يحتوي هذا التقرير على الآراء الجماعية لجامعة دولية من الخبراء، وهو لا يمثل بالضرورة قرارات منظمة الصحة العالمية أو سياساتها المغلقة.

منظمة الصحة العالمية
سلسلة التقارير الفنية
رقم ٧٠٤

لجنة خبراء منظمة الصحة العالمية
لمراعات المستحضرات الصيدلية
WHO EXPERT COMMITTEE ON SPECIFICATIONS FOR PHARMACEUTICAL PREPARATIONS
TRS No. 704

tقرير التاسع والعشرون

منظمة الصحة العالمية
 جنيف
1984
تتمتع منشورات منظمة الصحة العالمية بحقوق الطبع المنصوص عليها في البروتوكول رقم 2 من الاتفاق العالمي لحقوق الطبع، وعادة نشر أو ترجمة منشورات المنظمة جزئياً أو كلياً، ينبغي التقدم بطلب إلى ادارة المنشورات والترجمة، منظمة الصحة العالمية، جنيف، سويسرا، والمنظمة ترحيب بجعل هذه الطلبات.

التسميات المستخدمة والبيانات الواردة بهذه الوثيقة لاتعترف اطلاقاً من رأى أمانة منظمة الصحة العالمية فيما يتعلق بالوضع القانوني لأي بلد أو اقليم أو مدينة أو منطقة أو سلطاتها، أو بشأن تحديد حدودها أو تفويضها.

كما أن ذكر شركات أو منتجات تجارية معينة لا يعني أن هذه الشركات والمنتجات التجارية معتمدة أو موصى بها من قبل منظمة الصحة العالمية، تفضيلاً لها على سواها.

وأخيراً، هذا الخطأ والسهو تميز أسماء المنتجات المسجلة بوضع خطي تحتها.

طبع في سويسرا
<table>
<thead>
<tr>
<th>المحتويات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- المختبرات الوطنية للالحراشف على العقاقير ومراقبتها</td>
</tr>
<tr>
<td>8- مختبرات نموذجية مقترحة</td>
</tr>
<tr>
<td>10- دستور الأندية الدولي</td>
</tr>
<tr>
<td>10- الوضع الحالي للعمل</td>
</tr>
<tr>
<td>11- الدراسات الخاصة لكل شكل من أشكال الجرعتي الصيدلي</td>
</tr>
<tr>
<td>12- اشتراطات جودة المواد الصيدلية المساعدة</td>
</tr>
<tr>
<td>13- استخدام طرق بديلة للتحليل</td>
</tr>
<tr>
<td>13- الدراسات الخاصة في دستور الأندية - نصية لمراجع المسودات</td>
</tr>
<tr>
<td>13- مراجعة الدراسات الخاصة المنشرة</td>
</tr>
<tr>
<td>14- المواد الكيميائية المرجعية الدولية</td>
</tr>
<tr>
<td>16- أطباق مرجعية تحت الحمراء للمواد الصيدلية</td>
</tr>
<tr>
<td>18- دراسات الأبحاث</td>
</tr>
<tr>
<td>18- الاختبارات الأساسية</td>
</tr>
<tr>
<td>19- برنامج التدريب على تحليل العقاقير</td>
</tr>
<tr>
<td>19- التدريب الجماعي</td>
</tr>
<tr>
<td>19- التدريب الفردي</td>
</tr>
<tr>
<td>5- التعاون مع المنظمات غير الحكومية</td>
</tr>
<tr>
<td>6- نظام إصدار الشهادات الخاصة بجودة المنتجات المتداولة في التجارة الدولية</td>
</tr>
<tr>
<td>المراجع</td>
</tr>
<tr>
<td>شكر</td>
</tr>
<tr>
<td>الملحق 1- المختبرات الوطنية للالحراشف على عقاقير ومراقبتها</td>
</tr>
<tr>
<td>الملحق 2- متطلبات الجودة للمواد الصيدلية المساعدة</td>
</tr>
<tr>
<td>الملحق 3- المواد الكيميائية المرجعية الدولية</td>
</tr>
<tr>
<td>الملحق 4- الدراسة التعاونية للأطباق المرجعية تحت الحمراء للمواد الصيدلية</td>
</tr>
<tr>
<td>الملحق 5- أرشادات للحالين بأعداد الدراسات الخاصة أو التعليق عليها</td>
</tr>
<tr>
<td>لدراوها في دستور الأندية الدولي</td>
</tr>
<tr>
<td>الملحق 6- التعاون في برنامج الاختبارات الأساسية</td>
</tr>
</tbody>
</table>
لجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات الصيدلية

جنيف - 15 ديسمبر / كانون الأول 1983

الأعضاء

السيد ٥، البنك، وحدة مراقبة الجودة، وزارة الصحة، أكر، غانا (المقر)
الأساتذة م. دوسفي، أساتذة الكيمياء الصيدلية، جامعة الفاتح، طرابلس، الجمهورية العربية الليبية

السيد ٣، أ. جونسون، الأمين والمدير العلمي، لجنة دستور الأدوية البريطانية، لندن، انجلترا (الرئيس)

الدكتور ٥، بيزيه، المستشار العلمي لشركة روسل - أوكلاف، باريس، فرنسا

الدكتور ٥، روي، المستشار الموظف للاستشارات، كلكتا، الهند

الأستاذ سن، سكولوف، النائب الأول لرئيس لجنة دستور الأدوية، وزارة الصحة العامة، موسكو، الاتحاد السوفيتي (نائب الرئيس)

الأستاذ تروحي، رئيس إدارة الكيمياء الصيدلية، المؤسسة الوطنية لرقابة المنتجات الصيدلية والبيولوجية، وزارة الصحة العامة، بروكسل، البلجيك، الصين

معظم المنظمات الأخرى

المجلس الأوروبي

الدكتور ٥، شورن، الأمين، لجنة دستور الأدوية الأوروبي، المجلس الأوروبي، ستراسبرو، فرنسا

الاتحاد الدولي لجمعيات منتجي الأدوية (IFPMA)

النسخة م. كون، نائب الرئيس للشؤون العلمية، الاتحاد الدولي لجمعيات منتجي الأدوية (IFPMA)

جنيف، سويسرا

الاتحاد الصيدلاني الدولي (FIP)

الدكتور ٥، ديندن، رئيس قسم مختبرات الرقابة، الاتحاد الصيدلاني الدولي، سولنا، السويد

الأمانة

الدكتور ٥، دان، رئيس قسم المستحضرات الصيدلية، منظمة الصحة العالمية، جينيف، سويسرا

الدكتور ٥، توجو، رئيس قسم المستحضرات الصيدلية، إدارة الخدمات العلمية، متغافورة (مستشار مؤقت)

السيد ب. أورنر، مدير المركز المتخصص في مجال الصحة العالمية في مجال المواد الكيميائية المعروفة (مستشار مؤقت)

الأساتذة ماكس، برولينا، مدير مدرسة الصيدلة، معهد التكنولوجيا الاتحادي (ETH)، زوريخ، سويسرا (مستشار مؤقت)

الأستاذ م. كريبنزيل، أساتذة المستحضرات الصيدلية، كلية الصيدلة، ليتل، فرنسا (مستشار مؤقت)

النسخة أم. بريل، صيدلية بقسم المستحضرات الصيدلية، منظمة الصحة العالمية، جينيف، سويسرا (الرئيس)

الدكتور ٥، فينيافسكي، المستشار العلمي، معهد البحوث والرقابة الدوائية، وارسو، بولندا (مستشار مؤقت)

* لا يمكن حضور كل من: الدكتور ٥، جرادر، مدير قسم معايير الأقراص، دستور الولايات المتحدة الأمريكية، وروي، ظهرغ، روي، المستشار الموظف للاستشارات، كلكتا، الهند، الأمين، لجنة دستور الأدوية البريطاني، لندن، انجلترا، الأمين، لجنة دستور الأدوية الأوروبي، المجلس الأوروبي، ستراسبرو، فرنسا، نائب الرئيس للشؤون العلمية، الاتحاد الدولي لجمعيات منتجي الأدوية، جنيف، سويسرا، رئيس قسم مختبرات الرقابة، الاتحاد الصيدلاني الدولي، سولنا، السويد، رئيس قسم المستحضرات الصيدلية، منظمة الصحة العالمية، جينيف، سويسرا، مدير المركز المتخصص في مجال الصحة العالمية في مجال المواد الكيميائية المعروفة، وارسو، بولندا.
لجنة خبراء منظمة الصحة العالمية
لمواصفات المستحضرات الصيدلية

التقرير التاسع والعشرون

اجتمعت لجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات الصيدلية في جنيف من 5 إلى 8 ديسمبر كانون الأول 1983 • وافتتح الاجتماع نيابة عن المدير العام، الدكتور لو روشان المدير العام المساعد، فأكد على الحاجة إلى أسلوب واقعي لتناول موضوع مراقبة جودة العقاقير في البلدان النامية • وعلى الرغم من أن "نظام منظمة الصحة العالمية لإصدار الشهادات الخاصة بجودة المنتجات الصيدلية المتداولة في التجارة الدولية" يقدم تأكيدًا لهذه البلدان تطمئن به إلى نوعية المنتجات المستوردة، فإنـه يلزم أن تكون السلطات المسؤولة قادرة على التحقق بنفسها من نوعية هذه المنتجات • ولكن لا يوجد لدى الكثير من البلدان النامية، حتى الآن، المرافق المختبرية المناسبة.

وفي إطار السياسة المتبقبة في دستور الآدابية الدولي بتفسـيل الطرق التقليدية للتحليل، حيث أن هذه الطرق مقبولة دون الهبوط بالمعايير، سبق أن أفصحت اللجنة عن ادراكها لضرورة تمكين جميع البلدان من إجراء قدر من مراقبة الجودة • وان اللجنة بتحديد توسيع خاصة بتصميم مختبر وطني بسيط لمراقبة الجودة في هذا التقرير • اما قصد دليلًا ارشادية فيما يناسب مع حجم الاستثمار المطلوب • تسترشد به الأدارات الصحية في تلك البلدان التي لا تزال مفتقرة إلى المرافق المناسبة.

1- المختبرات الوطنية للإشراف على العقاقير ومواجهتها تخصص جميع الحكومات الوطنية نسبة كبيرة من ميزانياتها الصحية.
للأدوية وتتصاعد هذه النسبة في البلدان النامية، حيث قد تزيد على 40%.

ووافض أنه لم يتم التأكد من ارتباط هذه العقاقير ارتباطاً وثيقاً بأولويات الاحتياجات الصحية، ووفاتها بمعايير الفعالية والسلامة المقبولة.

فإن كفاءة أي خدمة صحية تتأثر إلى حد بعيد، ففي البلاد التي بلغت مستوي عالٍ من التنميم، يوجه جهد اداري وتقني ضخم نحو التأكد من أن المرضى يتلقون العقاقير الفعالة العالية الجودة، وأنه لأمر حاسم في تحقيق هدف توفير الصحة للجميع بحلول عام 2000، أن يتمكن كل بلد من احتياز نظام يعزل عليه لمراقبة العقاقير.

وتستلزم هذه الضرورة إنشاء نظام وطني لتسجيل العقاقير، داخل العالم، كما يمكن أن يشمل، أحكاماً لضمان جودة جميع المنتجات المسجلة، ويجب أن تستوعب هذه الأحكام المعقدة الناتجة عن تدخل المنتجات الناتجة.

- يمكن أن تتفت منتجات المطبقة للمواصفات أصلاً، قبل استخدامها، نتيجة لسوء الصياغة أو التعبئة أو ظروف التخزين. ويمكن أن يتسبب ذلك في فقد الفاعلية، وصفة خاصة في تكون منتجات تحللية سامة.
- يمكن أن يؤدى القصور في وضع أساليب عمل جيدة والحفاظ عليها إلى حدوث أخطاء في الصياغة أو في وضع بطاقات التعريف.
- يمكن أن تدخل في سلسلة التوزيع عقاقير مصنوعة خصلة، قد تكون دون العبارة، بل حتى زائفة.

ولتحقيق الاكتفاء الذاتي في التصدير لهذه الامتثاليات يجب أن يعمل البلد على تنفيذ نظام لمراقبة يكمل ما يأتي:

- التفتيش المنتظم على جميع وحدات الانتاج للتأكد من الالتزام بأساليب الصنع الجيدة، الموضحة بالمثل في "مجموعة الأساليب الجيدة لصنع العقاقير ومراقبة جودتها" التي نشرتها منظمة الصحة العالمية [1].
إجراء اختبارات شوPresence لجودة جميع المنتجات المعروضة للبيع في سلسلة التوزيع، طبقا لبرامج جمع عينات محكمة التخطيط.

ولكن الوضوح أن الموارد في الكثير من البلدان غير ميسورة للانفاق على هذا النطاق.

ففيما يتعلق بهذه البلدان، يقدم "نظام منظمة الصحة العالمية لأصدر الشهادات الخاصة بجودة المنتجات الصيدلية المتساوية " [1، ص94] بعض الضمانات فيما يتعلق بالمنتجات المستوردة. فيقدم النظام تأكيدا معتمدا من السلطة التنظيمية للعقار في بلد المنتشأ بأن المنتج المعين قد منحت في منشآت يتم التفتيش عليها بانتظام، وأنه مطابق لمعايير التشغيل المعترف بها دوليا.

ولكن ليس لنظام منظمة الصحة العالمية لأصدر الشهادات فلائل في المنتجات المصنوعة محليا، وهو لا يقدم أي ضمان بأن المنتج المقبول أصلا سوف لا يتلف نتيجة للتخزين غير السليم، كما أنه لا يطبق على المنتج المستورد من شركة تجارية خارج بلد الصنع الأمامي والمهم، بصفة خاصة، في هاتين الحالتين الأخريتين تقييم الجودة باجراء التحليلات المناسبة للمنتج النهائي.

وبناه على ذلك، على كل بلد من البلدان، بصرف النظر عن مرحلة التنمية التي بلغها، أن ينظر في ضرورة إنشاء مختبر وطني مستقل لمراقبة جودة العقاقير والوصفات الماردة في الملحق 1 موجهة للكل من البلدان النامية التي لم تتشكل بعد هذا المرفق، والتي لا تملك الموارد اللازمة لإقامة نظام مراقبة شامل.
وتجدر الإشارة، بوجه خاص، إلى ما يلي:

- كثيرة ما تكون الأجراءات البسيطة، كاختبارات تفكك الأقراص مثلاً، ذات أهمية حاسمة في التخلص من المستحضرات دون العوارض لدرجة خطيرة.

- إن مختبرا صغيرة يديره شخص كفء واسع الادراك لكيفية أن يضمن عائلاً يمنح بالدليل المقنع الصناعة، وأساليب الاستيراد التي يشوبها أهداف نقدية أو الغش.

- إن وجود مجموعة من المعدات المعقدة التي تعمل تلقائياً، شأنه تعجيل العمل التحليلي، ولكنه لا يرفع بالضرورة المستوى، أوضح إلى ذلك أنه لا يمكن الاعتداد بأداء هذا النوع من المعدات ما لم يقم على صيانته خبراء مهرة، كما أن تشغيله قد يتطلب استخدام كاشفات كيميائية على درجة عالية من النقاء وارتفاع الثمن.

1. مختبرات نموذجية متقدمة

التوسّط بالموظفين والمرافق المادية

يحتوي الملحق 1 على توصيات بشأن تنظيم مختبرين نموذجيين وتوزيعهما بالموظفين، في البلاد النامية التي لا توجد فيها هذه المرافق. وليس في هذه التوصيات أي تنازلات تؤدي إلى أي تراخي في الالتزام بالمعايير، وحتى أصغر المختبرين النموذجيين يوفر الأمكانيات لإجراء التحليقات الكاملة، لما يزيد على 75% من القائمة النموذجية للعوامل الأساسية التي وضعتها منظمة الصحة العالمية [3]، وفقًا للطرق التي نص عليها "دستور الأدوية الدولي" [4].

ولقد ركز الاهتمام على الاقتصاد في كل من الحجم والمعدات، ومع ذلك، فالنضال به أنه لا مفر من ضبط درجة الحرارة والرطوبة بكفاءة في المختبرات الواقعة في المناطق الحارة، على الرغم من عزيم الانفاق.
الأساليب وتكلفة الصيانة التي يقضي بها ذلك، بالإضافة إلى ضخامة الاحتراجات من الطاقة.

وتسأل أساليب تحليلية عديدة (تشمل القياسات التصويرية الطيفية تحت الحمراء) لا تعطي نتائج يعول عليها في البيئة الحارة والرطبة، كما أن هذه البيئة تساعد على تآكل الأجهزة الغالية في الشم وتعجل من تلفها.

ونظراً لأن فرص التدريب الفني النظامي محدودة في البلاد النامية، فسوف يحتاج الموظفون حديثاً التعيين، بصفة عامة، إلى فترة تدريب، أثناء العمل، في مختبر مبرم مع خلفيته التعليمية واستعدادهم الشخصي والمسؤوليات المنافحة بهم.

وسألاب العمل الصحيحة في مختبرات المراقبة

عاودت اللجنة بالرضا الذي تقدمت به في تقريرها الشامن والعشرين [5] بأن يتم إعداد ارشادات لأساليب العمل الصحيحة في مختبرات المراقبة وتشمل الجوانب المختلفة لدارة المختبر الوطني لمراقبة العقاقير بما في ذلك المشروعة فيما يتعلق بطرق أخذ العينات.

الوضع القانوني

يتوقف الاعتماد بأي مختبر تحليلي أساساً على مكانة مديره وخبرته، كما تكمن التسهيلات المتاحة. فمسؤوليات المختبر الوطني لمراقبة الجودة ضخمة، وتنطوي أن تكون الأحكام التي يصدرها موثوقة، فيجب أن تضمن القرارات أمام الفحص في الدعاوى القضائية إذا اقتضى الأمر ذلك.

ومن نظرة للمضمون القانوني للأعمال التحليلية التي تجري في مختبرات المراقبة، يجب أن يكون للتقارير التحليلية التي تمدرها هذـه المختبرات وضع خاص يضفي عليها القانون، ومن شأن هذا الامتياز، الذي يجب أن يكون قابلاً للتعدد؛ في ظروف محددة على أيّة حال،
أن يسهل حسم الخلافات في حالة اعتماد الأطراف المستفيدة على التقرير.

ولتجنب ما يمكن أن يحدث من تضارب للمصالح، يجب ألا يشغّل المختبر الوطني في الاختبارات الرتيبة (الروتينية) للعينات تلبية لطلبات منتجي المستحضرات الصيدلية على المستوى الفردى. ومع هذا، فمن وظائف المختبر الهامة إبادة المشورة لجهات الصناع فيما يتعلق بتحسين الطرق التي يتبعونها لمراقبة الجودة.

رتينات تكميلية

على الرغم من أن مقدرة هذه المختبرات النموذجية محدودة، فإن درجة الاكتفاء الذاتى التي توفرها تعني أن مفهوم استخدام مراقب الاختبار الإقليمية المشتركة بين البلدان كمختبرات مرجعية للتحليل الأكثر صعوبة يصبح أمرًا ممكنًا قابلاً للتطبيق.

وتقدر اللجنة الأممية المستمرة للخدمة التي تقدمها منظمة الصحة العالمية للإدارات الوطنية في البلدان النامية، بعمل الترتيب للازم لتحليل عينات العقاقير تحليلاً مستقلًا في مختبرات مراقبة الجودة بالبلاد الأخرى على أساس تعاقدي وتوسيع اللجنة ب업اد دليل مختص لجسد النظام يشرح الاعتبارات القانونية والمالية اللازمة له، وطبيعة العينات المطلوبة للتحليل والمعلومات التكميلية المطلوبة متضمنة بسبب الطلب.

١٠ - دستور الأدوية الدولي

١٠ - الوضع الحالي للعمل

لقد تم نشر المجلدين الأول والثاني من الطبعة الثالثة لدستور الأدوية الدولي [٤] وباشتم المجلد الثالث تقدم هذه الطبعة دراسات خاصة (monographs) لجميع العقاقير تقريباً، التي تتضمنها "قائمة "
منظمة الصحة العالمية النموذجية للعقاقير الأساسية* " في صيغتها المنقحة في ديسمبر/ كانون الأول 1984 [٣] ٠

٢-٢ الدراسات الخاصة لكل شكل من أشكال الجرعات الصيدلية

ستكون الخطوة التالية في إخراج الطبعة الثالثة لدستور الأدوية الدولية هي تعيين المدي الذي يمكن أن تقدم في حدوده مواقف ذات طبيعة عامة أو خاصة للجرعات الدوائية، ولسوف يكون لذلك صلة مباشرة "برنامج العمل الخاص بالعقاقير الأساسية التابع لمنظمة الصحة العالمية " وبالبلاد التي تعتمد بصفة رئيسية على استيراد المنتجات النهائية ٠

وأقرأ أولى سوف يتطلب الأمر مراجعة الدراسة الخاصة الحالية التي تتناول بصفة عامة الجرعات الصيدلية الجافة [٤] ٠ ويلزم بصفة خاصة استعراض وضع اختبارات الذوبان، بهدف استنباط اختيار مناسب لتضمينه في دستور الأدوية الدولي ٠

فأهمية اختبارات الذوبان لأشكال الجرعات الصيدلية الجافة، خاصة الأقراص، تلقى تقديرًا على نطاق واسع في الوقت الحاضر، ولكن يجب أن يجري هذا النوع من الاختبارات، عامة، على أساس انتقائيات نظرًا لتكاليفها والوقت الطويل الذي تستغرقه، وبناءً على ذلك، وُجّه طلب إلى منظمة الصحة العالمية لاستشارة الخبراء المختصين واعداد "ورقة حالة " لكل منهجية اختبارات الذوبان والمبادئ التي يجب أن تتبع في انتقاء المنتجات والجرعات الصيدلية التي تقدم للاختبار. ٠ وتأمل اللجنة أن تكون هذه المقترحات معدة للعرض في اجتماعها المقبل مع الارشادات العامة لطرق الاستخلاص والفصل التي تستخدم في اختبارات الجرعات الصيدلية الجافة التي سبق طلبها في تقرير اللجنة الثامن والعشرين [٥] ٠

* WHO Model List of Essential Drugs *
اشتراطات جودة المواد الصيدلية المساعدة

وعند اختيار المواد الصيدلية المساعدة لتضمينها في "دستور الأدوية الدولي" سوف تعطي الأولوية لتلك المواد المتاحة عامة، في كل من البلاد المتقدمة والنامية، وستبسط المواد العلاجية والمنكهات، إلى أن ينظر في أورما مرة أخرى، نظراً لصعوبة الحصول على موافقة جماعية على المستوى العالمي.

هناك العديد من المواد الصيدلية المساعدة، سواء الموجودة طبيعياً أو المخللطة أصلاً، ما هو في الحقيقة مخلوطات ولست ممواداً متجانسة. أضاف إلى ذلك أنه يوجد في الأسواق منتجات متنوعة، تشمل قواعد المراهم واللبس مركبة من عدة مكونات مختارة بهدف الوصول إلى الخصائص المثلى. من أجل حضور محدد، سوف لا ينظر في تضمين هذة الفئة الأخيرة من المنتجات في "دستور الأدوية الدولي".

لاتزال المعلومات الفنية عن خصائص المواد الصيدلية المساعدة متاحة، حتى الآن، في مختلف المصادر المنشورة. ومنها صياغة البيانات التي يعدها المنتجون، وعلى أية حال، فإنناك جمعيات صيدلاني وطنية هنا، أكاديمية العلوم الصيدلية بالولايات المتحدة الأمريكية والجمعية الصيدلية البريطانية العظمى تتعاونان معًا، الآن، لنشر خلاصة شاملة لهذه المعلومات.
4-5 استخدام طرق بديلة للتحليل

يتضمن "دستور الأدوية الدولي" عدد من دساتير الأدوية الوطنية اختبارات بديلة لتحديد كم المواد. وهذا يسمح باستخدام الاختبارات التقليدية بدلاً من الاختبارات الفيزيائية الكيميائية التي تتطلب أجهزة باهظة الثمن. ويمكن أن يستقبل مستخدمو الدراسات الخاصة طرق معايرة بديلة لا يتضمنها دستور الأدوية أيضاً، وهذا جائز بشرط التصديق على صحة هذه الطرق. وعلى ذلك، فيمكن استخدام طرق استشرابية (كروماتوغرافية) نوعية، بسائل على الضفدع، بدلاً من طريقة عيارية غير نوعية مدعمة باختبار كروماتوغرافيا الطبقة الدقيقة للكشف عن الشوائب.

وعلى أية حال، فيجب أن تعتبر الطرق التحليلية الموارد وصفها في دستور الأدوية المعنية ضرورية في كل حالة، إذا ما نشأ نزاع قانوني.

5-4 الدراسات الخاصة في دستور الأدوية - نصيحة لمراجع المسودات

لقد وضعت مجموعة من الأرشادات تحديد خصائص دستور الأدوية الدولي ووظائفه، مع كل من التوافق بين ملاحظات مراجعات المسودات الدراسات الخاصة واقتراحاتهم (الملحق 5). وهذه الأرشادات مخصصة لمواد العقاقير بالذات، سوف توضع، الآن، مجموعة معايير تكميلية للدراسات الخاصة بأشكال الجرعات الصيدلية.

ولسوف توسع الأرشادات الحالية أيضًا، لتأكيد ضرورة استعداد استخدام المواد الكشفية الفلزية السامة والمذيبات السامة. وكجزء من هذه الأرشادات، ستبدأ المفاوضات لتحديد الطرق البديلة المناسبة، حيثما يلزم استخدام مواد كشفية سامة فيما هو مقترح من الاختبارات في الوقت الحاضر (كاستخدام أسيتات الروبيك في المعايير الحجمية اللامانية).

6-2 مراجعة الدراسات الخاصة المنشورة

يجب أن تراجع جميع الدراسات الخاصة التي يضمها دستور الأدوية، وتعدل كلما اقتضى الأمر ذلك، لافصاح المجال للطرق التحليلية المحسنة.
أو الطرق الحديثة لتخليص مواد العقاقير • وعلى ذلك فسوف يستلزم
امكان التماس العون من شبكة مختبرات متعاونة لضمان الكفاءة في
تحديث الدراسات الخاصة التي يضمنها "دستور الأدوية الدولي". ويجب
بالطبع أن يستمع نظر السلطة المعنية في الحال إلى أي عيب يكتشف
في أي دستور وطني أو اقليمي للأدوية •

المواد الكيميائية المرجعية الدولية

1-7-6 تقارير المركز المتعاون مع منظمة الصحة العالمية

استعرضت اللجنة التقارير المقدمة من المركز المتعاون مع منظمة
الصحة العالمية في مجال المواد الكيميائية المرجعية (1)

2-7-6 اعتماد مواد مرجعية جديدة

تم خلال عام 1983 اعتماد 10 مواد كيميائية مرجعية دولية جديدة
وادخل 5 تشغيلاً بديلة (الملحق 3) ، فتتكون مجموعة المواد التي
في حوزة المركز الآن ، من 4 مواد كيميائية مرجعية دولية و13 مادة
مرجعية لنقطة الانصهار (الملحق 3) . ونظهر قريباً حاجة إلى
اعتماد 36 مادة كيميائية مرجعية دولية أخرى لدعم المواصفات المنشورة
فعلاً في "دستور الأدوية الدولي" والتشغيلاً بديلة لخمس مواد
مرجعية خاصة • ولقد كان الوقت الذي حدد لتمام العمل في نحو 10 مادة
من هذه المواد المرجعية هو نهاية عام 1983 ، وإزاء المواد المتاحة
في الوقت الحاضر ، سوف لا يمكن تقديم بقية المواد المطلوبة قبل
عام 1985 •

(1) المركز المتعاون مع منظمة الصحة العالمية في مجال المواد الكيميائية المرجعية
• تقرير عن العمل في عام 1981 (وثيقة غير منشورة 82.509 WHO/PHARM • تقرير عن العمل
في عام 1982 (وثيقة غير منشورة 83.510 WHO/PHARM •}
قدّمت اللجنة في تقريرها الثامن والعشرين [5] ارشادات عامة
منقحة إلى السلطات الوطنية وغيرها من السلطات التي تتّزم اعتّقاد
مواد كيميائية مرجعية وصيانتها وتوزيعها • وفي هذا الآطار، قدم المركز
المتعاون مع منظمة الصحة العالمية مساعدة كبيرة إلى المنظمات التي
تتّزم اعتماد مجموعات من المواد المرجعية الوطنية أو الاقليمية
للاستخدام معاييرعمل في مراقبة الجودة، وقد قدمت هذه المساعدات
من خلال توفير خدمات الاستشارة وتسهيلات التدريب • وعلى الرغم من
أن مقدرة المركز على تقديم هذا الدعم محدودة، فانه أسهم الى جهد
كبير في التوفيق بين المعايير من خلال التصديق على صحة المواد المرجعية
في مختلف أنحاء العالم.

4-7 أمور تستوجب التفكير مستقبلاً

لاقتّنت اللجنة بالتقدير الإسهام الضخم الذي قدمه الاتحاد الوطني
للصيدليات في السويد على مر سنين عديدة، سواء بالموارد أو المصالح
لدعم المركز المتعاون مع منظمة الصحة العالمية في مجال المواد
الكيميائية المرجعية.

لقد ارتفعت تكلفة تجهيز المواد الكيميائية المرجعية الدولية
وتقييمها وتوزيعها على مر السنين ارتفاعاً يهدد بتعرّض مستقبل هذه الخدمة
للمخاطر • وعلى ذلك يجب النظر في امكان خفض العجز في ميزانية المركز
المتعاون مع منظمة الصحة العالمية بالوسائل الآتية:

(أ) تشجيع تضمين دستور الأدوية الدولي طرق لا تشتمل استخدام
المواد المرجعية (أنظر مثلا الجزء 8 من هذا التقرير فيما يتعلق
باستخدام أطياف مرجعية تحت الحمراء)

(ب) خفض كمية العمل اللازم لاعتماد كل مادة من المواد المرجعية
بموجة، فليكن معلوماً عند الدعوة إلى هذا الخفض أن المواد الكيميائية
المراجعة الدولية كثيرا ما تطلب لاستخدامات أخرى غير تلك المنظورة في "دستور الأدوية الدولي" كمعايير المواد المراجعة الوطنية والإقليمية مثلاً.

(ج) زيادة الرسوم العادية للحصول على المواد المراجعة، وخفض مدى توزيعها بالمجان.

(د) تشجيع تأسيس مراكز متعاونة في مناطق أخرى لاعتماد المواد المراجعة وتوزيعها.

8-4 أطياف مرجعية تحت الحمراء للمواد الصيدلية

بزيادة عدد المواد الكيميائية المراجعة الدولية اللازمة لاعتمادها. لدعم الدراسات الخاصة في "دستور الأدوية الدولي" زيادة تناسبية، كلما أعدت دراسات جديدة. وفي هذه الحالات تقريبًا يقتصر الامتحان على المواد المراجعة. على استخدامها في اختيارات تعيين كنـه المادة بالأشعة تحت الحمراء. فؤاذ ما استخدمت أطياف مرجعية تحت الحمراء لهذا الغرض فإن الامتحان للمواد المراجعة الجديـدة يقل تبعاً لذلك.

وبناء على ذلك، تمت دراسة امكان الاستعاضة عن المواد الكيميائية المراجعة الدولية بأطياف مرجعية تحت الحمراء. فنظمت دراسة تعاونية ضمت تسعة مختبرات من مختلف المناطق. ويتكون الملحق 4 على وصف تفصيلي لهذه الدراسة. ولقد تبين أن كل مختبر من المختبرات أكـد بنجاح كنها مجموعة من المواد الاختبارية بهذه الطريقة. فوافق، اذن، أن صحة استخدام أطياف مرجعية تحت الحمراء للاختبارات كنها مادة عقار ما. حقيقة لا تحتتم الشك، بشرط مراعاة الدقة والعناية اللازمة في تحضير العينات وتشغيل المقياس الضوئي المطلبي وصيانته. ومع هذا، فيجب أن نعترف بأن نتائج دراسة أخرى، اشترك
فيها عدد أكبر من المختبرات التي قدمت الأطيفات، كشفت في بعض الحالات عن عدم ملاءمة الأجهزة أو الطريقة المستخدمة.

فبضوء ذلك، إذن، توفير الإرشادات اللازمة لتحضير أطيفات تحت الحمراء في اختبارات الكنه، خاصة فيما يتعلق بالنقاط الآتية:

أ) يجب حماية فيلم (غشاء) البوليسترين المستخدم في المعايير من الرطوبة ودرجة الحرارة الزائدة للمحافظة على خصائصه.

ب) يجب التحقق من قوة تحليل الجهاز التي يجب أن تكون مطابقة للحدود المنصوص عليها.

ج) يجب أن يتم تحضير العينات المراد اختبارها وفقاً للتوصيات الواردة في المجلد الأول من "دستور الأدوية الدولي".

وبناء على ذلك، تقترح اللجنة العمل على اثاثة أطيفات مرجعية تحت الحمراء لتمحيض المواد الكيميائية المرجعية الدولية في اختبارات تعيين الكنه بالأشعة تحت الحمراء، ويجب أن يقبل التوافق بين الطيف المرجعي والطيف الذي تطعيه المادة المختبرة، على أنه تحقيق لاختبار الكنه.

ويجب أن يكون توثيق هذه الأطيفات متوقفاً على وجود الدليل على أنها انتقاة من مواد محققّة لمتطلبات الدراسة الخاصة، وأنه قد يتم اعتمادها من فريق من الأخصائيين، وكذلك من كبار منتجي المادة.

أمكن، وللبدء في ذلك، تجمع قائمة بالمصادر الممكنة لهذه الأطيفات، ويمكن أن يكتسب بالإشارة إلى أطيفات نشرتها، من قبل وكالات حكومية أو خاصة، بشرط التأكد من أن كل طيف منها يفي بالمعايير المشار إليها في الملحق 4، وأن التفاصيل الكاملة للمعالجة المسبقة التي أجريت للعينة معطاة.
 وإذا لم يكن هذا الأساليب ممكنًا عمليًا، فإن منظمة الصحة العالمية ستدرس امكانية انتاج الأطيفات وتوزيعها بالتعاون مع مختبرات مختارة.

ولعله يمكن انتاج خرائط لأطيف تحت الحرارة في الأجهزة التي تعمل بالحاسبات الإلكترونية، تعزز بها المختبرات الوطنية لمراقبة الجودة بناء على طلبها.

٩٦- تلالائمات الشبات

تحتوي وثيقتان غير منشورتين (١) على تفاصيل نتائج سلسلة من اختبارات الشبات المعجلة أجريت، بناء على تكلفة من منظمة الصحة العالمية، نحو ٣٠٠ مادة صيدلية شائعة الاستخدام، وفقًا على اعتبارها زمن طويل. ولقد أصدرت هاتان الوثائقان بأعداد محدودة بهدف الاستشارة قبل النشر. وتنفق النتائج اتفاقًا طبيًا مع اختبارات طويلة الشبات أجريت في المركز التعاون مع منظمة الصحة العالمية في مجال المواد المرجعية الدولية في ظروف تحاكي الظروف الاستوائية فيما يتعلق بدرجة الحرارة والرطوبة.

٣- الاختبارات الأساسية

لقد نوقشت دور الاختبارات الأساسية وقيودها في تقريب اللجنة الثامن والعشرين [٥] وبدل أفراد شتى ومختبرات مختلفة جهدًا ضخمًا تطوير اختبارات أساسية (أو مبتكرة) نحو ٥٠ مادة والتحقق منها. ويحتوي الملحق ٦ على الإرشادات المستخدمة في هذا العمل والمختبرات التحليلية، خاصة في البلاد النامية، التي لديها استعداد للمشاركة في برنامج التحقق مدعة للاتصال بمنظمة الصحة العالمية.

وكما جاء في الصفحة 15 من التقرير الثامن والعشرين، "إن الاختبارات الأساسية لا يقصد بها في أي حال من الأحوال أن تكون بديلاً للمتطلبات التي تتضمنها دراسات دساتير الأدوية، فهذه المتطلبات توفر ضمانات للجودة، بينما الاختبارات الأساسية تؤكد هوية (كنه) المواد فقط".

4- برنامج التدريب على تحليل العقاقير

يستلزم انشاء وتطوير مراقب لصنع المستحضرات الصيدلية، ومختبرات وطنية لمراقبة الجودة في البلاد التامّة، بدء برامج التدريب المناسبة للموظفين الفنيّين وتعكّب حاجة واضحة، بمثابة خاصّة، الى التدريب الجماعي لحديش التخرج من كليّات العلوم والصيدلة المبتدئين فصلى التخصص في هذا المجال، والتدريب الفردي في أثناء العمل بمستوى أكثر تقدماً ونوع آخر من التدريب متاح فعلاً للأفراد العاملين في المختبرات الوطنية لمراقبة الجودة من خلال برنامج ينفذ تحت رعاية الاتحاد الدولي لجمعيات منتجي الأدوية (IFPMA).

1- التدريب الجماعي

إن الأسلوب المثالي هو أن ينظم جميع الموظفين الجامعيين في تدريب تحضيري لمدة ستة شهور للتدريب على الجوانب العملية والنظرية لتحليل العقاقير، ويجب التركيز على الأسلوب العملي، ولو أنه يجب افساح المجال لمناقشة الأساس النظرية للعمل، ويجب أن تتوج الأوردة التالية في الاعتبار عند وضع البرنامج التدريبي:

- بنية المختبرات النموذجية وتنظيمها وواد وصفها في الملحق 1.

المشاكل العملية الشائعة التي تظهر في تحليل المنتجات الصيدلية

أهمية اختيار واثباث صحة الطرق التحليلية المناسبة وتقدير

جميع النتائج

ويلى ذلك منهج تمهيدي يستغرق أسبوعا تقريبا، تعطي فيه المبادئ العامة لمراقبة الجودة والتحليل، ويشمل فهم وادراك صلتهما الوثيقة بالشراة والتصريف. يجب أن تخصص مناهج مستقلة لكل من المراقبة الكيميائية والميكونولوجية والبيولوجية. ومع هذا، فمن المهم أن يكون لدى المتدرب في أحد هذه الفروع ادراك بالجانب الآخر المراقبة. يجب أن يتكون لدى المتدربين فهم واضح لمجتمع واجبات أخصائي التحليل ومسؤولياته، وضرورة ممارسة الأساليب المختبرية الصحيحة من أجل الكفاءة والسلامة.

وتحتاج إلى اهتمام خاص في التدريب الأساسي على المراقبة الميكونولوجية، تحتوي اختبارات التحقق، واختبارات التلف الميكونولوجي، واختبارات فعالية مضادات الحيوية، كما يلزم أيضاً إعطاء الأرشادات الفنية الخاصة بتحضير المستنبات من المواد المتاحة ملحاً ومراقبتها.

وتحتاج إلى وجود منهج التمهيدي في المراقبة البيولوجية تحتوي اختبارات البيروجين (pyrogen) واختبارات الأمان النوعية الأخرى. وحيث أن اختبارات المنتجات البيولوجية التي تشتمل اللقاحات ومنتجات الدم والهرمونات تجرب عادة في مؤسسات متخصصة، فإن هذه الاختبارات تقع خارج نطاق المنهج التمهيدي العام.

ولسوف تحدد منظمة الصحة العالمية المراكز التي يمكن أن تقوم بهذا التدريب، وتسطلع امكان تنظيم برامج تدريبية لمديري المختبرات وال الفنيين.
بلاغ عدد أخصائيي التحليل الذينمنحوا فرصة التدريب في مختبرات مراقبة الجودة في شركات الأدوية منذ بدء برنامج التدريب الذي نظمه الاتحاد الدولي لمنتجي الأدوية في عام 1978، 46 أخصائيًا من المختبرات الوطنية لمراقبة جودة العقاقير بالدول النامية • ويجري الآن توسيع هذا البرنامج التعاوني إلى ما بعد المرحلة الابتدائية الاسترشادية.

وإن اللجنة للتذكر بالتقدير الدعم الذي قدمه الاتحاد العالمي لمنتجي الأدوية المسجلة الملكية لتنظيم التدريب على أساليب الصنع السليمة وتركيز اللجنة أيضاً على الحاجة إلى التسهيلات في مجال التدريب على إدارة المختبرات • ويمكن أيضاً أن يحقق نفع عظيم بالربط بين التدريب الذي يقدم الآن في إطار برنامج الاتحاد الدولي لجمعيات منتجي الأدوية وبين ضمائر تلبية للمتطلبات الحكومية لمراقبة العقاقير وصياديّات المستشفيات في البلاد نفسها • ولقد طلب إلى منظمة الصحة العالمية استطاع هذه الاحتمالات.

5 - التعاون مع المنظمات غير الحكومية

لاحظت اللجنة أن الاتحاد الدولي لجمعيات منتجي الأدوية، بالإضافة إلى قيامه بتنظيم التدريب على مراقبة النوعية (أنظر الجزء 4) ، سوف يسعي إلى توسيع نطاق التعاون في داخل الصناعة، ليشمل التوزيد بعينات من المواد الصيدلية لاعتماد مواد كيميائية مرجعية دولية واقليمية • ولقد أبدع عدد من الشركات بهذه العينات بسخاء، لدى طلبها، طوال سنوات عديدة.

وذكر اللجنة بالتقدير التعاون القيم الذي أبداه الاتحاد الصيدلئي الدولى (FIP) ، خاصة الأقسام المعنية بمختبرات المراقبة الرسمية والمنشآت الصناعية، التي تحتل فيها معايير دساتير الأدوية، والجوانب الأخرى للمراقبة التنظيمية مراكز الاهتمام الرئيسية • ولقد نوه بما تم
من أعمال في إعداد كتاب للبلدان النامية عن "إدارة شراء العقاقير وتخزينها وتوزيعها "، وبالعرض المقدم لعطاء المشورة لمعاهد البلدان النامية فيما يتعلق بالتكنولوجيا الصيدلية، من خلال منظمة الصحة العالمية، تنظيم الحلقات الدراسية والندوات المخصصة للمشاكل الناشئة في هذه البلاد. فهذه جميعًا أنشطة متعلقة اتمالًا مباشرة بأعمال اللجنة، وأقترح أن تنظم الاجتماعات في البلدان النامية بين الحين والحين قد يعمل على تشجيع مشاركة الصيادلة من هذه البلدان.

6- نظام إصدار الشهادات الخاصة بجودة المنتجات المتناولة في التجارة الدولية (1)

يبلغ إجمالى عدد البلدان المشاركة رسميًا في هذا النظام الذي يجري تقييمه حالياً 106 بلدان. وقد وقع استبيان على جميع الدول الأعضاء في عام 1983 من خلال المكاتب الإقليمية لمنظمة الصحة العالمية، وأنجزت متابعة الاستجابات الوطنية بمستشارين زاروا بعض البلدان الممثلة في مختلف أقاليم منظمة الصحة العالمية. ستكون التحليل النهائية للاستجابات للاستبيانات وتقارير البعثات أساساً لتحرير نشاط في المؤتمر الدولي الثالث لسلطات تنظيم الأدوية المزمع عقده في استوكهولم في يونيو/حزيران 1984.

(1) المعلومات الكاملة موجودة في الوثيقة غير المشورة (Rev.1) عن "نظام إصدار الشهادات الخاصة بجودة المنتجات المتناولة في التجارة الدولية ".

22
المراجع

شكر

تعرب اللجنة عن شكرها وتقديرها لما قدمه السادة الموظفون الآتية أسماؤهم من إسهامات خاصة في مداولات اللجنة: الدكتور س. كليبوف، كبير الصيدلة، قسم المستحضرات الصيدلية، الكويت، الأستاذ م. شمس، المستشار الفني، قسم المستحضرات الصيدلية، الدكتور م. ج. فرننجو، مدير المشروع المشترك بين منظمة الصحة العالمية ومنظمة الصحة للبلدان الأمريكية، مشروع جودة العقاقير، ساوايك، البرازيل.

وتقدم اللجنة شكرها أيضاً إلى السادة الآتية أسماؤهم على ما قدموه من مساعدات قيمة: الأستاذ د. أبو العينين، كلية الصيدلة، جامعة الملك سعود، الرياض، المملكة العربية السعودية، الأستاذ د. س. أراميلو، كلية الصيدلة، جامعة البنوي، شيكاغو، الولايات المتحدة الأمريكية، الدكتور د. أ. أرباس، قسم البحوث والتعليم، جامعة بنما، بنما، جمهورية بنما، الدكتور ً. بابير، المركز المتعاون مع منظمة الصحة العالمية في مجال معلومات العقاقير وتأكيد الجودة، بودابست، المجر، الأستاذ د. م. بيكنت، كلية تشليزي، جامعة لندن، لندن، إنجلترا، الدكتور د. م. بوليجر، شركة هوفمان- لاروش المحدودة، بازل، سويسرا، الأستاذ د. براون، كلية الصيدلة، جامعة مونتريال، مونتريال، كندا، الدكتور د. ماير، مختبر اللجنة البريطانية لدستور الأدوية، ستانفورد، إنجلترا، الدكتور د. كافاتونا، شركة بيور المحدودة، ميلانو، إيطاليا، السيد د. د. نورتون، دبلن، جمهورية أيرلندا، الدكتور د. م. شوليس، قسم الصيدلة، جامعة أثينا، أثينا، اليونان، الأستاذ د. شيرغولاني، اللجنة الإيطالية لدستور الأدوية، روما، إيطاليا، الأستاذ د. كوهين، قسم العناصر المشعة لجنة الطاقة الذرية، جنيف، سويسرا، الدكتور د. كوك، مختبر البحوث العقاقير، فرع الوقاية الصحية، أونتاريو، كندا، الدكتور د. كير، أكاديمية العلوم الصيدلية، بلغراد، الولايات المتحدة الأمريكية، الدكتور د. ف. دودسون، مختبر الوطني للمعايير البيولوجية، كانبرا، أستراليا، الدكتور د. م. الفقيه، ميغيليل تونس، قطر.
الجمهورية التونسية، الأساتذة، الدكاترة، الدكتور، ك. فلوري، معهد سكيب للبحوث الطبية، نبو بروتوستكين، نيو جيرسي، الولايات المتحدة الأمريكية، الدكتور، د. جادنر، الصناعات الكيميائية الأوروبية، إد، إسترا، الأستاذ، هز، جايرال، قسم، الكيمياء الصيدلانية، جامعة المكسيك الوطنية، المكسيك، الدكتور، سون، جونسون، الإدارة، خدمات، الصحة، العامة، نيو ليكسي، الهند، الدكتور، د. هورس، شركة، هوكست، المتحدة، فرانكفورت، جمهورية، ألمانيا، الاتحادية، السيد، هوبت، تشلشهايم، أجنليا، الدكتور، هينماير، المكتبة، الكانون، للفن، زورق، سوسزرا، الدكتور، ت. انوي، جمعية، دستور، الأدبية، الياباني، طوكيو، اليابان، الأساتذة، ب. زاروستكسي، أكاديمية، العلوم، الطبية، بخارا، رومانيا، السيد، د. جيكل، شركة، ب. بيجي، المحدودة، بيزار، سوسزرا، الأساتذة، غوتسون، المركز، المنظمة، الصحة، العالمية، في، مجال، المواد، الكيميائية، المركزية، بولندا، السيد، الدكتور، د. جونسون، رومول، وزارة، الصحة، العامة، لومي، توجد، الدكتور، د. جونز، مؤسسة، لوكسمبورغ، انجلترا، الدكتور، د. كونترز، توم، كامبولا، توم، الكيمياء، البيولوجية، والمعايير، المرجعية، المعهد، الوطني، لعلوم، الصحة، العامة، طوكيو، اليابان، الدكتور، ر. أو. خان، الهند، الأساتذة، ل. كراوستكسي، نيل، كريول، المعهد، الحكومي، لمعايرة، العقاقير، ومرافقه، موسكو، الاتحاد، السوفيتي، الدكتور، س. د. كونوسيان، قسم، العقاقير، إدارة، الغذاء، والعقاقير، روكفي، الولايات، المتحدة، الأمريكية، الأساتذة، ج. لافيلوسيكي، المعهد، الوطني، للفن، بوياريست، المجر، الدكتور، د. ليفوف، المركز، الوطني، لتحليل، العقاقير، سانت، لويز، الولايات، المتحدة، الأمريكية، الدكتور، س. لافيل، المكتبة، الاقليمي، للشؤون، الصحية، الاجتماعية، باريس، فرنسا، الدكتور، ك. ليجنر، شركة، ب. بيجي، المحدودة، بيزار، سوسزرا، الأساتذة، د. مارتشي، بنغولو، معهد، الكيمياء، جامعة، الفلبين، الكلية، الكاثوليكية، روما، إيطاليا، الدكتور، د. مارتن، مدريد، أساتذة، الأساتذة، د. زينتاي، معهد، الرقابت، الوطني، للأدوية، هولندا، فنلندا، الأساتذة، د. أ. والاسان، قسم، الكيمياء، الصيدلانية، جامعة، أبابان، إيران، د. زينتاي، الدكتور، د. بارنامير، شركة، ب. بيجي، المحدودة، بيزار، سوسزرا، الأساتذة، د. ريختر، معهد، الصيدلة، والعلاجات، جمهورية، ألمانيا، الديمقراطية، برلين، السيد، د. سين، المجلس، الوطني، للفن، بوياريست، الهند، الدكتور، د. ساندياراما، قسم، الصيدلة، معهد، بادونج، التكنولوجي، بادونج، أندونيسيا، الدكتور، د. شيلتامان، قسم، الصيدلة، الصحية، بيون، جمهورية، ألمانيا، الاتحادية، الدكتور، د. شوارنبرغر، اتحاد، الكيميائيين، التونسيين، الرسميين، مركز، ص. سنتي، فلوريدا، الولايات، المتحدة، الأمريكية، الدكتور.
ف. السودان، الاتحاد الصيدلی الدولي، فيسبادن، جمهورية ألمانيا الاتحادية، الأساتذة:

- سيزر، مدرسة الصيدلة، المعهد الاتحادي للتكنولوجيا، زيورخ، سويسرا، الدكتور.
- سوزوكي، المعهد الوطني لعلوم الصحة العامة، طوكيو، اليابان، السيد تان كوك لينج، قسم المستحضرات الصيدلية، وزارة الصحة، سنغافورة، الأساتذة.

- تيمبر، جامعة باريس (11)، سان كلو، فرنسا، الآنسة.
- فريدريش، شركة روسيل، أوكلاف المحدودة، رومانيا.
- فرنسا، الدكتور، ر. فوجت، شركة ساندوز المحدودة، بابل، سويسرا.
- السيد، أ. واتن، تونن، ليه، بان، فرنسا، الدكتور، أ. ويلز، قسم الأدوية، إدارة الصحة والتأمين الاجتماعي، لندن، إنجلترا.
- السيد، بيب، بون شين، إدارة الصيدلة، وزارة الصحة، كوالالمبور، ماليزيا.
- الأساتذة، يوان شين، اللجنة الصينية لدستور الأدوية، معبد السماء، بيتشنج، الصين.
- الدكتور، زو يان، المعهد الوطني للرقابة على المنتجات الصيدلية والبيولوجية، بيتشنج، الصين.
المختبرات الوطنية للاشراف على جودة العقاقير ومراقبتها

<table>
<thead>
<tr>
<th>الصفحة</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۷</td>
</tr>
<tr>
<td>۴۸</td>
</tr>
<tr>
<td>۴۳</td>
</tr>
<tr>
<td>۴۰</td>
</tr>
</tbody>
</table>

۱ - مقدمة
۲ - مختبر المرحلة الأولى للاشراف على العقاقير
۳ - مختبر متوسط الحجم لمراقبة العقاقير
۴ - القدرات
۵ - المهتم
۶ - الموظفون
۷ - المعدات
۸ - مجال النشاط
۹ - العوامل المؤثرة في حجم المختبر وموقعه
۱۰ - تنفيذ مشروعات مختبرات المراقبة
۱۱ - دراسة الجودي
۱۲ - التنمية على مراحل
۱۳ - دعم البرنامج
1 - مقدمة

ترتبط قدرة السلطة التنظيمية الدوائية على القيام بالمراقبة على الجودة ارتباطًا مباشرًا بما لديها المختبرات الوطنية التي تمتلكها لمراقبة الجودة من مقدرة تطبيقية
فنتائج التقييم المختبر لعينات العقاقير المتبادلة في الأسواق تسمح للسلطة التنظيمية بتقديم الجودة الفعلية للمنتج المستخدم في البلد وتحديد مجالات المشاكل
وفي حالة عدم وجود خدمة تحليلية مستقلة في متناول السلطة التنظيمية، فلا مجال من أن يبني حكمها على جودة العقاقير، في الأغلب، على البيانات التي يقدمها المتعاون أو المستوردون
ومن طبيعة هذه البيانات أنه يصعب الطعن بها.

ولقد أكدت لجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات الصيدلية في الملحق 1 من تقريرها السابع والعشرين (1) أهمية مختبر مراقبة العقاقير في تنفيذ الأشراف، الذي هو عنصر من عناصر تأكيد الجودة في أنظمة الإمداد الصيدلي والبلاد النامية عرضة، بصفة خاصة، لأن تكون سوقًا رائجة لإمدادات العقاقير دون الحيادية، ويمكن أن تصل هذه المشاكل إلى درجة هامة من الحدة في حالة عدم جودة خدمات الاختبار وبناء على ذلك، فيحتوي هذا الملحق على دراسة للأسس التي تحدد بنية وادارة مختبر وطني لمراقبة جودة العقاقير حيث لا يوجد هذا المرفق حتى الآن.

ان للسلطات الوطنية الخيار في إقامة إما مختبر مركزي واما عدد من المختبرات الصغيرة المنتشرة في جميع أنحاء البلاد
ويمكن حتى لمختبر صغير واحد، إذا ما عني بالمسائل ذات الأولوية بإدارة واعية،
أن يشترط أساليب الصناعة والتجارة التي يشوقها الغش أو الأهمال
وبدفع أيضا أن معايير المنتجين المحليين سوف تتجه نحو الارتفاع حيثما يوجد الاحتمال باجراء تقييم مستقل لجودة منتجاتهم.

(1) سلسلة التقارير الفنية لمنظمة الصحة العالمية، رقم ٦٤٥، ١٩٨٠.
سيكون للمختبر، على الأقل، القدرة على اكتشاف المنتجات، المواد الخام منها والناتجة الصناعية، التي يساء وصفها في بطاقات التعريف، واكتشاف المنتجات المخوشة والزائفة. أما قدرة على القيام بالتعديل الكامل للمنتجات للتحقق من مطابقتها للمواصفات الموضحة في بطاقات التعريف فسوف تكون محدودة. فيلزم، إذن، وضع أولويات واضحة لضمان تركيز الاهتمام على المنتجات ذات أهمية الأساسية لبرامج الصحة العامة أو تلك التي يحمل أن تكون خطرة أو غير ثابثة أو غالبية بدرجة مفرطة.

تتناول المشورة التي تتضمنها الأجزاء التالية تنظيم مختبرين نموذجيين وتوزيعهما بالموظفين، وأحد هذين المختبرين متوسط الحجم، أما الآخر فهو يوفر الحد الأدنى من التسهيلات للعمل بكفاءة. وهو مخصص لأن يكون مختبر المرحلة الأولى للاشراف على العقاقير. وعلى الرغم من توفير الامكانية لكي يؤدى هذان المختبران بعض أنواع الاختبارات البيولوجية، فهما غير معدين لاختبارات الأغراض واللقاحات. ولم يكن إنشاء مختبرات أكبر حجما لمراقبة العقاقير موضوع التفكير، نظراً للموارد المحدودة المتاحة لمثل هذه الأفراد في معظم البلدان النامية.

هذا، ولا تقع الأمور المتعلقة بأدارة مختبرات مراقبة العقاقير وتشغيلها في نطاق هذه التوصيات، ولسوف تكون هذه الجوانب موضوع وثيقة أخرى مستقلة لمنظمة الصحة العالمية.

2- مختبر المرحلة الأولى للاشراف على العقاقير

تبلغ المساحة السطحية لهذا المختبر الصغير 100 م²، ويضم ما بين الموظفين أخصائيين تحليل وفنينين اثنين وموظفين إثنين لتأمين المعدات والخدمة.
ولا يمكن توفير مقومات العمل بكفاءة لمثل هذا المختبر كوحدة مستقلة، فيجب أن يدمج في مختبر حكومي آخر، أو ينشأ في داخل مستشفى أقليمي كبير، فهذا يتيح استخدام ما هو موجود من الإمكانات الفنية والمكتبة (المراجع والكتب) والمرافق وتدابير الامدادات، ومع هذا، فالمهم هو أن يبقى المدير مستقلاً، تنظيمياً، في تنفيذ واجباته، وأن تخصص للمختبر ميزانية مستقلة.

وتشير التقديرات إلى أن مثل هذا المختبر يستطيع الإضافة بما يتراوح بين ٢٠٠ و3٠٠ تحليل كامل سنوياً (عينات تختبر اختياراً كاملاً وتقييم وفقاً لمواصفات الجودة) أو بعد أكثر من ذلك من التحاليل الجزئية.

ويجب أن يكون أخصائي التحليل مؤهلاً تأهيلاً جامعياً في الصيدلة أو الكيمياء، ويكون قد أثبت قدرته على العمل مستقلًا، وتلقى تدريبًا عملياً في مختبر معتمد لمراقبة جودة العقاقير لمدة تتراوح بين ٦ شهور وستين وتنقر مدى التدريب وفقاً لما لديه من خبرة خلفية، ويفضل أن يدربه الفنيون تدريباً نظامياً، في أحد المعاهد، بالإضافة إلى التدريب أثناء العمل في المختبر.

ويجب أن تجهز مباني المختبر بالمرافق الأساسية (المياه والصرف والكهرباء) وتزود بمصدر للماء الساخن وجهاز لتخزين الماء وتستوعب لغاز البوتولين إن لم يكن الغاز متاحاً من الشبكة العامة، وفي حالة تخصص مكان للمختبر في مبنى حديث الأنشاء فإن أفضل أن ينشأ كوحدة بناء أساسية يمكن توسيعها فيما بعد.

وفيما يتعلق بأثاث المختبر، فيجب أن يرتب الأثاث بحيث يسمح بحرية مناسب للعمل بدون اكتظاظ، ويجب أن يشمل ما يأتي: منضدة مختبر مزودة بتنظيم الوحدة ومزودة بحوضين جانيدين ومنفذ للدخان ومنضدة مختبر للأجهزة ومنضدة للموازين وקיר منشورات ومذكرة وقائية (بها قسم للتجميد)، ورفوف حائطية ومكتب ويراعى أن توضع منضدة الأجهزة ومنضدة الموازين في مكان مريح من الوحدة لحماية الأجهزة من التآكل.

29
ويحتوي الجدول 1 على الأصناف الهامة من معدات المختبر، ونستطيع قائمته بالكاشفات الكيميائية ولا الأمور الزجاجية، حسب أن الأفضل إعداد هذه القائمة في المختبر، ويعتبر الانتظار دائماً برصيد من الأدوات الزجاجية والأصناف المتنوعة، فلهذا أهمية خاصة، حيثما تكون صعوبات التوريد متوقعة.

<table>
<thead>
<tr>
<th>اسم الجهاز باللغة الإنجليزية</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment and major instruments</td>
<td></td>
</tr>
<tr>
<td>Analytical balance (four place, mechanical)</td>
<td>1</td>
</tr>
<tr>
<td>Spectrophotometer (UV/visible, single-beam, manual)</td>
<td>1</td>
</tr>
<tr>
<td>pH-meter (with electrodes)</td>
<td>1</td>
</tr>
<tr>
<td>Karl-Fischer titrator</td>
<td>1</td>
</tr>
<tr>
<td>Melting-point apparatus</td>
<td>1</td>
</tr>
<tr>
<td>Polarimeter (manual)</td>
<td>1</td>
</tr>
<tr>
<td>Drying oven</td>
<td>1</td>
</tr>
<tr>
<td>Vacuum oven</td>
<td>1</td>
</tr>
<tr>
<td>Vacuum pump</td>
<td>1</td>
</tr>
<tr>
<td>Centrifuge (table-top)</td>
<td>1</td>
</tr>
<tr>
<td>Hot plate with stirrer</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>اسم الجهاز باللغة العربية</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>المعدات والأجهزة الرئيسية</td>
<td></td>
</tr>
<tr>
<td>ميزان تحليلي (رباعي، ميكانيكي)</td>
<td>1</td>
</tr>
<tr>
<td>مقياس طيفي (التموضع المنظم)</td>
<td>1</td>
</tr>
<tr>
<td>جهاز التحريك (الأنابيب، بالأنابيب)</td>
<td>1</td>
</tr>
<tr>
<td>جهاز الخلاصة الحجمية (طراز كارل-فيشر)</td>
<td>1</td>
</tr>
<tr>
<td>جهاز نقطة التدفق (البودي)</td>
<td>1</td>
</tr>
<tr>
<td>فرن تجفيف</td>
<td>1</td>
</tr>
<tr>
<td>فرن مفرغ من الهواء</td>
<td>1</td>
</tr>
<tr>
<td>مضخة تسمية الهواء</td>
<td>1</td>
</tr>
<tr>
<td>جهاز القدرة المركزية (طراز ماجد)</td>
<td>1</td>
</tr>
<tr>
<td>محار كهروشكي محمول للتحلي الفتوح</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>اسم الجهاز باللغة العربية</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>معدات استكمال الطبيعة الرقيقة وتشمل:</td>
<td></td>
</tr>
<tr>
<td>محاك في الحركة</td>
<td>1</td>
</tr>
<tr>
<td>أداة التنقيط</td>
<td>1</td>
</tr>
<tr>
<td>قارئ النظم</td>
<td>1</td>
</tr>
<tr>
<td>رشاد الرؤية</td>
<td>1</td>
</tr>
<tr>
<td>مضخة للوحات الضوء المبطن</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>اسم الجهاز باللغة العربية</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسم الجهاز باللغة الإنجليزية</td>
<td></td>
</tr>
<tr>
<td>Disintegration test equipment</td>
<td>1</td>
</tr>
<tr>
<td>Microscope</td>
<td>1</td>
</tr>
<tr>
<td>Refrigerator (with freezer compartment)</td>
<td>1</td>
</tr>
<tr>
<td>Micrometer calipers</td>
<td>1</td>
</tr>
<tr>
<td>Optional items</td>
<td></td>
</tr>
<tr>
<td>Flame photometer</td>
<td>1</td>
</tr>
<tr>
<td>Osmometer</td>
<td>1</td>
</tr>
<tr>
<td>Vortex mixer</td>
<td>1</td>
</tr>
<tr>
<td>Constant temperature water-bath</td>
<td>1</td>
</tr>
<tr>
<td>Ultrasonic cleaner</td>
<td>1</td>
</tr>
<tr>
<td>Refractometer</td>
<td>1</td>
</tr>
<tr>
<td>Shaker (wrist-action)</td>
<td>1</td>
</tr>
<tr>
<td>Oxygen flask combustion apparatus</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>اسم الجهاز باللغة العربية</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقياس ضوئي للحائل</td>
<td>1</td>
</tr>
<tr>
<td>مقياس الضغط</td>
<td>1</td>
</tr>
<tr>
<td>خلاصة دوار</td>
<td>1</td>
</tr>
<tr>
<td>جهاز مائي نابض بدرجة الحرارة</td>
<td>1</td>
</tr>
<tr>
<td>جهاز تنظيف بالمواجات فوق السمية</td>
<td>1</td>
</tr>
<tr>
<td>مقياس معالج الأكسجين</td>
<td>1</td>
</tr>
<tr>
<td>رشاد الاهتزاز (الفعل)</td>
<td>1</td>
</tr>
<tr>
<td>جهاز اختراق الأكسجين في اللفافة</td>
<td>1</td>
</tr>
</tbody>
</table>
3- مختبر متوسط الحجم لمراقبة العقاقير

1- القدرات

صمم هذا المختبر ليقوم بإجراء نحو 500 1 تحليل كامل في العام، ورؤى أن يجهز بالعدادات اللازمة لجميع أنواع الاختبارات تقريباً، المتعلقة بتحديد كنّ العقار ونقائه، وجميع معاييرات (مقاييسات) المحتوى والشدة المبنية على الأساليب الكيميائية والجهازية والميكروبيولوجية، ومختلف اختبارات الأداء للجرعات الصيدلية.

ويتكون المختبر من عدة مكونات مقفلة، كل منها قائم بذاته، تشتمل وحدة كيميائية ووحدة أجهزة ووحدة ميكروبيولوجية ووحدة لاختبارات الأمان البيولوجي (مثل اختبار البيروجين) ووحدة لعلم العقاقير، وإذا لزم الأمر وحدة خاصة للجرعات الصيدلية، ويجب أن يضم المختبر أيضاً: مكتبة للكتب المرجعية والكتب والمدارس والدوريات المهنية والعلمية.

2- المباني

يتطلب المختبر إلى سطح تتراوح مساحته بين 300 و 400 م² ويجب أن تزود جميع حجراته بالمياه الجارية والصرف والكهرباء والغاز (المستمد من شبكة مركزية أو من صهريج غاز)، وتحدد الظروف المناخية مدى الحاجة إلى جهاز لتكيف الهواء أو التدفئة، ويجب أن يكون ضغط ماء الصنبور ملائماً لاستخدامه في رشافات تفريغ (vacuum aspirator)، المطلوب ضغط قدره 19 كيلوباسكال أو 20 نيوتن/سم² على الأقل، والفيجب تركيب مضخات لتغليف الهواء، ويمكن خفض الاحتياجات في الماء إلى حد كبير بعمل ترتيب لإعادة دورة الماء المستخدم في رشافات التفريغ. وجمعه في صهريج، هذا إذا كان مورد الماء شحيح أو غير منتظم. كما يجب تزويد المختبر أيضاً بتجهيزات لمعالجة المياه الهالكة (كحفرة الجير مثلًا لمعالجة السوائل الحمضية)، ويتطلب أن تكون مادة البناء المستخدمة في المبنى مقاومة للحريق، وأن يراعى في تخطيط الوحدات والممرات التي تتم بينها لأكفاء العمل فحسب، بل اعتبارات السلامة.
لا alguém، خاصة في المناطق التي تستخدم أو تخزين فيها السوائل القابلة للاشتعال أو الغازات المضغوطة. وإذا كان من المقرر تخزين كميات كبيرة من الكاغغات الكيميائية القابلة للاشتعال، فيجب أن يراعى في تخطيط المكان وانتشاره الالتزام بلوائح الحريق المحلية.

ويجب أن يكون لكل وحدة حجرات مجهزة بالاحتياجات النوعية الخاصة بها، ويشمل ذلك منافذ ذات الصنع للدخان في الحجرات الكيميائية، ومنابع عديدة للتيار الكهربائي في الحجرات الفيزيائية الكيميائية، ومعالجات تثبيت الفلقة إذا كان مورد الكهرباء المحلي متغير. ومناعد مخصصة للحركة في حجرات الموازين، ومععادن لنبدية الهواء الصافي في الحجرات البيوكيميائية. يجب أن تزود جميع الحجرات بخزانات لحفظ الكاغغات الكيميائية والأدوية الزجاجية والعينات، كما يجب أن تزود أيضا بروفف حائطية ومكاتب.

ولابد من ضبط درجة الحرارة والرطوبة في المناطق الاستوائية، في جزء من المختبر على الأقل، وبصفة خاصة يجب أن تضبط درجة الحرارة بحيث تكون ثابتة دائما في حجرة التحليلات الاسترارة (الكروماديوغرافية) كروماتوغرافيا الطبقة الرقيقة (مستوى أساسية)، كما يجب العمل على وقايتها في جميع الأحوال، من تيارات الهواء وضوء الشمس المباشر. يجب أن يكون الهواء الذي ينساب إلى الحجرات المزودة بمنافذ للدخان ومراوح التبريد موجودًا وليفنا وسائل اضافية لازالة الرطوبة في الأماكن المخصصة لحفظ المواد المرجعية والعينات.

ويجب أن يكون المكان الذي تحتفظ فيه الأرواح المستخدمة في اختبار البيروجين حجرة منفصلة بعيدة عن منطقة المختبر كما يجب أن تعد وحدة أخرى مستقلة إذا كان من المقرر إجراء تجارب أخرى على الحيوانات. يجب أن تضبط درجة الحرارة في كل من حجرة الحيوانات وحجرة التجارب الحيوانية لتكون ثابتة في حدود 6-60 درجة سلسس، وفي الأجزاء الدافئة تضبط درجة الحرارة هذه عادة في حدود 23-25 درجة سلسس.
هذا، والمشورة الخاصة بالخدمات الفنية اللازمة للاختبارات الميكروبيولوجية واردة في التقرير الثاني والعشرين للجنة خبراء المعايير البيولوجية بمنظمة الصحة العالمية (1).

3- الموظفون

تتكون هيئة الموظفين من 14-18 شخصاً. وهي تشمل رئيس المختبر و5-6 أخصائيي تحليل و8-10 فنيي مختبر، 4 موظفين للخدمات المساندة والتنظيم. يجب أن تكون نسبة أخصائيي التحليل إلى الفنيين مرتفعة نسبياً في المختبرات التي تشمل التحاليل التي تجري فيها مدى واسعاً من المنتجات الصيدلية. ويمكن أن تخفض هذه النسبة في المختبرات التي تجري الاختبارات المتكررة لدفعات عدد محدود من المنتجات.

يجب أن يكون رئيس المختبر من خريجي الجامعة في الصيدلة أو الكيمياء، ويفضل أن يكون حاصلًا على درجة أعلى من الدرجة الجامعية الأولى في التحليل الصيدلي أو أحد الموضوعات المتعلقة به، مع خبرة عملية واسعة بالأوجه الكثيرة لتقدير العقاقير، ويجب أن يكون أخصائيي التحليل من خريجي الجامعة في الصيدلة أو الكيمياء التحليلية أو الكيمياء الحيوية أو الميكروبيولوجيا وفقًا للمسؤولية المتصلة به. والتدريب النظامي (في أحد المعاهد) أمر مرفوع فيه في حالة الفنيين، فان لم يتوفر، يجب تدبير إجراء تدريب في أثناء العمل في المختبر، والمستويات الأخلاقية الرفيعة شرط لازم، يجب تلافيرها في رئيس المختبر وأخصائيي التحليل.

4- المعدات

يحتوي الجدول 2 على معدات المختبر العامة، وكذلك الأصناف اللازمة للوحدة الكيميائية، وأجهزة ازالة الأملاح المعدنية من الماء وتقطيرها.

(1) سلسلة التقارير الفنية لمنظمة الصحة العالمية، رقم 444، 1986.
لازمة دائما، ولكن يمكن خفض عددها وسعاتها ان تيسب وجود مصدر خارجي
موثوق به للماء الخارجي من الأقلاع المعدنية أو المقطر.

وتحتوي الجدول أيضاً على المعدات الرئيسية اللازمة لوحدة
الأجهزة واحتياجات الجرعات الميدانية، وكذلك المعدات اللازمة لوحدة
الميكروبيولوجية ويتضمن "دستور الأدوية الدولي" (1) المشورة الخاصة
بالدائما المطلوب من الكثير من هذه الأجهزة.

ويلزم، قبل شراء المعدات الرئيسية، التأكد من وجود خدمات
لصيانةها وأصلاحها بالأسلوب الصحيح، ويفضل أن يقوم على ذلك ممثلو
المنتجات ويجيب أن تكون المعدات الكهربائية متوافقة مع تردد التيار
المتاح وفلطينه ويجيب الاحتفاظ دائما بمجموعة قياسية من قطع الغيار
اللازمة للإصلاحات، والتي تشمل الأصوات التي ممن أمشال الشحنات
لمنع التسرب والمضابيس الكهربائية وهمان أنواع معينة من (gaskets)
المعدات، ومنها آجهزة الاستشراب (chromatographs)
الغازية والسائلية والسائلية عالية الضغط وأجهزة القياس الضوئي الطيفي
ذات الامتصاص الذري - تحتاج الى مورد لا يقطع (spectrophotometers)
من المذيبات والكاشف للغازات المضغوطة عالية النقاوة، ويلزم
التأكد من سهولة الحصول على هذه المواد قبل شراء هذه الأنواع من
الأجهزة ومن الأمور التي يمكن أن تساعد في اختيار الأجهزة التماس
المعلومات عن أدائها من المختبرات الأخرى، خاصة الموجودة في المنطقة
نفسها.

هذا، وتختلف الاحتياجات من الأدوات الزجاجية والأجهزة المختبرية
العامة من حالة إلى حالة، ولا يمكن تحديدها بشكل عام، وبالتالي يجب
توفر احتياجات مناسب منها، ويحتوي "دستور الأدوية الدولي" على قوائم
بالكاشفات التي يجب أن تكون متاحة.

<table>
<thead>
<tr>
<th>المعدات المخبرية العامة</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ميزان متجه (النورم الخمس عشر)</td>
<td>1</td>
</tr>
<tr>
<td>ميزان متجه (النورم العشرين)</td>
<td>2</td>
</tr>
<tr>
<td>ميزان موزع (النورم الثمانية)</td>
<td>3</td>
</tr>
<tr>
<td>ثلاثة فناجات (نورم الحمام)</td>
<td>4</td>
</tr>
<tr>
<td>جهاز لقياس الطاقة (10 لترات/ساعة)</td>
<td>1</td>
</tr>
<tr>
<td>جهاز نزع الشوادر من البيا (16 لترات/ساعة)</td>
<td>1</td>
</tr>
<tr>
<td>فرن تعزيز (أعمال خارج)</td>
<td>5</td>
</tr>
<tr>
<td>فرن ضغط من الهواء</td>
<td>6</td>
</tr>
<tr>
<td>سخانات كهربائية (بدلات فيما تختلف مخاطبة)</td>
<td>7</td>
</tr>
<tr>
<td>جهاز تعبير دوار (تدوير الهواء)</td>
<td>8</td>
</tr>
<tr>
<td>مكابش (نورم ألمانيا)</td>
<td>9</td>
</tr>
<tr>
<td>جهاز قياس الحرارة الحمام طيفية</td>
<td>10</td>
</tr>
<tr>
<td>راجع (مصغرة)</td>
<td>11</td>
</tr>
<tr>
<td>جهاز كابلات دقيق</td>
<td>12</td>
</tr>
</tbody>
</table>

معدات استشراف الطاقة الورقية وتشمل:

- تفاعلية
- أداء للتنقيط
- فرط تفتيت
- واجبات البدلات
- إضافات للغذاء (نوع البيضاء)
- جهاز القدر المركزي (نورم ألمانيا)
- جهاز تنفيذ الموجات فوق الصوتية
- نظام دوار
- أرف شندر للقوارير (نورم أنبوب)

مكابش كهربائية متغيرة:
- فرن تنفيف الهواء (نورم ألمانيا)
- مكابش ميكروبرتر
- مصغرة فنانجات
- مكابش مجمدة
- مكابش

الجهزة الرئيسية:
- مقياس ضوئي لقياس البلاسمة تحت الحمراء (نورم سلسلة، مجهزة)
- مقياس ضوئي لقياس البلاسمة فوق البنفسجية (نورم سلسلة)
- مقياس ضوئي لقياس البلاسمة فوق البنفسجية والبرتقالي (نورم صك)
- مقياس شعاعي لقياس الريال
- مقياس الاستقطاب (بدوي)
- مقياس معمل الكشف
- مقياس لتحصينات (ال릭اردة)
- جهاز قياس الحرارة (نورم ألمانيا)
- جهاز اختبار الشوادر (النورم ألمانيا/كميات)
<table>
<thead>
<tr>
<th>Number of Items</th>
<th>ان الجسم باللغة الإنجليزية</th>
<th>الأجهزة الرئيسية (تانيع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major instruments (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetrometer</td>
<td>1</td>
<td>جهاز قياس النفايات</td>
</tr>
<tr>
<td>IR hydraulic pellet press with dies</td>
<td>1</td>
<td>مقياس ميجروليك بالأشعة تحت الحمراء للأقراص</td>
</tr>
<tr>
<td>(15 ton/in² pressure ≈ 23x10⁶ Pa)</td>
<td></td>
<td>سرعة الجر (الضغط 15 طن/بوصة مغرة حاليًا)</td>
</tr>
<tr>
<td>Agate mortar with pestle</td>
<td>1</td>
<td>جهاز الموغلاج الحديبي طراز كارل فايرر</td>
</tr>
<tr>
<td>Karl-Fisher titrator</td>
<td>1</td>
<td>جهاز احتراق الأوكسورين في الفارورة</td>
</tr>
<tr>
<td>Oxygen flask combustion apparatus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Optional items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice machine</td>
<td>1</td>
<td>آلة جليد</td>
</tr>
<tr>
<td>Solvent recovery apparatus</td>
<td>1</td>
<td>جهاز استعادة المعادن</td>
</tr>
<tr>
<td>Flame photometer or atomic absorption spectrophotometer</td>
<td>1</td>
<td>مقياس ضوء ليس أو مقياس ضوء نووي ذو اتصال</td>
</tr>
<tr>
<td>Osmometer</td>
<td>1</td>
<td>مقياس التنافج</td>
</tr>
<tr>
<td>Vibropectula</td>
<td>1</td>
<td>مقياس الاتساع</td>
</tr>
<tr>
<td>High-pressure liquid chromatograph</td>
<td>1</td>
<td>منشأ ماليًا من الضغط</td>
</tr>
<tr>
<td>Densitometer for TLC plates</td>
<td>1</td>
<td>مقياس كثافة الضغط للとにت من الطلقة الوقفية</td>
</tr>
<tr>
<td>Fluorometer (filter)</td>
<td>1</td>
<td>مقياس النفق (مربع)</td>
</tr>
<tr>
<td>Hardness tester</td>
<td>1</td>
<td>جهاز اختبار اللامعدين</td>
</tr>
<tr>
<td>Friability tester</td>
<td>1</td>
<td>جهاز اختبار الانسحابية</td>
</tr>
<tr>
<td>Viscosimeter</td>
<td>1</td>
<td>مقياس اللوزية</td>
</tr>
<tr>
<td>Equipment for microbiology unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoclaves</td>
<td>4</td>
<td>موجة (مجهري)</td>
</tr>
<tr>
<td>Microscopes (bacteriological)</td>
<td>4</td>
<td>مجهري (أ dere)</td>
</tr>
<tr>
<td>Incubators</td>
<td>3-4</td>
<td>جهاز طرد مركزي مع التبريد</td>
</tr>
<tr>
<td>Centrifuge with refrigeration</td>
<td>1</td>
<td>مجموعة مرشح طعام لاختبارات التعقيمة</td>
</tr>
<tr>
<td>Membrane filter assembly for sterility tests</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Colony counter with magnifier</td>
<td>1</td>
<td>عدد المستعمات بمنظار مكبر</td>
</tr>
<tr>
<td>Laminar flow bench</td>
<td>1</td>
<td>منضدة جرية مشغولة</td>
</tr>
<tr>
<td>Hot-air sterilizer</td>
<td>1</td>
<td>جهاز تعقيم بالهواء الساخن</td>
</tr>
<tr>
<td>Spectrophotometer visible range (simple model)</td>
<td>1</td>
<td>مقياس ضوء نوائي في المدى المرئي (طراز بسيط)</td>
</tr>
<tr>
<td>Nephelometer (+ turbidimeter)</td>
<td>1</td>
<td>مقياس الكثيف (+ مقياس العكر)</td>
</tr>
<tr>
<td>Refrigerators</td>
<td>2</td>
<td>ثلاجة</td>
</tr>
<tr>
<td>Deep freezer</td>
<td>1</td>
<td>مجمد خفدي البرويدة</td>
</tr>
<tr>
<td>Large-plate microbiological assay equipment, including zone reader and recorder</td>
<td>1</td>
<td>عداد لقياس المقاومة الميكروبولوجية بالاطقاء</td>
</tr>
<tr>
<td>pH-meter</td>
<td>1</td>
<td>الواجهة منها جهاز قراءة المدى، جهاز تسجيلها</td>
</tr>
<tr>
<td>Cleaning machines for glass-ware, especially one for cleaning pipettes</td>
<td>2</td>
<td>آلات لتنظيف الأواني والأدوات الزجاجية، إحداها</td>
</tr>
<tr>
<td>Water-baths (thermostatically controlled)</td>
<td>2</td>
<td>حمام ماء (بؤثر بمنظمة ضبط درجة الحرارة)</td>
</tr>
</tbody>
</table>

(1) بعض مصادر تزديم في البلاد الأستوية المناعية
ويتطلب توسيع المدى الأساسي للاختبارات معدات إضافية، فيشمل:
اختبار البيلوجين التزود ببويت للحيوانات والمعدات أو مصادر أخرى،
وجهاز تسجيل درجة الحرارة بمسابير. ويلزم لاختبار مستحضرات الحقن
مقياس للتناسق (osmometer).

4- مجال النشاط

المسؤوليات الرئيسية هي على النحو التالي:

- إجراء الاختبارات اللازمة لآثاث ما إذا كانت عينة معينة من
 عقار ما مطابقة للمواصفات المطلوبة، سواء كانت هذه العينة مصنوعة
 محليا أو مستوردة، وما إذا كانت التعبئة مناسبة.
- فحص المنتجات الصيدلية التي يشتبه في أن تكون فعالية،
 أو سلامتها وضع، ومدة الحجة على وجود أي دليل على التلف
 أو التلوث أو الغش وتوقيع ذلك.
- التحقق من شبات المنتجات في ظروف التخزين المحلية.

وتشمل المسؤوليات الأخرى التي يمكن أن تقع على عاتق المختبر ما يأتي:

- تقييم البيانات التي يقدمها المنتجون بشأن أداء المنتجات.
- تقرير ما إذا كانت بطاقه التعريف الخاصة بالمنتج تعطي
 ارشادات سليمة وواضحة للاستخدام.

- إداء المشورة بشأن العقاقير التي يجمع القطاع العام شراءها.

وتنتمى هذه الأنشطة الإضافية موظفين مؤهلين أكفاء ومكتبة.
وإذا، فإن الموارد الضرورية لها لم تؤخذ في الاعتبار في هذا الملحق.
تشترط لائحة الترخيص بالعقاقير في البلدان المتقدمة فحصا مستقلا للبيانات التي يقدمها المنتج، مما تطلب تسجيل المنتج، والبيانات الصيدلية المطلوبة واردت بالتفصيل في الملحق 5 لتقرير لجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات الصيدلية الخامسة والعشرين (1). وعندما تتفق المحاور لمثل هذا العمل، يمكن أن تتقاضى مراجعة هذه البيانات والتحقق منها، بفحص مواصفات النوعية المعينة، ضمن مسؤوليات مختبر كبير لمراقبة العقاقير، أو يمكن القيام بها في مختبر منفصل مرتبط بالسلطة التنظيمية بهذا، ولم تُواخذ التدابير اللازمة لهذه الأنشطة في الاعتبار، فيما يتعلق بالمختبرين البارد وصفهما في الجزءين 2 و 3.

- العوامل المؤثرة في حجم المختبر ووقعه

يتعدد موقع مختبر المراقبة الوطنية وحجمه وتنظيمه باعتبارات كثيرة منها ما يأتي: الموارد المالية، ومتطلبات السلطة التنظيمية الوطنية لمراقبة العقاقير، و مدى استخدام العقاقير في داخل البلاد، وقد وجدت المصادر المختلفة التي تتضمن منها المنتجات.

وإذا كان الهيكل الاداري الوطني للبلد لا مركزاً أو إذا كانت المواصلات سيئة فقد يكون من الضروري انشاء مختبرات محلية في المحافظات أو مختبرات محلية.

ويجب أيضا النظر بعناية في الروابط التنظيمية والمهنية بين مختبر المراقبة وخدمات الصحة العامة الأخرى، ومنها مختبرات الرقابة على الأغذية، والمختبرات البيولوجية، ومختبرات المستشفيات، أو المختبرات السريرية (الأكليتريكية) الإقليمية، وأنساق الطب والصيدلية الجامعية.

(1) سلسلة التقارير الفنية لمنظمة الصحة العالمية، رقم 576، 1975.
وعلى الرغم من أنه يمكن عملياً إنشاء مختبر مراقبة متوسط الحجم
وادارته بعيداً عن الخدمات المختبرية الأخرى، فتمكن تحقيق اقتصاد
في التكلفة بإتمامه في مجمع يضم مساحات أخرى، زائد يمكن للمختبر
أن يحتفظ بالاستقرار في العمل، والمشاركة في الوقت نفسه، في
الخدمات المساندة (مثل وحدات التوريد وفروق الصيانة وورشات الأصلاح).
كما تناح له فرصة استخدام الخدمات المتخصصة المتوفرة في المختبرات
المجاورة (مثل المختبرات البكتريولوجية لاختبار التعقيم) بدلاً من
تكرار الخدمة نفسها في مختبر مراقبة العناصر.

6- تنفيذ مشروعات مختبرات المراقبة

دراسة الجدوى

1- يجب، قبل اتخاذ أية خطوة محددة نحو إنشاء مختبر وطني لمراقبة
العناصر، البدء في إجراء دراسة جدوى لتقييم الوظائف التي يؤديها
هذا المختبر على وجه التحديد وحجم العمل، والتكلفة المتوقعة. وذلك
في إطار الاحتياجات والشروط القانونية والإدارية السائدة. ويجب أن
يدخل في الحساب، عند تقدير التكليف، الأرض و/أو المباني والخدمات
والآثاث والمعدات ومصاريف الاستشارات وتدريب العاملين، وتكاليف
التشغيل والصيانة الروتينية، ويجب أيضاً بحث ما إذا كانت هناك ضرورة
لاتباع أسلوب المراحل في تنمية الخدمة أو ما إذا كان هذا الأسلوب ممكنًا
عملياً.

الالتمانية على مراحل

يحدد معدل تنمية الخدمة في أي مختبر، عامة، بتوفير الموظفين
المؤهلين ذوي الخبرة وإمكانات مواصلة تدريبيهم، فيجب عدم أدخال
أساليب جديدة في برامج الاختبارات الروتينية، على الأطلاق، حتى يتم
التأكد من ارتفاع مستوى الأداء، فمن الحكمة أن يركز الاهتمام، فـ
بارز الأمر، على تطوير الأساليب الكيميائية والفيزيائية، للتحليل والاختبار، وأن يُدخل الأساليب الميكروبيولوجية والبيولوجية إلى مرحلة متأخرة.

٣- دعم البرنامج

إذاً مستوى الموظفين المهنيين العلمي والخليفي هو المحدد الأساسي لمستوى الخدمة المختبرية وقيمتها. فيجب أن يكونوا على درجة عالية من الكفاءة الفنية، وأن يكون لديهم الدافع، والقدرة على النقد، والنزاهة المهنية. ويمكن تعزز غرس هذه الصفات فيهم خلال التدريب أثناء العمل في مختبرات معتمدة، وتعيين خبراء من ذوي السمعة في المختبرات الوطنية الحديثة الإنشاء.

ويجب أن تكون التسهيلات للتدريب على الأساليب التحليلية التخصصية، في البلاد التي رسخت فيها فعلاً هذه الأساليب، وادراكًا للحاجة الشديدة للموارد المحدودة المتاحة في أقل البلدان نمواً، فالمأمول أن تُتاح لها المعونة المناسبة عن طريق برامج المساعدة الثنائية والمتعددة الأطراف.
الملحق 2

متطلبات الجودة للمواد الصيدلية المساعدة

1- تمهيد

تنتخبو صياغة العقاقير الاتجاه الذي يؤدي الى ضمان شبات جرعه مباشرة مقبولة واستعانتها في حالة المستحضرات التي تتطلب فموية ، وأنها تحرر المكونات الفعالة بالكفاءة المناسبة لمسلك التعاطي المقصود . ويمكن أن تكون التكنولوجيا التي يتضمنها هذا العمل التطويري ، وطرح الصنع بالتعقبه ، معقدة و التي تتضمن استخدام مواد متنوعة (مواد صيدلية مساعدة) لا تسهم بطريق مباشر في الفعل الدوائي للمزج وتصف هذه المواد وقتاً لوظيفتها ، ويوجد بعضها في شكل الجرعة نفسها بكميات واضحة وتشمل هذه الفئة عوامل الحشو والتماسك والتحلية واسباب اللون والنكة والمواد الحافظة . ولقد أطلقت على هذه المواد انتقائها في بعض الأحيان ، أسماء جماعية مثل أوسوفة (excipients) ، مواد مضافية (auxiliary substances) ، مواد اضافية (added substances) صيدلية مساعدة (pharmaceutical adjuvants) والمتحدح أن يشمل الاسم المواد الصيدلية المساعدة (pharmaceutical aids) جميع المواد الداخلة في الاعتبار.

ان النظر الى هذه المواد على أنها خاملة كيميائية أو دوائية فهي خاطئ ويجب أن تختار بعناية لتجنب التفاعلات غير المطلوبة بعضها مع بعض أو مع المكونات الفعالة و يمكن أن تحدث هذه التفاعلات نتيجة أخطاء في الصياغة التي يقوم بها منتجون عديمو الخبرة . فيجب على جميع منتجي الجرعات الصيدلية أن يخضعوا أساليب عملهم للمراجعة باستمرار ، وأن يكونوا على علم دائماً بالتطورات والمواد الجديدة المستحدثة في هذا المجال التخصصي الدقيق.
تكوين المواد الصيدلية المساعدة مدى واسعا من المواد بعضها مخلق بينما يوجد البعض الآخر طبيعيًا وليست بعض تعريف واضح بينما البعض الآخر مواد معقدة التركيب، مثل مخلوطات المواد المتماثلة وتبعتا لذلك، تتفاوت الأساليب التحليلية اللازمة للتحقق من كنئج هذه المواد وتعمير نقائها، وملاIdentifierها وغرق معين، إن لزم الأمر تفاوتًا واسعًا وتختلف هذه الأساليب في جوانب كثيرة، عن تلك التي تستخدم في حالة المواد الفعالة.

وكم وما الحال في مواصفات المواد الفعالة (1)، تحدد مواصفات الجودة للمادة الصيدلية المساعدة كنه المادة، وتعرف المعايير التي يقاس بها نقاها. وقد تملح هذه المواصفات، إن اقتضى الحالة، لتحقيق أي صفة خاصة مميزة لها مثل ثقية باستخدامها في عملية الصياغة.

ووجب أن يكون مفهوماً، عند وضع مواصفات هذه المواد، أن للكثير منها استخدامات وتطبيقات أخرى، وأن معظمها يصنع أو يعالج خارج مجال الصناعة الصيدلية. فقد توجد، إذن، رتب فنية لانضباط التطبيقات في الصياغة الصيدلية، ويجب أن توضع حدود النقاء (والخواص الأخرى) بحيث تستبعد المواد التي من هذا النوع، ومهم أيضاً، أن يراعى في متطلبات النقاء هذه، أصل المادة، وعمليات الانتاج اللاحقة التي مررت بها (فمثلا، مثلما أن توجد موثقة من مخبر الفحص (monomers) (opolymeric) وفهي حالة المواد المعقدة التركيب، يجب أن تضع الحدود الكمية التي تتضمنها المواصفات باستخدام المدى الكامل للمواصفات المناسبة الموجودة في السوق.

(1) سلسلة التقارير التقنية لمنظمة الصحة العالمية، رقم 114، 1977، (القرن السادس والعشرون للجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات الصيدلية)، الملحق 10.
وعلى أي حال، يمكن أن تتفاوت متطلبات تقياً المادة طبقاً لاستخدامها، وعلى ذلك، فتلزم معايير ميكروبيولوجية للمستحضرات التي تعطي بالحقن أكثر صراحة منها للمستحضرات الفموية. وفي حالة استخدام المادة في مثل هذه الغرض المختلفة مظبيلاً، أو في حالة اشتكائها من مادتين مضرتين أو أكثر، يجب أن يلحق بالدراسة الخاصة الرئيسية، متطلبات إضافية خاصة بالرتب المحددة أو المواد المضردة المحددة، حسب مقتضى الحال. وقد تدعو الحاجة أحياناً إلى مواصفات تكميلية للمواد التي تستخدم مواداً فعالة، وموادًا صيدلية مساعدة أخرى، مثل حمض الأسكوربيك وحمض الستريك والجلكوز والمغنيسيوم وكرتونات الصوديوم الهيدروجينية وكلوريد الصوديوم وسترات الصوديوم. وفي الحالات الأخرى تكفي الاحالة إلى الدراسة الخاصة في "دستور الأدوية الدولي".

للمواد الصيدلية المساعدة بعض خواص فيزيائية هامة مثل التوزيع الحجمي للجسيمات، والمساحة السطحية. يتحدد بها السلوك التكنولوجي للمادة، ويلزم أن تؤخذ هذه الخواص في الاعتبار بالنسبة لكل استخدام محدد. مراد وليس المقصود أن تستند دراسة دستور الأدوية هذه الخصائص التكنولوجية وتعرفها، فيجب أن تدرس في اختبارات أداء نوعية تجري في أثناء تطوير الجرعة الصيدلية.
الملحق 3

المواد الكيميائية المرجعية الدولية

1- اعتماد مواد مرجعية جديدة

تم اعتماد المواد الكيميائية المرجعية الدولية الجديدة التالية:

- amitriptyline hydrochloride
- caffeine
- 2-(4-chloro-3-sulfamoylbenzoyl) benzoic acid
- chlorphenamine hydrogen maleate
- diazoxide
- diethylcarbamazine dihydrogen citrate
- fluphenazine decanoate dihydrochloride
- lidocaine
- lidocaine hydrochloride
- pyridostigmine bromide

2- استبدال بعض المواد المرجعية الحالية

أدخلت تشكيلات بديلة للمواد الكيميائية المرجعية الدولية التالية:

- etacrynic acid
- lanatoside C
- oxacillin sodium
- retinol acetate (vitamin A acetate)
- riboflavin

3- قائمة بالمواد الكيميائية المرجعية الدولية، يناير/ كانون الثاني 1983

تعتمد المواد الكيميائية المرجعية الدولية بناءً على مشورة لجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات الصيدلية وهي
وتورد أساساً للاستخدام في الاختبارات الفيزيائية والكيميائية والمعايير
(المقاييس) الوارد شرحها في مواقف مراقبة جودة العقاقير المنشورة
في "دستور الأدوية الدولي" .

ويمكن أن تستخدم المواد الكيميائية المرجعية الدولية أيضاً في
اختبارات ومعاييرات (مقاييس) غير واردة في "دستور الأدوية الدولي" .
ولكن مسؤولية تقييم ملاءمة المواد تقع ، حينئذ ، على المستخدم أو على
لجنة دستور الأدوية أو غيرها من السلطات التي قضت باستخدام هذه
المواد .

وإرشادات استخدام هذه المواد ، وكذلك البيانات التشغيلية اللازمة
للاستخدام المقصود من مواقف "دستور الأدوية الدولي" المعنية واردة
وفي الشهادات المرفقة مع المواد عند نوعها . ويمكن الحصول على المزيد
من التقارير التشغيلية المفصلة للمواد ، عند الطلب ، من المركز المتعاون
مع منظمة الصحة العالمية في مجال المواد الكيميائية المرجعية .

ويوصى ، بصفة عامة ، بوقاية المواد أثناء تخزينها من الضوء
والرطوبة ، وفي حال أن تكون درجة الحرارة نحو +5 سلسوس . وإذا
اقتضى الأمر ظروف تخزين خاصة فسوف ينص على ذلك في بطاقة التعريف
أو في الكراسة المرفقة .

تجرى مراقبة ثبات المواد الكيميائية المرجعية الدولية المحفوظة
في المركز المتعاون مع منظمة الصحة العالمية بإعادة فحصها بانتظام
ويستبدل بالمواد التالية تشغيلات أخرى جديدة عند الضرورة ، وتحتوي
التقارير السنوية للمركز على قوائم بأرقام المراقبة الخاصة بالتشغيلات
الحاضرة ، ويمكن الحصول على هذه القوائم عند الطلب .

ترسل طلبات شراء المواد الكيميائية المرجعية الدولية إلى المركز
المتعاون مع منظمة الصحة العالمية في مجال المواد الكيميائية المرجعية
WHO Collaborating Centre for Chemical Reference Substances, Apoteksbolaget AB, Centrallaboratoriet,
P.O. Box 3045, S-171 03, Solna, Sweden, (Telex: 115 35).
وتوضح القائمة التالية المواد المرجعية المتاحة والعبوات التي تورد بها:

<table>
<thead>
<tr>
<th>المادة المذكورة باللغة الإنجليزية</th>
<th>مقدار العبوة</th>
</tr>
</thead>
<tbody>
<tr>
<td>aceclidine salicylate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>p-acetamidobenzalazine</td>
<td>100 مجم</td>
</tr>
<tr>
<td>allopurinol</td>
<td>100 مجم</td>
</tr>
<tr>
<td>3-aminopyrazole-4-carboxamide</td>
<td>100 مجم</td>
</tr>
<tr>
<td>hemisulfate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>amitriptyline hydrochloride</td>
<td>100 مجم</td>
</tr>
<tr>
<td>ampicillin</td>
<td>200 مجم</td>
</tr>
<tr>
<td>ampicillin sodium</td>
<td>300 مجم</td>
</tr>
<tr>
<td>ampicillin trihydrate</td>
<td>300 مجم</td>
</tr>
<tr>
<td>anhydrotetracycline hydrochloride</td>
<td>25 مجم</td>
</tr>
<tr>
<td>azathioprine</td>
<td>100 مجم</td>
</tr>
<tr>
<td>bendazol hydrochloride</td>
<td>100 مجم</td>
</tr>
<tr>
<td>benzbarbital</td>
<td>100 مجم</td>
</tr>
<tr>
<td>benzylamine sulfate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>benzylpenicillin potassium</td>
<td>100 مجم</td>
</tr>
<tr>
<td>benzylpenicillin sodium</td>
<td>200 مجم</td>
</tr>
<tr>
<td>betamethasone sulfate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>bupivacaine hydrochloride</td>
<td>100 مجم</td>
</tr>
<tr>
<td>caffeine</td>
<td>100 مجم</td>
</tr>
<tr>
<td>carbencillin sodium</td>
<td>100 مجم</td>
</tr>
<tr>
<td>chloramphenicol</td>
<td>200 مجم</td>
</tr>
<tr>
<td>chloramphenicol palmitate (polymorph A)</td>
<td>1 جم</td>
</tr>
<tr>
<td>5-chloro-2-methylaminobenzophenone</td>
<td>100 مجم</td>
</tr>
<tr>
<td>2-(4-chloro-3-sulfamoylbenzoyl)</td>
<td>50 مجم</td>
</tr>
<tr>
<td>benzoic acid</td>
<td>100 مجم</td>
</tr>
<tr>
<td>chlorphenamine hydrogen maleate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>chlorpromazine hydrochloride</td>
<td>100 مجم</td>
</tr>
<tr>
<td>cloxacillin sodium</td>
<td>300 مجم</td>
</tr>
<tr>
<td>cortisone acetate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>desoxycortone acetate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>dexamethasone</td>
<td>100 مجم</td>
</tr>
<tr>
<td>dexamethasone acetate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>diazepam</td>
<td>100 مجم</td>
</tr>
<tr>
<td>diazoxide</td>
<td>100 مجم</td>
</tr>
<tr>
<td>Name of Substance</td>
<td>Arabic Name</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>dicloxacillin sodium</td>
<td>صوديوم ديكولكسيلين</td>
</tr>
<tr>
<td>dicolinium iodide</td>
<td>نوديد ديكولينينوم</td>
</tr>
<tr>
<td>dicoumarol</td>
<td>ديكومارول</td>
</tr>
<tr>
<td>diethylcarbamazine dihydrogen citrate</td>
<td>سترات دايثلكاربامازين ثنائي الهيدروجين</td>
</tr>
<tr>
<td>digitoxin</td>
<td>ديجيتوكسين</td>
</tr>
<tr>
<td>digoxin</td>
<td>ديجوكسين</td>
</tr>
<tr>
<td>NN'-di-(2,3-xylyl)anthranilamide</td>
<td>نن- دي-2،3- هيلي- انترانيلاميد</td>
</tr>
<tr>
<td>4-epi-hydrotetracycline hydrochloride</td>
<td>هيدروكلوريد (+) - إيبني هيدروتريكلين</td>
</tr>
<tr>
<td>4-epi-tetracycline ammonium salt</td>
<td>ملح نشادر 4 - ايبتي كليمين</td>
</tr>
<tr>
<td>ergometrine hydrogen maleate</td>
<td>مالات الأرجومترnine الهيدروجينية</td>
</tr>
<tr>
<td>ergotamine tartrate</td>
<td>طرطات الأرجوتامين</td>
</tr>
<tr>
<td>estradiol benzoate</td>
<td>بنزوات الاستراديل</td>
</tr>
<tr>
<td>estrone</td>
<td>استروين</td>
</tr>
<tr>
<td>etacrynic acid</td>
<td>حمض الأتانيكين</td>
</tr>
<tr>
<td>ethambutol hydrochloride</td>
<td>هيدروكلوريد الإثامبوتول</td>
</tr>
<tr>
<td>ethinylestradiol</td>
<td>ايثينيل استراديل</td>
</tr>
<tr>
<td>ethisterone</td>
<td>ايثسترون</td>
</tr>
<tr>
<td>etosuximide</td>
<td>ايثوسكسيميد</td>
</tr>
<tr>
<td>etocarlide</td>
<td>إتوكارليدي</td>
</tr>
<tr>
<td>fluphenazine hydrochloride</td>
<td>ثنائي كلوريد فلافيزانين</td>
</tr>
<tr>
<td>fluphenazine decanoate dihydrochloride</td>
<td>ثنائي كلوريد فلافيزانين ديكانوات</td>
</tr>
<tr>
<td>fluphenazine enantate dihydrochloride</td>
<td>ثنائي كلوريد فلافيزانين ابتانتات</td>
</tr>
<tr>
<td>folic acid</td>
<td>حمض الفوليك</td>
</tr>
<tr>
<td>furosemide</td>
<td>فوروسيميد</td>
</tr>
<tr>
<td>griseofulvin</td>
<td>جريسيوفلين</td>
</tr>
<tr>
<td>haloperidol</td>
<td>هالوبريدول</td>
</tr>
<tr>
<td>hydrochlorothiazide</td>
<td>هيدروكلوروثيزيد</td>
</tr>
<tr>
<td>hydrocortisone</td>
<td>هيدروكورتيزون</td>
</tr>
<tr>
<td>hydrocortisone acetate</td>
<td>أسيتات الهيدروكورتيزون</td>
</tr>
<tr>
<td>(-)-3-(4-hydroxy-3-methoxyphenyl)</td>
<td>(-) - 3 - هيدروكسي- 3- ميثوكسي</td>
</tr>
<tr>
<td>-2-methylaniline</td>
<td>فينيل - 2 - ميثيلالينين</td>
</tr>
<tr>
<td>imipramine hydrochloride</td>
<td>هيدروكلوريد اليمبرامين</td>
</tr>
<tr>
<td>indometacin</td>
<td>إندوميتاسين</td>
</tr>
<tr>
<td>o-iodohippuric acid</td>
<td>حمض أ- بودومبيوريك</td>
</tr>
<tr>
<td>العادة المراجعه</td>
<td>مقدار العبوة</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>lanatoside C</td>
<td>100 مجم</td>
</tr>
<tr>
<td>levodopa</td>
<td>100 مجم</td>
</tr>
<tr>
<td>lidocaine</td>
<td>100 مجم</td>
</tr>
<tr>
<td>lidocaine hydrochloride</td>
<td>100 مجم</td>
</tr>
<tr>
<td>mafenamic acid</td>
<td>100 مجم</td>
</tr>
<tr>
<td>melting point reference substances</td>
<td>13 x 13 مجم</td>
</tr>
<tr>
<td>metazide</td>
<td>100 مجم</td>
</tr>
<tr>
<td>methaqualone</td>
<td>100 مجم</td>
</tr>
<tr>
<td>methylpapaverine</td>
<td>100 مجم</td>
</tr>
<tr>
<td>methyltestosterone</td>
<td>100 مجم</td>
</tr>
<tr>
<td>meticillin sodium</td>
<td>40 مجم</td>
</tr>
<tr>
<td>nafcillin sodium</td>
<td>40 مجم</td>
</tr>
<tr>
<td>nicotinamide</td>
<td>100 مجم</td>
</tr>
<tr>
<td>nicotinic acid</td>
<td>100 مجم</td>
</tr>
<tr>
<td>ouabain</td>
<td>100 مجم</td>
</tr>
<tr>
<td>oxacillin sodium</td>
<td>400 مجم</td>
</tr>
<tr>
<td>pheneticillin potassium</td>
<td>400 مجم</td>
</tr>
<tr>
<td>phenoxybenzamine</td>
<td>400 مجم</td>
</tr>
<tr>
<td>phenoxymethylpenicillin</td>
<td>400 مجم</td>
</tr>
<tr>
<td>phenoxymethylpenicillin calcium</td>
<td>400 مجم</td>
</tr>
<tr>
<td>phenoxymethylpenicillin potassium</td>
<td>400 مجم</td>
</tr>
<tr>
<td>phenytoin</td>
<td>100 مجم</td>
</tr>
<tr>
<td>prednisolone</td>
<td>100 مجم</td>
</tr>
<tr>
<td>prednisolone acetate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>prednisone</td>
<td>100 مجم</td>
</tr>
<tr>
<td>prednisone acetate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>progesterone</td>
<td>100 مجم</td>
</tr>
<tr>
<td>propicillin potassium</td>
<td>500 مجم</td>
</tr>
<tr>
<td>pyridostigmine bromide</td>
<td>100 مجم</td>
</tr>
<tr>
<td>riboflavin</td>
<td>50 مجم</td>
</tr>
<tr>
<td>rose Bengal sodium</td>
<td>100 مجم</td>
</tr>
<tr>
<td>sulfamethoxazole</td>
<td>100 مجم</td>
</tr>
<tr>
<td>sulfamethoxypyridazine</td>
<td>100 مجم</td>
</tr>
<tr>
<td>sulfanilamide</td>
<td>100 مجم</td>
</tr>
<tr>
<td>testosterone propionate</td>
<td>100 مجم</td>
</tr>
<tr>
<td>tetracycline hydrochloride</td>
<td>300 مجم</td>
</tr>
<tr>
<td>الاسم باللغة الإنجليزية</td>
<td>الاسم باللغة العربية</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>thioacetzone</td>
<td>شيوأسيتازون</td>
</tr>
<tr>
<td>tolbutamide</td>
<td>تولبوتاميد</td>
</tr>
<tr>
<td>tolnaftate</td>
<td>تولنافتات</td>
</tr>
<tr>
<td>trimethoprim</td>
<td>ترايميثوبريمي</td>
</tr>
<tr>
<td>trimethylguanidine sulfate</td>
<td>كبريتات تراي اشيل جواندين</td>
</tr>
<tr>
<td>tubocurarine chloride</td>
<td>كلويريد توبوكورارين</td>
</tr>
<tr>
<td>vitamin A acetate (solution)</td>
<td>أسيتات فيتامين "أ" (محلول)</td>
</tr>
<tr>
<td>warfarin</td>
<td>ورفاريين</td>
</tr>
</tbody>
</table>

(أ) نحو 9 مجم في 450 مجم من الزيت في الكبسولة.
(matrix) 4

الدراسة التعاونية للأطياف المرجعية

تحت الحماية للمواد الصيدلية

1- اعتبارات عامة

حتى لجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات
الصيدلية في العديد من تقاريرها على وجه تجنب الطرق التحليلية
التي تتطلب استخدام المواد المرجعية في دستور الأدوية الدولي (1)
كما أمكن، وذلك لارتفاع أسعار هذه المواد. إذ أن تكلفـة وصعوبة
الحصول على المواد المرجعية وتوزيعها على النطاق العالمي لاستخدامها
في اختبارات تعيين الكنس المحددة في دستور الأدوية الدولي، تستلزم
النظر في استبدال الأطياف المرجعية بالمواد المرجعية حيثـا كان
ذلك مناسبًا، وأن الاقتصاد في تكلفة اعتماد المواد المرجعية وتوزيعها
وتيسير الحصول على معيار مرجعي غير معرض للتفاوت يحقق فائدة مباشرة
لzkبكم empowerهم

وبعد أن تجري موازنة بين هذه المزايا وبين المطالب الفنية
الجديدة المفروضة على أخصائيي التحليل، والحاجة إلى طرق معايرة
وبصفة خاصة لتحضير العينات، واحتمال أن يؤثر تعدد الأشكال أو اختلاف
قدرات تحليل أجهزة القياس الضوئي الطيفي وتسجيلاتها في تفسير
النتائج، ومع هذا، فقد كانت التجربة إيجابية، على ما يظهر، فيـ
ال البلدان التي استخدمت فيها فعلا الأطياف المرجعية في أغراض دستور
الأدوية (2)

The international pharmacopoeia, 3rd edition, volume 1. General
وفقًا لما يمكن أن تحقق الأطباق المرجعية بالتحصين في الأحداث، خفض جزئي في ما هو مطلوب من المواد الكيميائية المرجعية التي يمكن أن تستخدم في أغراض أخرى غير انتاج الأطباق تحت الحمراء في مجال دستور الأدوية والأسلوب المثال هو أن تبقى المواد الكيميائية المرجعية متاحة حتى في الحالات التي تستخدم فيها ما تناولناه من الأطباق تحت الحمراء.

٢- الأطباق المرجعية تحت الحمراء التي يرتبط استخدامها بدستور الأدوية الدولي

حيث أن اعتماد مجموعة من الأطباق المرجعية تحت الحمراء ملائمة للاستخدام بالارتباط مع دستور الأدوية الدولي كان أمرًا متوقعًا، فإن كثيرًا من الدراسات الخاصة تحتوى فعلاً على ما يمكن من استخدام هذه الأطباق، اختيارية، بدلاً من المواد الكيميائية المرجعية الدولية.

وتوجد فعلاً مجموعات مختلفة من الأطباق تحت الحمراء، حضر بعضها خصيصًا للأعمال المرتبطة بدستور الأدوية. فيمكن، إذن، تطوير مجموعة معترف بها رسمياً لمنظمة الصحة العالمية، اما من جديد واما بقرار المجموعات الحالية رهنًا بالموافقة.

ويتطلب جمع مجموعة جديدة الحصول على مواد مختبرية بالشكل المناسب، وتوليد الأطباق وفقًا لطريقة قياسية في مختبر أو أكثر من المختبرات المتعاونة. ويلزم أن تحظى المشاكل التي قد نشأ من تعدد الأشكال بعناية خاصة.

ولأن مواد عالية القداء عادة لهذا الغرض، ولو أن أفضل استخدام المواد المرجعية الرسمية الحالية. وفي حالة يجب أن يتم التصديق عليها في عدة مختبرات، كل مستقل عن الآخر، وذلك لكي تكون هناك فرصة أكبر للكشف عن تعدد الأشكال المزعج.
الدراسة التعاونية

تمت حديثا دراسة تعاونية كانت قد أجريت لاستكشاف الأمكانية العملية لاستخدام الأطياف المرجعية في إطار دولي أوزع. فسجل كل مختبر من المختبرات المشتركة في الدراسة أطياف فيلم (غشاء) من البوليسترين وثلاث مواد اختبارية كان قد زود بها. من المواد الكيميائية المرجعية الدولية والمواد المتجهة محليا، وقدمت الأطياف الناتجة إلى هيئة دولية للمراجعة.

وكان المواد المختارة هي: هيدروكورتيزون، بيوناسيوم بنزيلين والديازيبام. وقد تم فحص المواد الكيميائية المرجعية الدولية والمواد المتجهة محليا في جميع هذه الحالات.

ولقد استخدمت أقراس بروميد بيوتاسيوم في تحضير العينات، وسجلت الأطياف في ظروف العمل العادية في كل مختبر. وقدمت تفصيلات طريقة تحضير الأقراس (مثل وزن العينة ووزن بروميد البيوتيسيوم وأي معالجة للعينة في مطبعة بالكرات) وطراز المقياس الضوئي الطيفي المستخدم وعمر وحالة المستخدم.

(أ) تعاون في إجراء الدراسة المختبرات الآتية:
1- المختبر المركزي للعقاري، كلكتا، الهند
2- إدارة الخدمات العلمية، سيناغوورة
3- مختبر بحوث العقاري والرقابة عليها، وارسو، بولندا
4- مختبر اللجوء البريطاني لدستور الأدوية، لندن، إنجلترا
5- مختبر قسم معايير العقاري، دستور الولايات المتحدة للأدوية، روكفيل، ماريلاند، الولايات المتحدة الأمريكية
6- المعهد الوطني للرقابة على المنتجات الصيدلية والبيولوجية، بيجن، الصين
7- معهد سكيب للبحوث الطبية، نيوبرونزيك، نيوجرسي، الولايات المتحدة الأمريكية
8- المعهد الحكومي العالي لمواصفات العقارية ومراقبتها، موسكو، الاتحاد السوفيتي
9- المركز المتعاون مع منظمة الصحة العالمية في مجال المواد الكيميائية المرجعية، سولندا، السويد
نتائج الدراسة التحاونية

تم تحضير عينات المواد الثلاث جميعها في أترواص بروميد البوتاسيوم باستخدام كميات تراوحت تحسباً بين 1 روم و 5 روم لكل 100 مجم من بروميد البوتاسيوم. وسجلت الأطياف في التناقلات التالية: من 1 × 10⁻⁴ سم⁻¹ إلى 1 × 10⁻³ سم⁻¹ ، أو من 1 × 10⁻⁴ سم⁻¹ إلى 1 × 10⁻⁵ سم⁻¹. باستخدام أجهزة قياس ضروية طيفية مختلفة الطرز والنموذج، وكان قد سبق استخدام هذه الأجهزة مددًا متغيرة وصلت إلى خمس سنوات، وتراوح طول معظم الأطياف بين 5 و 11 سم وعرضها بين 15 و 5 سم. ولكن الخرائط التي أعطتها أحد الأجهزة كانت 48 سم × 5 سم وتراوح زمن المسح بين 6 دقائق ودقيقة 12 دقيقة.

وقرنت الأطياف بتقييم القمم الواضحة التحليل بين 1 × 10⁻⁴ سم⁻¹ و1 × 10⁻³ سم⁻¹، وهذا هو المدى الذي أشارت فيه جميع الأجهزة. واستخدم الطيف المحتوى على أكبر عدد من القمم في كل مجموعة كنقطة مرجعية. هذا، ولم يمكن تعيين مواقع القمم بدقة، نظراً لأن قمم البولستريني المرجعية لم تكن متراكبة على خرائط الأطياف. وعلى ذلك فالقيم المبينة في الجدول 2 معتادة بوحدة سم⁻¹ بدون تصحيح.

ولقد نجحت جميع المختبرات في التحقق من كنه بروميد البوتاسيوم بنزيلين وديازيبام، أما فيما يتعلق بالهيدروكورتيزون فقد نجحت جميع المختبرات معاً مختبر واحداً في تحقيق كنهه. ولقد نسب الذين قيموا النتائج هذا الفشل إلى عيب في تحمير العينة أكثر من النقص في تأصل في الطريقة والتحليلات التفصيلية واردة في الجدول 1-4، 4.

وكتبت أطياف أفلام (أغشية) البولسترين هي التي حدثت فيها أكبر الاختلافات، وحدث ذلك، افتراضًا، نتيجة لتقل السطح وامتصاص الرطوبة. وبناءً على ذلك اقترح تعديل الجزء الخاص بالقياسات الضوئية الطيفية تحت الحمراء في المجلد الأول من دستور الأدوية الدولية لضمان ما يلي: 5.
(1) أن يعطي تفصيلات إضافية للعناية بأفلام البوليستر.

(2) أن يشمل جدول يحتوي على القيم الرئيسية لفيلم البوليستر، ويتضح بعد أدنى لقدرة التحليل، كما هي الحال في دستور الأدوية الأوروبية (1). وهذا يتطلب أن يكون الفرق في النسبة المئوية للنفاذ بين النهاية الصغرى عند 0.7 سم-1 والنهاية العظمى عند 0.8 سم-1 أكبر من 18، وأن يكون الفرق بين النهاية الصغرى عند 0.5 سم-1 والنهاية العظمى عند 0.6 سم-1 أكبر من 12.

(3) أن يستعاض عن الاشتراع الحالي باتفاقية الشدة النسبية باشتراع اتفاق الأطباء.

الإحصاءات الواردة بالوحدة:

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
</tbody>
</table>

(أ) الإحصاءات الرومانية ترمز للمتغيرات المتعددة، ض = قم معينة (ن تم تقسيم)
(ب) يتم إجابة عدد القيم في المواد الكيميائية المرجعية الدولية، ب = إجابة عدد القيم في البيانات التجارية.
<table>
<thead>
<tr>
<th>التقدم</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>1600</td>
<td>1600</td>
<td>1600</td>
<td>1600</td>
<td>1600</td>
<td>1600</td>
<td>1600</td>
<td>1600</td>
<td>1600</td>
</tr>
<tr>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
</tr>
<tr>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
</tr>
</tbody>
</table>

(1) الأعداد الرومانية ترمز للحترات المتداولة، و = قيم محسّنة (لم تقييم).
(ب) 1 = إجمالي عدد القمم في المواد الكيميائية المرجعية الدولية
(ب) 2 = إجمالي عدد القمم في العينات التجارية

57
<table>
<thead>
<tr>
<th>من</th>
<th>(1)</th>
<th>(ب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>37</td>
<td>17</td>
</tr>
<tr>
<td>22</td>
<td>37</td>
<td>17</td>
</tr>
<tr>
<td>23</td>
<td>37</td>
<td>17</td>
</tr>
</tbody>
</table>

(1) الاعداد الرومانية تعني الملاحظات المذكورة

(ب) = اجمالى عدد القوام في المواد الكمية المرجعية الدولية

ب = اجمالى عدد القوام في العينات التجارية

58
الملحق 5

ارشادات للقائمين بإعداد الدراسات الخاصة أو التعليق عليها

لإدراجها في دستور الأدوية الدولي

ان الخبراء موجرون أن يستحضروا في ذاكرتهم دور دستور الأدوية وأهدافه، وهم يعودون، أو يعلقون على الدراسات الخاصة المزمع تضمينها في "دستور الأدوية الدولي"، ولقد لخصت هذه الأهداف فيما يلي:

1- تقديم مواصفات لمقاومة وفاعلية المواد الدوائية الأساسية ومواد الأدوية الشائعة الاستعمال، وأشكال الجرعات الصيدلية. ويجب أن تكون هذه المواصفات كافة لضمان فعالية وسلامة هذـه المنتجات، وكافية كذلك لاجادة احداث آخرها ألكلينيكيًا، ولكن يجب ألا تكون معقدة أكثر مما يجب، إذ أن ذلك يزيد من تكاليف المنتجات. وفي حالة الأصناف المنتجة حديثًا، يجب إعداد المواصفات بحيث يؤكد المطلقة مع العينات التي على أساسها حددت أصاـل الصفـات السمـية ودرجة الفعالية الألكلينيكية ومستوى الأمان.

ب) تعزيز هذه المواصفات بطرق سهلة التنفيذ للاختبار والتحليل، مع اعطاء الاهتمام الكافي للأمكانيات المتاحة في مختبرات الرقابة بالبلدان النامية.

ج) تقديم طرق عامة للتحليل يمكن تطبيقها، ليس فقط على المواد المذكورة في دستور الأدوية، ولكن أيضًا على المنتجات الجديدة التي تقدم للتسجيل.

(1) سلسلة التقارير الفنية لمنظمة الصحة العالمية، رقم 181، 1982، (تقرير لجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات الصيدلية، الثامن والعشرون، الجزء 1-4-19) 2005.
(د) توفير درجة من المرونة - كلما أمكن في الطرق والاشتراطات، تسهل استعمال دستور الأدوية الدولي على نطاق العالم، وليست فيما يتعلق بأشكال الجرعات الصيدلية (dosage forms).

(ه) تقديم كل هذه العناصر بطريقة تيسّر تبليّت أي دولة عضو في منظمة الصحة العالمية [رسمياً لدستور الأدوية الدولي أو لأجزاء مختارة منه • " "]

ولتحقيق بعض هذه الأهداف يقترح ما يأتي:

١- يجب تجنب المواد المرجعية، إن أمكن ذلك.

٢- في الحالات التي تعتبر فيها القياسات الضوئية الطيفية تحت الحمراء أساسية لتحديد كمية مادة ما، يجب أن تعطي دائما مجموعة بدالة من الاختبارات. فالسلام به أنه يلزم في الوقت الحاضر، اعتماد مادة مرجعية كلياً للجوء إلى القياسات الضوئية الطيفية تحت الحمراء.

٣- من المفيد في كثير من الأحيان، في مجموعة اختبارات الكنبه البديلة، استخدام نظام مذيبات استشراب الطاقة الرقيقة المستخدم في اختبار المواد ذات الغزارة، لتحديد الكنه أيضاً، لا أن ذلك يتطلب مادة مرجعية. وعلى ذلك يجب أن يقتصر اللجوء إليها على الحالات التي يكون فيها اعتماد مادة مرجعية لأغراض أخرى أمرًا أساسياً.

٤- من المستحيل أن يشمل برنامج تحديد الكنه اختباراً لونياً واحداً على الأقل. وتعيين نقطة الانحسار مفيد في أحيان كثيرة، كاختبار لتحديد الكنه، ولكنه يجب عدم اللجوء إليه إذا كانت نقطة الانحسار أعلى من ٤٠٠ سلسوس. ويجب أن تعطى مجموعة الاختبارات المؤلفة من

(١) تختص الارشادات الحالية بمواد القيافين فقط، أما الارشادات الخاصة بأشكال جرعات صيدلية معينة، فسوف تصدر منفصلة.
المقدمة ضماناً معقولاً بأن محتويات الوعاء متفقة مع البيان الموضح
في بطاقة التعريف.

5. يفضل أن تحتوي جميع الدراسات الخاصة على اختبار استقرار
من نوع ما لاتباث عدم وجود كميات غير مناسبة من شوائب المصنع
أو الانحلال. ويجب أن يتم ذلك، كلما أمكن، باستمرار الطبقة الرقيقة،
مع استخدام "الشحنة المرتفعة والشحنة المنخفضة"، أي بوضع المادة
التي يجري فحصها بشحنة مرتفعة ارتفاعاً معقولاً ومقارنة أية بقع ثانوية
تعطيها المادة بما تعطيه شحنة منخفضة من هذه المادة. ولكن يجب
النتبه إلى حقيقة أن الشوائب المحتمل وجودها في بعض عراقير معينة قد
تختلف باختلاف نظام الروية المستخدم. ويمكن فحص هذه المشاكل إلى
الحد الأدنى باستخدام ألواح تأليقة والفحص تحت مصباح ضوء فوق
بنفسجي بأطوال موجية تبلغ قيمتها العظمى نحو 0.54 نانومتراً وعموماً
يلتحب أن يختار نظام تعطي البقعة الرئيسية قيمة R_f مساوية نحو 0.5,
ولو أنه يفضل في حالات معينة أن تبقى البقعة الرئيسية قريبة من الخط
القاعدى أو ترتحل إلى جهة المذيب بشرط أن تكون البقع الكاذبة
المعنية تامة الانفصال.

6. يجب أن يقتصر استخدام طريقة الاستشراب الغازية السائلية
والسائلية عالية الضغط على الحالات التي تستلزم ذلك بمبررات توسيعة،
أي عندما تكون لمراقبة شائعة ما أهمية خاصة أو عندما لا ينصح استخدام
طريقة أخرى.

7. يجب أن تقتصر اختبارات الفلزات الثقيلة على الحالات التي
تتطلب فيها جرعات العقار ذلك، كالحالات التي تعطي فيها كميات
تساوي 5.0 جم أو أكثر يومياً على مدى مدة طويلة، أو حيثما يوجد سبب
ما آخر يمكن تحديده.

8. يجب أن يقتصر الالتماء إلى اختبارات الكلوريدي والكبريتات على
الحالات الآتية:

61

61
(أ) عندما تสถحيل مراقبة الشوائب الأوثقة بطرق مباشرة،
(ب) أو عندما تكون هناك ضرورة لاتخاذ الحذر من حدوث ليس بـ
ملح الكلوريد والكبريتات لقاعدة معينة،
(ج) أو عندما توجد مبادرات خاصة لتبديد هذه الاختبارات.

9- إذا درَّت الضرورة لمراقبة حمضية مادة ما أو قلويتها فجـ
أن يُضمن قياس الرقم الهيدروجيني pH، هذا إذا كان للمادة صفات أصلية
فيها تجعلها مادة منظمة، وفيها إذا ذلك يجب أن يوصى بإجراء معايير
حمصية، وبصفة عامة، لا يوجد ما يدعو إلى اختبار الحمضية أو القلويـ
الا عندما لا تظهر المادة التي يجري فحصها تأثراً منتظماً ملحوظاً.

10- يجب الالتجاء إلى وضع اشتراعات لصفاء المحلول، عامة،
عندما يكون المنتج الذي يجري فحصه معاداً لآمن الاستخدام بالحقن،
ويجب ألا يُضمن هذا الاختبار في الدراسات الخاصة لمجرد مراقبة وجود
أوساخ أدخلت ميكانيكيًا.

11- يفضل أن تكون طريقة المعايير (المقاسة)، معايير حمصية
أو ضوقية طفيفة، وجب التشديد، حينما أمكن، على المعايير
المضبوطة، ولو أنها قد لا تعطي التحديد الكامن، فالتحديد يأتي من
مجموعة الاختبارات الأخرى المؤلفة التي تحتوي الدراسة.

12- يجب أن تكون الكاشات الكيميائية المستخدمة في جميع
الاختبارات من تلك التي ورد وصفها فعلاً في "دستور الأدوية الدولي"،
كلما أمكن ذلك. وجب تجنب استخدام المواد السامة مثل أملاح الزئبق
والبنزين، والكاشات المعروفة بأنها مسببة للسرطان وغيرها من المواد
غير المرغوبة.

13- نظراً لاحتمال استعمال "دستور الأدوية الدولي" في المناطق
الحارة، فبراع تقليل استخدام المذيبات شديدة التطعيم، مثل الأشير،
الي الحد الأدنى، ولهذا أهمية خاصة في استنباط أطوار متحركـة في
استشراب الطبقة الرقيقة، إذ أن تركيب هذه الأطوار معرض للتغيـر إذا
تضم مذيبات طيارة.

14- يجب الالتجاء إلى الطرق الحالية الموجودة في دستور الأدوية،
كلما أمكن ذلك، حيث أن هذه الطرق قد تم اختبارها على نطاق واسع
بينما تحتاج الاقتراحات الجديدة إلى التحقق من صحتها في مختبرات
أخرى، وقد لا تتوافر الموارد لذلك بسهولة دائما.
الملحق ١

التعاون في برنامج الاختبارات الأساسية

مقدمة

اتقنت لجنة خبراء منظمة الصحة العالمية لمواصفات المستحضرات الصيدلية في تقريرها الثامن والعشرين على أن الأهداف الرئيسية للاختبارات الأساسية (أو المبسطة) للمنتجات الصيدلية، التي طرحت للمناقشة مناقشة أولية في تقرير اللجنة السادس والعشرين والسابع والعشرين، يجب أن تكون على النحو التالي:

"(أ) توفير طرق بسيطة وسهلة التطبيق للتحقيق من كنّه المكونات الفعالة باستخدام مدى محدود من الكاشفات المتاحة فعلاً،

(ب) توفير الوسيلة الممكنة عملياً للتأكد من كنّه عقار ما في حالة عدم وجود مختبرات كاملة الأعداد،

(ج) توفير وسيلة للتحقيق السريع من الكنّه في الحالات التي يلزم فيها تحديد كنّه ما تحتوي كل وعاء من الأوعية التي تتكون منها شحنة كبيرة (أو الطرق الوحيدة لتقييم نوعية مثل هذه الشحنتات تقييمًا كاملاً، هي عادة، باختبار عينة مختلطة مأخوذة من الأوعية المختلفة)

(د) استبانة ما إذا كان قد حدث تحلل في مواد معينة معروفة أنها تتحلل بسهولة في الظروف غير المواتية.

ولقد أشير إلى أن الاختبارات الأساسية لم تعد لتحل محل متطلبات دراسات دستور الأدوية، وأي حال من الأحوال، هذه المتطلبات تعطي تأكيداً للجودة في حين أن الاختبارات الأساسية تؤكد تحديد الكنّه ولا شيء غير ذلك.
وتحتوي الوثيقة غير المنشورة (WHO/PHARM/81.506 Rev.1)
اختبار المواد الميدلية التي تم إعدادها تفصيلاً حتى الآن. فتتكون طرق
التأكد من الكمية من تفاعل أو أكثر من تفاعلات أنبوبية الاختبار لتحديد
الکهرباء على اللون أو الراسب أو التآكل أو علامة البيانات الخاصة
بالجواب الفيزيائية للمادة، وخصائص انصهارها وفي كثير من الأحيان
نقطة انصهار المخلوطات التصلبية (eutectic mixtures).

ويتكون طرق الاختبار لاستبيان التحلل الجسيم من اختبار بسيط
أو أكثر مبتنى على وصف الجوانب الفيزيائية أو قابلية الذوبان أو تفاعلات
أنبوبية الاختبار. ولقد طورت هذه الاختبارات في أشعة إجراء اختبارات
الثبات في ظروف عبارة للهواء في درجتي الحرارة 50° و70° سلسوس
و100% مع استبعاد الضوء والمقصود من هذه
الاختبارات أن تعطى دليلاً على تحلل 10% أو أكثر.

وبالإضافة إلى تفاعلات أنابيب الاختبار وتغيير نقطة الانصهار،
تحتوي وثيقة منظمة الصحة العالمية غير المنشورة 636، على
طرق تم تطويرها على أساس استراض الطبقة الرقية
ومرفق مع هذا بروتوكول للاسترشاد به في تطوير الاختبارات الأساسية
وتحقيقها.

بروتوكول لتطوير الاختبارات الأساسية وتحقيقها

١- تطوير الاختبارات

١. يجب أن يجري تطوير الاختبارات الخاصة بكل مادة عقار مع-
ما يناظرة من أشكال الجرعات في نفس الوقت وأن يقوم بذلك نفس
الشخص. ويجب أن يقتصر التكليف بتطوير الاختبارات لمادة عقار معينة
و/أو شكل الجرعة على شخص واحد فقط.
ويجب أن تعطى الأولوية للاختبارات الواردة في دستور الأدوية الدولي حيث كانت هذه الاختبارات مناسبة. ويجرب ألا يجري تعديل في الوصف بدون أن تدعو الضرورة إلى ذلك.

(ب) لضمان توزيع العمل توزيعًا مناسبًا يجب أن يضع كل باحث قاعدة بمواد العقاقير المتاحة محليًا.

(ج) في حالة شروط عدم ملاءمة اختبار مقترح، في أثناء اثبات صحته في المختبرات الأخرى، يجب أن تحال المعلومات الثانية إلى الباحث الأصلي، الذي تقع عليه مسؤولية استنباط اختبار بديل وتحقيقاً لهذا الغرض يجب أن يزود الباحث الأصلي بجميع العينات المستخدمة في اختبارات اثبات الصحة، وذلك من خلال منظمة الصحة العالمية، حيثما كان ذلك مناسبًا.

ويجب أن تعطى الأفضلية في كل حالة من الحالات للاختبارات المبنية على أساس تفاعلات أنبوبية الاختبار وخصائص الأنصار، ويمكن أن تتضمن تفاعلات أنبوبية الاختبار تفاعلات لونية أو تألق أو روابض.
فيما يلي الطرق الموصى بها، من أجل إيجاد التجانس بين التفاعلات المستخدمة في الاختبارات:

<table>
<thead>
<tr>
<th>أساس التفاعل</th>
<th>العنصر أو المجموعة الوظيفية الفعالة</th>
</tr>
</thead>
<tbody>
<tr>
<td>كبرار مع فن أوم (Ω)</td>
<td>AgNO₃ or hydrochloride</td>
</tr>
<tr>
<td>ولحماء تدحيم خصائص كلوريد الفضة المكون، يفضل دائماً</td>
<td>chloride or hydrochloride</td>
</tr>
<tr>
<td>فصل فلكل (AgCl)</td>
<td>كبرار في التحلق من ذوبانه في الناشادر (والأماكن الأخرى)</td>
</tr>
<tr>
<td>بعد التحضير</td>
<td>bound chlorine</td>
</tr>
<tr>
<td>(Na₂CO₃+Cl)</td>
<td>الكلور المتفحص</td>
</tr>
<tr>
<td>- منبع بلح الحداك الداخلي لأساسية تحتوى على مزيج من حمض الكربونيك وحمض الكبريتيك</td>
<td>fluoride and bound fluorine</td>
</tr>
<tr>
<td>- ترسيب كبرار الباريوم با كلم (BaCl₂)</td>
<td>sulfate</td>
</tr>
<tr>
<td>- الاصلاح مع ص أوم (NaOH)</td>
<td>كبرار متفحص</td>
</tr>
<tr>
<td>- مع با كلم (BaCl₂) بعد التحضير بحمض الهيدروكلوريك (HCl)</td>
<td>bound sulfur</td>
</tr>
<tr>
<td>- انتصار مع ص أوم (NaOH) على سك كم (KCl)</td>
<td>كبرار غير متواجد في الحلقة</td>
</tr>
<tr>
<td>- تحتوي على بروق أسنان الرصاص</td>
<td>heterocyclic sulfur</td>
</tr>
<tr>
<td>ترسيب بأساطير بورانيل المغنيسيوم</td>
<td></td>
</tr>
<tr>
<td>(sodium cobaltinitrite)</td>
<td></td>
</tr>
<tr>
<td>ترسيب بوكليتيت السيداي المحميد</td>
<td></td>
</tr>
<tr>
<td>(potassium cupric tartrate)</td>
<td></td>
</tr>
<tr>
<td>عدم ازالة زن السرب (التي يتم الحصول عليها من بور)</td>
<td>مراعك مشبعة</td>
</tr>
<tr>
<td>(KBr + KBrO₃ + HCl + BOH + بي كلم</td>
<td>saturated compounds</td>
</tr>
<tr>
<td>- تكون راسب دمحم في محلول دافئ، ل зренияات النحاسية</td>
<td>مركبات مختللة</td>
</tr>
<tr>
<td>- تكون راسب دمحم في محلول دافئ، ل зренияات النحاسية</td>
<td>reducing compounds</td>
</tr>
<tr>
<td>(potassium cupric tartrate)</td>
<td></td>
</tr>
<tr>
<td>- تكون مرادة فضية في محلول نشرد مع نترات الفضة</td>
<td>روابط متعددة (ثنائية أو ثلاثية)</td>
</tr>
<tr>
<td>- تحول إلى اللون البني في وسط برمجيات قلوى</td>
<td>multiple bonds(double or triple)</td>
</tr>
<tr>
<td>- ترسب بودات الفضة الناتجة عن تفاعل فوق بودات الفضة</td>
<td>glycol</td>
</tr>
<tr>
<td>(silver periodate)</td>
<td>جلبكل</td>
</tr>
<tr>
<td>العربية</td>
<td>English</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>العنصر أو المجموعة الوظيفية الفعالة</td>
<td>Morphology or functional group</td>
</tr>
<tr>
<td>حدوت تلون بالدود فوسفوس و ص أيدي (nitroprusside and NaOH)</td>
<td>Enolizable ketone</td>
</tr>
<tr>
<td>فينول</td>
<td>phenol</td>
</tr>
<tr>
<td>أرنو دي فينيل</td>
<td>ortho diphenol</td>
</tr>
<tr>
<td>أمين أليفيتي وحمض أميني</td>
<td>Aliphatic amine and amino acid</td>
</tr>
<tr>
<td>حمض أميني</td>
<td>amino acid</td>
</tr>
<tr>
<td>أمين أومومتي أولي</td>
<td>Primary aromatic amine</td>
</tr>
<tr>
<td>مركبات نترو أومومتيات</td>
<td>Aromatic nitro compounds</td>
</tr>
<tr>
<td>أملاح النشاد أو أمين الليفاتي</td>
<td>Ammonium salts or aliphatic amine</td>
</tr>
<tr>
<td>قواعد قلوانية أو نتروجينية بأوزان جزيئية عالية</td>
<td>Alkaloid or nitrogenous bases with high molecular weights</td>
</tr>
</tbody>
</table>
1- التحقق من الاختبارات

(أ) مواد العقاقير: لا يلزم التحقق من الاختبار إذا ما اختبر من اختبارات دستور الأدوية، وفي الأحوال الأخرى يكفي التحقق من مختبر واحد فقط.

(ب) أشكال الجرعات الصيدلية: يجب التحقق من الاختبار في كل حالة من الحالات، في أربعة مختبرات على الأقل: تختار على أساس التمثيل الإقليمي. ويجب أن يتم اختبار ما هو متحلي من الجرعات الصيدلية الجافة الفموية المحتوية على المادة المعنوية، سواء كانت هذه الجرعات مسجلة تجارياً أو جنستية (generic).

3- التنسيق

تقع مسؤولية تنسيق البرنامج ومراقبته على منظمة الصحة العالمية التي ستتوجه عناية خاصة نحو توزيع العمل بين المتعاونين المختلفين توزيعاً عادلاً.
<table>
<thead>
<tr>
<th>رقم التقرير</th>
<th>عنوان التقرير</th>
</tr>
</thead>
<tbody>
<tr>
<td>665</td>
<td>Neuronal aging and its implications in human neuronal pathology</td>
</tr>
<tr>
<td>666</td>
<td>Intestinal protozoan and helminthic infections</td>
</tr>
<tr>
<td>667</td>
<td>The role of the health sector in food and nutrition</td>
</tr>
<tr>
<td>668</td>
<td>Disability prevention and rehabilitation</td>
</tr>
<tr>
<td>669</td>
<td>Evaluation of certain food additives</td>
</tr>
<tr>
<td></td>
<td>Twenty-fifth report of the Joint FAO/WHO Expert Committee on Food Additives</td>
</tr>
<tr>
<td></td>
<td>(48 pages).</td>
</tr>
<tr>
<td>670</td>
<td>Research on the menopause</td>
</tr>
<tr>
<td>671</td>
<td>Tuberculosis control</td>
</tr>
<tr>
<td>672</td>
<td>Control of vitamin A deficiency and xerophthalymia</td>
</tr>
<tr>
<td></td>
<td>Meeting (70 pages).</td>
</tr>
<tr>
<td>673</td>
<td>WHO Expert Committee on Biological Standardization</td>
</tr>
<tr>
<td></td>
<td>Thirty-second report (180 pages).</td>
</tr>
<tr>
<td>674</td>
<td>Treponemal infections</td>
</tr>
<tr>
<td>675</td>
<td>Chemotherapy of leprosy for control programmes</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Study Group (33 pages).</td>
</tr>
<tr>
<td>676</td>
<td>Interferon therapy</td>
</tr>
<tr>
<td>677</td>
<td>Recommended health-based limits in occupational exposure to pesticides</td>
</tr>
<tr>
<td>678</td>
<td>Prevention of coronary heart disease</td>
</tr>
<tr>
<td>679</td>
<td>Biological control of vectors of disease</td>
</tr>
<tr>
<td></td>
<td>Sixth report of the WHO Expert Committee on Vector Biology and Control (39</td>
</tr>
<tr>
<td></td>
<td>pages).</td>
</tr>
<tr>
<td>680</td>
<td>Malaria control and national health goals</td>
</tr>
<tr>
<td>681</td>
<td>WHO Expert Committee on Specifications for Pharmaceutical Preparations</td>
</tr>
<tr>
<td></td>
<td>Twenty-eighth report (33 pages).</td>
</tr>
<tr>
<td>682</td>
<td>Bacterial and viral zoonoses</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Expert Committee with the participation of FAO (146 pages).</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Twenty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives (51 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Study Group (78 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Expert Committee (46 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Scientific Group (40 pages)</td>
</tr>
<tr>
<td></td>
<td>Thirty-third report (184 pages)</td>
</tr>
<tr>
<td></td>
<td>Seventh report of the WHO Expert Committee on Vector Biology and Control (72 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Scientific Group on the Indications for and Limitations of Major X-Ray Diagnostic Investigations (49 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Expert Committee (44 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Meeting (30 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Scientific Group (81 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Scientific Group (72 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Study Group (71 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Expert Committee (92 pages)</td>
</tr>
<tr>
<td></td>
<td>Twenty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives (47 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Expert Committee (68 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Study Group (59 pages)</td>
</tr>
<tr>
<td></td>
<td>Eighth report of the WHO Expert Committee on Vector Biology and Control (46 pages)</td>
</tr>
<tr>
<td></td>
<td>Thirty-fourth report (75 pages)</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Expert Committee (140 pages)</td>
</tr>
<tr>
<td></td>
<td>Fourth report of the WHO Expert Committee on Filariasis (112 pages)</td>
</tr>
<tr>
<td>703</td>
<td>(1984) Road traffic accidents in developing countries</td>
</tr>
<tr>
<td></td>
<td>Report of a WHO Meeting (36 pages)</td>
</tr>
</tbody>
</table>