用及在防止非典型肺炎（SARS）等跨国传播威胁中的潜在应用，剖析总结了经验教训，引以为戒。

后两例情况是公共卫生事件较为典型的例子，可以唤起各国利用《国际卫生条例（2005）》决策工具来评估是否需要向世界卫生组织报告引起国际关注的突发公共卫生事件（见第五章）。如果认为有必要，则意味着将采取国际性公共卫生应对措施。

流感大流行：最严峻的国家安全威胁

与2003年全面被动应对传染性非典型肺炎（SARS）暴发形成鲜明对比的是，人们早已对流感大流行威胁做出了积极反应。《国际卫生条例（2005）》的及早实施起到了促进作用。这是应对流感大流行的一次罕见机会，我们可以利用早期预警和对流感大流行事件的准备进行测试。

如果没有对季节性流感深刻的了解，对流感大流行所带来的威胁就不能全面认识。每年，人间流感通过季节性流行迅速在世界范围内传播，造成大约300万到500万的重症病例和25万到50万的死亡病例。

目前，在发达国家大多数死亡发生在65岁以上人群。引发季节性流感的病毒是甲型和乙型。甲型流感病毒有两个亚型对人类有危害：即H3N2和H1N1，其中前者是当前大多数死亡病例的罪魁祸首。

季节性流感病毒经常发生较小的基因变化，称为“抗原变异”。这些变化要求人们每年都要重新研制流感疫苗，保护全世界不同地区人群的健康。针对季节性流感最有效的疫苗就是根据当下正在流行的病毒专门研制的。

季节性流感的暴发一般首先在地球东部，然后传播到西方。因此在亚洲先发现的病毒被用来分析、预测用于研制疫苗的组分以期为下一个流感季节做准备。

在过去的50年里，WHO组织管理的全球流感监测网络通过深入的监测网络工作，收集了许多有益信息，包括各国无偿提供和交换的流感病毒流行株的基因信息和流感疫情趋势等。该网络现覆盖89个国家的118个国家流感中心和4个WHO合作中心，分别在
澳大利亚、日本、英国和美国，见图 4.1）。国家流感中心的职责是保证代表性毒株能被及时送往WHO合作中心进行确认。

除此之外，WHO还管理着一个“流感网”（FluNet），这是一个基于互联网的地理信息系统，允许远程数据输入、实时获取最新的特定国家流感流行毒株信息和疫情趋势。它成立于1997年，旨在加强全球流感监测，为研究人员提供一个基于互联网获取流感活动信息的工具（1）。

无论是“全球流感监测网络”还是“流感网”，它们除推荐季节性流感疫苗原型株，还负责运行全球早期预警体系，报告流感变异和新毒株的出现。网络的工作不仅可靠而且十分敏感，它可以抓取任何有大流行可能的流感新毒株信息以及不寻常重症和传播迅速的暴发疫情的信息。这在早期发现、开展调查和遏制干预过程中举足轻重，在1997年香港H5N1暴发中的作用即证明了这一点。

1997年，因H5N1禽流感病毒引起的人类发病例首度在中国香港被报告。截至2007年6月，继香港报告病例如之后，又有310例病例报告，其中189例为死亡病例。尽管数量相对不多，但这组数字的背后是一种危机生命、冲击国家经济和安全的新发传染病。虽然大流行来临的时间、严重程度
还无法预知，但预警系统告诉世界，大流行已为期不远了。预警系统正在被全面开发使用，以便在《国际卫生条例（2005）》的框架下加强全球的应对准备。

尽管1997年已首次从人病例中分离到H5N1病毒，但越南首次发现河内一家儿童医院里聚集性的H5N1感染是由人们监测2003年和2004年SARS疫情是否反复的强化监测系统发现的。感染病例均为幼童，伴有严重呼吸系统症状，许多患儿因此死亡。这次人间禽流感暴发是由高致病性H5N1病毒引起的，期间也发生了严重的禽间流感暴发。这次暴发仿佛是一种预兆。

继SARS暴发后，可能接踵而来的是流感大流行让世界有理由警惕起来。更具传染性、通过咳嗽和喷嚏即可传播的流感的潜伏期短暂，以至于无法追踪接触史、做必要的医学隔离。流感大流行带来的危害将比亚洲和加拿大发生的SARS造成的危害还大，传播到世界每个角落仅需数月。再者，如果出现一种全方位传播的大流行病毒，疾病的蔓延将无法阻止。即使采取全面的国际禁航措施，病毒到达一个国家的时间最多只能延缓几星期。

根据以往流感大流行经验，专家认为世界25%的人口将会受到感染，可达15亿人，远远大于中国加上美国的人口总数。如果这一预言应验，新世的第二场流感大流行所带来的影响，无论是对各国本身还是全球范围内的公共卫生、经济政治安全，都将是一种虽易见的。即使疫病的病症不重，但同时发生在大范围内人群的疾病将平地而起，在全世界几乎同步发生经济、社会动荡，这个影响将是巨大的。

在这危险关头，越南不断蔓延的禽流感和人禽流感暴发，以及随后几天内在中国的暴发，使有关方面紧急召集流行病学专家、临床医生、病毒学家和动物医学专家开展了一系列研究活动。研究人员通过研究以往流感大流行试图找到线索，以求有备无患。企业界也加快了开发大流行疫苗的研制，加强生产基础上，对抗病毒药物奥司他韦的能力。WHO全球流感监测网络继续进行流感感染人流感病毒的确证工作。尽管H5N1人类感染病例占大多数，但H7和H9禽流感病毒人类感染病例也被确认。众所周知的流感病毒基因不稳定的性质使人们不可能预知未来的大流行将会由哪种禽流感病毒引起，将在何时发生。

到2004年底，人们已清楚地认识到H5N1是禽类病毒中最顽强的一种。作为控制疫情的策略之一，成千上万的禽被
2007年世界卫生报告

构建安全未来
21世纪全球公共卫生安全

屠宰。在亚洲大部分地区，该病毒根深蒂固，估计可能要花十几年才能消除该病毒。因此，大流行的暴发威胁也将在很长一段时间内存在（图4.2）。

截止2004年底，72%人感染H5N1的病例死亡，新的感染病例仍在越南和泰国出现。病例的年龄分布情况令人担忧，因为大多数被感染的是那些身体健康的儿童和少年，他们都接触过病、死家禽。大多数重症患者在经历了原发病毒性肺炎后死亡，而不像季节性流感并发症中因细菌性多重感染而死。

2005年，所谓的H5N1“接力传播”开始了，高致病性病毒从禽传到野鸟，然后又从野鸟传回禽类，传播距离长，传播能力强。2005年7月，病毒又从东南亚开始传到非洲大陆、中亚、欧洲及东地中海地区。因此，随着野鸟在传播链中的加入，快速制服病毒的愿望看似渺茫。

WHO负责追踪和证实每天30多条有关人类感染禽流感的谣言信息。各WHO国家代表处都收到了总部派发的现场调查工具包，有关现场调查和应急的培训也紧锣密鼓。
地展开。WHO 动用全球疫情警报和反应网络 (GOARN) 为 10 个国家配备了应急队伍，为其他国家配备了 30 多个现况调查评估组。

2006 年 9 月，WHO 召开了一个研究 H5N1 的专家组会议，探讨 H5N1 或其他禽流感病毒如果获得有效人传人的能力，还会不会保持其特有的杀伤力。最后会议的结论是，如果大流行病毒在基因重组后，即基因物质在人类与禽类之间交换后，它将必然丢失部分致病性。然而，如果大流行病毒保留了其全部禽类性质，加上通过变异获得从人传播到人的能力，那么它将完全保留其现有的致命性。1918 年流感大流行的死亡率为 2.5% 左右，而 2007 年 5 月 1 日，H5N1 报告病例中的病死率高于 58%。

2007 年 4 月 11 日，从亚洲、中东和非洲的 12 个国家报告的人禽流感感染病例和死亡病例总数(本章节开始部分已绘出)，28 例(含 14 例死亡病例) 是在 2007 年初几个月内报告的，大多数发生在埃及(20 例，含 4 例死亡病例) 和印度尼西亚(6 例，含 5 例死亡病例)。像人禽流感暴发一样，在禽间的

图 4.2 2003 年以来，报告 WHO 的人类禽流感 A/(H5N1) 病例累积确诊人数

图例

1. 总例数包括死亡数
2. WHO仅报告实验室确诊病例
3. 所有日期指发病时间
4. 数据截止于 2007年6月
持续暴发时有发生，但大流行毒株并未出现。于是，逐渐有人认为流感大流行的威胁被夸大了。WHO 所获取的信息也时断时续，无法进行危险评估和预警。尽管如此，大流行的威胁依旧存在。

从全球应对到大流行预警，人们汲取了很多经验教训。首先，受到病毒影响的国家采取积极应对措施是对国际社会应负的责任。毫无疑问，如果一个国家发生大流行病毒引发的流感暴发，若管理不善，那么世界各国将深受其害。

第二，受病毒影响的国家在数月内，但愿不是数年，如果无力持续支撑突发事件应急体系，那么对风险因素的准确监督和评估工作就会出现重大障碍。在人间和禽间暴发伊始，人们为做好公共卫生计划而做出两个假设：一是大流行可能很快开始，二是严格控制禽间暴发以降低风险。但是从目前来看，这两个假设都是错误的。几乎没有哪个受病毒影响的国家能够做到持续支撑突发事件应急体系，即在开始阶段工作较为深入、密集，随着疫情的持续仍然能持久应对。许多其他国家在开始阶段采取了适当的应急措施，但无法坚持。一些国家虽然资源匮乏，对付如此狡猾顽抗的病毒已筋疲力竭，更不要说打持久战。尽管如此，监督和评估还是必要的，开展所有人感染病例确认和病毒共享方面的国际合作对于我们全面了解流行病学现状和保持预警系统的敏感性有举足轻重的作用。专家们都认为，H5N1 或其他禽流感病毒可能引起的大流行威胁持续存在，早晚都会发生，只是时间问题。

2006 年 5 月，世界卫生大会通过了一项决议，呼吁各国立即自觉遵守《国际卫生条例（2005）》与禽流感和大流行威胁有关的条款（2）。尽管条例在 2007 年 6 月开始正式实施，加快实施条例中这部分内容不仅可以衡量对大流行威胁的关注程度，同等重要的是，还可以显示对修订后条例的信心水平。

许多有关降低风险的活动和准备工作已经在《国际卫生条例（2005）》颁布实施后开始落实。其中显而易见的是，最重要的风险降低措施是控制 H5N1 在家禽中的流行，这是因为只要这个病毒在家禽中存在，大流行的威胁就会存在。通过控制在家禽家畜的中大流行，人间散发病例也会随之减少。

然而，如果在家禽中的降低风险措施控制不到位，世界就远未准备充分。在这种情况下，如果 H5N1 或其他禽流感病毒（如目前已知的 16 种 H 亚型和 5 种 N 亚型）变异成大流感病毒，而且在发生大面积传播前出现早期人传人，那么应尝试抗病毒
药物的应用。WHO、东盟和美国已经开始抗病毒药物奥司他韦的国际储备。奥司他韦应可以阻止早期人到人的传播。然而，这些措施或许并不能有效地阻止，甚至无法减缓大流行的早期传播。因此，WHO已召开了地区性研讨会来制定流感大流行早期控制计划。

WHO提议大流行预警战略行动计划包括五个阶段。目前世界尚处于第三阶段，没有或只有极少数人传人病例出现。从一个阶段到另一个阶段的变化受多种因素决定，包括疾病的发生学趋势和正在流行的病毒特点。从第三阶段向第四阶段的演变取决于何方能否完成上述提及的迅速控制措施。

流感疫苗生产能力不足是全球应对大流行准备工作不充分的另一个原因。目前，一个年度内流感疫苗生产能力为5亿支，可以满足现状，但远不够大流行暴发时的需要。因此，WHO制定了“流感大流行疫苗全球行动计划”以促进世界范围内的生产能力，满足对抗潜在的H5N1或其他禽流感病毒大流行的疫苗需要。

现有的疫苗生产厂家生产的H5N1疫苗都是在WHO推荐的H5N1病毒株的基础上生产的。前面提到的WHO全球流感监测网络允许选择H5N1病毒株，是因为和季节性流感病毒一样，H5N1病毒和其他感染人类的禽流感病毒都是全球免费共享的。

免费提供H5N1流感病毒可以推进对基因特点的描述以确定在人类当中H5N1的流行株、开发非商业性诊断试剂供全球公共卫生实验室诊断H5N1及为疫苗制造商和立法部门提供最重要的H5N1疫苗原型株。

另外，免费提供H5N1病毒对《国际卫生条例（2005）》框架下的风险评估和风险管理至关重要，若无法做到这一点，实施有效的全球应急准备和维护全球公共卫生安全将大打折扣。毋庸置疑，跨国界合作的重要性是显而易见的。

目前科学家们正在考证，针对由原始H5N1病毒演变过来的，可以感染人类的三种同族病毒，现阶段研发的H5N1疫苗是否能够提供广泛的免疫效果。同时WHO也在进行分析，第一，H5N1疫苗是否可以像季节性疫苗一样作为预防性疫苗使用；第二，这些类型的疫苗在预防感染或者预防由H5N1演变的人类大流感病毒所致的严重症状方面有价值；第三，H5N1疫苗是否应该与抗病毒药物联合使用以遏制早期人到人的传播（见专栏4.1）。
WHO流感大流行战略行动计划

为协助各国更好地应对迫近的流感大流行，WHO制定了流感大流行战略行动计划，并与各国一道对应急准备工作进行需求评估，确定了五个关键性行动领域：

- 降低对H5N1病毒的人类暴露；
- 加强早期预警系统；
- 深入实施快速遏制行动；
- 加强应对大流行的能力建设；
- 协调全球科学研究和开发工作。

截至2007年5月1日，几乎所有国家都以WHO行动计划中提出的主要领域为基础制定了本国的人禽流感和流感大流行的行动计划，这一应对措施的的确令人鼓舞。而且，WHO承担了50多项任务，支持那些受人禽流感影响的国家，协助他们进行实验室诊断、样本采集、流行病学调查、监测与风险评估、社会动员与暴发沟通、临床护理与感染控制和后勤保障等工作。

专栏4.1 WHO 会议认为进行全球H5N1疫苗储备是可行的

2007年4月，WHO召开了“促进发展中国家获得H5N1疫苗和其他可能的大流行疫苗”会议，与会各国代表和疫苗生产厂家都同意建立H5N1疫苗储备，并可以制定一个机制来保证发展中国家更广泛地获得大流行流感疫苗，以备大流行的发生。

“我们已经向前迈进了一步，确保所有国家都能够从分享流感病毒和大流行疫苗生产中受益”，WHO总干事陈冯富珍博士表示，“所有国家现在都能够更好地保护其本国人民乃至世界人民的公共卫生安全，这种合作是受欢迎的，也符合即将生效的国际卫生条例。”

来自曾发生人间H5N1感染的国家和援助国的代表，以及发达国家和发展中国家的疫苗制造商一致赞同，已有的科学依据和国际政治承诺支持采取进一步的行动来确定是否以及如何建立H5N1疫苗储备，并在下一次流感大流行发生时如何保证各国广泛获得所需疫苗。

与会代表听取了免疫策略咨询专家组的总结意见。专家们认为，近期关于H5疫苗的研究表明，这些疫苗是安全有效的。如果这些疫苗能够达到交叉保护作用（起到免疫作用但不使疫苗中多病原株）将更加理想。

与会代表还听取了发达国家和发展中国家疫苗制造商的意见，他们愿意同WHO一道努力使H5N1疫苗储备和建立更广泛获得大流行疫苗的机制成为可能。国际药厂与药学学会联合会代表那些以研究为基础的药厂做出预测：在未来三年至五年内，为满足可能上升的需求，季节性流感疫苗的生产能力将会提高。

根据会议结果，WHO将成立专家组研究建立、维护、资金支持和使用H5N1疫苗储备的具体方案，并继续向相关合作者和成员国就如何制定更广泛获得大流行疫苗机制征询意见。

与会代表赞成病毒共享，H5N1疫苗储备，获得大流行疫苗和其他加强大流行应急准备的措施将建立在《国际卫生条例（2005）》的基础上。
联合国系统内的跨部门协调与行动是支持各国的重要因素。事实上，超过70%的动物源新型和新发传染性疾病需要动物卫生与人类卫生部门的深层合作，无论是国家层面还是国际层面均需紧密合作。为了加强应对禽流感和人类流感大流行准备工作的协调性，联合国与2005年成立了“联合国系统流感协调机制”，其主要职责是应成员国政府要求，为实施流感与流感项目提供协调一致和持续的国际支持，尤其是以整合各联合国机构在应对流感方面的力量为重点(3)。

广泛耐药结核

广泛耐药结核(XDR-TB)的出现可以很好地说明，强有力的卫生体系对改善公共卫生安全是多么必要，因为XDR-TB实际上是就是一个人为造成的问题。这个问题主要是由于卫生体系不健全和管理不善造成的，尤其是对医务人员监管差和对病人的治疗监督不够、药物使用中断、临床管理差等因素都可以造成病人得不到完整的治疗。

2005年1月至2006年3月，在南非夸祖鲁-纳塔尔省的塔马拉渡口地区医院诊断出221例耐多种药物结核(MDR-TB)。其中53例被进一步诊断出XDR-TB的病人中竟有44例之多高度为HIV阳性。这221例病人中有一半从未接受过结核病治疗。这些病例的病死率极高，52例病人在痰液样本初采16天(中位数)后即告死亡，其中两名为医务人员，15名正在接受抗逆转录病毒治疗(4)。

HIV的蔓延为传播所有形式的结核病提供了温床。在医院接受抗逆转录病毒治疗的HIV感染者没有得到足够的控制空气传播疾病的防护措施，因而其感染药物敏感与药物耐抗两种形式结核病的风险就增加了。感染了HIV的医护人员不愿意向领导报告自己的情况，也愿意置自身生命于更大的风险之中。由于HIV的存在，未经治疗的结核患者可在几周内死亡。耐药结核病人，即使服用过一线药物，实质上可以等同于未接受过治疗。这些都是夸祖鲁-纳塔尔省病例病死率高的原因。

除了对结核病人本身造成直接伤害外，从全球公共卫生的角度来说，XDR-TB和其他可治愈的同类疾病一样是可以传播的。尽管还需要进一步研究，早期研究结果已支持了这个说法。在任何情况下，所有结核感染都应该被及时诊断、及时治疗，并完成整个疗程，这一点至关重要。截至2007年5月1日，XDR-TB已
在37个国家(包括八国集团所有成员)被确认发生。

对耐药较弱结核的管理非常关键。如果所谓的“二线”药物治疗耐药结核过程得不到适当的监督，从XDR-TB到MDR-TB将只是时间问题。解决问题的根本方法是培训耐药管理人员和在专科医院或大医院检验科工作的人员，以及提供充裕的设备和定期供应高质量的二线药物。

忽视结核病会使得结核的发病率和死亡率上升，还可能成为公共卫生安全的威胁之一。其他构成威胁的因素还包括全球层面与国家层面的政策环境问题、国际结核病控制项目的质量问题，尤其是病例管理、感染控制措施的实施和HIV感染的流行等问题。

以上问题并非仅存在于南非。然而，南非的XDR-TB对世界各国尤其对非洲国家敲响了警钟，各国都应该保证基础的结核控制措施达到国际标准，并对其进行所有耐药形式结核病的管理。应对XDR-TB的准备工作包括建立具有药物敏感性检测能力的实验室，培训临床和实验室人员，确保早期诊断，保障供应高质量二线药物。对于MDR-TB和XDR-TB流行的地理分布情况非常重要，而且有利于政府和媒体提供信息，让他们知道该向哪个地区的大众，包括医务人员，发布适宜信息，支持正确的管理，而非进行不合理的检疫和隔离。

XDR-TB反映了受影响国家所普遍面临的问题，即需要同时处理多种公共卫生安全威胁的侵扰。在这种情况下，结核病危机的出现不仅因为防控项目不够完善，还因为病人和医务人员在医院或诊所内的密切接触而导致这两个人群中发生结核病与HIV的混合感染，继而造成临床和实验室人员与设备的相对短缺。这种短缺在很多国家普遍存在，反映出卫生体系的多重弱点，特别是在发展中国家尤为如此。在这种情形下，某个地方的卫生安全问题就很快上升到国家层面、区域层面乃至国际层面的问题。在国际层面加大加快抗击多种耐药结核的要求已被写入全球消除结核病2006～2015年计划中，近期发生的多个事件加快了结核防控领域对全球尤其是非洲药物耐药问题的应对步伐。

随着XDR-TB流行的继续，作为一种新的协调机制，《国际卫生条例(2005)》将通过其公共卫生突发事件评估功能发挥越来越重要的作用，即评估XDR-TB是否可能成为引起国际关注的紧急事件而需要国际应对。
第四章 拯救的教训和超前思考

对脊髓灰质炎国际传播风险和后果的管理

脊髓灰质炎是《国际卫生条例（2005）》所列四种法定报告疾病之一。2003 ～ 2005 年期间，脊髓灰质炎病毒在全球的传播使本以为告别了脊髓灰质炎的世界惊醒。如本报告第二章所述，不完善的控制措施在暴发中反而会起到推波助澜的副作用，而《国际卫生条例（2005）》在未来类似的情况下可能起到的是促进及时应对、持续降低公共卫生后果的积极作用。

为达到消灭脊髓灰质炎的目的，更广泛的基础设施建设已经完成。对各国进行每周监测和督导已成为现实。同时还可以做到及时报告脊髓灰质炎确诊病例、对可能病例的动态和标化的临床与病毒学调查。这里提到的基础设施包括人力资源、标准、操作程序和物质资产。目前，WHO 每周都会收到来自 180 个国家的正规监测报告，其中 66% 的报告还包括其他疫苗可预防疾病和易流行疾病的情况。在 145 个拥有实验室的脊髓灰质炎网络成员机构中，85% 以上可对麻疹、流感、麻疹和风疹等其他疾病进行实验室分析。

考虑到目前全球消灭脊髓灰质炎方面取得的进展和脊髓灰质炎可能在已消灭地区被再引入或再发的风险，对脊髓灰质炎病毒进行长期监测被提到新的重要日程。在《国际卫生条例（2005）》中提及脊髓灰质炎，有利于进一步预防、控制和阻断该疾病在世界范围内的暴发流行。随着《国际卫生条例（2005）》的实施，各国将评估他们识别、认证和控制脊髓灰质炎流行野毒株的能力。

脊髓灰质炎病毒已多次展示其通过海陆空交通工具远距离传播的能力（图 4.3）。为最大限度降低未来进出口运输的风险和后果，各国应保证本国人口的高免疫率和监测活动。《国际卫生条例（2005）》规定的预警和报告机制对常规免疫工作是一个基本补充，主要针对那些几周内不引发症状，但可带来终生后果的流行性疾病。全球的预警与应对能力是消灭脊髓灰质炎的基础。这种能力在病毒被完全消灭后应进一步强化，届时，世界要防范的是那些从研究机构、检测诊断部门或疫苗生产与掌控单位意外泄露或故意释放的脊髓灰质炎病毒。

展望未来，我们清楚地认识到，随着人类世界变得越发复杂与纵横交织，微生物的世界因其生存环境的改变而演变着它们的毒力、传播方式和耐药能力。这些威胁全球卫生安全的突发事件，诸如 20 世纪末和本世纪初我们所经历的，将继续出
图 4.3 脊髓灰质炎病毒传播, 2003 ～ 2006

*尼日尔2005年向前的病例都与传播有关。

现、卷土重来或全新袭来。

因此, 一个更加安全的世界需要一个全球性的体系去保护。这个体系依赖于强大的国家公共卫生基础设施和能力，对特别的健康威胁的充分准备和降低风险能力，以及协调预警和应对行动的有效的国际体系。

尽管目前我们已取得了一定进展，但如果各国、各地区及全球对公共卫生基础设施投资不足，势必造成这个全球性体系将无法世代延续。
参考文献

第五章
构建安全未来
第五章强调加强卫生体系在建立全球公共卫生安全中的重要性。它指出如果相关的卫生体系能够更强大、准备得更充分，许多在这个报告中所描述的对全球公共卫生造成威胁的事件就可以得到预防或较好地被控制。某些国家认为比其他国家面对公共卫生安全更为困难是因为他们缺乏必需资源，它们的卫生基础结构由于长期低投入和缺乏训练有素的卫生工作者而崩溃，或者其基础结构由于武装冲突或者先前的自然灾害而毁坏。除少数特例外，公共卫生威胁通常为人们所熟知，而且是可以控制的。

毕竟人类在对抗这些危险的数个世纪中积累了知识和经验。逐步发展而来的防疫措施诸如检疫、卫生条件改善及免疫接种等已经在第一章中有所概述。20世纪末期科学技术的飞速进步，以及应用最新交流手段而蓬勃发展的国际间合作，使我们在日益全球化的今天能够对重要的公共卫生事件有了更深入的了解。

第二章中列举的许多例子，包括登革热、艾滋病以及其他传染病等，都是由于卫生体系投入不足、缺乏监测和控制而造成的悲剧性且代价昂贵的后果；第四章又描述了广泛耐药结核的例子。加强卫生体系的建设是世卫组织持久的、首要的目标。就像主题为“通力合作，增进健康”2006年世界卫生报告中详细讨论的那样，目前许多国家的卫生体系是薄弱、反应迟钝和不公平的，甚至是不安全的。2006年的报告发现57个国家的卫生体系存在严重不足，以至于在短期内都不可能为国民提供高覆盖面率的基本干预服务。这相当于全球240万医生、护士和助产士所能提供的服务量。

这57个国家大多数分布在撒哈拉以南的非洲地区和东南亚地区，他们正在为国民提供最基本的卫生安全保障而努力。然而，这些国家如何利用当前最先进的科技来加强其应对能力，从而成为全球公共卫生安全防御链条的一部分？

这种防御机制是依靠国家强有力的公共卫生系统而建立的。这个系统必须由适当的技术以及有能力和奉献精神的人组成。不管威胁公共卫生安全的事件在何时何地发生，这个系统都能发现，并对其进行调查、信息沟通和控制。

很明显，加强薄弱的卫生体系的建设是必要的，这不仅能保证该国家人民享受最好的卫生服务，同时也能保障全球的公共卫生安全。这些在各国和全球范围内应优先考虑的问题均写进了《国际卫生条例（2005）》。它号召每个国家加强其核心公共卫生能力建设，并通过全球合作来应对引起国际关注的突发公共卫生事件——那些威胁全球公共卫生安全的事件。
构建安全未来
21世纪全球公共卫生安全

帮助这些国家就是帮助整个世界

在第四章列举的禽流感、广泛耐药结核和脊髓灰质炎的案例均为当前威胁国家和国际公共卫生安全的事件——每个事件都应促使相关国家使用《国际卫生条例（2005）》中的决策工具（图5.1）。

一旦有符合决策文件中所定义的紧急事件发生，且被确认为可能引起国际关注的公共卫生突发事件，则必须将该情况通报给世卫组织。反过来，世卫组织与合作者将提供必要的支持以帮助报告事件的国家从根源上控制公共卫生威胁。当然，这是国际卫生条例能最佳地服务于各成员国和保障全球卫生安全的理想情形。事实上，并非所有的国家都具备足够的资源可以即刻达到条例所规定的全部核心能力要求，甚至到2012年最终期限时也未必能达到。因此，这些国家仍将其使用简陋的体系来发现、确定和应对公共卫生事件，从而使全球公共卫生安全面临威胁。

这种局限性使所有国家、世卫组织和它的合作者在全球卫生安全方面面临着巨大挑战。本章将探讨这些挑战，同时提出相应策略。表5.1展示了7条行动策略以协助国家处理新的挑战。

全球合作

《国际卫生条例（2005）》的成功在很大程度上取决于强有力的国际合作。在许多领域，比如传染病和化学品安全领域，这样的合作早已开展。而在其他领域，这样的合作需要逐步建立。这些合作关系，例如各国卫生部和世卫组织之间的合作都已经很好地建立起来，因此更易于满足新条例的相关要求。

非传统方式的合作，例如卫生、旅游和国防间的合作，将需要在国家水平上协同进行以确保各方的利益公开透明并得到很好的保障。《国际卫生条例（2005）》致力于将公共卫生事件对旅游、商业的冲击减到最小。然而，有些时候仍需要我们做出艰难的决定，因为对这些部门产生的影响不可避免。促使这些决定出台的因素包括强有力的全球合作，对《国际卫生条例（2005）》的彻底理解和遏制全球范围内疾病传播以尽可能保护经济和公共卫生安全的迫切要求。
图 5.1 对可能引起国际关注的突发公共卫生事件进行评估和报告的决策工具

由国家监测系统发现事件（见附录1）

出现1例以下疾病的病例是非同寻常或超乎预料的，而且可能有严重的公共卫生影响，所以应该报告：
- 天花；
- 脊髓灰质炎病毒引起的脊髓灰质炎；
- 新型冠状病毒引起的人类流感；
- 严重急性呼吸道综合征（SARS）。

任何可能引起国际公共卫生关注的事件，包括那些不明原因、来源不明的事件或左边及右边的方框中没有列出的那些事件应该遵从本评估规则。

该事件的公共卫生影响严重吗？

涉及以下疾病的事件应该始终遵从本评估规则，因为已经证明这些疾病会对公共卫生造成严重的影响并能够迅速在国际间传播：
- 疟疾；
- 病毒性出血热（埃博拉、拉沙热、马尔堡）；
- 肉毒梭菌；
- 某些国家或地区特别关注的其他疾病，例如登革热、裂谷热、脑膜炎球菌病。

该事件是否非同寻常或是预料之外？

是
否

该事件传播的重大风险吗？

是
否

该事件传播国际贸易或旅游限制的风险吗？

是
否

根据国际卫生条例，该事件应该向WHO报告。

a 根据WHO的病例定义。
b 此疾病列表仅适用于本条例。
表 5.1 实施《国际卫生条例（2005）》的 7 个策略行动

<table>
<thead>
<tr>
<th>序号</th>
<th>策略行动</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>全球合作</td>
<td>世界卫生组织、所有国家和相应部门（例如卫生、农业、旅游、商业、教育和国防）都要了解新的条例内容，并通过合作提供最好的技术支持。如果需要，要动员必要的资源来保证《国际卫生条例（2005）》的实施。</td>
</tr>
<tr>
<td>2</td>
<td>加强国家的能力</td>
<td>每个国家要评定其用于疾病监测和反应的国家资源，制定实施《国际卫生条例（2005）》的行动计划，从而能够快速发现并应对世界范围内疾病传播的危险。</td>
</tr>
<tr>
<td>3</td>
<td>防止国际突发公共卫生事件的发生并对其作出反应</td>
<td>在所有的国家对指定的机场、港口和陆地边界采取有效的、持久的公共卫生措施和反应活动，这样可以使世界范围内疾病传播的危险性降到最小。</td>
</tr>
<tr>
<td>4</td>
<td>加强世界卫生组织全球预警和反应系统</td>
<td>世界卫生组织要加强对疾病情报、危险评价和国际反应的全球系统，世界卫生组织与其他相关政府和区域性组织间要建立合作机制。</td>
</tr>
<tr>
<td>5</td>
<td>加强特殊危害 / 疾病的全球控制项目</td>
<td>要加强全球范围内某些特殊危害 / 疾病的控制，例如流感、脑膜炎、脊髓灰质炎、食源性疾病的暴发以及化学污染等。</td>
</tr>
<tr>
<td>6</td>
<td>明确权利、义务和程序</td>
<td>新条例制定了新的法律机制并得到支持；所有参与执行《国际卫生条例（2005）》的人员应该，并且持续保持对条例中新权利、义务和程序的透彻理解。</td>
</tr>
<tr>
<td>7</td>
<td>开展研究、监控实施过程</td>
<td>要定期识别并收集相应指标，在国家和国际的水平上来监督和评价《国际卫生条例（2005）》的执行情况。世界卫生组织秘书处要向世界卫生大会提供执行进展报告，还要进行特定的研究来促进条例的贯彻执行。</td>
</tr>
</tbody>
</table>
在建立和保持有效合作伙伴关系时所面临的一个挑战是，如何在各个层面建立信任；相信一个国家能够转变观念，从掩盖疾病暴发信息到能够公开透明地报告第一例病例或事件；相信世卫组织为了全世界的共同利益能够依靠情报采取行动，同时会尽量减小对报告疫情国家的经济的影响。

世卫组织必须通过帮助各国开展实施《国际卫生条例 (2005)》的初期评价，并在实施期间提供持续支持，以及与政府、私立部门机构、基金组织、联合国各机构以及民间团体进行公开的对话来获得这种信任。

各国之间的信任对于建立最高水平的全球卫生安全是至关重要的。世卫组织的193个会员国都是《国际卫生条例 (2005)》的参与者，但是并非所有的国家都有能力完全执行条例。除了由世卫组织提供的帮助外，各国也需要其他途径的技术和财政援助。我们的双边协议要建立在这样的理解基础上：一损俱损，相互合作才能共享利益。

加强国家能力

国家、地区和地方的公共卫生系统应具备发现、评估、报告以及迅速控制可能引起国际关注的公共卫生事件的核心能力。根据条例要求，会员国必须在2009年6月底前对本国的实施条例的能力做出初步评估，确定能否达到条例的相关要求。如果发现能力不足，则需制定一个国家计划来加强必需的能力建设。有几个国家已在条例正式生效前便开展了能力建设和条例实施工作(见专栏5.1)。而其他国家因财力和人力资源上的缺乏使其无法在最后期限内实现这个目标。世卫组织将积极帮助这些国家加强能力建设。据估计，世卫组织需要支持115个国家制定国家行动计划或战略文件以达到条例所规定的核心能力要求(1)。

各国的国家计划均有所不同，但都包括以下内容：建立或加强国家公共卫生机构；确保国家的监测与反应系统使用国际公认的质量标准；通过在干预流行病学、疾病暴发调查、实验室诊断、病例管理、感染控制、社会动员以及风险沟通等方面进行培训以加强人力资源建设；利用世卫组织的指标对核心能力实施常规评估以监控计划的进展情况，同时评定未来需求。从这方面来讲，世卫组织希望参与《国际卫生条例 (2005)》核心能力有关培训项目的国家数由2008年的100个增加到2009
2007年世界卫生报告
构建安全未来
21世纪全球公共卫生安全

年的150个(1)。

在国家边界处的疾病控制，无论是陆、海、空，都是条例中的基本内容。其中涉及这些区域公共卫生的许多要求是新的，或者与以前的条例有所不同。条例要求世卫组织、联合国的其他组织，例如，国际民用航空组织(ICA0)、国际海洋组织(IM0)、世界旅游组织(UNWTO)、专业协会(国际航空运输协会(IATA)以及国际机场委员会(ACI))之间紧密配合。在所有国家的所有指定入境口岸，应该有应对突发公共卫生事件的预案并且具有实施能力。

专栏5.1《国际卫生条例(2005)》早期的实施成果

全球合作

安第斯卫生组织是安第斯一体化体系的一个机构，通过协调和支持其成员国的个别活动或共同行动来改善其国民的健康。

2007年3月，由该组织各成员国卫生部代表参加的会议决定，将南美的所有卫生网络合并，从而建立一个区域性的监测与反应网络系统，以便使各成员国的设备和程序得到了协调和整合。

一些国家也建立了应对指挥中心，使他们能够以实在的和虚拟网络的形式集中处理疫情信息。同时协调已经发生或潜在的突发事件的应对活动。应急指挥中心负责对突发卫生事件的信息的获取、组织、分析、评定优先顺序、监测以及发布。

许多国家，如阿根廷、巴西、加拿大、墨西哥、秘鲁和美国等已经建立了应急指挥中心，并与泛美卫生组织/世卫组织美洲地区办事处一起帮助该地区的其他国家建立应急指挥中心。与国际卫生条例的重点内容相协调，应急指挥中心将构建一个强大的突发公共卫生事件警报和反应的基础架构。

该国正在进行的对于机场和港口卫生官员的专业技术培训始于2007年。活动包括以下内容：对于机场和港口的卫生信息系统进行检查；修订现有的卫生文件以适应《国际卫生条例(2005)》新的内容；在指定的国际入境口全面地加强公共卫生能力。

在部门间协作方面，为了实施条例，摩洛哥已经成立了一个由各部委的协调委员会。委员会第一次会议于2007年6月15日召开，正好与《国际卫生条例(2005)》的正式实施时间一致。

法律问题

加拿大在SARS方面的切身经历促使其政府修改了检疫法。该部法律可以追溯到1872年。那时加拿大还是一个新兴国家。人们主要的旅行方式是乘船航行。因此加拿大迫切需要更新内容。新的检疫法在2005年5月由国会通过并于2006年12月12日正式实施。这比《国际卫生条例(2005)》的实施早了7个月。

新的检疫法与修订后的条例是相一致、相统一的。它们分别于2005年5月和6月得以通过。虽然新法律的相继修订和通过体现了修订者的远见卓识，但是仍有一些国际卫生条例上的职责，主要是涉及入境口岸的问题。在新的检疫法上得到反映。加拿大政府正在考虑这些差距，并提出修正案来适应条例的要求。

国家能力的建立

预料到《国际卫生条例(2005)》即将施行，摩洛哥王国已经开始行动以增强其专业人员的竞争力以更好地完成条例所要求的内容，并逐渐采取必要的手段和方法来增强其监督和反应的核心能力。
由于投资不足、缺乏训练有素的卫生工作者而造成卫生基础结构瘫痪，或者由于卫生基础设施在武装冲突或自然灾害中受到破坏，这些原因导致必要资源的匮乏，使一些国家比其他国家更难以有效地应对公共卫生安全。

除了加强警报和反应能力外，条例还从法律上约束世卫组织在能力建设方面给予各国支持，从而完成《国际卫生条例（2005）》所规定的国家职责。这项工作包括动员国家和社会上的财力以支持。这些行为对于那些卫生体系薄弱的国家尤其重要。引起卫生危机的流行病、自然灾害和冲突的发生总是出其不意，而且能迅速危及国家卫生体系，对于原本就不安全的国家会造成更为严重的后果。

在突发公共卫生事件中，最先做出反应的是地方卫生机构，然后才是地区和国家政府。许多国家并不是在任何时刻都准备充分，同时一些国家在没有外来援助的情况下并不具备应对严重突发事态的能力。此时需要那些具备资格的，有经验和训练有素的国际卫生人员对他们进行帮助。为了确保《国际卫生条例（2005）》中相关网络的安全，各国间的合作是必要的。这已经在第一章中有所描述，应对效果最终取决于卫生工作者的准备情况，其依赖于地方能力和能否及时得到国际的援助。

准备充分的卫生体系能够阻止那些事件演变为威胁公共卫生安全的突发事件。许多新出现的威胁公共卫生的事件，例如蓄意释放化学、生物和放射性物质，潜在的恐怖袭击等，这些都可能危及健康和安全社区，使得卫生服务作为第一道防线成为受害者。在第一时间内，这种的突发事件可能不会马上被认定为威胁公共卫生的事件，尤其是当卫生体系缺乏准备，或者没有意识到这种危险存在的时候。在卫生专业人员、安全官员和决策者之间建立更进一步的合作并开展持续的对话是至关重要的。可以增进对不同和操作程序的相互了解。

预防和应对国际性的突发公共卫生事件

没有任何一个国家，无论多强大、富有或者技术先进，都无法单独发现和应对所有公共卫生威胁。从一个国家的视角可能无法发现新出现的威胁，可能需要进行全球分析做出正确的风险评估，或者需要高效的国际合作与协调。

这是《国际卫生条例（2005）》设立的初衷，但是并不是所有国家都有能力立即接受这个挑战。世卫组织必须要利用其作
为全球公共卫生领导者所获得的长期经验、它的号召力以及它与各个政府、联合国机构、民间团体、学术机构、私人企业以及媒体的合作关系来维持其监测系统及全球警报和反应体系。

正如第一章中所述，世卫组织的监测网络和全球疫情警报和反应网络 (GOARN) 都是高效的、提供服务和安全网络的国际性合作机构。全球疫情警报和反应网络 (GOARN) 有能力在 24 小时内向全世界派遣反应小组为当事国有关部门提供直接的支援。世卫组织种类繁多的监测和实验室网络可以掌握全球的公共卫生风险并提供高效的病例分析协助 (图 5.2)。这些体系结合起来可以缩小由于国家能力不足造成的巨大差距，并在某个国家因政治或其他原因可能延迟报告疫情的情况下保护全世界。

但是，对这些体系的有效维护需要充足的人员、技术和财政支持资源。各国能力的建设不会减少世卫组织设置全球网络的需要。相反，随着《国际卫生条例 (2005)》的全面实施，增强的合作关系、知识传播、技术进步、事件管理以及战略性的交流将得到进一步提高。

在做好应急反应准备工作的同时，还需要做好预防和控制可能引起国际关注的疾病和其他公共卫生事件。就像前面提到的那样，医务人员在预防方面做的工作，例如脊髓灰质炎的预

图 5.2 按世卫组织区域分列的经核实的可能构成国际公共卫生关注的事件，2003 年 9 月～2006 年 9 月

<table>
<thead>
<tr>
<th>区域</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>非洲</td>
<td>288</td>
</tr>
<tr>
<td>西太平洋</td>
<td>108</td>
</tr>
<tr>
<td>东地中海</td>
<td>89</td>
</tr>
<tr>
<td>东南亚</td>
<td>81</td>
</tr>
<tr>
<td>欧洲</td>
<td>78</td>
</tr>
<tr>
<td>美国</td>
<td>41</td>
</tr>
</tbody>
</table>

总病例数 = 685
第五章 构建安全未来

防工作是公共卫生体系中非常重要的基础环节。它能够发现最早的可疑病例、食源性事件暴发、化学性事件或其他危险情况。鉴于预防带来的显著增益，特别是对于那些在国际卫生条例中规定需要通报的疾病的预防，如由野生型脊髓灰质炎病毒引起的脊髓灰质炎和 SARS，或者那些要求使用决策工具的疾病（例如：霍乱、黄热病或者肺鼠疫），维护和加强世卫组织常规的全球疾病控制计划是非常重要的。

法律问题和监测

并非只有那些在临床和实验室工作的公共卫生专业人员必须了解《国际卫生条例（2005）》的要求。决策者和国家公共卫生官员也必须清楚由各方达成共识的新的法律条款。必要的话，本国的国家政策也要与这些要求相一致。例如，加拿大修改了检疫法，使该法律与《国际卫生条例（2005）》最新的要求相一致（参见专栏 5.1）。

随着各个国家对条例的逐步了解，人们的思想观念也逐渐
步发生改变，这些改变包括从边界疾病控制到从源头遏制疾病；从一系列的疾病到所有公共卫生威胁（事件）；从预防的措施到一个适应变化的应对措施。这种转变需要一定时间来逐渐完成。

为确保对条例的理解能与其在技术上的实施相符合，世卫组织正在为法律及公共卫生专业人员制定专门的培训计划。同时将帮助各国修改现有的公共卫生立法或制定新的立法，使其与条例的要求相一致。

为确保各国正确理解并遵守修改后的《国际卫生条例（2005）》，唯一的方法就是积极地在国家、地区乃至全球水平上监督条例的具体执行情况。反馈回来的信息，特别是在条例实施的初始阶段，能够为促进培训、改进策略以及加大实施力度提供帮助。同时还能够建立捐助者对世卫组织的信心并使那些接受捐献的国家严格地、高效地实施《国际卫生条例（2005）》。

世卫组织将定期向世界卫生大会提交报告，对各国执行条例情况进行定量和定性评估，还将报告各个层面在实施过程中所遇到的困难，包括国家公共卫生体系以及法律程序和过程，对研究领域的建议、改善实施的建议以及当前的资源需求等。

参考文献

结论和建议

一个真正的、有效的国际准备和反应协作机制并不能仅在国家范围内完成，这一点需要反复强调。全球的合作和投资对于一个更安全的未来是必须的。这意味着多边合作共同应对全球性疾病，其中包括政府、工业、公共和私人金融家、学术界、国际组织和民间团体等，他们对于建立全球公共卫生安全都负有责任。

为了能实现最高水平的全球卫生安全，各部门都应认识到自己所担负的全球责任。《国际卫生条例（2005）》对于国家的核心卫生能力以及世界卫生组织的责任都做出了要求。条例并没有强迫其他部门采取一致的行动。虽然如此，全球公共卫生安全建立的坚实基础是合作，而这种合作应该是公开透明的、带有慈善性质的。在这种合作精神下，世卫组织强烈要求所有参与者为了全球卫生安全明确责任、进入角色，并提出以下建议：

所有国家全面实施《国际卫生条例（2005）》。对国家和全球公共卫生的保护必须在政府事务中具有透明度、必须作为一个跨领域议题来对待，并且成为经济和社会政策和系统中的一个重要组成部分。

政府、联合国机构、私营部门企业和组织、专业协会、学术机构、媒体及民间社团之间在监测、疫情警报和反应方面进行全球合作，尤其要以消灭脊髓灰质炎为基础，建立一个高效、全面的监测和应对基础设施。

为使全球公共卫生安全达到最高水平，应公开分享知识、技术和物质资源，包括分享病毒及其他实验室样本。如果疫苗、治疗方案、设施和诊断方法仅由富国享有，那么这场全球公共卫生安全的战争将以失败告终。
所有国家在公共卫生体系能力建设中的全球责任。必须加强国家系统，有效地预见和预测国际和国家层面的风险并制定有效准备的战略。

政府各部门间的通力合作。保护全球公共卫生安全需要依靠卫生、农业、贸易和旅游等各部门之间的信任和合作。为此，必须培养了解公共卫生安全和这些部门间复杂关系的能力，并在符合这一关系的最大利益的前提下采取行动。

增加全球和国家资源用于培训公共卫生人员、提高监测水平、建设和增强实验室能力、支持反应网络以及继续和推进疾病预防工作。

这个报告主要集中在威胁人类健康的突发疾病。而公共卫生安全所面临的威胁还包括对健康造成威胁的地方病，以及那些威胁母亲和儿童健康的疾病，慢性病、暴力和精神卫生等。这些疾病并没有纳入《国际卫生条例（2005 ）》所规定需要通报的范围内，然而它们是造成全球大部分死亡和残疾的原因。

公共卫生、外交政策及国家安全领域的专业人员和决策者们应该在地方病的防治工作上保持公开对话，这些包括艾滋病在内的疾病可能会对一个国家和全球的卫生安全构成威胁。

尽管本报告的主旨从全球角度考虑了公共卫生安全问题，但是，世卫组织并未忽略一个事实，即：男女老幼都受到健康威胁的影响。不要忽视全球卫生挑战带给个人的后果，这至关重要。这一启示促使 1978 年初级卫生保健的“人人享有卫生保健”倡议得以形成。该倡议及其支持的各项原则并未失去光辉，依然至关重要。

在此基础上，初等卫生保健以及危机时刻的人道主义行动这两个确保个人和社区卫生安全的手段将在《2008 年世界卫生报告》中作详尽的讨论。
索引

A
艾滋病 18

B
Bhopal 市毒气泄漏事件 32
变种人流感 13
病毒共享 56
病毒性病原微生物 26

C
ChemiNet 网络 10
虫媒病毒 29

D
动物暴发裂谷热 28
大事记 2
登革热 18

E
二氧芑 32

F
疯牛病 25

G
公共卫生安全的演变 xiv

国家流感中心 50
国际卫生安全新标准 8
国际航线传播 42
国际播散 13
工业事故 30
广泛性耐药结核 49, 57

H
H5N1 疫苗储备 56
H5N1 病毒 51
化学品泄漏事件 11
化学废物 47
化学恐怖袭击 29
化学试剂 30
“核心能力要求” 规范 14
核放射事件 29
核污染事件 33
核灾难 34
霍乱与卫生 4

J
季节性流感 49
脊髓灰质炎国际传播风险 59
脊髓灰质炎流行野毒株 59
脊髓灰质炎跨国传播威胁 49
芥子气 30