Web Annex G

Estimation of minimal risk and maximum acceptable temperatures for selected cities

Lidia Morawska and Phong Thai

In:

WHO Housing and health guidelines
Web Annex G

Estimation of minimal risk and maximum acceptable temperatures for selected cities

Lidia Morawska and Phong Thai

In:

WHO Housing and health guidelines
High indoor temperatures – Estimation of minimal risk and maximum acceptable temperatures for selected cities

<table>
<thead>
<tr>
<th>City & Lancet’s curve</th>
<th>Papers used as evidence</th>
<th>Information extracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>1. Nguyen et al. 2013. Relationship between indoor and outdoor temp (in Harvard staff/student homes) → linear regression for warmer temperature</td>
<td>- Only one home in each city - Indoor temp in Boston is stable year round (without extreme heat) - Linear indoor/outdoor relationship from >21°C</td>
</tr>
</tbody>
</table>
| | 1. Quinn et al. 2014. Predicting indoor heat exposure

\[\text{Indoor}(T) = \text{outdoor}(T) + \text{lag}_1\text{day}_{\text{outdoor}}(T) + \text{lag}_2\text{days}_{\text{outdoor}}(T)\] | - 265 homes of low & middle incomes |
| | Parameters of the equation shown in next column | |
| | 2. Uejio et al. 2015. Summer indoor heat exposure & emergency calls in NY | - Multivariate model for best fit |
| | - Temp measured by emergency staffs during home visits | |

The minimal risk indoor temperature would be 21-22°C.
The maximum acceptable temperature would be 25°C.

The minimal risk indoor temperature would be 22-24°C.

![Graph showing temperature relationship in Boston and New York](image-url)
London/Manchester

- **Minimal Risk Indoor Temperature:** 22-23°C
- **Maximum Acceptable Temperature:** ~25°C

Harbin

- **Minimal Risk Indoor Temperature:** ~24°C
- **Maximum Acceptable Temperature:** 26°C

1. Wang et al. 2010

Thermal responses for naturally ventilated residential buildings in Harbin since people have the custom of opening their windows

- During summer, range and average temperature is similar between indoor and outdoor

3. Tamerius et al., 2013
Socioeconomic and Outdoor Meteorological Determinants of Indoor Temperature and Humidity in New York City Dwellings

- The maximum acceptable temperature would be 27-28°C
- The minimal risk indoor temperature would be 22-23°C
- The maximum acceptable temperature would be ~25°C
- The minimal risk indoor temperature is ~24°C
- The maximum acceptable temperature would be 26°C

Estimation of minimal risk and maximum acceptable temperatures for the WHO Housing and health guidelines
The minimal risk temperature is ~25-26°C
The maximum acceptable temperature would be ~29-30°C

 Indoor ~outdoor + 2°C

2. Moon et al. 2014. Seasonal evaluation of bioaerosols
 In spring & summer, indoor temperature ~ outdoor temperature

The minimal risk temperature is ~30°C
The maximum acceptable temperature would be ~32°C

1. Studies in neighbouring countries like Malaysia, Singapore, Vietnam indicated that Indoor temperature ≥ Outdoor temperature (Kamar et al., 2012; Wong & Li, 2007; Nguyen & Dockery, 2016)

Table 3 Seasonal temperature and relative humidity for 25 apartments according to seasons

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Temperature (°C)</th>
<th>Relative humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indoor</td>
<td>Outdoor</td>
</tr>
<tr>
<td>Spring</td>
<td>26.2±2.3</td>
<td>25.9±3.0</td>
</tr>
<tr>
<td>Summer</td>
<td>29.1±1.8</td>
<td>29.0±3.3</td>
</tr>
<tr>
<td>Autumn</td>
<td>22.7±3.6</td>
<td>15.1±1.2</td>
</tr>
<tr>
<td>Winter</td>
<td>20.6±2.8</td>
<td>7.7±3.08</td>
</tr>
</tbody>
</table>

Contributors
The analysis was conducted by Lidia Morawska and Phong Thai (International Laboratory for Air Quality and Health, Queensland University of Technology, Australia).
References

Abdul-Wahab SA, Salem N, Ali S. Evaluation of indoor air quality in a museum (Bait Al Zubair) and residential homes. Indoor and Built Environment 2013; 24: 244-255.

Estimation of minimal risk and maximum acceptable temperatures for the WHO Housing and health guidelines

Moon KW, Huh EH, Jeong HC. Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea. Environ Monit Assess 2014; 186: 2111-20.

