Overview of intervention classes and prototype/products under Vector Control Advisory Group (VCAG) review for assessment of public health value¹ AS OF 1 MARCH 2020 This table is a living document and will be revised and updated periodically to reflect the status of products under VCAG review. Please note, in some instances there are more than one prototype / product that fall under a intervention class.² You can find more information on the WHO evaluation process for vector control products at: http://www.who.int/malaria/publications/atoz/evaluation-process-vector-control-products/en/ and on VCAG at: http://www.who.int/vector-control/vcag/en/. | INTERVENTION
TYPE | DESCRIPTION | INTERVENTION
CLASS | EXAMPLES OF
PROTOTYPE /
PRODUCT | TARGET ORGANISM (GENUS AND/OR SPECIES)° | TARGET
DISEASE | STATUS IN WHO EVALUATION PROCESS | NOTES | |--|---|---|--|---|-------------------|--|--| | Insecticide–
treated nets
(ITN) ^b | Mosquito nets
treated with
chemicals either
as single products
or combinations ^c | Pyrethroid plus
non-pyrethroid
insecticide net | Interceptor®
G2 (pyrethroid-
chlorfenapyr) | Anopheles
mosquitoes | Malaria | RCT protocols for two
sites reviewed by VCAG
in November 2018. Trial in
Tanzania started. Product
converted to PQ Listing in
January 2018. | Nets with non-pyrethroid active ingredients or synergists are anticipated to have enhanced protective efficacy in terms of reducing or preventing infection and/or disease in humans in areas where local vectors have developed substantive pyrethroid resistance. Additional public health value when compared to pyrethroid-only nets needs to be assessed. | | | | Pyrethroid plus
insect growth
regulator net | Royal Guard®
LN (pyrethroid-
pyriproxyfen) | <i>Anopheles</i>
mosquitoes | Malaria | RCT protocols for two
sites reviewed by VCAG
in November 2018. Trial in
Tanzania started. Product
prequalified March 2019. | | | | | Pyrethroid
plus piperonyl
butoxide (PBO)
net | Olyset® Plus | Anopheles
mosquitoes | Malaria | Based on the epidemiological findings from one cluster randomized controlled trial and the need to deploy products that are effective against pyrethroid-resistant | | ^{1.} Public health value is defined as: proven protective efficacy to reduce or prevent infection and/or disease in humans. ^{2.} An intervention class in vector control is a group of products that share a common entomological effect by which it reduces pathogen transmission and thus reduces infection and/or disease in humans. For products in a class not currently recommended by WHO, efficacy trials with a 'first in class' product must generate epidemiological evidence of protective efficacy against infection and/or disease. The evidence is then reviewed by VCAG to validate the public health value of the product class. This validation forms the basis of a WHO policy recommendation for the new intervention class. An intervention class may contain one or more target product profiles (TPPs) depending on the intended effect of the product(s) and claim(s). | INTERVENTION
TYPE | DESCRIPTION | INTERVENTION
CLASS | EXAMPLES OF
PROTOTYPE /
PRODUCT | TARGET ORGANISM (GENUS AND/OR SPECIES)° | TARGET
DISEASE | STATUS IN WHO EVALUATION PROCESS | NOTES | |---|---|---|---------------------------------------|---|-----------------------|--|---| | Insecticide-
treated nets
(ITN) (cont.) | Mosquito nets
treated with
chemicals either
as single products
or combinations | Pyrethroid
plus piperonyl
butoxide (PBO)
net (cont.) | | | | mosquitoes, pyrethroid-PBO
nets were given an interim
endorsement as a new
WHO class of vector control
products.d | | | | (cont.) | | | | | Further evidence on pyrethroid-PBO nets is required to support the refinement of WHO guidance regarding conditions for the deployment of products in this class. VCAG will review further epidemiological trial data as soon as they become available (planned for first half of 2020). Pyrethroid-PBO nets were converted to PQ listings during 2017/18. | | | Spatial
repellents | Devices that release volatile chemical into the air and prevent human-vector contact within the treated space | Spatial
Repellents | Transfluthrin passive
emanator | Anopheles and
Aedes mosquitoes | Malaria and
dengue | VCAG reviewed and advised on two RCT protocols, one for control of <i>Anopheles</i> and one for control of <i>Aedes</i> mosquitoes. Study results from one trial were presented in May 2019. Results from second trial are forthcoming. Two other protocols have been reviewed by VCAG and another will be reviewed at the November 2019 VCAG meeting. | The term "spatial repellency" is used here to refer to a range of insect behaviours induced by airborne chemicals that result in a reduction in human–vector contact and therefore personal protection. The behaviours can include movement away from a chemical stimulus, interference with host detection (attraction inhibition) and feeding response. | | Attractive
targeted baits | Devices that
attract and kill
disease vectors | Attractive
Targeted Sugar
Bait (ATSB) | ATSB®, mosquitoes'
bait station | Anopheles
mosquitoes | Malaria | Three RCT protocols reviewed
by VCAG in May 2019. | | | INTERVENTION
TYPE | DESCRIPTION | INTERVENTION
CLASS | EXAMPLES OF
PROTOTYPE /
PRODUCT | TARGET ORGANISM (GENUS AND/OR SPECIES)° | TARGET
DISEASE | STATUS IN WHO EVALUATION PROCESS | NOTES | |--|---|--|---|---|--|---|-------| | Peridomestic
combined
repel and lure
devices | Devices placed
around a house
and/or its
surroundings | Repel and lure
strategy for
malaria control | The approach consists of two devices: 1) repels mosquitoes from houses and immediate surroundings (the "push") and 2) lures mosquitoes towards odor-baited traps (the "pull") | Anopheles
mosquitoes | Malaria | Concept and preliminary
elements of RCT reviewed by
VCAG in May 2018. | | | Vector traps
for disease
management | or disease and kill vectors | Adulticidal
oviposition and
larvicidal traps | Vector traps
including AGO trap,
TNK trap and ALO | Ae. aegypti and
Ae. albopictus
mosquitoes | <i>Aedes-</i> borne
arboviral
diseases | ALO concept reviewed in
May 2019. | | | | | Auto-
dissemination
devices | In2Care® Mosquito
Trap | Ae. aegypti and
Ae. albopictus
mosquitoes | Aedes-borne
arboviral
diseases | VCAG reviewed one RCT
protocol in April 2019. | | | Genetic
manipulation
of vectors for
disease control | Reduction or
alteration of
vector populations
through genetic
manipulation | Population
reduction –
gene-drive
approach | CRISP/Cas9 - suppression construct | An. gambiae
mosquitoes | Malaria | Initial laboratory data shared with VCAG. | | | | | Population alteration (also known as population replacement or modification) – gene-drive approach | Cas9- based gene
drive - anti-P.
falciparum and/
or anti-P. vivax
constructs | An. gambiae and
An. stephensi
mosquitoes | Malaria | Initial laboratory data shared with VCAG. | | | Sterile insect
technique
(SIT) combined
with microbial
infection | Radiation based sterility for mosquito population reduction and bacterial infection to prevent virus transmission | Sterile Insect
Technique /
Incompatible
Insect
Technique | Sterilized male
Ae. aegypti and
Ae. albopictus
infected with
Wolbachia spp. | Ae. aegypti and
Ae. albopictus
mosquitoes | <i>Aedes-</i> borne
arboviral
diseases | VCAG reviewed one RCT
protocol in February 2019. | | | INTERVENTION
TYPE | DESCRIPTION | INTERVENTION
CLASS | EXAMPLES OF
PROTOTYPE /
PRODUCT | TARGET ORGANISM (GENUS AND/OR SPECIES)° | TARGET
DISEASE | STATUS IN WHO EVALUATION PROCESS | NOTES | |---|--|--|---|---|--------------------------------------|--|---| | Microbial
control
of human
pathogens in
adult vectors | Introduction of
micro-organisms
into vectors | Wolbachia-
based
population
alteration | wMel strain
<i>Wolbachia</i> | Ae. aegypti
mosquitoes | Aedes-borne
arboviral
diseases | One RCT trial is ongoing.
Estimated to be completed
in 2020. | | | Systemic
insecticides
and
endectocides | Systemic insecticide treatment of livestock to reduce or prevent transmission of pathogens transmitted to humans | Systemic
livestock
treatment for
vector control | Fipronil bolus | Phlebotomus
sandflies | Leishmaniasis | VCAG reviewed one RCT
protocol in 2017. | Systemic insecticides also reduce the livestock ectoparasite burden. | | | Mass drug administration of an endectocide to humans +/- livestock to reduce malaria transmission | Endectocides | lvermectin
repurposed for
malaria | Anopheles
mosquitoes | Malaria* | VCAG reviewed study
description and justification
in May 2019. VCAG will review
full protocol during November
2019 VCAG meeting. | * Plus a direct benefit in treatment
of human scabies, lice and some soil
transmitted helminths | | Housing
modification | Modifications made to a house to decrease exposure of inhabitants to vectors | Lethal house
lures | In2Care®EaveTube with electro- statically charged coating for delivery of powder formu- lations | Anopheles
mosquitoes | Malaria | VCAG reviewed one RCT
protocol. Trial completed,
results being shared at
November 2019 VCAG
meeting. | | ## Acronyms RCT: Randomized Control Trial; PQT-VC: Prequalification team for vector control ## Notes - a Depending on the specificity of the tool - b WHO malaria terminology. Geneva: World Health Organization; 2016 (http://www.who.int/malaria/publications/atoz/malaria-terminology/en/) - c The requirement for epidemiological data for the evaluation of all types of mosquito nets is based on the complexity of how LLINs provide personal and community-level protection, whereby entomological outcomes are currently not considered to be reliable indicators of epidemiological impact. - d See recommendation 4, page 3 in Conditions for deployment of mosquito nets treated with a pyrethroid and piperonyl butoxide. Geneva: World Health Organization; 2017 (http://apps.who.int/iris/bitstream/handle/10665/258939/WHO-HTM-GMP-2017.17-eng.pdf) WHO/CDS/VCAG/2018.03.rev 3 © World Health Organization 2020. Some rights reserved. This work is available under the CC BY-NC-SA 3.0 IGO licence.