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Glossary
Alleles — different forms of the same gene.

Area-wide control — methods of reducing pest damage whose effectiveness depends on application
over large expanses. This contrasts particularly with personal protection, for example as provided by
bed nets and repellents.

Biosafety committee — group responsible for implementing policies and guidelines related to use of
potentially hazardous biological agents, including but not limited to infectious agents, human
materials, and recombinant DNA studies. This group ensures that research involving these agents
does not endanger researchers, laboratory workers, human research subjects, the public or the
environment.

Cartagena Protocol on Biosafety — an international agreement dealing with the safe handling,
transport and use of living modified organisms (LMOs) resulting from modern biotechnology. See:
http://bch.cbd.int/protocol/

Clinical disease incidence — the number of new clinical cases per unit of time for the at-risk
population. This is typically determined by voluntary reporting of symptoms or community-based
active case detection followed by a laboratory diagnosis test.

Cluster randomized trials — trials that group individuals into clusters, such as residents of particular
villages or urban neighbourhoods. Each cluster is assighed randomly an experimental treatment such
as a placebo or drug, or, in the case of genetically modified mosquitoes (GMMs), releases may be in
one set of clusters and not in another.

Community engagement — practices undertaken to inform stakeholders about the diseases and
vectors of interest and goals of a proposed research study or intervention trial, and to understand
their perspectives and reaction.

Confinement — utilization of measures that seek to prevent unplanned or uncontrolled release of
organisms into the environment. This may involve physical confinement (sometimes termed
“containment”) within a large cage that simulates the disease-endemic setting while minimizing the
possibility of escape and/or ecological confinement by geographic/spatial and/or climatic isolation.

Declaration of Helsinki — a set of ethical principles for the medical community regarding human
experimentation, issued by the World Medical Association.

Deployment — implementation of GMM technology as part of a national or regional programme for
vector control.

Drive (also called gene drive) — a mechanism that increases the transmission of a transgene in a
population above that which would be expected based on Mendelian inheritance. The increase is

reflected in the excess proportion of progeny that carry the transgene.

Ecosystem — a biological system composed of a community of organisms and the nonliving
environment with which it interacts.
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Endemic — a situation in which disease is present continuously at some level in an area.

Endpoint — an event or outcome that can be measured objectively to determine whether the
intervention being studied has the desired effect.

Entomological inoculation rate (EIR) — a measure of the degree of infection risk that a human
population is exposed to for a particular disease, as determined by assessing the vector mosquito
population. It is described by the frequency of infectious mosquitoes feeding upon a person within
some unit of time, such as per day or year.

Epidemic — an increase in incidence and prevalence of disease affecting many people rapidly and
extensively and above normal levels in an area, but not continuously present at such levels.

Ethics — an activity or inquiry intended to shed light on the correctness or justifiability of a given
course of conduct.

Ethics committee (also called institutional ethics committee, institutional review board or ethical
review board) — a group charged with providing oversight for biomedical and behavioural research
involving humans, with the aim to protect the rights and welfare of research subjects.

Ethical review board — see Ethics committee.

Fitness — description of the ability to both survive and reproduce, and is equal to the long-term
average contribution to the gene pool by individuals having a particular genotype or phenotype. If
differences between alleles of a given gene affect fitness, then the frequencies of the alleles will
change over generations, the alleles with higher fitness become more common.

Gene — a segment of DNA that contains information required by cells for synthesis of a product.

Gene flow — the movement (expressed as increase in frequency) of genes or alleles into a population
from one or more other populations.

Genetically engineered mosquitoes — see Genetically modified mosquitoes.

Genetically modified mosquitoes (GMMs) — also called genetically engineered mosquitoes,
transgenic mosquitoes, or living modified mosquitoes — mosquitoes that have heritable traits
derived through use of recombinant DNA technology, which alter the strain, line, or colony in a
manner usually intended to result in reduction of the transmission of mosquito-borne human
diseases — see also Genetically Modified Organism. GMM is also likely to be characterized by
introduced heritable marker traits to facilitate monitoring upon release into the environment and in
some cases may include only such markers, as for population biology studies.

Genetically modified organism (GMO) — also called living modified organism — any organism that has
in its genome novel DNA of endogenous, exogenous, or mixed origin that was made using modern
recombinant DNA technology. Although successive selective breeding of strains of organisms with
naturally-occurring allelic variations also results in strains with genotypes different from the natural
population, these are excluded from this definition.

Genotype — the genetic constitution of an organism.
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Good clinical practice (GCP) — an international quality standard for trials involving human subjects,
including protection of human rights, assurance of safety and efficacy and standards on conduct of
clinical trials. See:

http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC5000

02874.pdf

Hazard — an event, activity or other cause of a negative consequence or impact identified in a risk
analysis.

Horizontal gene transfer (HGT) — heritable transfer of a functional genetic element from one
organism to another without mating, most often relating to genetic exchange between different
species.

Infection incidence — the rate at which new infections occur during the specific period of time.

Informed consent — the process intended to ensure that human subjects who will be observed or
involved in a research activity are fully and explicitly advised of all risks, costs or inconveniences they
may bear as a result of participating as a research subject, and voluntarily agree to accept or bear
those risks and costs.

Institutional ethics committee (IEC) — see Ethics committee.

Institutional review board (IRB) — see Ethics committee.

Integrated vector management (IVM) — a rational decision-making process for the effective and
efficient use of a combination of available resources in the management of vector populations, so as

to reduce or interrupt transmission of vector-borne diseases. See:
http://www.who.int/malaria/vector_control/ivm/en/

Living modified mosquitoes — see Genetically modified mosquitoes.

Mark-release-recapture — a method used to estimate population size of free-living animals, including
mosquitoes, and to study population survival and dispersal in space and time. A portion of the
mosquito population under study is captured, marked (usually with fluorescent powders) and
released. A portion of the population into which they were released is captured later and the
number of marked mosquitoes within the sample is counted. The proportion of marked mosquitoes
in the second sample allows estimation of the total number of animals in the whole population.

Non-target organism — any organism that is not a direct target of an intended intervention. For
GMM the direct target organism is other mosquitoes of the same species in the wild population.

Nuremberg Code — an ethics code that serves as a basis for bioethical principles ensuring the rights
of human subjects in medical research.

Off-target effects — the outcomes of actions that are not directed to the purpose of the action,
whether anticipated or not, possibly affecting either target or non-target organisms. Off-target
effects may have negative, neutral or positive impacts on the intended purpose.

Pathogen — an organism that causes disease. In dengue infection, the pathogen is a virus. In malaria
infection, the pathogen is a unicellular parasite.



Penetrance — the frequency at which a trait is expressed in individuals carrying a particular gene
associated with the trait.

Pharmacovigilance — the process of collecting, monitoring, researching, assessing and evaluating
information on the long-term adverse effects of medicines.

Phenotype — the observable characteristics of an organism, based on genetic and environmental
influences.

Population regulation — maintenance of a population around or near an equilibrium level, such as by
density-dependent factors.

Population replacement — strategies that target vector competence with the intent to reduce the
inherent ability of individual mosquitoes to transmit a given pathogen.

Population suppression — strategies that target vector “demography” with the intent to reduce
(suppress) the size of the natural mosquito population to the extent that it would not be able to
sustain pathogen transmission.

Prevalence of infection — the frequency of infection within a population at any given time.

Refractoriness — a condition in which the mosquito is intrinsically unable to support the
development of a pathogen to an infective stage or to a point of sufficient abundance such that the
mosquito cannot transmit disease.

Regulation — an official rule to manage the conduct of those to whom it applies, usually developed
from legal interpretations of legislation and implemented by government ministries or agencies.

Regulatory agency (also called regulatory authority, ministry, regulatory body, or regulator) — a
public authority or government entity responsible for exercising authority over some area of activity
in a supervisory capacity.

Risk —an objective measure of the product of the likelihood and consequences of a hazard, defined
within a prescribed set of circumstances. Risk is often described as a probability distribution of a set
of consequences over a defined time period.

Risk analysis — the process comprised of risk identification, risk assessment, risk management and
risk communication.

Risk assessment — a methodological approach to define and characterize hazards, and to estimate
the exposure or likelihood of each hazard occurring as well as the potential adverse impact of the
hazard (harm).

Risk management — the process of identifying and implementing measures that can be expected to
reduce risk to an acceptable level.

Risk communication — the process through which risk concerns and risk tolerance is articulated by
relevant stakeholders and results of risk assessment and risk management are communicated to
decision-makers and the public.



Self-limiting — GMM approaches where the genetic modification will not pass on indefinitely through
subsequent generations.

Self-sustaining (also called self-propagating) — GMM approaches where the heritable modification is
spread and maintained indefinitely through the target population.

Sterile insect technique (SIT) — the inundative release of factory-produced sexually sterile insects into
wild native insect populations so that there is a high ratio of sterile males to wild females.
Sterilization is usually accomplished using radiation or chemicals. The effect is population
suppression, and the effort is most effective when continual and over large areas to reduce the
effects of fertile immigrants. Release only of males is preferred although release of both sexes has
also been effective. SIT has been applied most widely against agricultural pests.

Traits — phenotypes that result from single or multiple genes and their interactions with the
environment.

Transboundary movement — movement across national, state or other political lines of demarcation.
Transgenic mosquitoes — see Genetically modified mosquitoes.

Vector mosquitoes — mosquitoes that are able to transmit a disease-causing pathogen.
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Abbreviations

APHIS US Animal and Plant Health Inspection Service

CBD Convention on Biological Diversity

CPB Cartagena Protocol on Biosafety

CSO Civil society organization

DNA Deoxyribonucleic acid

EA Environmental assessment

EFSA European Food Safety Authority

EIA Environmental impact assessment (also known as a strategic environmental
assessment or environment impact statement

EIR Entomological inoculation rate

EIS Environmental Impact Statement under the US National Environmental Policy Act

ERA Environmental risk assessment

EU European Union

FAO Food and Agriculture Organization of the United Nations

FDA US Food and Drug Administration

FFDCA US Federal Food Drug and Cosmetic Act

FIFRA US Federal Insecticide and Rodenticide Act

FNIH Foundation for the National Institutes of Health

GM Genetically modified

GMM Genetically modified mosquito

GMO Genetically modified organism

IPPC International Plant Protection Convention

ISPM International Standards for Phytosanitary Measures

LMO Living modified organism

NAPPO North American Plant Protection Organization

NEPA National Environmental Policy Act (USA)

NTO Non-target organism

RA Risk assessment

RM Risk management

SOP Standard operating procedure

SPS WTO Agreement on the Application of Sanitary and Phytosanitary Measures

SIT Sterile insect technique

UNDP United Nations Development Programme

USDA US Department of Agriculture

WHO World Health Organization

WHO-TDR World Health Organization Special Programme for Research and Training in Tropical
Diseases

WTO World Trade Organization
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Foreword

Vector-borne diseases are endemic in more than 100 countries and affect approximately half of the
world’s population. Many types of arthropods may serve as disease vectors, but this guidance
focuses particularly on mosquitoes. Mosquitoes transmit several diseases of major global public
health importance, including malaria and dengue fever.

Despite ongoing and intensive control efforts, malaria and dengue continue to exact a huge public
health toll. Malaria is considered the world’s most important parasitic infectious disease. Estimates
of malaria-related deaths in 2010 range from 655 000 (WHO, 2011) to over 1.2 million (Murray et al.,
2012), with the majority of deaths occurring among African children under five years of age. The
international Roll Back Malaria partnership has pledged a goal to “eradicate malaria worldwide by
reducing the global incidence to zero through progressive elimination in countries.”! Yet it is
acknowledged widely that this goal will not be met without new tools (Greenwood et al., 2008;
Mendis et al., 2009; Alonso et al., 2011; Alonso & Tanner, 2013). An estimated 2.5 billion people live
in areas where dengue viruses can be transmitted. Despite a plan adopted by the Pan-American
Health Organization (PAHO) and its Member States to eventually eradicate Aedes aegypti, the main
vector of dengue in the Americas (PAHO, 1997; 1998), dengue continues to plague countries in Latin
America, as well as Asia and Africa. In 2013, the estimated global burden of dengue was revised
upward to 390 million infections per year (Bhatt et al, 2013). WHO recently called dengue the most
important mosquito-borne viral disease with an epidemic potential in the world, citing a 30-fold
increase in the global incidence of dengue during the past 50 years and recognizing that the human
and economic costs are staggering. WHO further acknowledged that innovations in vector control
deserve more attention as playing a key part in reducing transmission and disease burden.’

Attacking mosquito vectors is one of the most effective ways to reduce the transmission of disease
in endemic areas. Application of mosquito population reduction methods was central to successful
elimination of malaria transmission in Italy and the United States of America in the early 20th
century (Kitron & Spielman, 1989) and, transiently, of dengue in the Americas in the early 1960s
(Pinheiro & Corber, 1997). Vector-targeted approaches remain a mainstay of current disease-control
practices. However, given the magnitude of ongoing malaria and dengue incidence, current efforts
clearly are insufficient to meet the need. Moreover, dependence on a limited number of insecticides
for vector control increases the risk that mosquitoes will develop resistance, as is now being widely
reported (Butler, 2011). In 2012, WHO confirmed that insecticide resistance is being reported in
two-thirds of countries with ongoing malaria transmission, and that resistance affects all major
vector species and classes of insecticide (WHO, 2012).

In considering the potential of new technologies to address the unmet needs of mosquito control, it
is necessary to evaluate the benefits and risks in the context of the current situation. The potential
public health benefit of practical and effective new tools to reduce or even eradicate diseases such
as malaria and dengue is clear and widely recognized. Both the risks incurred by testing new, and

! Roll Back Malaria: http://www.rollbackmalaria.org/rbmvision.html, accessed 25 May 2014.
2 second WHO report on neglected tropical diseases:
http://www.who.int/neglected_diseases/9789241564540/en/, accessed 25 May 2014.
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unproven strategies and the risks to human health and the environment posed by maintaining the
status quo, which include ongoing disease and use of broad spectrum insecticides, should be taken
into account in decision-making.

For more than two decades, scientists have been working to harness the promise of molecular
biology to develop genetically modified mosquitoes (GMMs) for use as public health tools to prevent
the transmission of these diseases. Several of these genetic technologies are now advancing to field
testing. The introduction of molecular biology techniques represents the next step in a progression
that builds on the widespread success of programmes employing release of radiation-sterilized
insects to control the Mediterranean fruit fly (Med fly) and other insect pests affecting plants and
animals, a process known as Sterile Insect Technique (Dyck, Hendrichs & Robinson, 2005). Radiation-
and chemo-sterilization methods also have been applied to mosquitoes (Dame et al., 2009), but they
pose several difficulties that might be overcome using genetic modification technologies. Recent
advances in the development of GMMs have raised hopes for the availability of new, potent and
cost-effective tools to aid in the fight against malaria and dengue. Data on which to base evaluation
of the protective potential of GMMs can only be collected through testing, including testing under
the natural conditions in which the technology would be utilized. Without the ability to conduct
careful and stepwise testing, no new technology can be brought to fruition for the public good.
However, given the novelty of GMMs, concerns have been raised about the need for thorough,
thoughtful and transparent preparation for and conduct of field trials (Reeves et al., 2012) and
frameworks for environmental risk assessment (RA) have been produced at various levels (examples
are provided in Section 3. Biosafety, and in David et al., 2013).

Since 2001, scientists involved in this research have, with the support of TDR, the Special Programme
for Research and Training in Tropical Diseases (WHO-TDR) and other funders, gathered periodically
to consider issues relevant to testing and implementation of genetically modified vectors. Through
such discussions, broad agreement has been reached within the scientific community on two tenets,
which thus far have been observed.

* First, field-testing should begin with release of sterile or otherwise self-limiting modified male
mosquitoes in order to gain experience with the technology under circumstances where its
effects can be controlled by halting releases (Benedict & Robinson, 2003). Field releases of
GMMs carried out to date have focused on the testing of non-replicating, functionally sterile,
males (which do not bite).

* Second, testing of modified mosquitoes incorporating gene drive should begin under physical
confinement (Alphey et al., 2002; Benedict et al., 2008). No GMMs designed to replicate and
spread the modification to wild-type mosquitoes have yet been tested outside of the laboratory.

As the research progresses, a need has been expressed both within the scientific community and by
the public for additional standards and guidance. WHO-TDR and the Foundation for the National
Institutes of Health (FNIH) co-sponsored a technical consultation meeting in 2009 to assess current
progress and future development of genetically modified mosquito technologies. The meeting was
attended by participants from around the world with expertise in molecular biology, medical
entomology, ecology, regulatory requirements, ethical, social and cultural issues, as well as staff
from WHO, FNIH and other research funders WHO-TDR, 2010). Participants recommended the
establishment by WHO and FNIH of a working group to develop a comprehensive guidance
framework to provide quality standards for assessing the safety and efficacy of genetically modified
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mosquitoes and addressing legal, ethical, social and cultural issues that arise during their
development and deployment. A multidisciplinary effort was subsequently commissioned and over
40 experts recruited to contribute at various stages of development. In accordance with the
recommendations, the group included many members who possessed a broad knowledge in their
topic areas but were not involved directly in research on GMMs. A draft guidance framework was
produced and opened for public comment in late 2012. Responses to public comment have been
incorporated into this current version.

Because of the breadth of different genetic approaches that are under consideration and conditions
under which they might be used, it is not possible to provide an exact formula for evaluation of all
GMM technologies. It will be necessary to determine the specific needs on a case-by-case basis.
Thus, the guidance framework presented here does not offer precise instructions for testing GMMs,
but rather aims to support informed and thoughtful process development. Efficacy and safety
testing standards are proposed that are complementary to those used for trials of other new public
health tools, including drugs, vaccines and insecticides, drawing also from relevant experience in
agriculture and biocontrol. The guidance framework examines the fundamental considerations for
addressing public engagement and transparency needs in research on GMMs, taking into account
lessons learned from previous introductions of new technologies in the fields of health and
agriculture. Finally, while it reviews existing regulatory requirements and guidance that are either
directly pertinent to research on GMMs or may provide precedents for establishing the appropriate
level of oversight, it is understood that such precedents will continue to be expanded and refined as
research on modified mosquitoes proceeds. This Guidance Framework for Testing of Genetically
Modified Mosquitoes is intended to foster quality and consistency in the processes for testing and
regulating new genetic technologies. It is hoped that it will contribute to comparability of results and
credibility of conclusions in addressing the requirements for decision-making by countries interested
in the potential use of these technologies as public health tools for control of vector-borne diseases.
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Key messages

1. Despite ongoing control efforts, diseases transmitted by mosquitoes, such as malaria and
dengue, continue to pose an enormous global health burden. Multinational public health
organizations have called for the eradication of malaria and of the major mosquito vector of
dengue. There is broad recognition of the need for improved tools to combat these diseases,
including tools for vector control.

2. Currently available methods to control mosquito vectors of malaria and dengue are based on
the use of insecticides and elimination of mosquito larval breeding sites. In considering the
potential of new technologies to address the unmet needs of mosquito control, it is necessary to
evaluate their risks and benefits in the context of the current situation. Thus, the risk incurred by
testing new and unproven strategies should be weighed against the risks to human health and
the environment posed by maintaining the status quo, which includes both ongoing disease and
exposure to broad-spectrum insecticides, and of the changing status of factors affecting
mosquito abundance, such as land use, urbanization and climate.

3. GMMs have been proposed as a possible new tool to reduce transmission of malaria and
dengue. This Guidance Framework is intended to foster quality and consistency of procedures
for testing of GMMs, which will contribute to comparability of results and credibility of
conclusions in addressing the needs for decision-making by those considering the use of GMMs
as public health tools to control mosquito-borne diseases. The Guidance Framework should be
useful to readers interested in:

* GMM technologies and applications that currently are being contemplated;

* safety, efficacy, regulatory and social/ethical issues involved in taking GMMs from the
laboratory to field testing;

* precedents that exist for how these issues have been dealt with to date;

e existing regulatory frameworks and international agreements that are relevant to GMM
testing and eventual implementation.

4, GMM technologies currently under development are aimed at either reducing the size of the
mosquito vector population to an extent that will significantly reduce pathogen transmission
(“population suppression”) or at replacing the current population with mosquitoes that have
been made less capable of transmitting a particular pathogen (“population replacement”).

5. These technologies can be further defined according to how long the GMMs are intended to
persist in the environment following release. The persistence of the GMM effect will depend
upon the transgene components and their behaviour.

6. With “self-limiting” approaches, the genetic modification is designed to decline in frequency
within the mosquito population over time until it disappears. In some cases, the GMMs are
meant to be sterile and thus unable to pass the genetic modification on to future generations
through mating. In other cases, the GMMs are meant to mate and introduce the effect briefly
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into the local mosquito population, but it is expected that crossing with local mosquitoes over a
number of generations will reduce the modification until it is lost. Thus, the protective effect of
self-limiting approaches can only be maintained by periodic re-releases of GMMs, and how often
these releases must be performed will depend upon the type of genetic modification. From a RA
perspective, these releases can be readily halted and this should decrease the possibility of
producing undesirable changes in the environment. However, the need for frequent
reintroductions is associated with ongoing costs of production and delivery.

With “self-sustaining” approaches, the genetic modification is intended to be spread into the
local mosquito population and to persist indefinitely. These approaches have the potential to
provide highly durable and cost-effective protection against pathogen transmission, but any
unforeseen effects may be more difficult to reverse than would be the case for self-limiting
approaches.

GMM technologies offer several theoretical advantages over conventional vector control
strategies. They may reach mosquito populations and mosquito larval breeding sites that have
traditionally been the hardest and most expensive to access by exploiting the natural behaviour
of mosquitoes to mate and seek sites for egg laying. For example, GMMs would be well suited to
urban settings, where current control measures are largely ineffective due to the wide
availability of cryptic mosquito larval breeding sites. Additionally, GMMs may reach outdoor and
day-biting mosquitoes that often escape control methods such as bed nets and indoor
insecticide spraying. The modification could be made highly specific for the target mosquito
species, which would avoid ecological and environmental hazards associated with commonly
used broad-spectrum insecticides. GMMs could provide continuous protection in situations
where other disease control methods have been interrupted, and prevent the reintroduction of
the pathogen after successful elimination efforts. It is important also to note that GMM
technologies could be used in ways that are compatible with other disease control methods and
could be incorporated into integrated vector management programmes.

Theoretical disadvantages also have been raised for GMMs, including several unknowns related
to possible ecosystem interactions. Because of the breadth of different genetic approaches that
are under consideration as well as conditions under which they might be used, it is not possible
to provide a universal formula for evaluation of GMM technologies. As with other public health
technologies, case-specific testing will be required to understand the advantages and
disadvantages of a particular GMM approach, keeping in mind both the potential benefits as
well as risks. This can begin prior to field-testing as particular GMM approaches are developed,
building on principles already described for existing technologies.

A phased testing pathway is recommended for GMMs, analogous to the development pathway
for other new public health tools, with systematic assessment of safety and efficacy at each
step. New GMM technologies would first move from the laboratory (Phase 1) to testing under
confined conditions that provide a more natural setting but still limit release into the
environment (Phase 2). Phase 2 may involve testing under physical confinement, as in a large
cage equipped to simulate a disease-endemic setting, or under ecological confinement, as under
geographic, spatial or climatic isolation. RA and prior experience with the technology will inform
the plan for confined testing; it is recognized that regulatory requirements for physical and
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12.

ecological confinement will differ because of the different levels of environmental exposure.
Following confined testing, GMMs may proceed to a series of staged open release trials in Phase
3, designed to measure performance under different conditions and to assess the ability of
GMMs to reduce infection and/or disease in human populations. Based on results from Phase 3,
a decision may be made to deploy GMMs as a public health intervention (Phase 4). Phase 4
would be accompanied by a plan for long-term monitoring of safety and efficacy.

The transition from one phase to the next will be subject to “go/no-go” decision criteria,
including efficacy and safety endpoints, regulatory and ethical approvals, and social acceptance.
Testing would not proceed if either the responsible regulatory authority or the developer makes
a “no-go” decision or places a trial on hold in order to collect more information. Community
acceptance would be a critical determinant in deciding whether testing could move forward in a
particular location.

The critical path for GMM development will include not only proof of efficacy, but also proof of
acceptability and deliverability. Risk analysis, community and other stakeholder engagement,
and regulatory approval all contribute to proof of acceptability. Cost-effectiveness of the
technology vs. other available disease control methods also may influence acceptability.
Deliverability will require consideration of an operating model with appropriate prospects for
financing to support deployment and subsequent monitoring, sufficient technical and
production capacity, quality control processes, methods for management and mitigation in the
case of adverse effects, as well as commitment to ongoing stakeholder engagement.

Efficacy evaluation

13.

14.

15.

16.

XX

GMMs must be effective in reducing transmission of the targeted pathogen(s) and not
detrimental to the environment and human health if they are used as public health intervention
tools. Demonstration of efficacy will be a critical determinant for decision-making about
deployment.

The efficacy of GMMs may be measured by both entomological and epidemiological endpoints.
The entomological endpoint is a reduction in the risk of disease transmission as measured by
specific mosquito population characteristics. The epidemiological endpoint is a reduction in the
incidence of infection or disease in human populations. Whereas entomological endpoints may
be relevant through all phases of testing, epidemiological endpoints will probably only become
significant as research progresses to larger trials under Phase 3.

The most direct measure of an entomological endpoint is a reduction in the estimated
transmission intensity, which is called the entomological inoculation rate (EIR). Because
measuring EIR reductions is difficult or impossible during Phase 1 and Phase 2, it will be
necessary to infer reductions in EIR by surrogate vector indicators that would contribute to the
EIR, such as vector population size, transgene frequency, GMM fitness, or pathogen replication
within the vector.

A potentially powerful design for determining efficacy of GMM applications is the cluster
randomized trial. Such trials must be designed to allow measurable reductions in an endpoint
such as infection incidence. Careful site selection is necessary to increase the likelihood of
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detecting significant results. The influence of seasonal and inter-annual variations and spatial
heterogeneity in incidence on trial design must be considered. “Go” and “no-go” criteria for
moving forward should be determined. Independent monitoring of trials is recommended.

GMMs will most likely be applied in the context of conventional control measures. Thus, the
effect of other ongoing control measures on the outcomes of the GMM trials must be
considered in the trial design. The efficiency of GMMs relative to conventional control will in
part determine their utility.

Biosafety

18.

19.

20.

21.

22.

Risk is the likelihood that harm will occur from a particular action. The level of risk is estimated
as the product of the expected probability that a harmful event will occur and the expected
consequences, or impact, of the event.

RA is a methodological approach to systematically define the level of risk. Risk management
(RM) encompasses strategies developed to avoid and reduce risk to acceptable levels. Risk
analysis encompasses RA and RM, as well as risk awareness and risk communication. Risk
analysis should articulate and inform the concerns on which to focus and the acceptability of
risks, and convey the results of these processes to the public and to decision-makers.

The core functions of risk analysis are assessment and management. RA should determine: the
planned actions and potential routes of exposure for defined hazards, how these can be
measured and the limits of concern; a characterization of events leading to potential negative
impacts of the GMMs; the anticipated level of exposure to these events leading to quantification
of the likelihood and consequences of their effect on target organisms, non-target organisms
(NTOs) and human health; and the levels of uncertainty associated with the potential events,
levels of exposure, and their consequences. RM should identify and evaluate proportionate
measures that are needed to mitigate any harm or uncertainty and demonstrate how both
standard and responsive measures would make the identified risks acceptable to regulators.
Additional risk communication may be needed to determine that RM is also acceptable to a
wider community.

The evaluation of risk should be set against the benefits of GMMs for improving human health
on a case-by-case basis. Cost-benefit or cost-effectiveness analyses can provide the framework
under which the appropriate (economic, health, social) returns of a GMM-release programme
may be quantified, and provide a context for decision-making about the level of acceptable risk.
RA of novel technologies should be set against the risk of relevant alternatives, such as the risk
of no action or the risk of conventional control methods. For example, “causes more harm” than
current practice is a reasonable comparator for RA of GMM-based vector control systems.

On evaluation, risk in some cases may be judged as negligible, as when the probability a harmful
event will occur is determined to be very low or the consequences of an event occurring would
be minimal. Moreover, in many cases, despite potentially harmful events being identified, the
practical level of risk to which the public is exposed can be reduced to acceptable levels by
effective management. The identification of potential hazards does not in itself indicate an
unacceptable risk.

XXi



23. Biosafety considerations in Phase 1 testing of GMMs should include:

* how appropriate comparators will be chosen, what appropriate comparisons should be
made, and what endpoints will be used for these comparisons of risk;

* stability and effectiveness of the transgene at the population-level and the consequences of
incomplete or partial transgene function;

* the phenotype of GMMs with multiple transgenes, rather than the effect of individual genes;

* the methodology for and impact of sex separation, if appropriate to the GMM technology
being assessed;

* how GMMs will be discriminated within a wild population after release, how the
maintenance of gene integrity will be monitored, and how trial endpoints will be determined;

* the type, strength and function of the appropriate ecological processes affecting the GMM
population;

* appropriate ecological and biological comparisons for NTOs.

24. Additional biosafety considerations in Phase 2 testing should include:

* determination of the need for physically confined testing prior to ecologically confined
testing;

* appropriate site selection criteria for confined trials, bearing in mind the spatial location,
timing and duration of ecologically confined field trials;

* spatial extent of the trial, including potential risks in areas outside the designated trial site(s);

* development of detailed standard operating procedures (SOPs) to ensure that rearing,
release and monitoring are carried out consistent with the relevant assumptions made in RA,
with clear lines of responsibility and reporting, and RM strategies for field trials;

* potential for unanticipated effects on disease burden;

* non-target species assessments, if appropriate, for confined field trials.

25. Additional biosafety considerations in Phase 3 testing should include:

* characterization of local target mosquito ecology as required to set appropriate trial
endpoints, including impact on human health and the wider environment;

* methods for evaluating GMM success through population-level assessments;

* appropriate RM plans for any potential resistance to the genetic modification, designating
the lines of responsibility for managing this risk;

* proportionate assessment and management of non-target and off-target effects and the
likely risk of transgenic gene flow;

* proportionate assessment and management of risks associated with the mass production of
mosquitoes.

26. If and when a decision is made to deploy GMMs broadly as a public health tool, there may be a
need for post-implementation quality control and surveillance to monitor for effectiveness and
development of specific risks identified by post-release assessment. Biosafety considerations in
Phase 4 should include:

* methods available for ongoing monitoring of the epidemiological impact of GMMs on human
health;
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* methods available for ongoing monitoring of safety for the environment and human health
(in a manner analogous to pharmacovigilance, the monitoring applied to medicines after
introduction to market);

* available mitigation methods in the case that a negative effect is observed;

* risk implications and management of the movement of GMMs across borders.

Independent ongoing safety review during testing is recommended, covering relevant aspects of
environmental monitoring and human health. This may be accomplished through existing
institutional or national level biosafety committees or through the establishment of new review
bodies focused on GMM activities. The strengthening of biosafety oversight capabilities within
disease endemic countries should be encouraged. National biosafety laws and regulations
developed primarily to regulate genetically modified (GM) plants may need to be reinterpreted
for GMM, or additional guidance provided.

Ethics and public engagement

28.

29.

30.

31.

In the design of GMM trials, a key set of questions relates to the ethical implications, including
the nature and scope of the obligation to respect host communities and what type of
protections should be provided to them. Respect for communities should be understood as an
overarching ethical goal within GMM trials.

Although activities of ethical reflection and engagement often overlap with those of regulatory
compliance, ethical issues and responsibilities are generally broader than just those activities
specifically mandated by administrative law or organizational policies. It should not be assumed
that regulatory compliance implies that ethical and community engagement responsibilities
have been addressed adequately.

Democratic governance of technology requires that proposals on issues such as the testing of
GMMs be discussed and debated openly in a manner that receives the attention of scientists
and decision-makers, and in a way that ensures that stakeholders’ voices can be heard.

The ethics and engagement component of a GMM research programme will take place at
multiple levels, three of which are mentioned below.

* Within the project team. Team members and their advisers should articulate the value and
social purpose of the research, engage in ongoing and structured ethical reflection (including
consideration of dissenting opinions and legitimate public concerns), document publicly the
ethics and engagement activities that have been done, and evaluate the performance of
these activities. All of these efforts should contribute to further development and refinement
of plans and methods.

* With the host community. Researchers have ethical responsibilities to people living within a
trial site. For that subset of individuals classified as “human research subjects” according to
standard regulatory criteria, informed consent obligations will apply. However, there may be
many individuals living within a trial site who are not, in a traditional sense, subjects of the
research at hand, but who nonetheless may be affected by the conduct of research.
Community engagement addresses ethical obligations to these people, including undertaking
procedures that would be expected to identify them, advising them that they may have

XXiii



32.

33.

34.

35.

36.

37.

interests at stake, finding out what concerns they may have, responding to those concerns,
and reaching some form of agreement about whether the trial should proceed.

* With third parties. Individuals not immediately associated with the trial site such as public
health or international development organizations, other scientists, members of CSOs, the
press, and the general public, will take an interest in the conduct and outcome of the
research. The ethical obligation to third parties is not to seek them out proactively to ensure
awareness of the research, but to consider and respond to their expressed concerns and
interests in a respectful manner. GMM projects should incorporate a communications/public
engagement strategy that includes education about the goal and methods, but also provides
opportunities for follow-up discussion.

Ethics and engagement activities should be considered before Phase 1 proof-of-concept work
has been completed. Adequate plans for communication and engagement should be put in place
before the earliest stages of field testing begin. Community engagement activities should begin
during the collection of baseline entomological data, in order to avoid the possibility of
misunderstandings and miscommunications that could undermine respect for the host
community and jeopardize future research. Plans also should include initiating interactions with
policy-makers to explain research goals and develop an open dialogue.

Community engagement and authorization activities will be necessary in Phase 2 of the GMM
testing pathway. Before proceeding to confined release trials, plans should be in place for
responding to ethical obligations to individuals being asked to participate as human research
subjects and/or to communities being asked to host trials. Communications should explain that
trials are research activities intended to test a new technology, a protective effect is not assured,
and the community must continue to employ other available methods to protect themselves
from disease transmission.

Community engagement and authorization activities will expand in Phase 3, and human subjects
issues will become more prominent in trials undertaken to determine the epidemiological
impact of GMMs.

In Phase 4, ethical responsibilities to those who are affected by the technology are increasingly
likely to converge with established processes. Deployment of GMMs will be a public health
initiative and will take place in the context of existing legal, regulatory and political institutions.
However, the need for public engagement activities is likely to continue.

It will be important for members of the scientific team to be involved in ethics and engagement
activities. However, many aspects of these activities will also require the specialized skills of
social scientists and communications experts. Adequate funding for these activities will be
imperative for the successful accomplishment of the research objectives.

A need can be anticipated for training of project scientists about research ethics, and of
institutional or national ethics review committees in the specialized issues associated with
vector biology research.
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Regulatory frameworks

38.

39.

40.

41.

42.

43.

44,

Regulation is an enabling process that ensures that safety and efficacy are consistent with social
values. Regulation of GMMs may be encountered early in the research process and throughout
development and implementation. Regulation can be expected at institutional, state, provincial
and national levels, all of which may have to be addressed concurrently.

Each country has its own sovereign regulatory process, but overarching international
agreements or treaties also may be relevant. Early investigation of the regulatory processes in a
given country and open communication with the national officials, risk assessors, and decision-
makers are imperative in order to understand the requirements relevant to GMM:s.

Early interaction with regulators will serve to identify the appropriate regulatory pathway for
GMMs, and proactive communications will help to build understanding within regulatory
agencies about the GMM technology, as well as the goals and methodologies of the project.
There may be a need to strengthen familiarity with entomology research methods and/or
biosafety procedures, and this should be planned for accordingly.

The Cartagena Protocol on Biosafety (CPB) is accepted by almost all developing countries and is
anticipated to be an important influence on GMM regulatory processes and RAs. It will be
essential to work with regulators to ensure understanding of the differences between GMM and
GM plants or crops, including the fact that human health benefits are relevant as part of the
regulatory decision-making process for GMMs. Limited resources available to GMM developers,
especially where products are intended primarily to serve the public health needs of developing
countries, make it important for authorities to exercise discretion in imposing regulatory
requirements, taking into account scientific rationale and relative risks.

Regulation of GMMs may present unanticipated costs and potential delays that must be
recognized as early as possible. Plans for dealing with such contingencies should be put in place
and suitably resourced.

Informed public involvement and consent in the GMM regulatory decision process is a necessity
if implementation is to occur without adverse public reaction. Regulatory processes often
include formal public consultation opportunities.

While there is currently no standardized procedure for addressing potential transboundary
movement of GMMs that are self-sustaining or with gene drive, some precedent is provided by
prior introductions of classical biological control agents in agriculture. A regional notification and
agreement process may be advisable for planned introductions capable of autonomous
international movement beyond the scope of provisions in the Cartagena Protocol and may best
involve a multilateral organization in a coordinating capacity.
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Guidance Framework for Testing of Genetically Modified Mosquitoes

1. Introduction

Summary: The need for better methods to combat mosquito-borne diseases is widely recognized. Recent
research offers the possibility that genetically modified mosquitoes (GMMs) could be used to prevent
pathogen transmission. GMMs provide several theoretical advantages that may make them attractive for
vector control, such as specificity and the ability to function in areas that are difficult to reach with
conventional control methods. Different GMM technologies under consideration include those aimed at
reducing the number of mosquito vectors in a given region (population suppression) or rendering the local
mosquitoes unable to transmit a pathogen (population replacement). Both types of technologies can be
designed so that GMMs persist for only a brief period of time (self-limiting) or so that the modification is
passed on through local wild mosquitoes and persists indefinitely within the local mosquito population
(self-sustaining).

Ongoing releases of self-limiting GMMs will be required to maintain effectiveness. Self-limiting approaches
may be attractive from an environmental safety perspective since they are not expected to persist in the
environment or to spread far beyond the release site. However, self-sustaining approaches ultimately
could provide more durable and cost-effective public health solutions. A phased testing pathway is
recommended, in which new GMM strategies move from the laboratory, to testing in more natural
environments under confined conditions, and finally to open release trials, with each transition dependent
upon satisfactory demonstration of efficacy and safety. When GMM are incorporated into national or
regional vector control programmes, the need for ongoing case-specific monitoring of effectiveness and
safety should be considered to ensure acceptable quality and performance standards and to inform any
necessary management responses.

Current mosquito control efforts rely heavily on chemical methods including insecticide-treated bed
nets, indoor residual spraying with insecticides, outdoor insecticide fogging, and application of
chemical larvicides, or management of standing water for mosquito larval breeding sites. Despite
diligent application of available control strategies, including improvements and expanded use of bed
nets, mosquito-borne diseases such as dengue (WHO, 2012),> and malaria (Murray et al., 2012;
WHO, 2013) continue to pose major global health challenges. WHO experts have stated that, “global
eradication of malaria cannot be expected with existing tools” due to the difficulties of interrupting
transmission in sites with ongoing high vectorial capacities (Mendis et al., 2009). Malaria mapping
and modelling studies support this conclusion (Hay et al., 2009, Griffin et al., 2010). Similarly, a WHO
Special Programme for Research and Training in Tropical Diseases (WHO-TDR)-sponsored dengue
scientific working group acknowledged that, “we are collectively failing to meet the threat posed by
dengue as the disease spreads unabated and almost 40% of the world’s population now live at risk
of contracting it” (Farrar et al., 2007). Re-emergence of dengue over the last two decades is exacting
an increasing public health and economic toll (Shepard et al., 2011, Shepard et al., 2013). The
disease is now recognized as one of the most common reasons for hospital admission in the
Americas and Asia during the rainy seasons (Whitehorn & Farrar, 2010). WHO has acknowledged
that, “innovative vector control tools are badly needed,” and in particular that, “methods that
improve the ability to deliver persistent treatments more rapidly and efficiently into large urban

3 Dengue and severe dengue: http://www.who.int/mediacentre/factsheets/fs117/en/, accessed 25 May 2014.
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communities in a sustained way are urgently needed” (WHO, 2012). Limitations of current vector
control methods include: inability to reach mosquito larval breeding sites and adult resting sites;
evolution of resistance to chemical agents; compliance and infrastructure issues; concern about the
impact on the environment and/or toxicity to humans; and, importantly, cost. The ongoing costs of
vector control are substantial,® and maintaining the high levels of donor and national government
support necessary to achieve high coverage of control measures over long periods of time has
historically proven daunting (Mills, Lubell & Hanson, 2008; Leach-Kemon et al., 2012). Thus, for both
operational and economic reasons, there is a recognized need for new, sustainable, and cost-
effective vector control tools.

Intensive interest arose in the late 1980s for the application of modern genetic engineering
technology to arthropod vectors as a useful approach for limiting transmission of human pathogens
(Beaty et al., 2009). Subsequent research has focused in large part on two high impact mosquito
species, Anopheles gambiae and Aedes aegypti, which serve as major vectors for malaria and
dengue, respectively.

Substantial progress has been made on challenges such as sequencing the genomes of these two
important vector species, achieving stable germline transformation, identifying sex-, tissue- and
stage-specific DNA control elements, identifying genes involved in susceptibility or resistance to
infection/insecticides, and developing models for methods to spread heritable modifications into
native mosquito populations within an epidemiologically relevant timeframe as needed to achieve
disease control. The initial technical objective, germline transformation, has been accomplished in
all major mosquito genera (Allen et al., 2001; Catteruccia et al., 2000; Jasinskiene et al., 1998) and
can be considered routine for several species. Beyond similar preliminary achievements, effector
genes have been developed that accomplish proof of principle for either refractoriness or sterility.
Examples include: 1) mosquitoes refractory to malaria parasites (Ito et al., 2002; Corby-Harris et al.,
2010, Isaacs et al., 2011; Isaacs et al.,, 2012) and dengue virus (Travanty et al.,, 2004; Franz et al.,
2006); and, 2) mosquitoes that are sterile (Windbichler, Papathanos & Crisanti, 2008) or that
function in a manner to limit reproductive potential (Fu et al., 2010; Galizi et al., 2014; Phuc et al.,
2007; Thomas et al., 2000). Additional methods have been proposed or demonstrated that await
development in transgenic mosquitoes (e.g. Marshall et al., 2010; Papathanos et al., 2009;
Schliekelman & Gould, 2000). Efforts can also be envisioned to develop additional effectors to
reduce life span or alter behaviours in a beneficial way.

Although much work remains to be done, it is now possible to envision a pathway towards the
realization of the successful implementation of genetic technologies for the control of mosquito-
borne diseases. A multidisciplinary effort will be required, encompassing not only additional
scientific advances, but also complementary planning for ethically and environmentally responsible
testing as well as for reliable, cost-effective and socially acceptable deployment. Consequently, the
technical consultation on GMMs organized in May 2009 by WHO-TDR and the Foundation for the
National Institutes of Health (FNIH) recommended that a guidance framework be developed for
assessing safety and efficacy and addressing regulatory and ethical, social and cultural issues during

* Global Malaria Action Plan, Table Il.4: http://www.rollbackmalaria.org/gmap/2-5.html, accessed 25 May
2014.
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the development and testing of GMMs (WHO, 2009). The framework presented here is intended to
provide a basis for conduct of trials according to best practices that will contribute to comparability
of results and credibility of conclusions. This should facilitate decision-making by countries regarding
the potential testing and use of GMMs as public health tools for prevention and control of malaria,
dengue and other mosquito-borne diseases.

1.1 GMM technologies

Currently contemplated GMM technologies are designed to have the following two major types of
effect.

* Population suppression — strategies that target vector “demography” with the intent to
reduce (suppress) the size of the mosquito population such that it would not be able to
sustain pathogen transmission. These include methods to reduce the overall numbers of
female mosquitoes (with or without a concomitant direct effect on males), which will result
in decreased reproduction. Examples of how this could be accomplished include biasing
against the development of female progeny (sex-ratio distortion), reducing female fertility, or
introducing a mechanism that incapacitates or kills young female mosquitoes. This category
also includes methods to shorten the lifespan of female mosquitoes, thus decreasing the
length of time available both to transmit a pathogen from one person to the next and to
reproduce.

* Population replacement — strategies that target vector competence with the intent to reduce
the inherent ability of individual mosquitoes to transmit a given pathogen. This involves the
introduction of engineered DNA and/or the manipulation of endogenous genes so as to
inhibit pathogen replication within the mosquitoes, making them refractory to transmission
of particular viruses or parasites. Upon release into the environment, these refractory GMMs
will be expected to introduce, through mating, the change into the local mosquito
population, “replacing” their inherent ability to spread the targeted pathogen with a reduced
or eliminated transmission capability.

These strategies can be further categorized according to the ability of GMMs to persist following
release (Table 1.1; Alphey, 2014). This will depend largely on a combination of two characteristics.
The first is “fitness cost” (a decrease in the mosquito's ability to survive and reproduce as a result of
the genetic modification) and the second is “drive” (a mechanism to increase the frequency of
effector genes in a population at a rate faster than would be expected through normal Mendelian
inheritance). The following two general approaches are being pursued.

* Self-limiting — approaches in which the GMMs are unable to pass the modification on
indefinitely through subsequent generations. Self-limiting approaches are designed to impose
a significant fitness cost, which will cause the GMMs to decline in frequency over time until
they disappear within the local population unless they are maintained by periodic new
releases. In general, the greater the fitness penalty, the shorter the time period over which
the GMMs would be expected to maintain their effectiveness. Indeed, a subset of the self-
limiting approach is comprised of GMMs that limit the number of viable adult progeny
produced from mating and hence the amount of genetic material passed to future
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generations. In this case, the genetic modification may aim for “sterility” (the GMMs do not
reproduce) or late-acting lethality (the GMMs reproduce but most of their progeny do not
survive to adulthood). Other self-limiting approaches impose a less severe fitness cost, and
therefore the modification will disappear more gradually from a population when releases
stop. Some of these are designed to have a transient gene drive system that breaks down
over time, at which point harmful effects on fitness predominate and the modification is
expected to disappear from the population without recurrent releases. Thus, with self-
limiting approaches, the combined effect of the fitness cost, which works against persistence,
and drive, which promotes persistence, will dictate how long the GMMs will remain effective
in the field and how often additional releases will be required.

A spectrum of different self-limiting approaches is under development. Some are being
constructed to function similarly to the sterile insect technique (SIT) that has been used
successfully against pest insects affecting livestock and crops (Lindquist et al., 1992; Dyck,
Hendrichs & Robinson, 2005). In this case, few, if any, viable offspring are expected to result
from the mating of GMMs with native mosquitoes. The reproductive potential of the local
population, therefore, is expected to decrease, resulting in population suppression. Such
approaches will require frequent inundative releases of GMMs to maintain effectiveness.
With self-limiting approaches at the other end of the spectrum, i.e. those that impose a
lower fitness cost and incorporate weak drive, GMMs from an initial release are expected to
mate productively with local mosquitoes and introduce the desired effect into the
population. However, the modification will gradually be diluted over a number of
generations of crossing with native mosquitoes until it is lost. Less frequent releases,
involving lower numbers of GMMs, would be required to maintain the effectiveness of this
type of self-limiting approach.

Computer simulations support the potential for self-limiting approaches to substantially
reduce vector-borne diseases (e.g. Atkinson et al., 2007, Legros et al., 2012). Moreover, it
has been argued by some that release of self-limiting constructs should constitute the early
stages of field testing in order to gain experience with GMM technology under
circumstances where its effects could be withdrawn by halting releases (Benedict &
Robinson, 2003).

Self-sustaining — approaches in which heritable modifications are intended to spread
indefinitely through the target population. Self-sustaining approaches must be able to spread
the effector mechanism into native mosquito populations within an epidemiologically
relevant timeframe. Thus, they require a strong drive mechanism capable of overcoming any
fitness costs and increasing rapidly the frequency of the effector gene(s) from low initial
levels to fixation, or near fixation. Once established, self-sustaining approaches are intended
to be relatively stable and to require smaller and infrequent inoculative releases to maintain
effectiveness. In the case of population replacement, the modification may become fixed
permanently within the local population. With self-sustaining population suppression
strategies, the modification may spread until the local vector population is greatly reduced or
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eventually eliminated. Computer simulations support the potential for self-sustaining
approaches to provide complete elimination of the disease pathogen in some circumstances,
potentially replacing existing control methods (e.g. Deredec et al., 2012).

Table 1.1 GMM technologies currently under development

Approach
Strategy Self-limiting Self-sustaining

Population suppression - Modification reduces the number of | - Modification reduces the
progeny number of progeny
- Possesses either no gene drive or | - Possesses strong gene drive
weak drive that will pass the |- Intended to spread the
modification through only a limited | modification indefinitely or
number of generations until the mosquito population

- Not intended to persist in the | is eliminated
absence of continued releases

Population replacement - Modification limits  pathogen | - Modification limits pathogen
replication, thereby reducing | replication, thereby reducing
transmission transmission
- Possesses weak gene drive that will | - Possesses strong gene drive
pass the modification through only a | - Intended to spread the
limited number of generations modification  through  the

- Intended to persist only until diluted | population indefinitely
out of the population

1.2 Characteristics of GMMs

GMM technologies offer certain potentially favourable design characteristics as new vector control
tools.

* They could provide area-wide protection that is accessible to everyone, regardless of their
socioeconomic level, and they do not require people to change their behaviour in order to be
effective.

* They would not require application of a chemical that must come into direct physical contact
with the mosquito to be effective.

* They could reach mosquito populations and their larval breeding sites that have been
traditionally the hardest and most expensive to reach using conventional vector control
strategies by exploiting the natural seeking behaviour of the mosquitoes to find mates and
oviposition sites. This would include outdoor and/or day-biting vectors that escape control by
bed nets and indoor spraying but may play an important role in transmission.

* A high level of specificity and stability would reduce ecological, environmental and human
health hazards associated with currently available broad spectrum insecticides.
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* They would be well suited to application in urban environments where current control
measures largely have proven inadequate.

* Technologies aimed at population suppression could reduce transmission of all pathogens
transmitted by the same vector mosquito. For example, suppression of Aedes aegypti vectors
could reduce transmission of dengue, yellow fever and chikungunya viruses.

Self-sustaining approaches have additional envisioned characteristics that would be useful in disease
elimination or eradication efforts.

* Limited need for reapplication would minimize the requirement for ongoing mass production
and delivery, which should make their use relatively inexpensive.

* Durability of activity should maintain effectiveness even in situations where other disease
control methods must be temporarily suspended, as, for example, due to adverse weather
conditions or civil unrest.

* Population replacement technologies would reduce or eliminate the pathogen, rather than a
particular mosquito vector. By not leaving an empty ecological niche, their effects should not
be limited by the potential for invasion of the treated area by other competent vectors.

* Some of the technologies could affect more than one local vector species if cross-mating
occurs even at low levels, thus having the potential to reduce disease in regions where it is
transmitted by related species.

Theoretical disadvantages of GMMs also have been proposed. These include possible ecosystem
effects. An example is the complexity of applying a species-specific technology in situations where
disease is spread by multiple vectors and the possibility that removal of the current disease vector
may allow a new vector to become established. Other potential issues are the development of
resistance over time, either on the part of the mosquito or the pathogen, and the loss of immunity
by people in treated areas over time; however, these possibilities also are shared by other control
methods such as insecticides and drugs. Such possible hazards must be taken into consideration in
risk assessment (RA) (Section 3. Biosafety).

1.3 Potential utility of GMMs

GMMs are primarily being developed for use within disease endemic or epidemic situations as part
of an area-wide control programme to reduce the rate of pathogen transmission. GMMs are likely to
be used as part of an integrated approach, in conjunction with other disease control methods.
GMMs are compatible with use of drugs and vaccines, as well as common vector control methods
such as source reduction. Importantly, GMM-mediated methods to reduce the force of disease
transmission by reducing the number of infectious bites could improve the protective potential of
new vaccines. For example, modelling suggests that a pre-erythrocytic malaria vaccine would be
much more effective in low transmission settings than in high transmission settings (Penny et al.,
2008). Likewise, concurrent use of a vaccine would reduce the possibility that prolonged reduction in
pathogen exposure due to effective transmission control might result in loss of immunity within the
human population (Ghani et al., 2009).
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Because they would not require a high level of individual participation, GMMs may not be as
susceptible to the lack of compliance that is sometimes seen with conventional control programmes
after disease rates fall and the perceived threat is low. Ongoing area-wide protection provided by
GMMs, especially those that are self-sustaining, could prevent the reintroduction of the pathogen
into the population (for example, by immigration of infected persons or mosquitoes) after successful
regional elimination efforts. This may provide a valuable tool for disease eradication.

Certain GMM technologies could also be useful as a preventative measure in regions where disease
is not yet occurring. For example, where exotic mosquito species may be introduced, GMMs could
help to prevent their establishment. This is analogous to current utilization of SIT to prevent
Mediterranean fruit fly infestation in otherwise pest-free areas.

1.4 GMM testing pathway

A series of workshops held in London and Atlanta in 2001 (Alphey et al., 2002), Wageningen in
2002,> and Nairobi in 2004,° began a process to discuss requirements related to the testing and
implementation of genetically modified (GM) vectors. The concept of phased testing was widely
advocated. The recommendation to develop a phased testing pathway was reiterated at a technical
consultation, held in Geneva in May 2009, which focused on practical and technical issues associated
with moving new GMM technologies from the laboratory to field testing (WHO, 2009).

In accordance with these earlier recommendations, a stepwise testing process as illustrated in Figure
1.1 is proposed in this guidance framework. Subsequent sections expand upon specific
considerations related to efficacy testing, safety testing, ethical, social and cultural issues, and
regulatory decisions to be addressed at each phase.

> Ecological aspects for application of genetically modified mosquitoes:
http://library.wur.nl/frontis/malaria/index.html, accessed 25 May 2014.

6 Bridging laboratory and field research for genetic control of disease vectors:
http://library.wur.nl/frontis/disease_vectors/index.html, accessed 25 May 2014.
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Figure 1.1 Phased testing pathway for GMMs
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For simplicity, the illustration describes a unidirectional pathway. In practice, however, repetitions of
some segment(s) of the pathway may be required in order to improve the technology and refine the
procedures until the requirements for moving to the next phase are met.

Phase 1 is anticipated to begin with small-scale laboratory studies for efficacy and safety testing,
followed by testing in larger population cages in a laboratory setting conducted under appropriate
containment facilities and procedures.” Laboratory testing under highly controlled conditions will
allow preliminary assessment of whether the GMMs demonstrate the desired biological and
functional characteristics, with an eye toward future efficacy and safety.

For those GMMs showing promise in Phase 1, Phase 2 initiates confined testing in a more natural
setting but under conditions that will limit release into the environment. Small trials in Phase 2 may
involve testing under physical confinement (sometimes termed “containment”) within a large cage
that simulates the disease-endemic setting while minimizing the possibility for escape. In the early
stages of testing of mosquitoes incorporating gene drive, experts have advocated testing under
physical confinement, such as within a greenhouse or screen-house type facility (Alphey et al., 2002;
Scott et al., 2002, Benedict et al., 2008). Phase 2 testing also may involve small-scale ecologically
confined field release. Ecological confinement entails geographic/spatial and/or climatic isolation
intended to limit the spread of GMMs into the environment. The decision about requirements for
one or both components of Phase 2 testing will be made by the national regulatory authority and
will probably depend on the nature of the GMM technology, prior knowledge of its effects in other

" For example, arthropod containment levels:
http://www.liebertonline.com/doi/pdfplus/10.1089/153036603322163475, accessed 25 May 2014; or
Australian Government (2006).
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environments and other factors that are taken into account in the process of RA (Section 3.
Biosafety). A situation in which a physically confined trial might not be deemed necessary might
arise, for example, when a technology has already been tested and found to be safe in another
venue. It should be noted, however, that the regulatory requirements for physically vs. ecologically
confined trials are expected to be different, since an ecologically confined trial involves intentional,
although limited, release into the environment. Phase 2 trials will continue the assessment of
biological and functional activity of GMMs, including their effect on local/wild-type mosquitoes, but
because of their limited scale will only rarely provide information on the disease impact of the
technology. Moving on to initiation of larger GMM trials in the environment and in disease-endemic
countries will require thoughtful consideration and the application of relevant ethical and regulatory
practices (Section 4. Ethics and public engagement; and Section 5. Regulatory frameworks).

Contingent upon satisfactory results of confined testing in Phase 2, the GMM technology may
proceed to staged open release trials under Phase 3. It is likely that this will involve a series of
sequential trials of increasing size, duration and complexity, to be conducted at a single site or
multiple sites. These trials may be designed to assess performance under various conditions, such as
different levels of pathogen transmission, seasonal variations in mosquito density, or presence of
other disease vectors in the region. While measurement of entomological parameters is likely to
remain the focus of early Phase 3 trials, later trials in this phase may include measurement of the
impact of GMMs on infection and/or disease in human populations. Trials to show epidemiological
impact must be designed accordingly, with considerable thought on the needs for achieving a
statistically meaningful result. Although still focused on intense examination of the function and
efficacy of GMMs, Phase 3 trials effectively institute a limited deployment of the technology; this will
especially be the case for self-sustaining approaches that are anticipated to persist.

Approval for moving forward to each consecutive phase of testing (phases 1-3) will be the
responsibility of the relevant national regulatory authority. The identity of this authority may differ
among individual countries (for examples, see Appendix 1) as national legislation or policy may
invest this responsibility with a lead ministry or a board/commission representing several ministries.
Several levels of oversight and review will most likely be required before bringing the decision to the
national level (Section 5. Regulatory frameworks). Thus, the institution conducting the research is
expected to have its own independent committees overseeing biosafety and the involvement of
human subjects. Intermediate jurisdictional units of government may impose additional levels of
regulation.

Results of Phase 3 testing will form the basis for determination as to whether the technology should
move into wider scale application as part of a national or regional programme for vector and disease
control. The ultimate decision on deployment of GMMs as a public health tool (Phase 4) will involve
the national regulatory authority, and may additionally involve authorities responsible for
determining national or regional disease control priorities (if different from the regulatory body).
Phase 4 constitutes an ongoing surveillance phase that will assess effectiveness under operational
conditions (both entomological and epidemiological impact), accompanied by monitoring of safety
over time and under diverse situations. Long-term surveillance of safety for human health will be
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analogous to the pharmacovigilance® applied in medicine but, in the case of GMMs, aspects of
environmental safety should also be considered. Ongoing monitoring will be aimed at ensuring
sustained quality and performance for disease control, and determining whether any changes are
needed in management of either the GMM technology itself or other aspects of an integrated
control programme. In this regard, it will be important to ensure that a perceived decrease in the
disease threat following implementation of GMMs does not lead people living in the area to become
complacent and revert to behaviours that could increase transmission pressure.

1.5 Decision-making

In determining whether any GMM technology should move forward from one phase to the next, it is
expected that the responsible regulatory authority will take into consideration criteria of both safety
and efficacy for its intended use. As described in subsequent sections of this Guidance Framework,
the transition from one phase to the next will be subject to defined “go/no-go” decision criteria,
including efficacy and safety endpoints, and be contingent upon regulatory and ethical approvals.

The meaning of “safe” is not easily defined, as it is recognized that virtually all public health products
(including those currently in widespread use against diseases such as malaria and dengue) have
some ability to cause adverse effects under certain conditions. Thus, a new product such as GMMs is
often assessed in the regulatory review process by determining whether its benefits outweigh its
risks.” The primary potential benefit of GMMs would be the improvement of human health, and
therefore efficacy data will enter into decision-making regarding benefit. The stringency of efficacy
demonstration required to judge a new technology worthy of moving forward may well be
influenced by the potential for adverse effects associated with the technology, which in turn will
differ according to the phase of testing. Variations in individual judgement, as well as the context in
which decisions are being made, can lead to differing opinions about risk-benefit assessment. Some
might advocate for withholding regulatory approval until absolute assurance of the absence of risk is
available, regardless of benefit. However, regulators may feel that other contextual factors also
should be taken into account, such as the severity of the health problem addressed by the new
technology, and the availability and utility of alternative disease control methods (FDA, 2013). With
regard to genetically modified organisms (GMOs), the Nuffield Council on Bioethics has
recommended “comparison of the risks of the status quo with those posed by possible paths of
action,” recognizing that “there can be dangers in inaction, or alternative courses of action, as well
as in the adoption of a particular innovation” (Nuffield Council on Bioethics, 20147?).

Other considerations beyond risk-benefit may come into play, especially when decisions are being
made to deploy a new technology as part of the national disease control programme (Phase 4).
Economic evaluations may be used to compare alternative courses of action as a basis for weighing
the options and making sound decisions about investment of scarce resources. Cost-benefit analysis
provides for the systematic calculation of benefits and costs in monetary terms and over time.

g WHO Pharmacovigilance:

http://www.who.int/medicines/areas/quality safety/safety efficacy/pharmvigi/en/index.html, accessed 25
May 2014.

° For example, FDA (2013), EMA (2011) and Explanation of statutory framework for risk-benefit balancing for
public health pesticides: http://epa.gov/pesticides/health/risk-benefit.htm, accessed 25 May 2014.
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However, for public health interventions, it may be difficult to calculate the benefits of improved
health in financial terms. A related method for comparing the relative costs and outcomes of
multiple courses of action is cost-effectiveness analysis, which expresses benefit as a measurement
of a particular health gain. For example, cost-effectiveness analysis might allow comparison of
alternative malaria or dengue control methods in terms of costs required to achieve a particular
reduction in mortality or clinical disease. Public health decision-makers may take a sectoral
approach, comparing cost and effectiveness of all possible disease interventions to select a mix that
provides maximum health benefits within given resource constraints. Issues that will need to be
factored into decision-making include whether the GMM technology will replace or reduce the need
for other control measures and, if not, how much the addition of GMMSs to ongoing disease control
efforts will enhance the overall effectiveness of the programme.

1.6 Critical path for GMM development

Proof of concept for efficacy of the GMM technology is one component of the critical path. Other
key elements must be engaged for proof of acceptability as well as proof of deliverability and
sustainability (Figure 1.2). Proof of acceptability involves risk analysis, regulatory approval and
community/stakeholder authorization. As mentioned, cost-effectiveness of the technology vs. other
available disease control methods may influence acceptability. Proof of deliverability involves the
development of an operating model with planning for sufficient technical capacity to support wider-
scale deployment, production capability at an appropriate scale, financing to support deployment
and subsequent monitoring, methods for field-applicable high-throughput monitoring for quality
control, management and mitigation capability in case of adverse events, and ongoing stakeholder
engagement. Sustainability will have different implications depending on whether the GMM
technology is self-limiting or self-sustaining, but in either case an important aspect will include
planning the response should indications of resistance to first-generation GMMs be detected during
Phase 4 monitoring. As is the case for drugs and insecticides, this may require support for ongoing
research to develop next-generation products.

Challenges remain in the identification of a viable model for the development of GMMs as public
health tools. Public agencies and philanthropic funders may provide the resources for phases 1 and 2
research. However, the level of support that will be required beyond early, small-scale, Phase 3
testing may be beyond the capacity of such research funders. In the standard business model used
for drugs, vaccines and insecticides (including those against malaria and dengue), industry would be
expected to pick up a promising lead and provide additional financing for its development into a
marketable product. However, GMMs are a new technology primarily being developed for use in
low- to middle-income countries and their potential for direct financial returns is uncertain
(especially with self-sustaining versions). Small biotechnology companies with limited resources
currently represent the only direct industry involved in GMM development. Public-private
partnerships, non-profit corporations, and other models of broadly supported funding consortia may
provide good precedents for GMM development. Furthermore, technology transfer to disease-
endemic countries is an important goal of GMM research.

11
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This Guidance Framework focuses primarily on the most immediate issues to be addressed in the

critical path to GMM development: proof of efficacy (testing for entomological and epidemiological

impact) and acceptability (biosafety, ethics and engagement, and regulatory requirements).

Figure 1.2 Elements of the critical path for GMM development and deployment
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2. Efficacy evaluation

Summary: Both entomological and epidemiological endpoints may be used to test the efficacy of GMMs in
reducing morbidity and mortality from vector-borne diseases. The entomological endpoint is a reduction in
the likelihood of disease transmission due to mosquito population characteristics, and will be the
predominant outcome measure in phases 1-2 and, possibly, early Phase 3, trials. Because this is difficult to
measure directly, surrogate indicators may be chosen, and these may include vector population size,
transgene frequency, and ability to support pathogen replication and/or GMM fitness. The epidemiological
endpoint is a measurable reduction in the incidence of infection or disease in human populations.
Epidemiological outcomes will be detected most easily when trials are conducted in high-transmission
settings. The specifics of conducting such trials will differ for the malaria and dengue interventions that are
the focus of this document. These differences include the fact that persistent endemic transmission
locations are available for malaria intervention trials, and therefore effects may be observed more rapidly
and unequivocally than in dengue trials, which are likely to be conducted in locations where transmission is
more heterogeneous and thus less predictable. Cluster randomized trials offer a powerful design for Phase
3 evaluation of efficacy against disease transmission in field trials. Trial designs must take into account the
likelihood of significant seasonal and inter-annual variations. Non-linear relationships between
entomological and epidemiological outcomes may also be anticipated. Much of the entomological
monitoring required will employ methods used in any vector-control programme. However certain
monitoring measures, such as phenotypic stability, will be unique to GMMs. “Go” and “no-go” criteria for
moving to the next phase of testing should be determined prior to trials. Specific entomological and
epidemiological measures are recommended for each phase of testing.

It is envisaged that GMM strategies will be implemented in area-wide control programmes. These
are conducted over large areas that may include several communities and contain at a minimum the
generational dispersal range of the target species. Area-wide control depends on the treatment of
such large regions for success, particularly in situations where effectiveness of the control measure
will be influenced by the potential for reinvasion. This implementation scale stands in contrast to
interventions such as repellents or nets that are effective at both household and individual levels.
Thus, the scale of testing and exposure of entire populations to GMM interventions have
implications for how trials can be conducted. Preliminary experiments can be conducted in
laboratories and outdoor cages, but testing during phases 1-3 proceeds through increasingly larger
scale (Figure 1.1), ultimately to open-field releases in which the efficacy of the technology can be
assessed most realistically. The purpose of any open-release experiments should be clear and
experimental protocols should be made available in advance.

While GMM technology has not yet been tested extensively in the field, experience gained from
conventional mosquito control programmes using methods such as indoor residual insecticide
spraying, outdoor space spraying and larviciding can help predict its efficacy. Experience from sterile
insect control programmes on agricultural pests will also be helpful in predicting outcomes, since
population suppression or preventive releases are the most immediate aims of planned genetic
mosquito control. Although conventional insecticidal control is usually not species-specific, its

16



Guidance Framework for Testing of Genetically Modified Mosquitoes

effects are similar to self-limiting GMMs in that they are not permanent. This self-limiting nature
provides a degree of intrinsic safety, in that implementation can be halted to mitigate and, possibly,
reverse adverse effects.

This chapter focuses on three key issues of efficacy evaluation: 1) the definition of entomological
and epidemiological efficacy endpoints of GMMs; 2) methodology issues and considerations related
to empirical measurement of efficacy; and 3) empirical measures of efficacy in the four different
development phases. This guidance relates to malaria and dengue vectors, as development of these
applications is currently the most advanced and their biology represents many other vector-borne
disease systems. Other disease vectors also may become targets of GMM control, but details for
determining their efficacy will not be discussed specifically.

Feasible applications of GMMs that will not be addressed in this section include those in which
mosquito control agencies might want to use GMMs against the threat of disease or introduction of
a vector. For example, such a preventative release is used in California and Florida, USA, where
exclusion is accomplished by conventional SIT programmes against Mediterranean fruit flies.'
Powerful population suppression by GMM strategies could find a market against pest mosquitoes in
mosquito control programmes, even where disease transmission is not a major consideration. In
such cases, the entomological outcome of the frequency and scale of target species outbreaks would
be sufficient to demonstrate efficacy. Similarly, the release of GMMs containing drive mechanisms
to spread refractoriness in a population might be used to preclude the onset of transmission. If such
protection were inexpensive, stable and acceptable, it might be implemented with minimal proof of
efficacy against disease.

2.1 Efficacy end points of GMMs

The efficacy measurements of GMMs can be defined by entomological and epidemiological
outcomes. These differ according to the disease, the vector species and the epidemiological
circumstances. Endemic disease situations are common for malaria and the effects of interventions
during trials conducted in such locations may be determined more rapidly than for dengue, which is
often spatially and temporally heterogeneous. These differences, as well as the occurrence of
multiple vectors in one place (particularly for malaria) determine the measures of efficacy that are
appropriate and feasible. Researchers planning trials must consider not only what is ideal, but also
whether field sites are available for determining specific epidemiological outcomes using the most
powerful protocols.

The epidemiological endpoint is a reduction in infection or clinical disease incidence

In trials designed to prove epidemiological impact, reductions may be measured by various means
including infection incidence, clinical disease incidence or prevalence of infection in at-risk
populations. In general, trials designed to detect a decrease in the incidence of infection will be able
to achieve a statistically meaningful result with a smaller cohort size than trials that measure
decreased incidence of disease, since only a subset of those infected may develop overt disease.

1% USDA-CDFA Mediterranean Fruit Fly Exclusion Program: http://www.cdfa.ca.gov/phpps/pdep/prpinfo/,
accessed 25 May 2014.
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Reduced infection incidence is generally expected to result in decreased mortality and morbidity,
although this will not always be the case; for example, during resurgence of disease in a naive
human population, unusually high rates of morbidity and mortality may occur. Multi-year data
collection may be required to demonstrate positive effects where disease is epidemic, highly
variable from year to year or of low prevalence. Pre-existing immunity to pathogens and viruses also
may influence measures of efficacy and must be considered in the experimental design.

The entomological endpoint is a reduction in the likelihood of disease transmission due to
mosquito population characteristics

The entomological measure of transmission (also called “force” or “intensity”) due to mosquito
population characteristics is the entomological inoculation rate (EIR). EIR describes the degree of
infection risk that a human population is exposed to for a particular disease as determined by
assessing the vector mosquito population. EIR would be a distribution of frequencies of infectious
bites over time for a range of people with different demographic characteristics in the area. A
control programme would shift this distribution to a lower mean frequency, but the shift might be
more or less for different demographic groups. EIR is influenced by several factors that are specific
to the geographic area, including climate, bionomics of local vectors and socioeconomic factors.
Accurate measures of EIR are most easily made when the prevalence of a pathogen is high —
hyperendemic disease transmission scenarios — and most difficult when prevalence is low or in
epidemic situations. It should also be anticipated that the level of disease transmission might change
during trials for reasons unrelated to the trial itself, unusual weather that affects vector abundance
being the most common influence. Researchers designing the trial should prepare for such
eventualities by proposing variations of the protocols during the planning phase and considering the
need for adaptive management during the trial (assuming this is acceptable to regulatory
authorities). The EIR varies widely in time and space in regions of epidemic transmission, and its
direct determination will seldom be feasible. In practice, its measurement requires analysis of field-
collected mosquitoes — often in large numbers and over long periods of time — for the presence of
infective pathogens, so it can be determined only in the presence of at-risk human populations.

While a measured reduction in the EIR is the most desirable of entomological outcomes,
demonstrating this will be difficult or impossible during confined Phase 2 and many Phase 3 trials.
This difficulty will be particularly great when there is the potential for substantial heterogeneity in
transmission, as is common for dengue. Furthermore, it is anticipated that ideal testing locations for
GMMs will be chosen in part for their confinement characteristics (ecological or physical islands),
and the number of vector species present. These specifications will limit further the range of
transmission scenarios and specific field sites that are available.

For these reasons, it is necessary during phases 1 and 2 to infer reductions in EIR by surrogate vector
indicators that contribute to the EIR. These may include daily survival, changes in absolute density,
altered propensity for feeding on humans, frequency of anti-pathogen effector genes and intrinsic
competence for developing infection. These indicators can be measured directly or calculated from
measurable data, e.g. the realized frequency of an anti-pathogen effector phenotype in a population
or the rate of spread of a transgene. The specific characteristics of GMMs must also be considered in
determining which indicators will be most useful to measure. For example, the frequency of GMMs
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that suppress populations in part by providing larval competition before the lethal effect occurs may
have different effects on adult abundance from GMMs that produce no progeny. Therefore,
monitoring larval transgene frequency and egg number have predictive value but hatching rate is
less diagnostic.

Beginning in Phase 2, feeding of mosquitoes using blood from infected persons in contained
conditions may provide a useful indicator if the GMMs are expected to have reduced intrinsic
competence to support pathogen replication. Such tractable measures then can be used to
parameterize models to predict the potential effect on EIR under various transmission conditions.
Carefully measuring these during phases 1 and 2, and integrating the outcomes into transmission
models, is an essential part of predicting efficacy. Use of surrogate efficacy measures may be
necessary even during Phase 3, and will help to determine the need to move to large trials for
epidemiological endpoints.

2.2 Empirical measures of GMM efficacy
Trials must be designed to allow measurable reductions in the incidence of infection

The measurable epidemiological outcomes, reduction in the incidence of infection or disease in
human populations, are few relative to the various GMM technologies that may be undertaken to
accomplish them. Therefore, considerations for measuring these outcomes are discussed before
proceeding to the variety of entomological measures and considerations of efficacy that will apply to
population suppression and replacement strategies. Differences in detection and transmission
dynamics between malaria and dengue will be discussed separately after commonalities are
described. The endpoints for either disease in the context of GMM applications are similar, but the
means by which these can be measured differ.

A statistically sound epidemiological trial design must be selected

The cluster randomized trial, (Hayes et al.,, 2000), in which groups of people are evaluated (as
opposed to individuals), is anticipated to be the most powerful design for detecting the efficacy of
GMM applications in Phase 3 trials when an epidemiological outcome will be measured (Wolbers et
al., 2012). Longitudinal studies with enrolled cohorts are recommended to determine infection
incidence. Passive case detection may be implemented for each cluster to determine the effect on
clinical disease incidence; however active case detection is preferred whenever resources are
available. The most accepted malaria'’ and dengue fever' case definitions should be used. Good
clinical practice (GCP) should be followed (EMA, 2002).

Careful site selection increases the likelihood of detecting significant results

! Centers for Disease Control and Prevention. National Notifiable Diseases Surveillance System (NNDSS).
Malaria 2010 case definition:
http://wwwn.cdc.gov/nndss/script/casedef.aspx?CondYrID=759&DatePub=1/1/2010%2012:00:00%20AM,
accessed 25 May 2014.

12 Centers for Disease Control and Prevention. Dengue. Clinical description for case definitions:
http://www.cdc.gov/dengue/clinicalLab/caseDef.html, accessed 25 May 2014.
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Detecting statistically significant reductions in epidemiological measurements would require a large
number of clusters that may not be feasible in sites with low infection or incidence of clinical
disease. Therefore, particularly for malaria, which often occurs at high EIR, trials in endemic areas
are recommended. It is considered likely that a GMM intervention that is effective in an endemic
area will also be effective in lower transmission conditions although the reverse cannot be assured.
Phase 2 and 3 trials should aim to detect an effect in one transmission season. Because dengue and
malaria transmission vary from year to year, multi-year trials may be necessary to ensure that both
low- and high-transmission years are included in the study.

Mosquitoes disperse locally, but long distance movement by malaria and dengue vectors unaided by
human activities or large weather events has not been observed (Service, 1997). However,
movement of mosquitoes can confound the interpretation of releases and prevent a positive trial
outcome both by immigration of wild mosquitoes and emigration of GMMs. When wild mosquitoes
move from untreated areas into treatment areas, the degree of sexual sterility or increase in
transgene frequency will be reduced relative to that that would be achieved in closed populations. In
contrast, a self-sustaining drive mechanism with intergenerational effects may spread a gene well
beyond the site of introduction and contamination of control areas must be prevented or
accommodated in the trial design. Therefore, effects will be demonstrated most easily when
repopulation of treatment areas by untreated wild mosquitoes and dilution of the GMM s
minimized by strong isolating factors. If the GMM is a rapidly self-limiting one, separation by two
kilometres will probably be sufficient (Service, 1997), but if a self-sustaining GMM is being tested,
separation distances must be greater in proportion to the expected rate of drive. Thus, the clusters
for both types of technologies must be sufficiently isolated so that the GMMs are confined to, and
excluded from, experimental and control clusters, respectively. Physical or ecological islands, or
sufficient geographical distances, may prevent results from being confounded by inadvertent cluster
contamination. Measurements of dispersal (commonly determined directly by mark-release-
recapture or estimated from population genetic studies) and previous studies can guide the
selection of conditions that provide sufficient isolation for various GMMs, and these must be
confirmed prior to trials. GMMs that contain genes encoding visible markers such as fluorescent
proteins can be distinguished easily from wild-type mosquitoes. Large-scale gene amplification
technologies to detect a molecular marker are also feasible. Other temporary markers such as
fluorescent powders can also be useful to distinguish dispersal when populations already include
GMMs.

Ongoing disease control measures must be considered

Phase 2 confined-field trials and Phase 3 open-field trials will probably use GMMs as a part of an
integrated vector management (IVM) programme. Therefore, the effect of ongoing control
measures on the outcomes of the GMM trials must be considered. It is neither experimentally
necessary nor ethically acceptable to test GMMs under conditions in which ongoing vector control
activities are not continued. Therefore, site evaluation should include entomologically and
epidemiologically similar field sites in which the same standard of care is being applied. Likewise, it
also is necessary to continue any control activities being conducted when CRTs begin and to ensure
that they are applied uniformly across sites. A change in the use of conventional control methods
during testing could change the transmission dynamics on which trial design was based. For
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example, this might be the case if those living in the trial site stop practicing other avoidance
measures because they perceive a diminished threat. Thus, there are both scientific and ethical
reasons to ensure that the trial is understood to be a research effort with no guarantee of protective
effect. Alternatively, such a change could occur if a new control measure is introduced into routine
use at the trial site, so it is important to coordinate as closely as possible with the regional vector
control programme during trial planning and implementation.

GMMs are expected to be compatible with conventional control measures unless those measures
exploit some weakness peculiar to the GMMs (Alphey et al., 2010). For example, if high levels of
insecticide resistance occur in wild populations and the GMMs are susceptible, then continued use
of the specific insecticide(s) to which the wild population is resistant will disproportionately affect
GMMs and diminish or nullify their effects. Therefore, considerable thought should be given to the
phenotypes of wild mosquitoes and GMMs, the control measures that will be applied for CRT site
selection, and potential vector control mitigation before making final choices.

Attention should also be given to ensuring that no major differences exist in individual human
behaviour between clusters or trial sites that may affect the intervention (WHO, 1997) e.g. the use
of personal protection measures (including mosquito nets), the domestic use of insecticides,
occupational exposures, and migration and human movement between treated and untreated
communities. Information may be obtained through interviews that may be supplemented by direct
observation (e.g. of anti-malarials, bed nets or insecticides available in the home). For lengthy trials,
consideration must be given to the potential that new control measures (e.g. vaccines) may become
available, and decisions made in collaboration with public health officials about how such a situation
might be handled.

Comparative efficacy between GMM and conventional vector control

Ultimately, GMMs may be considered as a substitute for conventional vector control (e.g. insect-
treated bed nets — ITNs — indoor residual spraying — IRS — or environmental management) if there is
evidence that such modification may be more cost-effective or more environmentally favourable
relative to existing control measures. Alternatively, GMMs may be combined with conventional
vector control if the methods are complementary and synergistic effects are anticipated. The
synergistic effect of combinations of two vector control methods can be determined if one
treatment area is subject to both methods and the control area utilizes only conventional vector
control. To compare the efficacy of GMMs and conventional vector control, a Phase 3 trial design
should include GMMs as one arm and conventional vector control as the other arm. However,
design of such comparison trials must be considered carefully to ensure that the population in the
GMM arm is not subjected to unnecessary risk in the absence of standard control methods. Such
trials should be justified by adequate prior demonstration of GMM efficacy. Phase 3 entomological
and epidemiological endpoints described above should be measured. An appropriate number of
clusters should be used to allow sufficient statistical power to detect differences. Cost-effectiveness
analysis of GMM or conventional vector control, or a combination of the two methods, should be
performed.

Special considerations for trials of dengue interventions
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Since dengue transmission is highly variable, it is likely that trials must be conducted on large spatial
and temporal scales, with large numbers of clusters, in order to detect an epidemiological effect.
Large reductions of normally high transmission could easily be measured. But, more typically, even a
GMM trial that completely eliminates transmission might need to extend over several years to
provide sufficient statistical power to conclude efficacy. GMM technologies are designed to reduce
the likelihood of transmission for people within the area under management, rather than treat
individuals within it. Thus, the area should be large enough so that large numbers of individuals are
not being exposed routinely to unknown risk of infection when travelling outside their respective
control or treated area, which could confound interpretation of trial results. Ideally, trial planning
will include methods to allow individuals becoming infected outside of the trial area to be identified
so that their contribution to incidence can be discounted. The trial plan also should anticipate
variation in transmission levels that may necessitate changing the scope of the trial (for example,
Phillips-Howard et al., 2003).

A reduction in the incidence of clinical disease may be a possible measure of efficacy when dengue
transmission is high. An alternative method, which is likely to be more feasible, given the expected
heterogeneity of transmission, will be to measure the frequency of individuals positive for dengue
antibodies in blood samples (Endy et al., 2008). In areas where the incidence is low, reduction in
dengue virus-specific IgM** and/or 1gG'* antibodies obtained by sero-survey can provide an effective
epidemiological endpoint. Performance of serological plaque reduction and neutralization assays in
a longitudinal cohort trial, accompanied with active surveillance for virus recovery on a subgroup of
people with clinically-apparent infection, may allow more accurate information on dengue risk. The
need to evaluate impact on the four different dengue virus serotypes must be kept in mind.

Where regional dengue transmission is due to a single vector species, if GMMs are effective, and
achieve and maintain local elimination of that vector, then it may be unnecessary to demonstrate
epidemiological outcomes as a determinant of GMM efficacy. In such a case, vector elimination can
be used as the efficacy measurement. However, vector abundance reduction does not necessarily
translate directly into reduction of dengue incidence, as transmission has been observed in the
presence of low apparent numbers of mosquitoes. Determination of the threshold of vector
abundance reduction required to achieve significant reduction in dengue disease incidence requires
epidemiological modelling and empirical studies, and such threshold vector densities may vary
between geographical localities. In the case of vector population replacement by GMMs,
measurement of infection or disease incidence reduction relative to untreated controls, despite
being costly, may be necessary to provide high confidence in the efficacy of this novel GMM
strategy.

Special considerations for trials of malaria interventions

The high levels of malaria transmission encountered in much of sub-Saharan Africa mean that
measuring epidemiological outcomes may be relatively easier for malaria than for dengue. However,
designation of epidemiological endpoints for malaria must take into account the multiplicity of
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vector species and, to a lesser extent, parasites. Identifying appropriate trial sites may be
challenging. Efforts should be made to find sites matched for human demographics and disease
patterns, and to ensure sufficient confinement to satisfy the requirements of RA and trial design.
The number of vector species responsible for transmission and their ecological interactions must
also be considered.

Several methods are available for malaria diagnosis.”> Historically, the “gold standard” has been
microscopic examination of blood smears. However, many rural clinics lack necessary microscopes
and trained personnel for malaria diagnosis. Consequently, the non-microscopic rapid diagnostic
tests (RDTs) have become popular in various endemic settings. Many malaria RDTs are available
commercially from several manufacturers.'® The specificity of the tests is variable; some can only
detect P. falciparum, while others also can detect non-P. falciparum infections. For applications
under field conditions, RDTs must be stable, simple to use, easy to interpret, and sensitive to clinical
malaria cases. The commonly recommended lower detection limit for P. falciparum infection is ~100
parasites/ul of blood. The specific RDT for malaria diagnosis used in a trial must be selected carefully
and evaluated thoroughly according to WHO guidelines.

Most malarious areas contain one or two dominant vector species, and it may be difficult or
impossible to restrict testing of GMMs to sites containing only the target mosquito. If single-vector
sites are used for trials, the results may not be generally applicable. However, it is clearly not
feasible to determine epidemiological efficacy accurately during phases 2 and 3 by targeting a single
species when it is well established that numerous other vectors of the same pathogen are present
and are sufficiently abundant to maintain high levels of transmission.

Experiments and modelling should be conducted prior to GMM field testing to determine in which
seasons and ecological contexts the GMMs have a reasonable chance of affecting epidemiological
outcomes. For example, preliminary experiments or historical records may reveal the contributions
of individual vector species to the overall disease transmission levels. While these are often
considered additive, each species’ contribution may not conform to such a simple relationship,
especially when the efficiency (vectorial capacity) of one key vector species is much higher than
others. Furthermore, there is a possibility that suppression of one target species could cause niche
replacement by other, closely related vector species. Interpretation of epidemiological outcomes by
GMMs in multi-species sites requires caution. These issues should be anticipated as early as
possible, and factored in to the choice of target species in GMM design and selection of trial sites
when entering into field testing.

Entomological efficacy must be determined in the context of the anticipated use of the GMM
technology

Few GMM interventions will be implemented in isolation, thus their performance will be determined
best in the presence of other anticipated control measures. Indeed, it is an accepted procedure to
conduct efficacy trials for new products in the presence of the standard of care for disease control in
the area. If the anticipated use of GMMs is to further reduce or eliminate populations that have

> WHO malaria diagnostic testing: http://www.who.int/malaria/areas/diagnosis/en/, accessed 25 May 2014.
16 WHO/TDR malaria rapid diagnosis work: http://www.wpro.who.int/sites/rdt, accessed 25 May 2014.
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been suppressed by seasonal depression or conventional methods, then the efficacy of the GMMs
should be evaluated in that context. If the intended use of GMMs is to replace the conventional
control methods, the cost-effectiveness and reliability of the GMMs needs to be compared with
these methods. The reliability of the GMMs as a component of the suite of interventions is a central
consideration. Particularly for developing countries, GMMs that are highly effective under ideal
circumstances will be less attractive if they perform poorly when logistical, management or
ecological difficulties arise and are common. The ability to provide for the ongoing cost of an
intervention should be a consideration.

The specific experimental designs to be used may vary widely according to the specific mosquito,
study site and country, and the progression of experiments from the laboratory to the field will
require reconsideration at each stage. When possible, the validity of a specific experimental design
should be assessed during the process of peer review. In non-academic circumstances where
funding does not ordinarily require peer review, independent review by experts is highly
recommended.

Surrogate endpoints must be chosen for early phase testing

GMM strains are built for specific circumstances where their potential for reducing EIR has been
investigated and predicted with mathematical models. These models highlight key performance
characteristics that then can be measured in the laboratory to the necessary precision as a first
approximation of field performance. The performance characteristics vary with the specific strategy
but include population suppression, appearance of sexual sterility, mating competitiveness, spread
rate and frequency of a transgene in a population, and appearance of a particular phenotype.
Measurement of entomological surrogate indicators for EIR requires close supervision and dedicated
well-trained staff. In the case of self-limiting population suppression, vector abundance and its effect
on EIR are the most direct measures of entomological efficacy and there are standard methods
available to determine them (WHO, 1975; Silver, 2008).

During the course of the trials, experimental outcomes should be used to redefine the parameters of
the intervention’s computer models. These changes may require alterations to the trial design or the
outcomes that can be expected. Model performance should also be monitored during the trials to
determine whether its predictions are validated by trial observations. Stakeholders and regulators
should also be clearly informed on how modified model predictions may affect trial conduct or
continuation.

The influence of seasonal and inter-annual variations on trial design must be considered

Seasonal and inter-annual variations in climatic conditions and other intervention measures that
affect vector abundance, species composition, transmission intensity and disease incidence are
common. Phase 2 GMM trials that involve small-scale ecologically confined field releases, and Phase
3 testing that involves large-scale open-field releases, should take these variations into consideration
to ensure experimental success and to enable the results to be generalized.

Self-limiting population reduction GMMs will require regularly scheduled releases, and within a
short-term trial a reduction of the population size could be a fortuitous characteristic of a specific
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season alone, but one that might not be repeatable. Multi-year evaluations would provide more
robust assessments of both the climate and co-intervention effects, as well as an idea of how the
intervention effect varies as a function of annual medium-term variations.

Population replacement in which a gene drive system is involved may take several years after
repeated releases to increase the frequency of refractory alleles to an effective level. In this case,
mathematical modelling should be conducted to predict the necessary trial duration for evaluating
efficacy. Uncertainties, assumptions and unknowns in disease transmission models and vector
bionomics should be transparent, and a variety of models and scenarios should be considered,
model parameter uncertainty explored, assumptions tested and model predictions validated at each
stage.

Non-linear relationships between entomological and epidemiological outcomes can be expected

The simplest outcomes to measure when GMM sterile-male methods are used are reductions in
female fertility. This is typically determined by a direct measure of the number of larvae produced
per female, and can be performed using laboratory-reared mosquitoes or by obtaining eggs from
blood-fed field-collected females. While it may seem that increases in sterility would lead to
reductions in adult populations, there is seldom a direct relationship due to the dynamic nature of
larval competition. Two kinds of effects are expected: (1) negative density dependence’ (Juliano,
2007; 2009) is common and will tend to dampen the initial effects of reduced fecundity on adult
population sizes. These interactions mean that different GMM self-limiting male sterility approaches
will perform differently (Yakob & Bonsall, 2009). (2) Over-compensation®® under some circumstances
may cause increases in the adult population size when larval density decreases. Both of these effects
occur due to competition for food in larval sites. Knowledge of the population dynamics as
determined by larval abundance would be a useful predictor of the levels of releases and sexual
sterility that will be necessary in order to realize particular levels of population suppression.
Ecological studies prior to releases should be performed to determine the characteristics of sites and
predict the usefulness of GMM interventions.

Reductions in vector abundance or increases in refractory transgenes to a high frequency should
lead to a reduced EIR. In the particular case of malaria in hyperendemic areas, this desirable
entomological outcome is expected to result in reduction of disease only when EIR falls below a
threshold necessary to maintain transmission, often cited as one infective bite per year (Shaukat,
Breman & McKenzie, 2010). In such areas, a substantial reduction in transmission intensity by the
GMMs or combination of interventions will probably be needed to demonstrate an epidemiological
impact.

Entomological monitoring unique to GMMs

Most of the characteristics used to monitor GMM functionality are not unique to the technology.
Methods to evaluate these characteristics have been developed and are used routinely to gather

v Population regulation in which increased population density reduces its rate of increase. In this case, adding
more immature individuals to a population does not proportionally increase the number of adults.

1 Population regulation in which reductions in some stage of the population actually increase population size,
e.g. by improving survival to adulthood.
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entomological data. These include determining adult abundance, host preference and/or the ability
to develop and transmit parasites or viruses. These and other biological characteristics should be
catalogued thoroughly during GMM testing. GMM production should utilize standard operating
procedures (SOPs) and good manufacturing practices (WHO, 1992). Reproducible life history and
phenotype can only be expected if the mosquitoes are reared and maintained using standardized
procedures.

Molecular properties

A thorough description of the GMM describes the transgene components, genetic background and
novel phenotypes. This description allows preliminary assessment of the GMM itself and
observations of changes in salient features, including the transgene sequence, its insertion site and
strain background. The description of the GMM should include information about the strains that
contributed genetic material.

Phenotypic stability

Among the few characteristics of GMMs that are unlike those monitored for typical entomological
surveys, phenotypic stability is paramount and is a strong determinant of efficacy. This can be
evaluated by answering several questions: does the mosquito exhibit the design characteristics in
both laboratory studies and field simulations? If the phenotype is not fully penetrant'® but the
transgene is stable, what effect on its efficacy and fitness do models predict? It will be possible to
measure stability in increasingly realistic GMM trials as they move forward through the phases;
however, the process should begin in Phase 1. The genetic diversity of the mosquitoes and
pathogens with which the GMMs interact, and the environmental variations, will increase and may
reveal novel variations in phenotype expression as advanced phases of testing become more
realistic in Phase 2 and Phase 3 trials. Such measurements should continue periodically in the
context of a post-implementation surveillance (Phase 4).

Variations in expression of a transgene should be quantified so that significant deviations in novel
environments can be detected. It is particularly important to determine whether the phenotypes
that have been measured in stable laboratory environments are consistent when, for example,
temperature variations are experienced. Similarly, laboratory evaluations should include transgene
expression in aged individuals and in a variety of genetic backgrounds. If expression of the
phenotype is conditional on some environmental factor, the effects of variation in the presence of
that factor should be examined.

Loss of phenotypic expression can result even in the absence of transgene mutation and can
negatively affect efficacy. Evolution of resistance to a transgene effector can occur either in the
GMM strain itself (phenotypic drift or gene interaction) or in the target mosquito population
following lengthy exposure. As with resistance to insecticides, this is extremely difficult to predict
with high certainty from small laboratory studies, but one can measure pre-existing resistance in the
target population and then monitor the phenotype in the field over time. As is evident with

Y The transgene phenotype is predictably absent in some proportion of the individuals in a population despite
the transgene being present in an unmodified form in all individuals.
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insecticide resistance, it is not the appearance of resistance but its frequency that mitigates the
usefulness of the intervention. The likelihood of such resistance and its consequences should be
considered thoroughly and measures put in place as part of the trial plan to prevent (if possible),
detect and respond to it. Preliminary laboratory examination of the likelihood of resistance arising
may in some cases be possible and this consideration should be part of the early RA (Section 3.
Biosafety). As described above for instability related to mutation, these effects can be expected to
become more evident during phases 2 and 3. Measuring such effects should be intensified beginning
with confined Phase 2 trials while unanticipated effects can be restricted in time and space. The
pathogen also has the potential to develop mechanisms for evading refractoriness of GMMs in the
case of population replacement. Thus, during phases 3 and 4, refractoriness of GMMs to pathogen
should be carefully monitored.

Fitness

“Fitness” of transgenic mosquitoes has been the subject of much study and discussion (Catteruccia,
Godfray & Crisanti, 2003; Irvin et al., 2004; Moreira et al., 2004; Marrelli et al., 2006; Li et al., 2008;
Amenya et al.,, 2010; Isaacs et al., 2012). While this is a characteristic relevant to long-term
population trends, it is of less relevance to self-limiting population suppression strategies: the
mosquitoes used for the latter approaches have reduced fitness by design. What is relevant is their
ability to suppress wild populations and, for GMMs intended to have a multigenerational effect (sex-
ratio distortion?® or inherited sex-specific sterility), the duration of the suppressive function. One
measure of the maximal rate of effect on population suppression is the mating competitiveness
value (Fried, 1971). It indicates (usually on a 0-1 scale) the relative frequency of mating of a male in
guestion (in this case, GMMs) when in competition with a reference wild-type male. However, there
is no absolute value of competitiveness that precludes the use of a strain since even very low-value
insects (e.g. 0.2 for Med fly) can effectively suppress populations if sufficient numbers are released.
Nonetheless, measuring competitiveness, longevity and the duration of effect will provide indices
that determine the necessary scale of releases and their efficiency and are, therefore, important for
strain efficacy evaluation.

In contrast, the fitness of the GMMs used in population replacement and self-sustaining approaches
is critical, specifically, the effect on fitness due to the transgene expressing the desired phenotype.
The designed effect is not population replacement per se, but rather the introgression of a
transgene causing a phenotypic change into an otherwise wild mosquito population. After release,
recombination between the transgene and the wild genome will occur at rates determined in large
part by the presence of natural inversions and homologous pairing. Therefore, the fitness of
repeatedly out-crossed mosquitoes must be measured. Assuming that a transgene is in a drive
system, the loss of fitness and reduction in gene frequency due to the transgene must be compared
to hyper-Mendelian inheritance rates’* due to the drive mechanism. Models can be used to predict
the ranges of fitness and drive that will permit transgene spread. When a gene drive system is

20 Changing the sex ratio among progeny from the typical equal numbers of males and females to progeny
consisting largely of males.

?! An individual heterozygous for a transgene will produce progeny that are 50% transgenic in a normal non-
drive system. Hyper-Mendelian inheritance is expected in drive systems, and these individuals produce > 50%
transgenic progeny.
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implemented to achieve population replacement and self-sustaining strategies, the frequency of the
functional gene in mosquito populations into which the GMM has been released is the ultimate
measure of this balance. While such measures can be used to refine efficacy predictions in Phase 1
testing, Phase 2 and 3 trials are necessary to develop final measures. This is because the activity of
the transgene can be expected to differ depending on the genetic backgrounds in which it occurs.

A reduction in the EIR is the ultimate result of successful self-sustaining approaches. Even these
kinds of GMMs are likely to require multiple releases over a large area and for long enough to
establish the transgene at a frequency in the population high enough to achieve the desired effect.
When a GMM is implemented by such multiple releases, it is of little value to conclude effectiveness
based on more limited trials. For some interventions, this will necessarily increase the scale of
testing required before the potential of the technology can be assessed — a requirement that should
be taken into account in RA.

Independent verification of results will increase confidence

All novel vector interventions are open to critical scrutiny until their value has been demonstrated.
Similarly, trials of GMMs may be controversial, and even positive results may be questioned if the
research team involved is the only one to document the methods and results. Research teams
should strongly consider establishing an independent monitoring body to validate and interpret the
results, as is routinely the case for clinical trials:

An independent Data and Safety Monitoring Board (DSMB), including a clinical monitor should be
appointed for the trial (see Smith and Morrow, 1996). This should be an independent group that can
testify that the trial protocol has been properly followed and that relevant quality control
procedures have been operating for the duration of the trial. This Board should be set up before the
trial begins rather than once it has started, as unfortunately is often the case (also trials in which
this has not been done have often been those which have given rise to greater controversy). (WHO,
1997.)

Methods to ensure transparency and independent validation of results should be considered during
the trial design, but careful thought should be given to whether a DSMB is necessary for trials that
do not include epidemiological outcomes. Simpler but widely accepted” alternatives (i.e. an
independent monitor or an oversight panel) may be designed for entomological outcome trials,
which could be tasked with particular activities that are a subset of the full trial audit but whose
scope is adequate to maintain independence and validation. The expertise of those chosen for this
role must adequately represent the knowledge to understand and analyse trial conduct and the
appropriate trial outcomes such as vector ecology, behaviour, and population genetics and biology.
The selection of individual(s) for this task should be a transparent process. They should not only
provide the appropriate expertise, but should also be free of conflict of interest on the trials’
outcomes.

2 Eor example, the National Institute of Neurological Disorders and Stroke (NINDS) guidelines for data and
safety monitoring in clinical trials:

http://www.ninds.nih.gov/research/clinical_research/policies/data_safety _monitoring.htm, accessed 25 May
2014.
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“Go” and “no-go” criteria must be determined prior to trials

Transition from the laboratory to the field should always be planned with clearly stated performance
milestones at which point the project either proceeds to the next level, moves sideways to
determine whether the unmet milestone is due to an artifact or experimental design issue, or the
trial is discontinued. For cage studies where population suppression or an increase in transgene
prevalence is the goal, the researchers must establish clear ranges of performance that warrant
proceeding. The oversight panel should independently assess these performance standards.
Performance ranges can be informed by modelling the GMM performance characteristics that must
be met in order to achieve the desired outcome in the anticipated ecological and geographical
context at the next (initially entomological) level of testing.

The consequences of trials become greater as they move from physically confined to ecologically
confined and open-field release. Monitoring to detect adverse effects must increase accordingly.
Whereas under physical confinement, unproductive effort will likely be the only “hazard” of
unnecessarily extended trials, human and environmental hazards must be evaluated as GMM trials
move to field release. These challenges are discussed in Section 3: Biosafety.

There are four definite “no-go” points relative to both efficacy and safety criteria: 1) unanticipated
disease transmission outcomes linked to the experiments; 2) an unanticipated environmental harm
results from the experiments; 3) political or social opposition or unrest prevents the safe
continuation of the trials; and 4) the phenotype of the GMM deviates significantly from the one
intended. Depending on the technology, the fourth example could include: loss of sexual sterility,
high rates of refractoriness failure, or deviations from expected sex ratios. In addition to a no-go
trigger, remediation plans should be in place for such events (Section 3. Biosafety).

If no negative effect on human health or environmental quality is determined to result from
unsuccessful trials, assessment by the relevant national authority and donor of the value of
proceeding will determine whether the project should continue. It is common for sterile insect
technique programmes to evolve methodologically during production and release start-up, so initial
failure is surprising. The technology developers may make a persuasive case that failures were due,
for example, to mosquito production failures, or unusual weather or implementation problems. In
such a case, lack of efficacy does not require a no-go decision, but could preclude moving to the next
phase until the cause of the failure is clarified and corrected.

2.3 Recommendations for efficacy measurements at different GMM testing
phases

The final section of this guidance presents some recommended experimental activities for efficacy
evaluation of GMMs in different testing phases. It is likely that GMMs will be used in the absence of
other control methods in Phase 1 and large out-door cage testing of Phase 2. Conventional
experimental approaches involving direct comparison between GMM cages and control cages with
random treatment assignment may be used. In this case, only entomological measurements can be
made and, thus, the primary objective should be the potential for reducing transmission intensity as
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indicated by entomological surrogates. A sufficient number of replicates should be used to detect
the expected difference in the entomological outcomes between GMM and control cages.

Efficacy measurements will vary depending on the intended effects of GMM strategies and testing
phases. It is expected that measurements of epidemiological outcomes will not be undertaken until
entomological outcomes clearly predict a reduction in the EIR. For example, transmission intensity
cannot be measured in Phase 1 testing in a small-scale laboratory setting or in larger population
cages. Instead, transgene phenotype stability, population reduction, and transgene spread and
frequency are feasible, and are meaningful indicators of GMM efficacy. These must be considered
within the context of the disease transmission setting in which the GMMs will be tested and/or
deployed.

Initially only entomological outcomes will be possible to measure: many of these must be monitored
throughout the phases of development. As testing moves to settings in which humans are, or may
be, present, increased attention to epidemiological outcomes must be added. For example, for
GMM strategies aimed only at population suppression, including self-sustaining sex-ratio distortion
or sterility factors, one can measure vector population reduction or sex ratio during phases 1 and 2
(physical confinement) and it will only be possible to add measures of transmission risk after field
releases commence. Alternatively, initial GMM strategies aiming at population replacement will only
be able to use measurements such as transgene stability and frequency before adding EIR reduction
in later phases.

The following section catalogues typical measurements and designs that should be considered to
determine efficacy. Additional recommendations for conducting Phase 1 and Phase 2 physically
confined trials of GMMs with a gene drive system have already been published (Benedict et al.,
2008). The priority of various activities will change as experience and knowledge about performance
characteristics in diverse settings is gained, but thorough strain description is an important activity
to begin early in development regardless of the GMM type.

Phase 1. Laboratory population studies

Only entomological outcomes can be determined in Phase 1. Pathogen interactions can, however,
be measured.

* Basic description of the transgene, including its sequence, insertion site, phenotype and
inheritance. This information will be used during phases 2 and 3 to confirm the GMM’s
characteristics.

¢ Stability of the transgene and its phenotype.

¢ Life-history characteristics in controlled environments.

* Mating competitiveness against laboratory mosquito strains.

* Frequency of GMMs that express the desired characteristic and the level of expression.

* Capability to host and transmit pathogen isolates.

* For drive systems, rate of spread of a transgene in laboratory cage populations.

* For population suppression strategies, rate of suppression in laboratory cage trials.
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* Mating frequencies and egg hatching rates within the strain and in crosses to laboratory
strains.

* GMM release simulations in large indoor cages.

* Modelling effects anticipated in wild populations.

* Establishment of SOPs for GMM production and release.

Phase 2. Physically and ecologically confined field trials

Physically confined, or “contained,” refers to trials performed in large outdoor cages from which
escape is highly unlikely due to physical barriers and special procedures. Such trials allow rapid
termination and simple detection of escapees. “Ecologically confined” refers to those trials
conducted in delimited areas from which escape is unlikely due to some ecological or geographical
isolating factor. These include ecological or physical islands. Regulators will determine whether both
types of trials are necessary, a decision that may be determined more by safety rather than by
efficacy considerations. Epidemiological outcomes may begin to be measured in confined release
trials, although, for the reasons explained above, this will be uncommon due to the small scale of
the trials.

Entomological activities in physical confinement

* Mating competitiveness against mosquito strains having a wild*? genetic constitution.

* Frequency of GMMs that express the desired characteristic and the level of expression in
strains containing wild genetic background.

* Capability of GMMs containing local wild genetic constitution to host and transmit local
pathogen isolates.

* For drive systems, the rate of spread of a transgene in cage populations containing wild
mosquito isolates and compared with Phase 1 predictions.

* For population suppression strategies, the rate of suppression against wild mosquitoes in
cage trials.

* Egg hatching rates in crosses to wild mosquitoes.

* GMM release simulations in large outdoor cages.

Entomological activities in ecological confinement

* Establishment of go and no-go criteria.

* Compatibility with other mosquito control measures.

* Measures of GMM dispersal.

* Baseline studies of vector composition and abundance.

* For drive systems, the rate of spread of a transgene in wild populations and comparison with
predictions from Phase 1 and Phase 2 physical confinement.

* Measures of transgene functionality and mutation rate.

* For population suppression strategies, the rate of suppression against wild mosquitoes.

2 “\Wild” refers here to a colony of mosquitoes isolated recently from the target population or a sample
actually collected from natural populations and used without colonization. Such colonies are genetically more
similar to natural mosquitoes than highly inbred laboratory strains.
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* Randomized treatments of similar trial sites.

* Model refinement based on Phase 2 entomology and epidemiology observations; estimation
of impact on EIR.

* For population suppression strategies, refined measures of relationship between sterility and
population suppression.

Epidemiological activities in ecological confinement

* Measures of the ability to sustain development of local pathogen isolates as an indication of
potential for transmission.

Phase 3. Staged open-field releases

Phase 3 is likely to begin with limited releases intended to understand the delivery requirements and
functionality of GMMs under different circumstances, such as different ecologies, mosquito
demographics and seasons. Large trials to determine epidemiological impact should only be planned
after this information is at hand, as it will be necessary for trial design and interpretation. It is
recommended that randomized cluster trials be included in the design for late Phase 3.

Entomological activities

* Compatibility with other mosquito control measures.

¢ Direct measures of EIR when possible.

* Baseline studies of vector composition and abundance.

* For GMMs with drive systems, the rate of spread of a transgene in wild populations and
comparison with Phase 1 and Phase 2 model predictions.

* Measures of transgene functionality, phenotypic stability and mutation rate.

* Measures of GMM dispersal.

* For population suppression strategies, the rate of suppression of wild populations.

* Model refinement and validation based on Phase 2 entomological and epidemiological
observations.

* For refractory GMMs, measures of native pathogen development and transmission in
progeny from natural matings of the GMMs to wild mosquitoes.

* Methods for measuring or estimating GMM frequency and cross-species gene transfer and
consideration of how long these activities should continue (Section 3. Biosafety).

Epidemiological activities

* Disease incidence/prevalence studies during intervention trials.
* Post-treatment active and/or passive disease incidence/prevalence, and consideration of
how long these activities should continue (Section 3. Biosafety).

Phase 4. Post-implementation surveillance

Like any public health intervention, GMMs will require ongoing monitoring to determine whether
their efficacy has diminished with time or because of unexpected effects that become evident when
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used in new areas. Appropriate measurement of the entomological outcomes that guided
deployment of the GMM must be continued after the trials cease. Depending on the type of GMM
technology and the deployment strategy, multi-year follow-up may be required.

GMMs that reach Phase 4 will have undergone extensive efficacy testing. Their behaviour in natural
settings will be established by Phase 3 activities. However, it cannot be assumed that they will
continue to behave as expected. By analogy with the implementation of insecticides used for long-
lasting insecticide treated bed nets, indoor residual spraying and larviciding, efficacy can change due
to changes in the genetic constitution of the mosquitoes or external factors such as weather and
human activities. However, the intervention at this point is no longer experimental, but is a control
measure whose ongoing effectiveness in a public health programme is being determined.

A subset of the epidemiological outcomes that were utilized during Phase 3 trials should be
monitored in order to determine whether the positive effects on human populations are being
sustained. It is likely that if the GMMs were deployed over large areas, only longitudinal passive
clinical case surveillance would be practical. In case a loss of efficacy is noticed — similar to the
appearance of insecticide resistance with conventional control — any second generation GMMs that
may be created must also be tested in phases 1-3, and monitored in Phase 4.

Entomological activities

* Direct measures of EIR under novel conditions (when possible).

* For GMMs with drive systems, the rate of spread of a transgene in wild populations and
comparison with model and Phase 3 predictions.

* Widespread intermittent sampling of transgene functionality and mutation rate.

* Wide-scale intermittent measurement of GMM dispersal and gene flow.

* For population suppression strategies, sampling of the degree of suppression of wild
populations.

* Model refinement based on entomological and epidemiological observations.

* For refractory GMMs, observation of native pathogen development in mosquitoes collected
in disparate settings.

Epidemiological activities

* Longitudinal passive case detection of targeted disease and other mosquito-borne diseases.

Capacity building as an essential component of control measure durability

Durable efforts to conduct trials and to implement successful GMM interventions require strong
intellectual understanding, cultural intimacy and logistical capabilities in locations where
technologies are being implemented. Given the breadth of activities that have been described
above, these require personnel and laboratories prepared to perform regulatory, medical,
epidemiological, social and entomological activities. Further sub-specializations will be required:
medical entomology, molecular biology, statistics and diagnostic analysis to name a few. It is simply
impossible for these capacities to be supplied without reliance upon well-trained national personnel.
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During trial design, an explicit personnel plan for the project should include the specific types of
supporting expertise that will be required and the degree to which the project can and must take
advantage of national capacities. When specific abilities are lacking, a strategy for training national
personnel to satisfy these needs should be planned and undertaken. Sufficient lead-time for training
must be part of the trial design, and a commitment to retain trained personnel in the trial will be
important to ensure continuity, and allow for deep understanding of and involvement in the project.
These personnel will play vital roles not only in trial conduct, but also in regulatory interactions and
long-term monitoring activities.

For many national staff, training opportunities will be professional highlights that may make them
eligible for national positions of authority and responsibility. Therefore, with their knowledge of
personnel, technologies, and national regulatory and political avenues, they constitute invaluable
long-term national focal points for future potential novel interventions. Commitment to providing
assistance for training lays a foundation for future strength and independence for national research
activities.

Capacity includes facilities. Even though construction of major facilities will be beyond the resources
of most trials, increases in the capacities of facilities can include provision of scientific equipment,
computers and software required for the trials, as well as the necessary improvements in biosecurity
to achieve risk mitigation goals. Some structures, such as entomological-contained trial facilities, will
be so specialized that support for the construction will likely come from the trial programme or in
combination with other studies that could capitalize on the existence of a multipurpose facility such
as the “Malaria Spheres” in Kenya. These kinds of facilities can be used to perform studies on
mosquito behaviour, life history and non-GMM interventions. Coordinating investment in their
construction provides a long-term foundation for wider sustained trials of vector interventions and
research activities.
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3. Biosafety

Summary: Biosafety in the development of GMMs focuses on reducing to acceptable levels any potential
adverse risks to human health and the environment that might be posed by these technologies, keeping in
mind the known adverse effects of vector-borne disease. Risk analysis contributes to the achievement of
an appropriate level of safety. Risk analysis takes into account that an event may occur but it may or may
not be harmful in particular circumstances. Upon evaluation, some risks may be judged as negligible.
Moreover, effective RM can make many risks acceptable. Overall biosafety RA should determine: the
potential hazards and the mechanisms of impact for GMMs on wild populations of target and non-target
organisms; the likelihood and magnitude of any harmful impact on the receiving environment; and, the
levels and consequences of uncertainty associated with these effects. RM should provide appropriate
measures to mitigate harm or uncertainty associated with changes to target organism populations or the
wider receiving environment. Thus, RA allows researchers and regulators to determine the appropriate
types and levels of GMM testing that will contribute to effective RM. Risk communication ensures that
there is a well-documented explanation of what risks have been identified, how they have been assessed,
what the acceptable level of risk is, and how RM may be able to achieve acceptable levels of risk.

The development and testing pathway for GMMs should be phased, with RM measures proportionate to
the level of risk to humans and the environment at each phase. For example, confinement in early phase
trials mitigates concern about long-term or large-scale spread and provides an opportunity to assess the
likelihood and impact of hazards for which little or no empirical data exist at that stage. As more
information becomes available, later stages of testing may need a less precautionary approach.

Studies in Phase 1 can provide data on risks that can be addressed by observing changes in behaviour and
ecologically relevant characteristics of mosquito populations in small-scale laboratory experiments. With
respect to biosafety testing, this Phase primarily focuses on the relevant characteristics of the GMOs
themselves, and on laboratory experiments that can assess pathways that might lead to harm. In Phase 2,
RA data are obtained in trials conducted under physically or ecologically confined conditions. This phase
gathers RA data to reduce uncertainty regarding effects identified in Phase 1 and allows assessment of
health and ecological effects under more realistic levels of exposure. Staged open field trials under Phase
3 can gather data under even more realistic conditions and using less confined measures than in the
previous phases. In preparation for Phase 4, RA should include issues such as the potential for the
movement of GMMs beyond the boundaries of a release area and the evolution of resistance, and will
determine the necessary scope of post-implementation monitoring and management. The choice of risk
comparators changes in its emphasis as testing moves through the various phases. At each stage a range
of comparators may be needed to evaluate risks and performance across different dimensions.

Risk analysis that focuses on the phenotype (rather than the individual molecular modifications) provides
a robust and appropriate approach to the assessment of GMMs. Risk analysis for GMM should be
embedded in a broader benefit-risk analysis before decisions are made on large-scale implementation for
public health purposes.

Biosafety considerations for GMMs address their safe use through the proper assessment of risks to
the environment and human health, and the proper management of those risks. Risk is the
combination of the magnitude of the consequences of a hazard (an unwanted event), if it occurs,
and the likelihood that the unwanted consequences will occur. Risk analysis is an objective process
to identify what hazards are relevant, how significant the risks are, how they can be managed, and
how both the risks and their management can be communicated effectively to all concerned. Risks
should be examined and responded to through established protocols within a risk analysis
framework determined by a national policy on environmental and human health risks, and their
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acceptance or management (US-EPA, 1998; EFSA, 2006, 2013; CBD, 2012).24’25 Risk analysis may also
take into account other types of concerns in addition to those related to human health and the
environment (such as social or economic hazards, or hazards that would jeopardize the successful
completion of the trial), but this section only deals with biosafety concerns.

Various examples of risk analysis processes are available including: a broad international standard;*®
national environmental guidelines;”’ and GM biosafety and risk frameworks referred to above.
Across this range of guidelines, risk assessment (RA) is defined as a methodological approach to
define and characterize hazards, and to estimate the exposure or likelihood of each hazard occurring
as well as the potential adverse impact of the hazard (harm). In a phased series of testing, specific
hazards would be addressed at each relevant phase. RA includes identifying hazards (those for which
some direct or relevant evidence has been demonstrated), weighing the strength of evidence for
such hazards, characterizing the risk and developing risk management (RM) strategies (through
procedures, guidelines and regulation) to accept, avoid or reduce risk. The RA and RM strategies
developed during laboratory testing and pre-release confined studies of any GMMs need to address
two concerns: the effects of an escape or accidental release on a receiving (open) environment; and
the effects of testing or release on human health.

RM of GMMs should be proportionate to the likelihood and magnitude of any potential hazards for
which there is evidence. In countries with defined environmental policies and protection goals, these
national policies provide the framework for determining acceptable risk levels. Observations of
significant environmental effects at the various stages of GMM trials and implementation do not in
themselves demonstrate a risk unless the outcomes are harmful. The impact of the effects must be
evaluated, and the acceptability of risk is a policy decision that reflects the overall impact. During
testing of phases 1-3 for GMMs, biosafety is the main decision-making determinant related to risk,
but at the operational stage (Phase 4) decisions would also consider benefits and costs (including RM
measures and any unmanaged residual risks). It is essential that potential risks be assessed and
managed to ensure that modified mosquitoes are not more detrimental to human health (by
increasing disease burden or severity) or to wider biodiversity (by adversely altering ecosystem
structure and function). A reasonable overall standard in a RA would be whether a specific GMM
implementation “causes more harm” than populations of wild mosquitoes managed under current
practice, as has been used in Australia (Murphy et al., 2010). This standard is defined by specific
endpoints that address harm to human health and particular qualities of the environment, and the
elaboration of these endpoints would be the basis for studies to gather data to enable a RA to be
conducted. At each level, risks specific to the genetic modification should be distinguished clearly

* The Cartagena Protocol on Biosafety to the Convention on Biological Diversity: http://bch.cbd.int/protocol/,
accessed 25 May 2014.

%> Australian Office of the Gene Technology Regulator. Risk analysis
framework:http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/riskassessments-1, accessed 25 May
2014.

2% 150 31000:2009 risk management — principles and guidelines:
http://www.iso.org/iso/news.htm?refid=Ref1266, accessed 25 May 2014.

*7 United Kingdom guidelines for environmental risk assessment and management: Green leaves lll:
http://www.defra.gov.uk/publications/2011/11/07/green-leaves-iii-pb13670/, accessed 25 May 2014.
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from those generic risks associated with the release of conventional laboratory or factory-reared
insects.

The earlier development of GM technologies, principally for plants, provides a baseline for
comparison of the differences between GMMs and wild-type mosquitoes that might result in
environmental risk posed by the former. ERAs for GM plants are mandated for national regulatory
agencies in many countries, for example, by the European Food Safety Authority (EFSA, 2010). These
regulations follow a standard procedure to assess the risk of the technology to the environment (as
set out in the CPB),** as well as to human health. Principally, this involves assessing the
characteristics of the modification at the molecular, ecological and environmental scale, taking
account of appropriate scientific evidence and uncertainty. While some of the goals and specific
details will differ (such as the intended purpose of managed GMM release in alleviating disease
burden, and the mobility of mosquitoes), the basis of biosafety guidance for GMMs will be built and
adapted from existing frameworks for GM plants. Other useful precedents are provided from
experience with biological control agents and GM vaccines. Each of these technologies exhibits
unique features, but it is important that risk analysis frameworks are consistent wherever possible.

3.1 Considerations for risk analysis

Risk analysis is described in terms of risk concern, RA, RM and risk communication. Risk concern
relates to awareness about issues related to both technology and social values, and in each case
needs to be supported by evidence that demonstrates a concern has a plausible mechanism. RA and
RM of GMMs require the development of risk frameworks in which scientific evidence is used to
assess the probability that an adverse event (a hazard) will occur and the extent of harmful
consequences associated, with and without mitigation.

Both quantitative and qualitative risk analyses may be considered for GMMs. Quantitative risk
analysis attempts to assign numeric values for the probabilities of various adverse events and to the
assessment of the potential loss. Qualitative risk analysis assigns categories of risks, sometimes with
relative scores reflecting the range of outcomes. Quantitative frameworks allow the expression of
risk as probability distributions of adverse outcomes. Definitions and uncertainties in qualitative risk
analysis can be expressed in scales that allow some approximate quantification (e.g. high, medium,
low or negligible). Once risk is assessed, appropriate RM strategies can be devised and their efficacy
also may be quantified in some cases. The wider environmental RA and RM guidelines referred to
earlier from the United Kingdom?’ give useful guidance on how to assess the credibility or
uncertainty of evidence in risk analysis, as does the Australian GM risk framework.”> Quantitative
risk analysis frameworks based on probabilistic and subjective estimates of social outcomes, such as
that used for releases of Wolbachia infected mosquitoes in Australia (Murphy et al., 2010) may
become useful in developing appropriate guidelines for the release of transgenic mosquitoes. This
approach to belief networks can provide a robust quantitative framework for risk analysis that
incorporates subjective evidence.

Risk analyses must be undertaken on a case-by-case basis to identify and manage any adverse
effects to the environment and/or human health. The components of risk analysis have been
described thoroughly in several venues, for example by Australia’s Office of the Gene Technology
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Regulator (OGTR),” the Convention on Biological Diversity (CBD, 2012), the EFSA (2006, 2013),
United Kingdom’s Department of Environment, Food and Rural Affairs (Defra)®’ and the USA’s
Environmental Protection Agency (EPA, 1998). Environmental risk assessment (ERA) for GMOs
usually follows a multi-step process.

1. Problem formulation, which begins by considering concerns about risks arising from technical,
social and other perspectives; it involves identifying the characteristics of the GM organism
that might, on the basis of practical or theoretical evidence, cause harm to the environment
and/or human health, and determining how this harm might manifest and what/who is at risk
of this harm, along with an appropriate comparator for the risk.

2. Hazard characterization, determining the magnitude of the harm if it were to arise.

3. Exposure characterization, determining the likelihood of the hazard occurring.

4, Risk characterization, determining the level of risk, the product of the hazard and the
exposure.

5. Risk management, selection of management strategies to alleviate/mitigate any identified
unacceptable risks.

6. Risk conclusion, which is the outcome of the risk evaluation taking into account the residual
risk remaining after feasible RM and the acceptability of that risk; it is important that the
nature of the risk and its effective management or acceptance can be communicated
effectively to those who have expressed risk concerns leading to the original problem
formulation.
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Figure 3.1 Example components of the RA process*
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*Although portrayed as a linear process where knowledge and conclusiveness increase at each step, some of the
components may flow in parallel or loop back to previous steps.

The problem formulation for an environmental risk begins with the planned actions for release of
GMM and the identification of any potential hazards that may arise through plausible pathways.
Examples of general hazards related to the release of GMMs include:

* release of the GMMs might increase transmission of the target or other diseases;
* release of the GMMs might cause a significant biting nuisance;
* release of the GMMs might result in disruption to valued ecosystem components.

However, it is important during the problem formulation process to identify any specific hazards of
concern regarding the particular GMM technology being tested and/or the environment in which it
will be tested. Harm may be specified in some national environmental regulation, for example, in
terms of threats to particular endangered species or habitats.

An important concept of risk analysis is that while an event theoretically may occur, it will not
necessarily be harmful, because either it does not have a perceived negative effect or it does not
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have an effect specified as harmful in regulations. Many risks may be judged to be negligible, such as
when the probability that the event will occur is extremely low or the potential harm resulting from
the event is minimal. Even when potentially harmful events are identified, the practical level of risk
to which the public is exposed in many cases can be reduced to acceptable levels by effective
management.

3.2 Site characteristics

Baseline information on key ecological, environmental and site characteristics is important to ensure
that field trials can be adequately planned and interpreted. Selection criteria might include the
distribution of principal vectors in the release area, the location of mosquito larval sites, climatic
conditions, knowledge of active transmission (if any) of the target disease pathogen at the site,
geographical isolation of the site for confined trials so that there is a negligible chance of any impact
outside the trial area, existing data on the transmission dynamics of the target disease, existing
surveillance and control systems for both vectors and disease, the likelihood of obtaining regulatory,
social and political approval for research on GMMs in the study community and surrounding areas
(Sections 4. Ethics and public engagement and Section 5. Regulatory frameworks), and the ability to
continue existing vector control practices.

3.3 Appropriate comparators

The choice of non-modified mosquito comparators will be essential in RA of any hazards associated
with the transgenic modification. In some phases, such as in Phase 1, the ancestral laboratory line
from which the transgenic mosquito line was derived is a logical comparator. A potential benefit for
this as a comparator is that genetic similarity could be maintained allowing precise scrutiny of the
molecular modification in terms of genetic and phenotypic viability and variability. A disadvantage of
using ancestral laboratory lines is that the loss of fitness (due to intensive rearing in the laboratory)
may lead to a less precise RA relevant to the characterization of the genetic modification compared
to wild populations. Choice of alternative non-modified comparators (such as field-derived strains of
the modified species) will require careful scrutiny of the genetic background together with
physiological and behavioural characteristics. Such comparators may be more appropriate for field
comparisons in later stages. For example, under self-limiting approaches, mosquitoes sterilized
through more conventional irradiation methods may provide an appropriate counterpart for RA.
Defining clear points for comparison, for example, a phenotypic characteristic such as adult
longevity, will ensure that the risk evaluation remains credible, proportionate and focused.

The comparator for GMM in field trial phases would be the wild-type mosquito in that location, and
the comparisons at this stage relate specifically to the types of mosquitoes. However, at a field
implementation scale, the novel mosquito control system incorporating GMMs may be compared
with a conventional control system. The comparison is related to the scale and purpose at this phase
and addresses the risks arising across the integrated systems of control.
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3.4 GMM characterization

The parental background of the GMMs should be described, including the species and strain, the
geographical source, the number of generations rearing colonies have been maintained and the
extent of replenishment with wild stock. These characteristics permit an assessment of the
differences, and their potential effects, between the GMM and the wild-type comparator. The
genetic modification should be described, including molecular characterization, insertion sequences
and location. The stability of the transgene is an important issue in determining if the
characterization of the GMM remains valid over successive generations, which may be an important
objective of Phase 1 laboratory studies.

In RA, statements on the modification undertaken, its original derivation and the effect it confers
should be stated clearly. The methods used to generate the GMM lines and the sequences, genomic
locations and schematic maps may be required. Information on the flanking sequences may be
required to identify whether new open-reading frames are generated from an insertion. Original
sources of vectors used for the molecular transformations, the source of donor genetic material, its
size and intended function should be described. Information on the actual sequences inserted (or
deleted), the size and copy number of detectable inserts, and the functional organization of the
genetic material is necessary core information on the transgene. Details should be provided on the
developmental expression of the transgene insert (or modification through knockout deletion based
on transgenic technologies) during the life cycle of the mosquito. The RA should account thoroughly
for the molecular characterization and consider the risk associated with the incorporation of
molecular constructs or insertion mechanisms (for example, plasmids and transposable elements)
into the modified mosquito.

A further aspect of characterization is the description of the GMM use or application. This should
include an indication of the expected release rates, duration and spatial distribution of the GMM,
along with any other measures that may be taken as part of the integrated control system (for
example, the suppression of wild populations with insecticides before GMM release).

3.5 Hazard characterization

Hazard characterization will normally be specific to a particular GMM technology and scope of use,
but it is possible to describe some of the more general possibilities that should be considered. A
hazard may derive either directly from the intended effect of a genetic modification or indirectly
through an unintended deviation from that intended effect. For example, the breakdown of the
molecular function could lead to a loss of GMM efficacy and to potential changes in the impact on
the environment and/or human health. To assess this, under both self-limiting and self-sustaining
approaches, the RA should be associated primarily with the genetic modification.

Alterations to the biological characteristics of the GMMs may lead to new interactions with target
mosquito populations. Examples of such potentially harmful alterations could include altered larval
competition and accelerated maturation. Biological alterations such as those leading to increased
insecticide resistance or human feeding might change vectorial capacity relative to wild-type
populations. To predict the effects of a particular GMM release on the target population, it is
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essential that appropriate phenotypic, behavioural and population level characteristics of the
modified mosquito be assessed through laboratory experiments and trials. Although Table 3.1
provides a set of characteristics that are likely to be important in the understanding of the impact of
a GMM on the target population, the most important and relevant characteristics should be
identified and assessed on a case-by-case basis. This will ensure that appropriate RA criteria are
established and thorough RM strategies are in place.

Under self-sustaining approaches, molecular characterizations must show that the transgene is
sufficiently effective and the molecular construct linking effector transgenes to a drive system is
sufficiently robust to ensure that the release of the GMM results in introgression of the genes into
wild mosquito populations (James, 2005). Appropriate drive systems are crucial to ensure that a
faster rate of spread of the genetic construct occurs than would be expected under standard
Mendelian inheritance (Burt & Trivers, 2006). It is important to understand the essential aspects of
the population genetics of the transgenic modification as some gene drive systems might be
expected to cycle to and from fixation in populations. Similarly, molecular characterizations for self-
limiting approaches need to consider the expression patterns of the effector gene, including
whether expression is under appropriate gene control and stable within the genome. The RA for
GMM should consider the stability and specificity, in relation to the intended effect, of the
transgenic material at the population level and the consequences of incomplete or partial transgene
function.

Identifying the risks associated with incomplete transgene function in individual mosquitoes will
have implications at different phases of testing, including at the population level and in confined
field trials. Reduced penetrance (the proportion of a given genotype that expresses the phenotype)
of a transgene in a population may pose a risk to the receiving environment and/or human health if
it affects the ability to detect transgenic individuals or reduces the anticipated control benefit. For
self-limiting strategies, low penetrance at the population level will affect efficacy, and population
trials should aim to quantify any human health risk associated with this in a disease vector control
system, for example, if the capacity for pathogen transmission is not sufficiently blocked. Such risks
might be managed with core quality control measures (such as genetic markers). With self-
sustaining strategies, incomplete penetrance of a transgene may not influence the outcome of long-
term control but might affect the initial success/spread of the transgene. Methods must be provided
to allow for discrimination of GMM within the environment and to monitor the maintenance of
transgene integrity. This will also be important for assessing GMM efficacy in later phases of testing.

Further possible hazards could arise from random integration of the effector gene, such as low
efficiency and position effects on transgene expression and the potential for insertional
mutagenesis. It is likely that transgenic strains exhibiting these effects would not be considered
suitable for eventual deployment. It is expected, therefore, that most of the potential hazards
resulting from random integrations would be eliminated during the product development process.
Specific strategies to reduce random integration might be employed. An example of such a strategy
is provided by the two-tiered approach to the molecular modification of mosquitoes, which in the
first stage involves inserting a target at a suitable chromosomal site, and in the second involves
recombining the effector gene into the target site (Nimmo et al., 2006; Sethuraman et al., 2007;
Isaacs et al., 2012).
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It is conceivable that multiple transgenes might be used to achieve the desired effects. Synergistic
genetic interactions and unexpected phenotypic consequences of multiple genes should be assessed
to determine if they pose a potential risk to the receiving environment, and thus require RM
strategies. It is important to consider how to approach the RA and RM of ‘stacked’ events (multiple
transgenic modifications) to ensure the efficacy of these transgenic modifications and manage any
risk associated with the evolution of resistance. Characterization of stacked events should consider
the stability of the inserts, the expression of the events and potential synergistic or antagonistic
effects arising from the combination of the transgenic modification and the phenotypic
characterization of the effects through life-table, behavioural, and/or population
observations/experiments. Appropriate comparators for laboratory studies might include the
conventional parental strains or the equivalent wild mosquitoes, the lower stacked event lines
(provided appropriate RA/RM advice exists) and wild-type mosquitoes. Characteristics based on the
phenotype (rather than the individual modifications), and their interpretation from available
baseline data, provide a robust and appropriate alternative to the full RA on every individual
molecular modification in a stacked GMM. Therefore, RA should assess the impact of GMM in terms
of phenotypes rather than individual modifications in stacked, multiple transgenic modifications.

Some interactions of GMMs with other organisms in the environment may result in hazards and may
therefore pose risks to the receiving environment. As mentioned above, hazards might include
undesirable changes in populations of interacting organisms, physiological or behavioural
differences in the GMMs that affect nuisance impacts, or increased opportunities for transmission of
non-target diseases. Preliminary ecological or behavioural patterns associated with modification
related to such potential hazards should be assessed through longitudinal, population-level cage
trials of both GMM and non-modified comparators over time scales relevant to the patterns being
observed. The use of semi-artificial microcosm and mesocosm systems (Lawton, 1995) in trials that
aim to mimic the key aspects of the receiving environment would allow the population dynamics
and population-level characteristics of the GMM to be characterized more accurately than simple
laboratory population cage studies. These small-scale laboratory or caged environments attempt to
provide potential for interactions with a limited range of ecological complexity, which would provide
a bridge into more comprehensive physically and/or ecologically confined field trials. Careful choice
of experimental design and planning may allow a range of potential ecological characterizations,
which might include those below.

* The role of density dependence in the population dynamics. The timing of density-driven
events that affect survival, development rate and/or fecundity can be explored using
population cage and semi-artificial microcosm and mesocosm trials, appropriate statistical
analysis and mathematical modelling.

* Comparison of discrete dynamics, for example, seasonal factors such as rainfall, versus
continuous dynamics, such as competition for host finding, under semi-artificial conditions
allows estimates of the effects of seasonal versus aseasonal effects to be discriminated.

* Exploring preliminary release numbers/schemes (for self-limiting approaches) or invasion
potential (for self-sustaining approaches) of transgenic lines.

Novel interactions of the GMMs with non-target organisms (NTOs) could have important
consequences for ecosystem function and services (EFSA, 2010). An example might be if the
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abundance of the NTO species was reduced and was an important seasonal part of a food web for
predators. The direct exposure of non-target species to the GMMs, or to transgene products,
requires careful assessment in order to identify risks and, if they exist, manage and mitigate them.
Population-level microcosm or mesocosm trials could evaluate the specific effects of the GMMs on
NTOs, where these have been identified. The choice of appropriate NTOs (such as predators or
competitors, decomposers) is a complex decision but could allow the preliminary effects of
particular high-value inter-specific and trophic effects to be evaluated. The EFSA’s guidance (2013)
for the choice of NTO in the environmental RA of GM insects suggests that these should include
natural enemies, competitors, pollinators, species of conservation, cultural or food chain value,
decomposers and host animals. Similar approaches might translate to appropriate choice of NTO in
small population-level studies with GMMs. With appropriate controls (with/without
competitors/natural enemies/decomposers) the preliminary criteria of the RA on NTOs can be
established.

An alternative scenario that has been proposed for GMM population suppression approaches is the
possibility that a resulting empty ecological niche may be filled by alternative unwanted species. For
example, laboratory studies of competitive interactions on (non-modified) Aedes aegypti and Aedes
albopictus demonstrate that A. albopictus larvae are superior competitors for resources compared
to A. aegypti over much of their range (Juliano, 1998; Daugherty, Alto & Juliano, 2000). This has
implications for the invasion and establishment of A. albopictus after suppression of A. aegypti to
inhibit dengue transmission. Available information from laboratory and field ecological studies will
help to assess the ecological and health implications of the empty niche hazard. For instance, in the
case cited, available evidence indicates that A. albopictus plays a minor role in dengue transmission
due in part to different host preferences and reduced vector competence (Lambrechts, Scott &
Gubler, 2010).

There may be additional concerns about hazards related to possible direct human health effects
arising from GMMs, such as nuisance biting or allergic reactions. In this regard, it is important to
keep in mind that only female mosquitoes bite humans or animals. Nuisance biting would increase if
female mosquito abundance increases, but would not be expected to pose a disease hazard with
GMM applications intended to either reduce populations or replace wild populations with similar
numbers of refractory mosquitoes. Increased allergenicity of GMMs has been proposed as a
speculative risk to humans, though no supporting information is available. While ingestion has been
suggested as a possible route of exposure, this is likely to be quite rare and thus unlikely to pose a
significant hazard. The most likely route of exposure to GMMs is via biting. The saliva of all
mosquitoes naturally stimulates an immunological response in most persons and a strong allergic
response in some (Peng & Simons, 2007), and there is considerable cross-sensitivity to the salivary
proteins from wild populations of mosquitoes. Therefore, determining a GMM-specific response in
the context of such natural variability will be difficult. However, with GMM technologies in which
female mosquitoes will be released or transgenes will be expressed by female progeny, it is
appropriate for an RA to consider whether a transgene product is expressed in the saliva and, if so,
whether this protein is significantly similar to a recognized allergen. In such a case, further studies
may be warranted and established; validated protocols for assessing allergenicity of proteins by
dermal exposure should be followed.
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The efficiency of quality control for effective management of the modification of mosquitoes, such
as the operational ability to derive only certain types (for example, one sex in male-only releases) of
transgenic insects for release, may be relevant to an RA. The methods and degree of separation
necessary depend on the scale of the trial or planned release and the GMM technology under
consideration. Achieving the desired sex ratio and levels of separation require appropriate
operational protocols. In laboratory trials and population cage experiments, the ability to
discriminate and separate relevant strains of transgenic mosquitoes should be evaluated. RM
options should focus on how necessary it is to obtain absolute (100%) separation in order to achieve
safety and efficacy endpoints in the trial/release. Control may be achieved even when some females,
which do not contribute to control in sterile male release programmes, are released. For example, in
the use of a conventional radiation SIT method, the local elimination of An. albimanus in El Salvador
was achieved with the release of sterile insects of which approximately 14% were females (Lofgren
et al.,, 1974). The quality and numbers of released GMM needed to achieve intended vector or
disease outcomes should be specified and explained in the release plan. The risks arising from not
achieving that level of quality or numbers in releases should be assessed and managed.

3.6 Utility of mathematical modelling for RA

RA can be enhanced by coupling experiments and/or observations with mathematical modelling.
Mathematical modelling can highlight the range of parameters necessary for RA. The overall aim of
mathematical modelling within the RA context is to predict behaviour based on properties and
assumptions of transgenic modification that may be helpful in assessing the likelihood of events. For
example, given a specific set of molecular modifications, mathematical models might be used to
predict whether or not the fitness of the GM mosquito will be enhanced by the molecular
modification (Box 3.1).

Box 3.1 Modelling to determine the net effect of altered fitness

In a model system where GMM containing a particular anti-pathogen effector gene were continually fed on
mice with a high level of parasites, increased fitness of the malaria-resistant mosquitoes was observed
(Marelli, Rasgon & Jacobs-Lorena 2007; Smith et al., 2013). Given such an observation, modelling might be
used to determine the net effect of increased fitness, the expected frequency of infected mosquitoes and
possible effects on transmission. The appropriate theoretical framework to undertake this RA would be a
full analysis of the life history combined with competition experiments. Essentially, this consists of
determining both aspects of fitness associated with survival and aspects of fitness associated with
fecundity and reproductive success (Stearns, 1992; Roff, 2002; Godfray, 2013). This could involve
laboratory studies that focus on a selected set of core parameters (Table 3.1) associated with the specific
genetic modification coupling life-table experiments, experiments on small batches of modified and non-
modified mosquitoes (such as split by age, sex or strain) in cohort experiments, and mathematical
modelling.

Mathematical modelling of inter-specific interactions might be useful to reveal potential structural
alteration to the ecological (biotic) effects. For example, self-limiting strategies where population
suppression is the goal are expected to lead to non-uniform competitive effects, as population
interaction strengths with other species will differ at high and low densities. Under self-sustaining
strategies, assessing whether the heritable modification will have an impact on the ecological

49



Guidance Framework for Testing of Genetically Modified Mosquitoes

competitive ability of the GMM and/or ecological interactions could be accomplished using data
from small-scale semi-artificial population trials in the laboratory.

3.7 RA and RM considerations at different testing phases

As explained above, given the various potential hazards that might be enumerated, RA and RM must
be focuson the particular GMM application under examination and its objectives within the phase of
testing under evaluation. Specific RA and RM considerations will differ between various GMM
technologies and in different phases of testing. For example, the level of exposure will be less in
contained trials than open releases, and with sterile GMMs versus those that are self-sustaining. At
each level of testing, from laboratory through to field trials, the aim of specific RA and RM
approaches should be to ensure safety and to quantify or provide a qualitative rank of risks
associated with the eventual deployment of the GMM:s.

Transition from each phase of testing to the next should involve both a retrospective validation of
the RA/RM that was put in place at the beginning of the phase and an evaluation of whether the
performance characteristics that were measured warrant progressing to larger trials according to
previously designated efficacy and safety endpoints. In addition, any hazards that were unforeseen
before starting the previous phase should be considered in the decision along with additional
management measures. The decision to move forward with further testing will require approval
from the appropriate oversight and regulatory bodies at each phase (Section 5. Regulatory
frameworks).

3.7.1 Phase 1 - Laboratory studies including Laboratory Population Cages
RA for Phase 1

Phase 1 testing will be conducted in a laboratory or insectary under physically confined conditions.
Because this is an early stage of development, there will inevitably be limited information on the
stability and effect of genetic modifications and a cautious approach is essential, primarily due to
uncertainty rather than any established hazard. RA in preparation for Phase 1 will determine the
conditions under which laboratory studies can be conducted, including the acceptable level of
exposure to GMMs by research personnel, acceptable security measures to prevent GMMs from
escaping, and appropriate methods for disposing of waste materials.

Risk management

RM measures for environmental impact will include appropriate containment'’ of live mosquitoes
and destruction of dead mosquitoes and waste materials (if there is evidence that these may be a
hazard) (Benedict, Tabachnyk & Higgs, 2003). RM measures for human health would include
ensuring GMM colonies and feed sources are free of human pathogens, ensuring laboratory staff are
not carrying mosquito-transmissible diseases, and limiting unintended biting opportunities (to guard
against disease transmission) by preventing and removing mosquitoes flying outside cages and by
ensuring that laboratory staff wear suitable protective clothing. RM to respond to escapes from the
laboratory would include escape detection systems and standby mosquito control capacity sufficient
to control adults within the dispersal range of the mosquitoes and/or conducting experiments in
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seasons when adult dispersion and mosquito larval sites will be limited. Where testing of disease
transmission or infection cycles in GMMs is undertaken, particular care should be taken to ensure
the safety of laboratory staff. All of the above are also good practices in rearing non-GM mosquitoes,
particularly when they are being handled in areas where they are exotic and could establish
following escape, and build upon standard precautions.

Studies to gather data for deployment RA

This early phase of the development of a transgenic mosquito focuses primarily on the biology of the
target species and integrates molecular, genotypic, phenotypic, behavioural and population-level
characteristics (Section 2. Efficacy evaluation). The data collected at this phase to address identified
risks will focus primarily on the genetic modification of the mosquito and its interaction with and
distinctions from the comparator mosquitoes in the laboratory. Alterations to target populations
through changes in the demographic size, structure or behaviour may have a detrimental impact on
the wider environment and/or human health. Experiments to determine whether these alterations
may lead to specific harms can begin to be addressed at this stage. Examples of Phase 1 studies that
characterize those aspects of the biology of the modified mosquitoes and inform the RA associated
with the eventual deployment of GMMs have been previously described (Benedict et al., 2008) and
are additionally detailed in Table 3.1.

Results of Phase 1 testing will determine whether trials may proceed safely to Phase 2 ecologically
confined trials or whether physical confinement is a necessary intermediate step to obtain additional
safety information.

3.7.2 Phase 2 - physically and/or ecologically confined field trials
RA for Phase 2

Physically confined (contained) and ecologically confined field trials conducted under Phase 2 allow
data to be collected that require a larger scale or more natural conditions in order to be detected.
RA will determine the level of confinement required in Phase 2. For some GMM technologies, it may
be decided that physical confinement is not a necessary step in the testing pathway and that
conditions of genetic or ecological confinement allow for sufficient risk reduction. For example, a
regional standard in North America accepts biological confinement for sterile transgenic arthropods,
provided there is data on the efficacy of sterility (NAPPO, 2007). Physical confinement may be less
important in cases where Phase 1 results have demonstrated that there is limited potential for
dispersal, for example, for trials where the GMM'’s progeny do not mature to adults, or where the
GMM is not expected to persist (for example, transgenically marked laboratory strains with
intrinsically low fitness in the wild). Previous evidence from laboratory or other confined trials may
demonstrate that protocols to discriminate the sex of the released mosquitoes, and their phenotypic
properties, are sufficient to ensure safety in an ecologically confined trial. Regulatory requirements
will likely differ for physically confined versus ecologically confined trials.

Understanding the risk associated with a breach of physical/ecological confinement requires
appropriate consideration. A breach of physical confinement may lead to the loss of transgenic
mosquitoes or loss of genetic material into the wider receiving environment. Breaches of physical
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confinement might be classified in terms of the potential magnitude and type (Benedict et al., 2008).
Breaches might be caused through natural disasters, structural failures, human error/accidents or
deliberate actions. The RA should take into account cage designs, experimental planning, emergency
preparation, training, and site security.

RA should ensure that a mechanism for practical and reliable discrimination of GMMs and wild
mosquitoes is available (for example, through the use of fluorescent dyes or dusts and/or
phenotypic or genetic markers). Where release of male-only GMMs is part of the system, methods
for reliable sex-selection prior to release will be necessary to ensure an acceptable sex ratio is
achieved. Other biological considerations for RA in preparation for Phase 2 testing would include
what is known about the local dispersal and gene flow patterns for target mosquitoes and what
pathogens they transmit in the receiving environment (Benedict et al., 2008).

Risk management

In confined field trials, risk will extend to greater varieties of environmental and target species
effects. Risk associated with these trials must be managed by limiting the spatial and/or temporal
scale of the planned release activity. Documenting the hazard/differences associated with the
escape of self-limiting or self-sustaining transgenic lines through breaches will be an essential aspect
to RM, including the containment requirements for cage design. It is anticipated that the risk will be
lower with self-limiting GMM due to their lack of potential for persistence in the environment.

Physically confined field trials should give particular attention to cage designs and local
environmental conditions at the chosen field site. Aspects of local geological, ecological and
regulatory criteria will underpin the design of physically confined field cages and trial
implementation (Facchinelli et al., 2011; Ritchie et al., 2011). Ecologically confined field trials may
take place in locations that do not favour the long-term survival of the GMMs, or in ecologically
isolated locations (such as an area surrounded by water, deserts or mountains). Combinations of
physically and ecologically confined trials are possible.

Further simple RM measures, including restricted access, clear and well managed SOPs and
appropriate ethical/cultural considerations (Section 4. Ethics and public engagement) could all be
used to mitigate hazards associated with confined trials. While clear research protocols would be
necessary beginning at the Phase 1 laboratory population trials, SOPs become increasingly important
as testing through the tiered phases moves forward. An SOP is a written plan describing the
procedures to be carried out during the field trial evaluation of GMMs. For example, a SOP would
document how transgenic material should be moved from the laboratory to the field prior to
release, the protocols for ensuring site security and cage suitability (Benedict et al., 2008), criteria
for release strategies, surveillance during the trial and the post-trial removal of material and cages.
SOPs should describe the lines of responsibility and the RM strategies and options for the trial.
Monitoring the performance of containment measures, such as physical integrity of screens, the
operation of entryways and adherence to SOPs will minimize risk from unintended release.

RM should include the monitoring of GMM populations within the trial area to ensure that the
technology is having the intended effect on the target population. Periodic sampling of the GMM
population in the trial should be undertaken to determine the stability of the transgene and any
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recognizable change in the genetics of the population that may affect the impact of the technology.
Key interactions with other species in the trial, which might indicate wider environmental impacts,
should also be monitored in order to identify and characterize any unexpected harmful effects, and
identify representative “sentinel” species.

There should be sufficient monitoring for the detection of any GMMs that escape confinement and
establish unintended self-replicating populations in the wild. Control capacity that is proportional to
the risk should be maintained to ensure that escaped GMMs do not persist in the environment.
Where practical, measures may need to be taken to limit the establishment of GMMs within the
potential dispersal zones, such as controlling wild mosquitoes and limiting available larval breeding
sites. Standby control measures should take into account any behavioural attributes of GMMs that
may differ from wild mosquitoes. Monitoring and control capacity should continue after the trial is
completed for a period sufficient to ensure that there is no unintended persistence of the GMM or
manifestation of unintended effects (Benedict et al., 2008).

Plans would need to indicate how residual populations in cages would be eliminated after a trial; in
the case that the risk is determined to be negligible, this might simply involve allowing the material
to enter the decomposer food chain. However, if such residual material were identified to constitute
a hazard, more aggressive RM of residual dead material would need to be considered.

Studies to gather data for deployment RA

Because of the higher degree of influence of the environment on these trials, and the more limited
ability to control levels of exposure to some environmental stressors, a greater number of
experimental replications may be needed for sufficient statistical power compared to Phase 1
laboratory studies. Phase 2 allows evidence on GMM performance to be gathered under more
natural conditions to provide an appropriate level of RA and RM before full implementation of open-
field trials in Phase 3 (which are likely to be conducted in a location where the target disease is
endemic). However, confinement in Phase 2 trials introduces differences from the natural
environment that may affect the performance of GMMs and other organisms within the trial, so it
will be important to be clear about the most relevant information needed to make decisions about
moving forward.

Consideration should be given to whether the release of GMMs poses a risk through the persistence
of functional genetic material within the GMM species and whether the transfer of the genetic
material can occur between species. The transfer of stable genetic material from one organism to
another without reproduction is called horizontal gene transfer (HGT). The risk posed by HGT from
GM organisms is generally believed to be negligible (reviewed by Keese, 2008). No evidence of HGT
from transgenic plants to microorganisms has been detected in the field over decades of
observation and millions of hectares of planting (Keese, 2008), and occurrence of HGT from the
relatively less abundant GMMs may be expected to be even more rare. Considerations relevant to
RA for transgenic organisms, including GMMs, are whether the transgenes contain components that
could plausibly confer a selective advantage to microorganisms with which the GMMs will interact,
and whether acquisition of this trait would be harmful. RA would need to consider this on the basis
of the known function of the transgene and whether that function is preserved in microorganisms.
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Identification of clear endpoints to the Phase 2 field evaluation will require basic ecological,
entomological and epidemiological information. Ecological processes such as density dependence
and age structure affect the design of measures to mitigate risk to the wider environment,
biodiversity and human health. This assessment should be considered in Phase 2. Density
dependence is a process that leads to increased mortality, reduced development rate, and
decreased fecundity or longevity as density increases. It is an important ecological process in the
dynamics of most populations and evaluating its timing and effect in wild-type versus transgenic
mosquito populations is of potential importance to the RA of modified mosquitoes (Yakob & Bonsall,
2009). The timing of important density-dependent processes with respect to the expression of the
effector gene has substantive implications for the impact of some proposed genetic control
suppression strategies. Under both self-limiting and self-sustaining approaches, timing the
expression of the effector gene after the stage at which density-dependent effects are greatest
(such as the larval stage of Aedes aegypti (Phuc et al., 2007; Legros et al., 2009) can lead to more
effective suppression. Phase 2 trials should be structured to provide relevant information on the
ecological processes critical to the evaluation, efficacy and success of the GMMs. Age structure can
affect density dependence where different stages and ages within stages do not compete with each
other.

Additional considerations for biological information to be acquired in Phase 2 testing will relate to
the specific GMM approach under consideration. Suggestions for Phase 2 testing of mosquitoes
containing a gene drive system have been described previously (Benedict et al., 2008).

3.7.3 Phase 3 - staged open-field releases
RA for Phase 3

The RA associated with site selection for open releases should consider the isolation of the site, the
structure and knowledge of the vector population, the disease dynamics and the implications of any
differential impacts among local communities. It should also consider the size of the open-field
release site, which will dictate the site characteristics. When selecting the site, RA could make use of
the substantial advances in technology and knowledge of geographical surveys (e.g. global
positioning systems, geographical information systems and high resolution satellite images), and
predictive models of habitat suitability. These methodological advances allow thorough analysis of
temporally and spatially referenced data relevant to both mosquito ecology (Thomson & Connor,
2000; Malcolm et al., 2009) and disease burden (Gething et al., 2010).

Choice of appropriate site size and layout (randomized block, Latin square, Cox & Reid, 2000) will
enhance both the biological and statistical validity of the open-field release. Cluster size and number
should be predicated on the focused aims and endpoints of the staged open release (Section 2.
Efficacy evaluation). Plans for open-field releases to assess efficacy of spread (e.g. competitiveness,
longevity, dispersal) should consider the need for well-designed and replicated experiments at a
spatial scale that limits the effects of immigration and other spatially dynamic processes. Similarly,
RA and RM for open releases designed to demonstrate suppression and replacement potential
should consider the measurable parameters (such as population density or the proportion of a
genotype in the field population) needed to demonstrate conclusively the aim of the release. If the
endpoints are focused on disease control then appropriate knowledge of the size of the human
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population, level of disease burden and ethical issues related to testing of disease interventions
(Section 4. Ethics and public engagement) should be incorporated into the RA. The evaluation of
GMM effects on the incidence of the target infection will be part of efficacy testing (Section 2.
Efficacy evaluation), but based on studies of vector capacity in phases 1 and 2, consideration should
be given to the need for monitoring other vector-borne diseases.

The spatial scale of a proposed field trial may have environmental consequences through NTO
effects within or outside the planned boundaries of the trial site. Risks associated with potential
transgenic releases should consider the spatial pattern and the scale of the entomological/ecological
risk (Getis et al., 2003). The effects of modified mosquitoes may extend to neighbouring areas if
migration between populations can occur (Yakob et al., 2008). Determining the appropriate scale for
a release strategy and the implications for adjacent non-target regions requires an appreciation of
the relationship between ecological processes such as the timing of density dependence,
demographic processes (Table 3.1) and spatial aspects (Lee et al., 2013). This can only be evaluated
realistically during field trials. Assessing the different types of release strategy for both self-limiting
and self-sustaining approaches is important, as knowledge of the connectivity between the
population within the target zone and the surrounding populations is important in preventing any
adverse increase in the entomological or epidemiological burden associated with the target
mosquito.

Unintended transboundary movement becomes a potential risk with field testing and release. This
could occur through natural dispersal or through human-assisted movement, either accidentally or
through deliberate unauthorized transfer. Natural dispersal is a slow process for most species of
mosquitoes, which normally remain within a few hundred meters over their life, unless transported
by man or strong winds (Service, 1997; Getis et al., 2003). Areas that are unsuitable for host finding
or breeding often further limit movement. Natural movement over substantial distances, including
transboundary movement, would normally take many generations, which would be a far more likely
occurrence of expanding self-sustaining populations. The proximity to borders, geographical
barriers, prevailing winds and water flows, and vehicle traffic would affect the likelihood of
transboundary movement. The presence of suitable habitats and hosts, and vulnerable ecological
and social systems across a border where GMM might move would increase the potential for
establishment and impact.

Risk management

RM in Phase 3 will be similar to Phase 2 above but will need to be expanded in scale to account for
the lack of confinement. The evaluation of surveillance data would benefit from the availability of
appropriate baselines before release (such as the level and seasonal pattern of disease burden, the
past levels of the vector population, effects of conventional vector-control methods). A recall or
control plan of sufficient scale to limit spread should be agreed upon and be available before field
release, if there is ongoing concern about risk. At a minimum, an additional risk RM measure would
be to stop GMM releases in the event that monitoring detects that an otherwise unmanageable and
unacceptable hazard has developed. In such a case, a more extensive and intensive conventional
control capacity may be required to eliminate any residual population of GMMs after release and
dispersal.
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There should be a procedure to monitor any degradation of efficacy in the GMM control system that
may indicate that resistance to the effector has developed. The degree of resistance, its rate of
increase and possible attendant hazards must be evaluated. Regular sampling of wild populations
should be considered as a method to detect resistance.

Management should be put in place to avoid and detect transboundary movement in case
neighbouring countries have not approved release for testing (Section 5. Regulatory frameworks).
Field testing should be carried out at some distance from borders to avoid natural wind and water
flows to other countries. Released GMMs should carry markers that ensure discrimination from wild
mosquitoes. Monitoring between a release site and a border could indicate if there is any
movement. In small trials, a treated barrier area downwind may reduce the chance of successful
movement towards a border. Staff working on field-testing sites should be trained about the risks of
moving living specimens and should observe transport protocols when moving any material. Post-
trial monitoring should take into account the numbers of GMMs released, with the aim of achieving
an appropriate level of sampling efficiency.

Studies to gather data for deployment RA

Phase 3, which is likely to involve a series of open trials of increasing size, duration and complexity,
should provide the safety data that will be factored into decisions about the broad-scale
implementation of the GMM technology. Open testing in Phase 3 will introduce opportunities to
gather data on potential hazards in the risk analysis (Table 3.2) where these data can only be
acquired under more natural conditions. It also provides an opportunity to evaluate the
performance of GMMs integrated within complementary conventional control actions. However,
considerations of environmental variability, reduced control of experimental variables, and the
impact of these on proper experimental design and statistical power are even more influential at this
stage. RA under field trials may provide information on whether the transgenic modification has any
chance to increase vectorial capacity (the efficiency of vector-borne disease transmission) or vector
competence (the capability of a vector to support the development of a pathogen) under particular
circumstances (Table 3.1). Monitoring for changes in the incidence of the target infection or disease
is addressed in Section 2. Efficacy evaluation. A failure to decrease vectorial capacity under self-
sustaining approaches may result from a decoupling of the effector gene from the drive system.
Vectorial capacity under self-limiting approaches is also associated with the quality control of
transgenic releases. For example, incomplete penetrance of the modification may influence both
vector capacity and potential disease burden. Phase 3 also may provide an opportunity to detect
whether changes in the pathogen develop that decrease the efficacy of GMMs, an effect that may
be difficult to determine in short-term trials.

Understanding endpoints and intended consequences of GMMs necessitates understanding the
relevant aspects of mosquito biology and ecology. Basic ecological knowledge of mosquito vectors in
receiving environments must be available to evaluate the benefits of transgenic mosquito releases
and should be part of the overall research plan. For example, while population genetic studies on
mosquitoes are common (Touré et al., 1994), at the time of writing, there have been practically no
ecological studies of the effects of seasonality in West Africa on An. gambiae in relation to the forms
that are present and how they are distributed in space; basic information such as whether An.
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gambiae is resident in or repopulates disease-endemic areas remains unclear. The ecological
difference between intrinsic population growth and immigration is substantial and requires
assessment in order to validate risk estimates, define RM and determine appropriate endpoints.
While extensive information on direct and indirect interactions through purpose-designed
experiments would be desirable in any ecological field study (Bender, Case & Gilpin, 1984), key
information for the RA of undertaking transgenic releases under open-field conditions should be
proportionate and focused, requiring the development of sampling programmes (Silver, 2008). The
impacts on human health and the wider receiving environment cannot be evaluated appropriately
without this assessment.

Assessment of wild-type mosquito population size and dynamics is essential for both self-limiting
and self-sustaining approaches. Mark-release-recapture measurements of wild-type mosquitoes can
provide a baseline for assessing the necessary release ratio and the risks associated with releasing
large numbers of transgenic mosquitoes. Assessment of population size, age structure and/or sex
ratio post release should take into account sufficient time for a new equilibrium to be established.
The fitness of a population should be assessed to determine if there is a risk of population increase
in the longer term.

At the end of Phase 3, the GMM stands on the verge of routine use as a public health intervention.
Sufficient data should have been collected to understand the effects of the GMM on disease
transmission, ecological interactions and the spatial characteristics of dispersal and transgene
persistence. This will have involved extensive post-release monitoring of wild populations for the
transgene, widespread assays of the GMM for phenotypic and marker stability, and an assessment
of the performance of the RA and RM strategies. These considerations will compose an important
part of any decision to move forward with deployment, a decision that will necessarily also take into
account broader cost-benefit, acceptance and national public health goals.

3.7.4 Phase 4 - post implementation

National regulatory authorities will take the results of risk analysis at this stage into account when
making decisions about whether and how to allow large scale GMM deployment in their countries.
National public health agencies would also consider the results of risk analysis in deciding whether
to adopt GMMs as a component of their national disease-control programmes. The evaluation of
risk, in the context of implementation, should be set against the benefits of GMMs in improving
human health. Benefit-cost analyses provide the framework under which the appropriate
(economic, health) returns of a GMM release programme can be quantified. Such analyses might be
done during or after Phase 3, at a point where sufficiently reliable information about the utility of
the GMM is available to allow projections of cost and benefit.

RA for implementation

During RA for implementation, it will be important to review the cumulative RA from earlier phases
— were hazards identified fully, were risks characterized accurately and were relevant management
measures effective?
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The release of transgenic mosquitoes is expected to have effects on target organisms through either
the suppression or replacement of local mosquito populations. Failure of intended effects may pose
a risk, particularly to human health if the GMM vector control system fails after a release
programme is well advanced. By the time a GMM approach is contemplated for implementation,
substantial efficacy and biosafety performance data will be available. However, a remaining
uncertainty may be related to long-term performance. The potential for evolution and adaptive
processes could, for example, encompass the evolution within the target mosquito population of
resistance to the transgene function, the evolution of the disease pathogen to resist transgene
function or changes in host range of the target mosquito species. RA for Phase 4 must take into
account whether any specific surveillance plans need to be put in place for ongoing monitoring of
GMM effects. In this regard, plans for ongoing monitoring of GMM efficacy in Phase 4, which is
relevant to safety for human health, have been discussed in Section 2. Efficacy evaluation.

RA should include predicting the likely manifestation of any potential resistance (Alphey, Bonsall &
Alphey, 2011). This will be highly dependent upon the particular GMM technology under
assessment. For example, while a small number of selectively advantageous genes released into an
environment might not be expected to persist due to chance (Fisher, 1922; Kimura, 1962), RA for
self-limiting approaches should consider whether the mass release under Phase 4 might introduce a
selection pressure into an environment that could drive the evolution of novel biochemical or
behavioural resistance to the GMM effect. Mutations that confer resistance to insecticides are well
known, and it has been demonstrated that mutations favouring resistance can be present in
populations before the start of a control intervention programme (ffrench-Constant, 2007). It should
be noted that, in many locations, the risk posed by the development of resistance to GMMs might
be evaluated in the context of the known risk of insecticide resistance.

Although the possible secondary effects of GMMs may theoretically be extremely broad, RA and RM
need to be science-based, proportionate and directed at specific hazards. In particular, the effects
on the phenotypic, behavioural and population-level characteristics of the modified mosquito
(tables 3.1 and 3.2) on the target population should be reassessed within the scope of risks
associated with full public health implementations. The RA for Phase 4 also should identify GMM
characteristics that might change as a result of mass production and impair the effect of the GMMs,
including selection for altered development rates, size and marker expression. Consideration should
be given to the quality control standards for GMM characteristics and procedures (for example, in
rearing mosquitoes for release programmes, determining sex ratios for release, etc.) to ensure that
processes remain relevant to the RA assumptions throughout the release programme.

Extending the assessment of the effects of the transgenic mosquito on NTO should be considered in
preparation for implementation. GMM releases could lead to altered ecosystem functions through
trophic effects, such as the role of mosquito larvae as food for predators. Under releases of GMMs
aimed at population suppression, alterations (reduction) in target population sizes are expected and,
hence, potential alterations in species interaction strengths would be anticipated. In contrast,
population sizes might not necessarily be altered under population replacement strategies although
the transgenic modification might affect mosquito behaviour or phenotype.
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As noted under Phase 3, the likelihood and potential impact of unintended transboundary
movement should be assessed. In cases where there is reasonable potential for transboundary
movement through either natural or human-assisted mechanisms, it would be appropriate to seek
the views of authorities in neighbouring countries on hazards to include in the RA.

Several potential risks with regard to human health should be considered in RA for Phase 4. The
release of transgenic mosquitoes may lead to a concern that existing control measures may be
reduced, either as people become more lax about personal and household mosquito control efforts
or as governments look for cost savings. The implications of a potential reduction in conventional
vector control to mosquito population dynamics, human health and to the wider receiving
environment require appropriate RA and RM.

The possibility of resurgence of disease when immunologically naive human populations are
exposed to disease after a prolonged period of low incidence is a concern that should be assessed in
post-implementation monitoring. This is not unique to GMMs. For example, concerns were initially
raised about the possibility that insecticide-treated bed nets (ITNs) might increase mortality in older
children through delayed acquisition of immunity to malaria. Empirical evidence from a community-
randomized controlled ITN trial in malaria holoendemic western Kenya found no evidence of
compromises in human immunity to blood-stage antigens in young children after two years of ITN
use (Kariuki et al., 2003) and no evidence of increased all-cause mortality in older children six years
after ITNs were provided to children (Lindblade et al., 2004). However, observations of increased
susceptibility in older children and adults following long-term use of ITNs have once again raised this
guestion (Trape et al., 2011).

Risk management

RA will determine the need for RM, and, as mentioned above, it may be determined that RM will
require tracking of metrics that would trigger a mitigation plan. Post-implementation surveillance
may be considered to address remaining uncertainties identified in the RA or to confirm that the
conclusions of the earlier RA were accurate once large-scale and long-term open release had taken
place. Thus, monitoring and surveillance activities may comprise a key component of the RM plan in
Phase 4. By this phase, necessary monitoring methods will need to be easily scaled up and applicable
in the field.

Post-implementation monitoring should focus on the appropriate effects and variables (based on
data from prior RAs), the duration of the surveillance, the geographical limits to surveillance and the

methods by which to measure the effects. Plans should incorporate appropriately designed
surveillance procedures to allow effective risk mitigation decisions to be taken when needed, but
must take into consideration whether and when it will become impractical to maintain active
surveillance as the GMM become ubiquitous under self-sustaining approaches. The RA should
establish and delimit appropriate time intervals when the impact and continued safety of the GMM
technologies should be reviewed. The post-implementation surveillance method and risk mitigation
measures should also be reviewed at appropriate intervals as population levels change.

Mitigation strategies will depend on specific conditions, but might include options such as halting
releases in the case of self-limiting GMMs, maintaining public access to conventional disease and
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vector- control methods, or designing stopping or recall mechanisms into the technology, such as
greater insecticide susceptibility than present in local mosquitoes. The appropriate regulatory
structures, mechanisms and methods need to be in place as an integral part of the RA to ensure that
clear lines of responsibility are delineated on post-implementation surveillance and risk mitigation,
should these be required.

If indicated by RA, implementation programmes should plan for the potential of adaptive processes
in the GMM or target population, and management plans should describe the conditions under
which mitigation will be undertaken. Quality control in rearing facilities should continually check for
any signs of the failure of mechanisms integral to the efficacy of the GMMs or factors that could
make control more difficult. RM should include any additional case-specific surveillance methods to
monitor transgene activity within the GMMs that were identified by RA as necessary to the decision
process for risk mitigation.

RM plans should draw on the results of the RA to determine the need for and design of monitoring
to observe the key environmental impacts identified by the CBD (2012):

effects on biological diversity

* vertical gene transfer

* horizontal gene transfer

* persistence of the transgene in the ecosystem

* evolutionary responses (especially in target mosquito vectors or pathogens)
* unintentional transboundary movement.

However, there should be a rationale in each of these cases whereby monitoring focuses on valid
concerns arising from the RA. A plan for case-specific post-implementation surveillance of GMMs
should take into consideration any key species for which there is evidence of harmful interactions in
order to assess the impact, risks and benefits once a GMM-based control programme is underway.
Key species may include those in the main food web interactions and any endangered species listed
in national regulations. General surveillance approaches are unlikely to be effective or informative in
determining the need for risk mitigation.

In the case of GMMs, the public health implications impose an additional obligation to ensure that
the transgenic technology remains efficacious and poses no additional risks, so health monitoring of
human populations in the release area should be carried out to ensure the expected levels of
efficacy have been achieved. It is anticipated that an appropriate disease surveillance programme
could be provided in the context of ongoing national disease control programmes (Section 2. Efficacy
evaluation). RM may require that certain conventional disease control practices continue and it may
be necessary to integrate the GMM technology into these conventional strategies.

The release of GMMs provides different, but not entirely novel, issues to those for GM plants.
Arguably, the most important biological difference is the possibility for autonomous dispersal.
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However, appropriate biosafety assessment (Table 3.1) will provide the fundamental information for
appropriate RM options. Precedents dealing with biological control and conservation of biodiversity
provide additional relevant insights into how the potential for transboundary movement may be
managed (Section 5: Regulatory frameworks). Further, there are analogies with biosafety
management associated with the release and use of vaccines based on GM viruses or bacteria,
where individuals are inoculated with a vaccine and disperse into the wider receiving environment.
Establishing the broader environmental risks of GM vaccine shedding rates is of particular relevance.
The equivalent for GMMs would be the assessment of dispersal and replication rates (Table 3.1) in
the wider environment following an open release (Table 3.2).

The mass rearing and release of transgenic mosquitoes may have consequences (and associated
risks) related to cross-border movements and spread. RA of open release trials and post-release
implementation of GMMs must consider surveillance to establish the likelihood and consequences
of mosquitoes spreading across international borders. This could have ecological consequences, but
since most management activities would be national responsibilities, it would be important to
consider how neighbouring national authorities would plan and carry out RM actions, including the
appropriate surveillance that might be needed. The movement of transgenic material across
national/international borders is governed by well established RA and RM procedures, (under the
Cartagena Protocol on Biodiversity). Parties bound by the Cartagena Protocol (and its instruments)
are expected to carry out the movement of transgenic material (to both Parties and Non-Parties to
the Protocol) in accordance with the objectives of the Protocol (Section 5. Regulatory frameworks)
and other regional agreements, such as the RSPM 27 of the North American Plant Organization
(NAPPO, 2007).

3.8 Consider the need for independent safety review

The establishment of independent safety review groups or the formulation of GMM biosafety
regulations for consideration by existing review groups (local bodies such as Institutional Biosafety
Committees,’® national scientific, environmental and public health advisory bodies, and regional or
supranational agencies) is recommended. Such groups can provide oversight of the RA and RM
within each phase of testing and provide independent scientific advice on the risks of GMMs to
human health and the environment.

3.9 Biosafety capacity

The successful implementation of GMM interventions requires transparent, focused, proportionate
and credible biosafety assessments. National safety review groups, capable of providing appropriate
independent guidance and overseeing all facets of testing and implementation, will be important for
biosafety assessments of GMMs and for decisions on appropriate levels of RM. National-level
biosafety boards should draw on available expertise across a wide range of scientific, environmental

%% NIH Office of Biotechnology Activities Institutional Biosafety Committees:
http://oba.od.nih.gov/rdna_ibc/ibc.html, accessed 25 May 2014.
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and economic disciplines, for example, as provided in the CTNBio in Brazil*® or CIBIOGEM*® in Mexico
(Ramsey et al., 2014), to assess the risks of GMM technologies. Stakeholder groups affected by
releases provide the key to community values and concerns relevant to potential releases of GMM
and they should have a consistent and strong voice within both biosafety and benefit analyses
associated with the testing and implementation of GMM:s.

The decision-making bodies approving biosafety testing should have the capacity to formulate the
risk problem, to define appropriate endpoints for risk, to interpret the character of the component
sources of risks, to interpret the quantification of risk components, and to understand the efficacy
and uncertainty related to proposed RM measures. Where this capacity is not available at a national
level, efforts should be made to obtain independent international expertise, and to strengthen the
necessary national expertise in the longer term.

3.10 Conclusions

The assessment of the safety of GMMs for human health and the environment should follow a
phased approach moving from laboratory and cage experiments through to open-field releases. RA
and RM at each stage should provide sufficient information to determine whether a decision can be
justified to allow trials to move on to the next stage. This ensures a workable and defined protocol
to follow in the development of appropriate decisions for each further testing stage. National
regulations governing biosafety, RA and RM must always be followed. Broader international
guidelines may suggest some additional aspects of risk analysis that could also be useful, and
international obligations on biosafety may also apply in many countries (Section 5. Regulatory
frameworks). The decision to move forward with further testing will involve the appropriate
oversight and regulatory bodies at each phase.

Not all the considerations described above will be universally relevant to all types of GMMs. It is
important to emphasize that RAs should proceed on a case-by-case basis and be proportionate to
the particular phase of testing. Defining the potential extent of harm that could be caused to the
environment or human health by GMMs, identifying the risk level (hazard by exposure) and
developing risk mitigation plans provide the framework in which to undertake the RA. RA of novel
GMM technologies should be set against the risk of a relevant alternative comparator. The range of
comparators for GMMs at the various testing phases should reflect the range of dimensions of
mosquitoes individually, and in populations and control systems, which may give rise to risk
concerns at each phase. Comprehensive evaluation of GMM implementation, following trials
focusing on safety, should be considered in a broader benefit-risk analysis, and the RA and RM plans
form only one component of this broader analysis. Ultimately, decisions must be made on the
acceptability of the overall risk, taking account of available and practical RM actions.

?° Brasil. Presidéncia de la Republica Lei No. 11.105, de 24 de Margo de 2005:
http://www.planalto.gov.br/ccivil_03/ Ato2004-2006/2005/Lei/L11105.htm, accessed 25 May 2014.
%% Comisién Intersecretarial de Bioseguridad de los Organismos Genéticamente Modificados (CIBIOGEM):

http://www.conacyt.gob.mx/cibiogem/index.php/cibiogem, accessed 25 May 2014.
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Table 3.1 Example parameters that may be relevant in laboratory studies (phases 1 and 2) as part of the RA

for transgenic mosquitoes®

Parameters

Example hazards

Assessment methods

Assessment endpoints

Female fecundity

Oviposition rate

Increased vector
abundance

Cohort experiment; life
table analysis

Is it limited by population density
and/or individual physiology? Is
there a significance difference?

Egg development
rate

Larval development
rate

Pupal development
rate

Increased growth potential;

reduced predation

Cohort experiment; life
table analysis

Is there a significance difference?

Egg survival

Larval survival

Pupal survival

Increased vector
abundance

Cohort experiment; life
table analysis; population
level modelling

Is it density-dependent? What is the
type of density-dependence? Is it
under/over-compensatory? Does it
differ significantly?

Adult emergence

Increased vector
abundance

Cohort experiment; life
table analysis

Does the timing of adult emergence
differ significantly?

Adult size

Increased vector fitness

Cohort experiment; life
table analysis;

Is adult size significantly different?

Adult survival

Increased vector activity;
more effective mating
potential; increased biting
efficiency for females

Cohort experiment; life
table analysis; population
level modelling

Is it density-dependent? Is it
significantly enhanced/diminished
by the modification?

Mating strategy

Increased vector
abundance; separation of
GM and wild types

Cohort experiment

Is there assortative mating? Are
there costs to male/female
gametes? Does the modification
affecting mating competitiveness?

Increased female
abundance; increased

Cohort experiment; life

Is the sex ratio substantial different

Sex ratio biting potential if more table analysis from the null expectation?
females
Increased vector activity;
Flight ability more effective mating Cohort experiment; Is flight duration or distance
potential; increased biting physiological experiment significantly different?
efficiency for females
Biting rate Increased disease Cohort experiment; Does the feeding rate differ
transmission physiological experiment significantly?
Vector Increased disease Cohort experiment; Is the capacity to harbor pathogens
capacity transmission physiological experiment; | significantly enhanced/diminished?
Is it expected to alter the
.. Standard insecticide dose competitive status of transgenic
Insecticide Increased vector . . . .
) response testing lines significantly? Does it make
resistance abundance

procedures

transgenic lines significantly less
amenable to conventional control?

? The RA should focus on the hazards (changes that may lead to harm as a result of the genetic modification), the
(experimental) methods to measure this and the exposure assessment. References to ‘differences’ mean differences
between the transgenic strain being tested and the appropriate comparator.
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Table 3.2 Example parameters that may be relevant in open-field studies as part of the RA of transgenic

. a
mosquitoes

Parameters

Example hazards

Assessment methods

Assessment endpoints

Population size

Increased vector
abundance;
ecosystem disruption

Field population
monitoring; population
level modelling

What is the impact of the
release? Relationship

between release rate, timing,

method and outcome?

Density dependence

Increased vector
abundance;
ecosystem disruption

Comparator studies at
range of densities in
laboratory; field population
monitoring; population-
level modelling

Does the transgenic strain
differ significantly in the role
of this ecological process?

Spatial distribution

Increased vector
abundance;
ecosystem disruption

Field population
monitoring; population-
level modelling; life-table

experiments

Limits to the spread of the

transgenic organism? Rate of

spread of the transgenic
insect, under a range of
conditions?

Vector capacity

Increased
transmission per bite;
increased biting rate

Comparator studies; post-
release monitoring

Is the capacity to harbour and

transmit pathogens
increased?

Change in behaviour
that avoids, or

Comparator studies;
cohort studies on

Under field conditions, what
limits the appearance and

Behavioural . behavioural changes in spread of resistance due to
. reduces efficacy of, . . . .
resistance . different life stages; post- | mosquito behaviours? Is there
conventional . . .
release surveillance; potential for assortative
management . . . .
population-level modelling mating in the field?
Chanee in bhysiolo Comparator studies;
2 p. i 3 cohort studies on Is the likelihood or rate of
. . that avoids, or . . . .
Biochemical . physiological changes in resistance development
) reduces efficacy of, ) 8 . .
resistance different life stages; post- enhanced in transgenic

conventional
management

release surveillance;
population-level modelling

mosquito strains?

Mass rearing quality
indices

Quiality of released
insects is different
from planned,
affecting negative
outcomes

Cohort experiments;
comparator studies before
release; operational design

and audit; pre-release
monitoring; post-release
monitoring

Do specific aspects of
released mosquito quality
affect mosquito densities,
pathogen transmission and

transgene stability?

? RA should build on evidence regarding potential hazards obtained during Phase 1 and Phase 2 trials, the methods to
measure these hazards and exposure assessments. Comparator studies aim to compare the GM mosquito with a
conventional (non-modified) counterpart.
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4. Ethics and public engagement

Summary: Respect for communities should be an overarching ethical goal in GMM trials. Individuals who
satisfy the criteria of “human subjects” must be protected according to internationally recognized
standards (Section 5. Regulatory frameworks). GMM research also should recognize ethical responsibilities
that extend beyond these standard compliance criteria. Public dialogue and outreach are important for
realizing research goals, especially in the development of new technologies. Sincere and well-developed
engagement can help to direct technical goals, reduce the chance of a misunderstanding of the science
needed to meet the goals, and improve the performance of the research project in both technical and
social contexts.

Researchers will interact in the course of field testing with different public groups, ranging from those
living within the trial site and directly affected by the conduct of the project to third parties interested in
the research activities. GMM projects will have ethical responsibilities to people living within a trial site,
even when these people are not, in a traditional sense, subjects of the research at hand. Researchers
should initiate ethics and engagement efforts during phases 1 and 2, in order to ensure that the goals and
methods of the project are well defined and communicated and meet genuine stakeholder needs.
Internationally accepted standards for the participation of human subjects in research may apply under
certain conditions in small trials with entomological endpoints in Phase 2, but will become more prominent
in Phase 3 trials with epidemiological endpoints. Beginning in Phase 2 and expanding in Phase 3,
community engagement activities are intended to address ethical responsibilities beyond the formal
permissions required at the individual level (informed consent) and the governmental level (regulatory
compliance). The concept of “community authorization” entails providing those living in the trial site with
methods to give or withhold agreement for trial activities, and to identify elements that they believe to be
important for the research to continue. During field testing, scientists also should expect to interact with
third parties who express interest in the activity and its outcomes, both to ensure that the project is well
understood and to avail the project team of information and insights that such interested parties might
provide. However, given the diverse range and varied degrees of interest of third parties, there is not the
same level of obligation to seek them out proactively to ensure that they are informed about the project,
as is the case with those directly affected. In Phase 4, the responsibilities for implementing GMM
technologies and interacting with affected individuals will most likely shift to the relevant local, regional or
national public health authorities.

There are aspects of ethics and engagement that may require special skills and training which biologists,
medical personnel or public health specialists would not normally be expected to have. Engagement with
people living within the field sites may require specialized knowledge of local culture and institutions. In
addition, engagement with third parties may require broader communications and negotiation skills.
Adequate time and resources must be allocated within the project plan to support these activities.

The success of scientific and public health endeavours can depend upon good will, cooperation and
support from diverse sectors of the observing public. Compliance with regulatory requirements that
govern the conduct of research, including those concerning human subjects (Section 5. Regulatory
frameworks), is mandatory. However, there is ample evidence that simply conforming to regulations
and institutional policies does not always satisfy public expectations and researchers’ obligations.
Beyond the context of regulatory review, the word “ethics” calls attention to concepts of right and
wrong, and can imply a standard higher and more rigorous than that of civil authority. Regulations,
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laws and organizational policies dictate standards and procedures with which individuals and
organizations must either comply or face sanctions that can range from warnings or admonishments
to the withdrawal of funding, fines, withdrawal of permission to operate or even prison. In contrast
to regulatory emphasis on compulsion and compliance, ethics can be understood as activity or
inquiry whose purpose is to shed light on the correctness or justifiability of some conduct. In the
context of GMM trials, ethics aims to understand the interests of stakeholders and their various
entitlements, rights, other types of claims and obligations, including what actions or activities are
required by the principle of respect for communities hosting the trials. Relevant ethical questions
include: How should these rights and interests be recognized in a decision for trials to proceed? How
can researchers strike an ethically robust balance between the interests and rights of individuals, the
collective interests of the host communities and the properly mandated activities of their public
institutions? What is the appropriate role for communication and engagement with media, civil
society organizations (CSOs) and others that take an interest in the research?

It is not always easy to maintain a clear distinction between the activities of ethical reflection and
engagement and those related to regulatory compliance, which have come to dominate the ethics of
research with human subjects (Hagerty, 2004; Rollin, 2008). The major global agencies that fund
GMM trials require compliance with international standards for research conduct, including
submission of protocols for the use of human subjects, as well as biosafety and the use of animals,
to appropriate regulatory oversight committees, usually as a requirement of their own domestic
laws and regulations (Section 5. Regulatory frameworks). This may cause confusion, since it is
common practice to refer to these obligatory requirements as “ethics” requirements and to various
regulatory compliance bodies as “ethics” committees or boards. However, researchers should not
assume that regulatory compliance also implies that ethical responsibilities have been adequately
addressed. Broader ethical issues and responsibilities are expected to arise in the context of GMM
trials that are not specifically mandated by administrative law or organizational policies.

4.1 The role of ethics and engagement in science and technology

Scientists have long appreciated the importance of public dialogue and outreach to realize the
envisioned results of their research. However, events and developments over the last three decades
have led to a renewed interest into ways and means of interacting with scientists and a number of
distinct public groups with different attitudes and interests as regards to scientific work. Some of
these events have cast science and technology in a heroic light, while others portrayed people in
scientific and technical walks of life as lacking in moral sensibility or fellow feeling. Others simply
testify to the way that developments in science and technology can grip public attention,
occasionally sparking reactions and consequences that the scientists involved never imagined.

The social phenomenon of public reaction to scientific developments has been the subject of
numerous historical, philosophical and sociological studies. Ulrich Beck has argued that general
public literacy in scientific matters has created a more sophisticated understanding of how advances
in the sciences are accompanied by both benefits and risks (Beck, 1992). As a result, citizens have
become more aware of scientific or technical breakthroughs as potentially controversial. This
awareness has been accompanied by the rise of numerous CSOs dedicated to promoting specific
causes. The result is a greater willingness for citizens to become involved in promoting those
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scientific activities that they see as consistent with their values or opposing technologies that they
perceive to be against their values. Public resistance to certain agricultural and food applications of
biotechnology, and to some specific applications of nanotechnologies, is seen as exemplary of this
new awareness (Mcnaghten, Kearnes & Wynn, 2008). At the same time, scientists themselves have
become cognizant of new ways that involving non-scientists in their work can be beneficial.
Exceedingly complex problems may require planned activities that engage non-scientists in
collaborative or problem-solving roles, rather than considering them solely as subjects. This has led
many to envision a new era of science in which many people can become enrolled in cooperative
projects as “co-producers” of new knowledge (Haraway, 1989; Wexler, 2004).

Scientists undertaking work on the cutting edge of discovery or technological capability have both
“positive” and “negative” motivations for paying attention to the reaction and receptiveness of the
broader public. On the positive side, engagement with people not generally considered to be part of
the research community can both enrich the research process, and provide access to information
and perspectives that would otherwise have been unavailable to people within the research group.
It can also be instrumental in achieving the broader impacts that researchers seek. On the negative
side, research that comes under public scrutiny can become the target of organized opposition that
has the potential to frustrate not only the application of the science, but even the research process
itself. It will not be possible to avoid such opposition in every case. Sometimes opponents of science
and technology are simply pursuing interests that are genuinely contrary to the advancement of a
given technical project. Sincere and well-developed engagement that acknowledges and
demonstrates respect for these perspectives may reduce the chance that opposition is based on a
misunderstanding of the science or of its technical goals. In a more positive spirit, it can demonstrate
respect for the communities involved in testing the new technologies and may sometimes result in
changes or modifications to a research project that researchers view as beneficial.

It is especially important for scientists conducting studies likely to attract significant coverage from
the media to consider how their work might be beneficially or detrimentally affected by rapid and
broad engagement and interaction with members of the public who have no training in their
disciplines or methods. Stories may be disseminated either through traditional media such as
newspapers, television and radio, or through new outlets on the Internet and social media. Ordinary
word of mouth can also effectively spread a widely shared impression of research goals, intended
applications and methods, especially within village or urban settings. Such broad representations of
science can have the beneficial effect of expanding opportunities to obtain key informants,
participants and partners. However, they also can spread misrepresentations, suspicion, distrust and
antagonism to a scientific research project.

4.2 A strategy for ethical engagement

Respect for communities should be an overarching ethical goal in GMM trials. Although there is no
consensus among research ethicists about what this requires in practice, the activities of community
or public engagement may best be understood as opportunities for demonstrating respect for the
communities in question. A broad strategy for helping research teams to meet ethical
responsibilities, and conduct public and community engagement activities will involve ethical
reflection, interaction with the host community and a wide range of other interested parties, and
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iterative integration of findings from these activities into the ongoing planning and conduct of

research. The strategy presented here should be interpreted as a description of processes and

goals, rather than as a prescriptive formula. As noted by others, when “research ethics” becomes an

activity of ticking boxes for compliance, or slavish adherence to rules, rather than one of thoughtful

consideration, the real goals of ethical respect and responsiveness may well be lost (Hagerty, 2004;
Rollin, 2008).

The ethics and engagement component of a research programme can be visualized at three levels
(Figure 4.1).

At the project level, there are reflective tasks concerning the broader social and ethical issues
raised by GMM trials that shape specific management goals and elucidate important learning
and evaluation opportunities for the research. Such tasks are by no means unique to research
on GMMs; an explicit recognition and articulation of the ethical purposes of a scientific project
is especially useful when the research is likely to attract public interest and scrutiny, as is often
the case with a new technology.

Scientists involved in projects moving to field trials should plan to devote time and resources
to critical deliberative team activities dedicated to reaching and describing a common
understanding of the ethical purpose and rationale of the research as an iterative component
of the project plan. Over the course of the research, this task may include interactions with
advisory committees and consultants, as well as other scientists whose opinions, views and
reflections are sought on an ad hoc basis. As the project identifies candidate field trial sites,
these reflective activities should be expanded to include critical deliberations with
representatives from the host communities where the research may take place, and may
include people from other interested groups in an advisory or consulting capacity. The results
of these considerations will form a basis for project communications materials, which should
be tailored to respond to the interests and concerns of key stakeholder groups.

Developing a set of criteria for identifying and discriminating between those who are affected
by the research activities through specific interventions or interactions, other members of
host communities who have a stake in the trial, and those who may have legitimate but more
distant interests at stake, and determining how to respond to ethical obligations in each case,
will be a component of the broader ethical reflection needed by the project.

The researchers need to anticipate a set of tasks that arise from interactions and effects at the
site(s) where field studies are conducted. Conducting research in host communities brings
scientists into direct contact with a number of people, including, but not limited to, those who
are research subjects or whose cooperation is necessary for successful completion of research
tasks. Within the biomedical research model, individuals who are the subjects of specific
interventions or interactions, or from whom identifiable information, specimens or materials
are collected are classified as “human research subjects” (see discussion below and in Section
5. Regulatory frameworks). However, within GMM trials, it is likely that there will be
additional individuals who do not fall within the typical definition of human subjects but who
might still be affected by the conduct of the research. This may include those living near a
research project whose daily pursuits and/or livelihood could be influenced by research
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activities. Thus, tasks at the community level overlap with, but are distinct from, regulatory
requirements for securing appropriate informed consent and other relevant protections, and
may also include involving and empowering local populations in key elements of research
planning and implementation as well as addressing both real and perceived issues that may
arise in connection with the project, including broader socioeconomic impact. These tasks
may be thought of, collectively, as “community engagement”.

The distinction between people who are affected directly by research and others who are
more indirectly interested in its conduct may be operationalized in the way that the relevant
ethical obligations are understood. For example, when research involves risks associated with
organisms or substances released into the environment, as opposed to contained within
experimental facilities, geographical proximity to the site of research becomes an important
ethical indicator. In the case of some GMM trials, defining the limits of potential effects may
be complicated by the geographical mobility of both people and mosquitoes over time. Such
considerations should have been taken into account in a RA (Section 3. Biosafety), which will
be helpful in guiding identification of community stakeholders.

* There will be tasks related to the involvement of individuals and groups who are not
immediately affected by the research, including CSOs, the press and the general public. People
living at a distance from the trial may have friends and relatives or even economic interests
that they fear could be affected by the conduct of a research project and, thus, may also
perceive themselves to be affected by it. Moreover, a much larger community of people may
take an interest in the conduct or outcome of research, even if they are unlikely to be
physically affected by the trial activities themselves. For example, people who are afflicted
with a particular disease (along with their friends and family) have an obvious interest in the
outcome of research or clinical trials, even if they are not involved with specific trials. Such
groups are likely to be strongly supportive of research intended to improve their condition. In
a similar vein, people who care about causes such as protecting vulnerable groups or
endangered species may take an interest in a wide range of research activities, and may not
be unilaterally supportive of research goals or procedures. Although the nature of
responsibilities to such individuals or groups is quite different from those to communities
hosting the trial, it is clear that an effective plan for engaging a wide spectrum of interested
parties can be critical to the success of research, especially for projects that can be expected
to attract a significant amount of attention in the press or monitoring from CSOs.

The plan for addressing engagement should include activities appropriate for each level. Each of
these activities should be understood as iterative and sustained during the entire research period, as
illustrated by the feedback arrow loops in Figure 4.1. Each group of tasks should be understood as an
ongoing component of the research activity, and the research plan should include a programmatic
discussion of how tasks in each of these three areas will be carried out by members of the research
team on an ongoing basis throughout all phases of the research activity. Researchers must also take
into account that communities and third parties may become engaged with each other independent
of the project.
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One helpful way to use the three levels of activities for planning purposes is to focus on who will
need to be involved in completing them. Activities at all three levels of engagement involve
members of the research team, and will almost certainly involve staff from the sponsoring
organizations as well. Meeting ethical responsibilities to the full range of stakeholders in the host
community requires a great deal of work “on the ground” in the local areas encompassing the
research field sites. As will be explained further below, this may not imply contact with literally every
individual in the contiguous area, but it must be understood to require appropriate attention to local
forms and mechanisms of representation for those who will be affected by the research activities.
This may involve negotiation of the environmental and developmental goals, standards, and metrics
for the research. For example, directly affected parties and international civil society groups alike
may have a desire to participate in discussions about how risks to biodiversity are measured, or how
economic benefits are understood in relation to improvements in public health. One cannot assume
that all parties will see any and all forms of economic growth or resource development as beneficial,
and investigators should not assume that local communities would always be forthcoming or
comfortable with expressing these interests. There may be some areas of overlap between the
ethics issues that arise on the ground in interacting with local stakeholders, and the ethics of
environment and development that represent concerns of third parties. Some third parties might
decide to represent the interests of local people, though the local communities may, or may not,
view such representation as legitimate. Anticipating and preparing responses for the issues that are
likely to arise in such interactions is an example of something that falls into the category of “broader
ethical concerns” to be addressed at the project level.
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Figure 4.1 Levels of engagement focus and function
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Activities at all three levels will include the following.
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Ongoing literature and methodology development. Whether it be best practices for clinical
and epidemiological research, or engaging with communities, nongovernmental organizations
(NGOs) or the press, there now is a body of relevant literature that should be taken into
account in planning and implementation of a project of the scale required for GMM trials.
Appropriate review and application of this information will require, at the project level,
participation of team members or consultants with the necessary background and expertise.

Task planning and implementation. Based on this literature, those responsible for the ethics
and engagement activities will undertake the planning and implementation of project
procedures. This may involve staff training, consultations, development of information about
the project (including language and culturally appropriate information for use in interacting
with residents at field sites), surveys, educational activities, workshops, negotiations, etc.

Documentation and reporting. Record-keeping requirements are specified with respect to
research involving human subjects. However, it must be stressed that other ethics and
engagement activities conducted under the project also should be documented to allow for
later reporting, and mechanisms should be developed to accomplish this. Records of ethical
deliberations as well as stakeholder interactions and agreements could prove important in the
case that challenges to the project arise. Reporting in the form of peer-reviewed articles on
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the ethics and engagement activities will enrich the literature and help with the planning of
future GMM research.

* Evaluation. Both internal and external evaluations of how well tasks at each of the three
levels are being performed should be part of the plan. One or more members of the project
team could potentially do internal evaluations, but the plan should specify such responsibility
explicitly. External evaluators can be drawn from project management specialists, as well as
specialists in the ethical dimensions of public health.

e [teration. Evaluation should lead back to methods development and planning. This process
will be repeated periodically as needed.

4.3 Activities at the project level

Most scientists view their work as having value and a social purpose, and this may be especially so
for those conducting research on public health and disease control. However, scientists do not
always articulate the purpose of their research explicitly, or discuss its value with others. Reflection
is an activity of both articulating value and purpose, and initiating critical discussion of the project
among members of the project team. Reflective activities should encourage openness among the
research team to the possibility that the social, medical or public health rationale for a project may
not be sufficiently well grounded to warrant its continuation. But more typically, these activities can
stimulate constant reconsideration of project aims and research design and methods to ensure a
continuous opportunity to bring project activities more fully in line with public health objectives and
social goals.

Making explicit the value and social purpose of a scientific research project initiates a broader
reflection that serves several key functions. First, an explicit discussion of how research will give
beneficial outcomes can yield unexpected improvements in project design. Conducting such
discussions with project team members, advisers and consultants increases the range of knowledge
and interests that can be incorporated into the research design, and will help to ensure that
important strategies or alternatives are not overlooked. This helps researchers avoid losing time by
pursuing strategies that may be technically feasible, but cannot be implemented due to their
incompatibility with social mores, legal mandates or other elements in the technical infrastructure.
Second, public presentations of a project’s motivation, goals, and ethical vision and explicit
articulations of the ethical considerations that guide the scientific work, and its relationship to
various social goals, disseminates this thinking to a broader audience and may prove helpful in
winning the trust and cooperation of host communities. Finally, the public record that is created by
documenting how and why the science was done creates an opportunity for others to learn. Canada
has pioneered approaches to embed such activities within large-scale research projects dedicated to
biological research (Castle & Culver, 2006; Coward, 2006), and some of these may serve as useful
templates for GMM trials.

It is especially appropriate for researchers working on GMMs for disease control to engage in and
support such reflective activities within their trials. There is a well-established record of conflicting
views on the most appropriate strategy for addressing persistent global health problems such as
malaria. Some authors express extreme skepticism about initiatives that propose “big science”
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approaches (Packard, 2007), as opposed to improved implementation of simpler and more
accessible local solutions. Parties involved in GMM research should be aware of this history and be
willing to reflect critically on the role of their own project in this enduring debate. Additionally, the
use of GM approaches on animal species provides these projects with a second linkage to research
traditions involved in well-established debates (Thompson, 2007).

Therefore, it is recommended that projects on GMM research include structured ethical reflection as
a specific and planned activity, and that both time and resources be allocated to ensure that this is
not neglected. It may be fully appropriate to schedule these activities in conjunction with key project
milestones. These should incorporate some form of public reporting on thinking within the project,
including “lessons learned”. Such public reporting might take the form of peer-reviewed publications
in appropriate ethics or policy outlets, seminars or workshops, updates on the project website, etc.
(for example, see El-Sayed et al., 2009; Osrin et al., 2009; Lavery et al., 2010a; McNaughton, 2012).

4.4 Activities at the host community level

To demonstrate the efficacy of GMMs for vector-borne disease control the necessary trials are likely
to involve complex designs and will progress from purely entomological trials to trials involving the
measurement of epidemiological outcomes associated with GMM releases in defined areas (Section
2. Efficacy evaluation). At different phases of testing, different interactions come into play.

People living at the trial site may be in immediate physical contact with the research team, their
buildings and vehicles, and with any materials or substances that are released, intentionally or not,
into the environment. For GMM research, this includes the perceptions of people who may see, hear
or be bitten by any mosquitoes in the field-testing area. There may be some ambiguity in
determining who has the potential to be affected in this sense, as there will be movement of both
humans and mosquitoes through the locale and complex opportunities for different types of
contact. Experience with GM crops illustrates the need also to consider the possibility that some
may have concerns about longer range economic, spiritual or cultural effects. Identifying who may
be affected by a GMM trial, and in what ways, is itself a key project level ethics activity.

How should risks associated with GMM trials be communicated?

GMM trials represent a challenge for conventional, individual-focused research ethics, because the
associated interventions (the release of mosquitoes) are not administered to individuals, but are
literally released into communities. The interventions have their impact at a collective level.

Since mosquitoes are capable of unpredictable movement among locations, it will be impossible, in
advance, to identify all persons with whom they might come into contact. Indeed, in the general
case of vector biology research it has been proposed that biosafety oversight (Section 3. Biosafety
and Section 5. Regulatory frameworks) may be a more appropriate model than individual human
subjects protection (Aultman et al.,, 2000). Lessons may be taken from environmental health
programmes, which usually characterize risk in epidemiological terms that make it difficult to
describe the exact causal mechanisms of exposure or to translate population-based exposure
calculations to the individual level. Such environmental risks typically are not amenable to ethical
procedures that presume an opportunity to exit or “opt out” of the risk-bearing situation. What is
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more, they raise considerations about the way that risks are distributed across economically,
politically or ethnically vulnerable populations—issues of environmental justice. There are no ready
analogues to environmental justice in standard human subjects research ethics (Lavery et al., 2003).
These similarities suggest that GMM trials, which involve exposure to potential environmental
hazards, may need to be evaluated from an ethical perspective that incorporates considerations
rarely contemplated within standard human subjects deliberations.

As the ethical evaluation of research places increasingly greater emphasis on the way that a research
activity is intended to benefit the parties that will be exposed to risks (Emanuel et al., 2004), it thus
becomes increasingly important to involve and empower those parties. This requires that the
relevant processes include adequate representation from the host community. Mechanisms to
accomplish this will vary according to location and societal norms. In some instances, special
measures and innovative organizational activities will be necessary, while in others it will be more
important to work with well-established social and political procedures or institutions (McNaughton,
2010). Mechanisms for providing information on risk may need to be tailored to local cultural
practices and levels of linguistic and mathematical literacy (Shapiro & Meslin, 2001). Greater
attention to these processes in research ethics review can help to avoid circumstances in which host
communities are simply passive recipients of activities designed and delivered by others (Crocker,
2008).

Informed consent in GMM trials

Informed consent is a process intended to ensure that human subjects who will be observed or
involved in a research activity are fully and explicitly advised of all risks, costs or inconveniences they
may bear as a result of participating as a research subject, and voluntarily agree to accept or bear
those risks and costs. Some commentators have argued that informed consent will be necessary to
ensure that GMM trials are conducted ethically. However, the precise circumstances under which
informed consent must be obtained, and from whom, require careful consideration.

Informed consent is universally recognized in research ethics regulations and guidelines as a
necessary protection for human research participants (Section 5. Regulatory frameworks). Research
ethics guidelines and regulations generally rely on four criteria to determine whether an individual is
a research participant, and therefore should normally give informed consent as a condition of their
participation: (1) if an individual is directly intervened upon by an investigator; (2) if an individual is
deliberately intervened upon via manipulation of the individual’s environment by an investigator; (3)
if an individual interacts with an investigator for the purpose of collecting data; or (4) if an
investigator obtains identifiable private information about the individual for the purpose of
collecting data (McRae et al., 2011).

Caged-field trials or open releases of GMMs in the context of a research trial would not satisfy the
requirements of the first two criteria, since no individual is intervened upon directly or deliberately,
even if they live in close proximity to the cages or release sites. The third and fourth criteria focus on
the interactions between investigators and individuals who play some special role in generating or
facilitating the collection of study data.
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In GMM trials there is a wide range of interactions with the host community, but only a select few
that are associated with data collection. In early phase trials, this would pertain to individuals who
agree to complete surveys or participate in interviews for research purposes associated with the
GMM trial. It would also pertain to those homeowners who agree to the placement of mosquito
traps for monitoring purposes, or who permit researchers access to their homes for the purpose of
collecting mosquitoes. In particular, mosquito collection in homes for research purposes is likely to
be linked to global positioning system (GPS) data, which would be required for spatial analyses of
the spread and species composition of mosquitoes after releases. When these GPS data are highly
precise, they will effectively tie the associated mosquito data to specific households, thus rendering
the data identifiable at this level even if they are not personal in nature. Since it is the household
that is identified, and not an individual, the consent of the head of the household or her/his
designate is more appropriate than a requirement for all members of the household to provide
informed consent. And given the extremely low levels of risk associated with these types of data
collection activities, institutional review boards might further consider modifications of normal
consent procedures, such as verbal consent or full waivers of informed consent, as long as all other
necessary permissions and protections have been secured.

As trials progress from primarily entomological endpoint designs to incorporate epidemiological
endpoints, such as incidence of new infections with dengue or malaria, they will require the
collection of blood and other forms of clinical data. In both cases, the data collected will constitute
identifiable personal information and individual informed consent will be required.

Two general conclusions follow from this analysis. First, simply living in the vicinity of a GMM release
is not sufficient grounds to require informed consent from any individual for an open release of
mosquitoes. Second, the interactions with individuals and households for the purposes of data
collection in trials with both entomological and epidemiological endpoints are likely to give rise to
individual, or household-level identifiable data and, therefore, in the absence of specific exceptions
or waivers, will require informed consent.

What constitutes adequate authorization from participating communities to conduct the trial?

As described above, informed consent will be required in some circumstances, and it also is
expected that GMM trials will require formal authorization by relevant government authorities in
recognition of the country’s sovereignty (Section 5. Regulatory frameworks). However, these two
levels of formal permission may still not fully acknowledge the range of interactions, rights and
interests within the host community. Measures necessary to fill this gap can be thought of as being
guided by the informed consent goal of protecting the interests of those who will be affected by
research. But they may need to use alternative mechanisms for communicating the aims and
methods of the science, and the potential risks and benefits of the project at a broader level, and for
achieving sufficient assurance that the community has agreed that the research and public health
interventions should take place.

Community authorization and informed consent share several key elements. Both promote a
deliberative model for addressing ethical issues that arise in connection with research. Rather than
relying on strict rules or criteria that must be followed, the deliberative approach mandates that
ethical issues be considered before the research is actually undertaken and periodically reviewed.
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Both are intended as a mechanism for demonstrating respect for persons who will be affected by a
research project or a public health intervention. Both imply “voice”, an opportunity to express
concerns and to receive replies that are addressed specifically to these concerns. A reply might take
the form of assurances or clarification of activities and/or risks, yet for the conditions of voice to be
met fully, affected parties must accept the assurances offered as a satisfactory response to
concerns. Response also might involve modifications to the plan that relieve concerns, such as
additions to RA or RM activities.

Community authorization differs from informed consent in at least three key respects. First, the
methods of informed consent that have dominated discussion of research ethics in the industrialized
world assume that consent is given or withheld by individuals. When possible, the individual in
guestion is the person who bears the risks, but in cases of children or people who are incapacitated,
a third party is authorized to give or withhold consent on their behalf. Community authorization is a
procedure intended to elicit agreement on behalf of a group, often a political community such as a
neighbourhood or township. Thus, procedures for community authorization more typically rely on
norms for group decision-making such as voting, consensus or negotiations with leaders and
representatives who are recognized as having the authority to speak on behalf of the community as
a whole. Since norms for group decision-making vary widely, it is especially critical that procedures
for identifying leaders and representatives, or for interacting with community groups, are based on
detailed knowledge of the locale, its traditions and its history of cooperation, exploitation and
conflict resolution (Christakas, 1992).

Second, even where there are established leaders and decision-makers in the host communities,
GMM trials are likely to involve a wide range of interests spread across a number of different
groups, not all of which will be governed by the same leaders. As a result, researchers should be
wary of assuming uncritically that any one decision-maker can provide definitive representation of a
host community. One key implication for authorization is that, unlike individual informed consent,
there may not be one specific mechanism or point in time in which authorization is granted. Instead,
it is likely to be more of a judgement on the part of researchers that they have exercised the
appropriate level of diligence in eliciting and responding to the concerns of the interested parties
and groups, and vigilance in maintaining the necessary commitments and relationships once it is
determined that there is a general collective will to proceed. In the absence of a specific mechanism,
authorization may represent an accumulation of endorsements or assent by key stakeholders.
Collectively, these activities, which are sustained over the full duration of the GMM trial, from
planning to post-trial negotiations, constitute community engagement, which is described in more
detail below.

Third, unlike individual informed consent in most biomedical research trials, community
engagement and authorization by the community for GMM trials will probably not be sufficient on
their own to allow trials to proceed. There will usually be a need to secure formal government
permission to import the GMMs to be used in the trials and to begin the planned trials (Section 5.
Regulatory frameworks). Community authorization may play a role in regulatory decision-making.
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Community engagement

Community engagement is fundamental to the process of obtaining community authorization.
Engagement and involvement with the communities hosting the GMM trials must be guided by
detailed knowledge of the local community, its institutions and common practices. Finding out about
the kinds of concerns the community might have, about any past negative engagements, or
determining what the community wants/expects in terms of engagement or consent will be
important (McNaughton et al.,, 2010). Such information is best obtained through ongoing
relationships and/or extended ethnographic work with individuals from different social classes,
gender, occupation and social role. Establishment of the necessary relationships, which will be
unique to each setting in which GMM trials will be conducted, will be critical to putting in place an
appropriate process of ethical review and engagement, especially in the early stages of testing
(Hyder et al., 2009; Marsh et al., 2011). In many cases, particularly in more traditional community
settings, community leaders may play a central role in introducing the researchers to the community
and its social structures (Tindana et al., 2011) and in providing various levels of ethical scrutiny and
permission (Diallo et al., 2005).

At the most general level of description, community engagement is a set of procedures and their
motivating ethical goals that aim to develop fair and respectful collaborative interactions with
communities around the introduction of a new technology or intervention. It is carried out in a way
that protects the interests of the community while permitting the introduction and testing of
promising new technologies to improve health. Detailed guidance about what constitutes effective
community engagement is still under development. However, one of the first frameworks for
community engagement in global health research was developed specifically for GMM research
(Lavery et al.,, 2010b), and is a potentially very useful resource for the design of community
engagement activities to support authorization from host communities for early stage trials (Box
4.1). This study also addressed the issue of how to define the community for purposes of
engagement, citing two principles: 1) the community comprises at least those individuals who share
identified risks associated with the proposed research project; and 2) there may not be a pre-
existing and established community as envisioned by the researchers, but rather, the relevant
community may take form progressively in response to specific aspects of the research, and to
engagement activities associated with the project (Lavery et al., 2010b).

Host communities for GMM trials will most likely have multiple "layers" of authority, such as a
municipal council, a Chief, village elders, a chamber of commerce, a farmers’ association, or a
household. Each must effectively give its permission for a trial to proceed. This permission is seldom
determined in a single decision, but rather demonstrated and expressed over time in the ongoing
willingness to cooperate and participate with the trial in various ways, or not to actively oppose it.
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Box 4.1 Points to consider for effective community engagement

(i) Rigorous site-selection procedures.

(i) Early initiation of community engagement activities.

(iii) Characterize and build knowledge of the community, its diversity and its changing needs.
(iv) Ensure the purpose and goals of the research are clear to the community.

(v) Provide information about the research.

(vi) Establish relationships and commitments to build trust with relevant authorities in the community:
formal, informal and traditional.

(vii) Understand community perceptions and attitudes about the proposed research.
(viii) Identify, mobilize and develop relevant community assets and capacity.

(ix) Maximize opportunities for stewardship, ownership, and shared control by the community.
(x) Ensure adequate opportunities and respect for dissenting opinions.
(xi) Secure permission/authorization from the community.

(xii) Review, evaluate and if necessary, modify engagement strategies.

Source: Lavery et al. (2010b).

Within the community engagement framework proposed by Lavery et al. (2010b) (Box 4.1), items ii—
x address specific needs for information or activities that will almost certainly need to be supervised
by persons with training in appropriate field disciplines in the social sciences. Persons who are
naturally fluent in language, local tradition and customs, and who can translate between the
community and a research team while effectively communicating risk are rare. Furthermore, these
individuals will need to commit a significant amount of time to activities within the local
communities, and these activities will require a significant financial commitment from the project.
The composition of the research team should reflect the process for engaging with local
communities, gathering this information and integrating it into the project’s planning and
deliberation process. Depending on the competencies of both project staff and locally affected
parties, it may be appropriate to include representatives of affected groups within the project’s
governance mechanisms.

4.5 Activities at the third party level

Those with interests in GMM trials will probably not be limited to individuals and households with
the closest geographical proximity to the trial sites. Instead, there may be a wide range of individuals
and groups with a legitimate interest in the conduct and outcomes of the trials. Relevant third
parties may include the following groups:

* persons associated with global or regional public health and international development
organizations, including governments;

* scientists and members of scientific organizations with disciplinary or trans-disciplinary links
to research activities associated with field-testing activities, including sciences dedicated to
public health and infectious disease;
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* persons and organizations engaged in competing approaches to the control of infectious
diseases;

* members of organizations focused on promoting the interests and protecting the rights of
poor and/or historically marginalized people;

* members of organizations dedicated to the preservation of endangered species, genetic
diversity and threatened ecosystems;

* members of organizations with a history of monitoring the role of the sciences in debates
over the use of biotechnology;

* individuals and organizations with ties to national, regional and cultural groups active in the
areas where field testing is occurring;

* international organizations such as those within the United Nations system.

Some of these groups and the individuals involved with them may have either formal or relatively
well-established ways to express views on GMM projects intended for controlling disease vectors
and to interact with project staff, while others may not. In light of experiences with the global
controversy over GMOs, it is wise from both an ethical and a strategic perspective for any
community engagement framework to include mechanisms and procedures for systematically
engaging with third parties.

There is not the same level of obligation to seek third parties out proactively to ensure they are
informed about the project, as is the case with those that may be affected by virtue of proximity to a
trial (formal interactions with government authorities required for regulatory approval are covered
under Section 5. Regulatory frameworks). However, interaction with third parties is ethically
responsible because the parties listed above have legitimate interests in the conduct and outcomes
of GMM field testing. In order to fully satisfy the ethical requirement of respect for the relevant
communities, the project team must develop and implement planned activities to consider the
interests of third parties and engage with them in a respectful manner. The team must also
determine when duties to consider the interests of third parties or involve them in project decision-
making or oversight are overridden by more compelling concerns or ethical responsibilities.
Engagement with third parties could grow to the point that the cost in time and resources hampers
other aspects of the project. The ethical responsibility to inform and engage third parties must be
balanced against the need to utilize time and other resources in completing the project’s overall
goals. Undertaking a process of stakeholder analysis early in the project may be helpful in this
regard, by facilitating the identification of third parties most likely to influence the success of the
project (Bryson, 2004).

In addition to being ethically responsible, engagement with third parties may be of strategic
importance to the project’s success. Third parties may have information or comments that can
materially improve project activities. Their support and good wishes may contribute to a variety of
activities ranging from securing funding or regulatory approvals to facilitating interactions with other
scientists, suppliers, publication outlets and local officials. Strategically motivated interactions with
third parties are an inherent part of science (Latour, 1987; Collins & Pinch, 2002) and should not be
regarded with skepticism. Scientists are adept at some strategic interactions, especially those
relating to their disciplinary colleagues, but can be inept at others. In the history of agricultural
biotechnology, for example, many avoidable misunderstandings and much mistrust occurred. This
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was because scientists in both public and private sector positions were insensitive to the fact that
consumers and environmental advocates perceived themselves to have legitimate interests that
were being neglected in the process of developing transgenic seeds and animal drugs (Charles,
2001). What is needed for strategic management is a broadening of the perspective that scientists
bring to their research to include an effort to understand and then interact with people holding
perspectives on the research project that may initially seem to be unrelated to, or at odds with,
those of the scientific team.

The mechanisms for accomplishing this kind of broader outreach and engagement are still not well
understood. One lesson that is now well established is that this kind of activity should not be
conceptualized solely in terms of public education, or of simply informing third parties of things that
the researchers know about GMM and vector control. Communications launched with this so-called
“deficit model” of public engagement have been shown to not only fail, but also to substantially
increase opposition and mistrust, (Klienman, Eisenberg & Good, 1978; Wynne, 1996; Hansen et al.,
2003; Gjerris, 2008; Toumey, 2009). Rather, it is crucial to develop mechanisms of interaction with
third parties that are based on what Pielke (2007) calls “the honest broker” approach. The keys to
this approach are to first recognize that third party interests reflect values-based standpoints that
inform the way that a scientific research project is going to be seen as either responsive to a
problem or, alternatively, as contributing to a problem. Second, it is critical to develop
communication materials about the project that are framed in response to these values-based

III

perspectives. Putatively “neutral” descriptions of projects may fail to provide information that allows
third parties to gain a clear understanding of why the research is relevant to them. If such materials
are disseminated to parties that are already suspicious or skeptical of a project, they can actually
exacerbate feelings of mistrust. Finally, it is important to present a picture of the research that
includes both strengths and weaknesses relative to the values perspective that would motivate a
third party to take an interest in it. While such a communications strategy should strive to be
complete, it should also be sensitive to the need for concise treatment focusing on the problem at

hand.

Thus, projects should include a general communications strategy based on Pielke’s principles (2007).
These communications can be disseminated through an array of media, including the Internet and
through presentations at professional or public meetings relevant to key interests (e.g. environment,
public health, poverty and development, science policy). Other strategies for engagement with the
public utilize universities, television and science museums (Wilsdon & Willis, 2003).

Once a public engagement strategy has been launched, there should be opportunities for follow-up
activities. These could include provision for the submission of comments and questions, but might
also involve more extended interactions. It is crucial that third parties invited into engagements of
this sort are not made to feel that they are being placated, simply tolerated or, even worse, that the
engagement is simply a stalling tactic with little genuine opportunity for third parties to have any
substantive input (for example, Griffiths & Steinbrecher, 2010).

Just as with discharging responsibilities for engagement with those immediately affected by
research, engagement with third parties will be more effective if researchers and/or consultants
with specialized skills are part of the project team. As such, there should be a component of the
research activity that is designed and dedicated to third party engagement. It should be equipped
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with adequate personnel and budget, and this should include some time and energy commitments
from leaders in the biological science component of the research. This is an important point for
funders of GMM trials to understand, as these types of communications activities are not a standard
component of research budgets.

4.6 When should ethics and engagement activities take place?

The timing for tasks such as securing authorization and support from those that will be affected by
the research will probably be implicit within the nature and goals of the activity. It is important to
stress that these procedures must be organized and conducted before they have an actual impact on
affected parties. However, agreement secured too far in advance will simply need to be renewed, as
people change their minds. Similarly, there will be a need to plan efforts to revisit these tasks over
the course of the project.

Phase 1-2 trials

The traditional model of engagement and outreach for scientific research that held sway for the first
half of the 20th century would have envisioned little need for engagement activity at the early
stages of research, up to and including field testing for agricultural or public health interventions.
According to this view, the public did not need to be particularly aware of a research activity until
their help or cooperation was needed in actually undertaking a large-scale intervention. However, as
cognizance of risks to human research subjects grew, and standards for procuring cooperation and
consent began to develop, researchers recognized that there were key activities needed to inform
and involve affected parties, even at this relatively preliminary stage of research. While it is less
likely that major controversies would erupt before field testing, the complexity of GMM research
suggests that it is advisable for researchers to commence the “broader issues” engagement
component as early as possible, and certainly before Phase 1 proof-of-concept work has been
completed. This could be done, for example, by collaborating on a publication that discusses the
ethical rationale behind proof-of-concept work. Need for stakeholder engagement and community
authorization activities would be expected to arise in Phase 2 of the proposed GMM-testing
pathway.
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Box 4.2 Disruption of the testing of male sterile mosquitoes in India

Public health scientist Robert S. Desowitz described an episode in one of his books written for a popular audience
that is instructive to consider: “On a morning in 1975, a van bearing the blue-and-white logo of the World Health
Organization on the door—a snake caduceus through a global map—drives into the village center. The villagers,
who have a fear and loathing of snakes, regard the serpent van suspiciously. They begin to be even more suspicious
when a peculiar collection of men emerges from the van—a few undoubted Indians, some strange Orientals, and
some very white white men. An angry murmur of astonishment passes through the gathered group of villages
when these men remove large mesh-covered cages from the vehicle, open the cages—and out flies a cloud of
mosquitoes. Without a word of explanation, the snake and mosquito men then return to their vehicle and drive
away. Several weeks later, the snake van appears again in the village and once more the strange foreigners release
a cloud of mosquitoes from the cages. The crowd reacts—chasing the men into the van, which makes a hurried
escape. A month or so later the vehicle appears again. The villagers burn it.” (Desowitz, 1991:89.)

Desowitz (1991) writes that the villagers complained to parliament, and that parliamentarians accused the
American scientists of conducting an experiment in biological warfare. It was later confirmed that these suspicions
were entirely unfounded (Powell & Jayaraman, 2003).

A few key episodes in field-testing have demonstrated how poorly executed public relations and
engagement strategies can sabotage research efforts, sometimes having extremely long-lasting
effects. Particularly relevant to GMM field testing is an episode that occurred in conjunction with a
field release of male sterile mosquitoes as a component of research on vector control in India (Box
4.3). A cooperative project involving scientists from India and the USA, among others, was
conducting field trials with male sterile mosquitoes as basic research that could be adapted to a
number of disease control situations. However, suspicions were raised both locally and in the
national press about the nature and intent of this research, which were exacerbated by poor
communications, and the project was unable to continue (Anonymous, 1975). This episode has been
repeatedly cited by those who warn that GMM field testing must be accompanied by effective
efforts to engage both local individuals in areas where field trials will be conducted and also activists
self-identified as promoting pro-poor, pro-environmental issues and democratization of science
initiatives (Benedict & Robinson, 2003; Curtis, 2006; Knols et al., 2007).

These incidents illustrate why adequate plans for communication and engagement are important
even at the early field-testing stage. This brief history of unfortunate episodes testifies to the
potential for misunderstandings that can cause irreparable damage to specific research efforts.
What is more, knowledge of these cases inclines some public advocates to be highly skeptical of the
intentions and ability of scientific research efforts to respect and involve an appropriate cross
section of stakeholders, affected parties and representative members of the interested public
through key phases of planning and executing field trial activities. While engagement activities
complement and support other project activities that are dedicated to the anticipation and
management of risks or regulatory compliance, the history of field trials gone wrong shows that
these components have a purpose that is independent of RM and regulatory compliance. Protecting
the integrity of the trial, and the ability to work both locally and in a global culture of support for the
project depends on an effort of good faith to engage social and ethical issues.

It is recommended that investigators work cooperatively with their institutional committees,
including committees responsible for research ethics review, and with the host communities to
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avoid miscommunications and misunderstandings that could undermine trust and transparency.
When field releases begin, communications should be careful to explain that trials are research
activities intended to test the efficacy of a new technology, a protective effect is not assured, and
the community must continue to employ other available methods to protect themselves from
disease transmission.

Additionally, as described above, certain individuals may meet the criteria of research subjects, even
in the case of small entomologically focused Phase 2 studies, as a result of interventions or
interactions, such as the collection of specimens, data and private information. Unless determined
otherwise by the relevant institutional ethics committees, it may be presumed that informed
consent should be obtained from such individuals in advance of the collection of data.

Phase 3

Efforts to engage potentially affected parties will expand in anticipation of larger Phase 3 trials. In
addition, human subjects issues will become more prominent, especially in trials seeking to evaluate
epidemiological efficacy where measurements of the incidence of infection and other medical
information will be required. Such trials are likely to assign groups of individuals to treatment and
control clusters, rather than to involve a randomized distribution of individual subjects. Some
individuals in clusters may have no direct contact with researchers, and their personal identities may
not be relevant to the research process. For these individuals, the above argument that they are not
subject to a direct effect of the research can be made. However, in Phase 3 trials for epidemiological
endpoints, data collection designed to shed light on the health impact of GMM releases will require
the selection of individuals within the community for the purpose of securing the necessary data or
personal information, for example, through surveys or blood samples, even in large-scale trials. In
these large trials, procedures would resemble those of vaccine trials, which typically require multiple
interactions with individual participants over the course of the trial, and which also provide
appropriate contexts and moments for securing and reaffirming informed consent. An important
difference between GMM trials and vaccine trials is that in GMM trials, participants would be
consenting (or not) to the collection of data, not to the intervention itself (the GMM release), which
would not affect them at an individual level.

Planning for scaling up community engagement activities should commence well in advance of Phase
3 trials. Community engagement at this broad scale will be challenging because of the inherent
difficulty in replicating across extensive and diverse populations the high-quality, trusting
relationships between researchers and stakeholders that were possible through ongoing personal
interactions in Phase 2 trials. For large and multi-site trials, additional mechanisms of public
engagement, perhaps including social and mass media, may need to be invoked to reach and obtain
feedback from a broader community than would have participated in Phase 2 testing. Such
mechanisms also may facilitate monitoring of public opinion and demonstrating trial acceptance.
Additional representational methods may need to be considered for obtaining community
authorization, and it will be important to ensure the validity of these methods. It has sometimes
been the case in cluster randomized trials of the type envisioned for Phase 3 GMM trials, that the
consent of the relevant cluster population(s) has been sought from a “guardian,” such as a village
elder or elected official, and perhaps without the knowledge of those involved in the trial, in order
to avoid the possibility of changing behaviour or otherwise biasing the control clusters (Edwards et
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al., 1999). A meta-study of such trials suggests that ethical issues have not been sufficiently clarified,
and that ambiguities leave open the potential for ethical abuse with respect to the level of
understanding and agreement that is required from the study population (Weijer et al., 2011). Thus,
even in the context of large-scale trials, appropriate community engagement and community
authorization procedures will be expected to adhere to the principle of respect for communities,
aiming for widespread understanding and ongoing endorsement by those living at the trial site.

Another question that will be encountered in Phase 3 trials concerns the type of care that should be
provided to control groups during a randomized controlled trial. The ethical debate generally
focuses on whether the control group should receive a “proven effective” treatment, the “locally
available” treatment, or some other treatment (van der Graaf & van Delden, 2009). It is not clear
that “standard of care” is even an appropriate concept for GMM trials, since the concept has been
imported uncritically from drug and vaccine trials that are different in several ethically relevant
ways. However, it is likely that research ethics committees will require investigators to design trials
to ensure that other forms of vector control, or other treatments that reduce the amount of human
infection, and could therefore influence the background level of pathogen transmission, will be
provided. This type of requirement could have a significant impact on the trial’s design, since low
transmission levels will make the efficacy of GMMs more difficult to measure. For example, in GMM
trials for malaria control, one ethical question might be how actively to promote the concurrent use
of bed nets. Another such question will arise if and when a malaria or dengue vaccine becomes
available for public health intervention.

Further work will need to be done to determine the most appropriate way to conceptualize these
“standard of care” issues for GMM trials. But, as these specific aspects of ethical trial design are
being developed, investigators should prepare appropriate strategies for addressing them, along
with the rationales for adopting them. These will prove to be useful for research ethics review
committees and constitute an important aspect of the ethical reflection activities, described above.
As noted in Section 5. Regulatory frameworks, the appropriate governmental and/or institutional
bodies will establish the requirements for regulatory compliance. A robust ethical inquiry informed
by a current understanding of the literature on trial design, relevant precedents, and current
government policy at field sites will enhance a GMM research group’s ability to develop appropriate
protocols and anticipate the concerns of regulatory authorities.

Phase 4

When GMM strategies mature into widespread public health initiatives, it is likely that the
responsibilities for implementing these technologies will shift to the relevant local, regional or
national public health authorities. Controversy over the fluoridation of public water supplies,
regulation of tobacco use and vaccination testifies to the fact that it is not unusual for public health
interventions to be undertaken without the explicit approval of all affected parties (Cassidy, 2007;
Powles, 2009). They nevertheless have legitimacy when conducted within proper democratic
processes and institutions, and with proper mandates. Any public health initiative takes place within
the context of legal, regulatory and political institutions that are intended to resolve differences of
opinion and to negotiate matters concerning who bears what risks. When public health authorities
and the relevant ancillary institutions are functioning well, the responsibility to engage with affected
individuals will most likely be transferred to them once it has been established that the technology is
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safe and effective. In cases where local or regional institutions are not functioning well, researchers
and sponsors may have additional responsibilities related to capacity building and planning with host
country agencies, and for maintaining the relationships of trust that were established during the
earlier phases of the trials.

4.7 Who should undertake ethics and engagement activities?

The activities described in each section of this guidance framework are material to the successful
accomplishment of research objectives. As such they should involve lead researchers and will also
often require attention from other members of the project team who are focused on specific tasks.
However, there are aspects of each element that may require special skills and training that
biologists, medical personnel or public health specialists would not normally be expected to have. As
noted above, engagement with affected parties may require specialized knowledge of local culture
and institutions. In addition, engagement with third parties is increasingly characterized as requiring
skills for creating, maintaining and managing the forums in which discussions, consensus seeking and
negotiations can take place (Backstrand, 2003; Dietz, Ostrom & Stern, 2003). The abilities and
methods for accomplishing these tasks are themselves the focus of ongoing research in
communications and governance activities (Brown, Harris & Russell, 2010). Project directors and
managers should consult with or contract specialists who can accomplish specialized elements of the
ethics and engagement plan (Kreuter et al.,, 2004; Brown, Harris & Russell, 2010), and allowance
made in the project budget for these types of activities. However, researchers should not presume
that they can simply turn the ethics and engagement component of the project over to a contractor,
as the involvement of project leaders in ethical reflection and engagement, and communication
regarding research goals and conduct is vital.

4.8 Capacity-building goals

It is likely that project managers will discover a need for additional training of entomology
researchers about ethics obligations in vector biology research. Likewise, there may be a need to
train bioethicists and social scientists involved in the project about the unique situations
encountered in vector biology research. As discussed above, this is a complex subject where the
internationally accepted standards developed for clinical research are not always directly or clearly
transferable. Additionally, there may be a need to train institutional and national ethics review
committees on the importance and process of ethical review of GMM trials. In both developing and
developed countries, ethics review committees often lack vector biologists and awareness of ethical
issues in entomological research protocols/proposals. Attempts should, therefore, be made to
create awareness of such issues among committee members responsible for approving and
providing oversight for the planned trials, and to encourage the committees to seek appropriate
expertise when considering GMM research/trials.
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Box 4.3 Typical ethical and engagement considerations to prepare for different phases of testing

Phase 1: In the laboratory

Within the project team and with project advisers, establish ongoing mechanisms for considering the
social purpose and public health value of the research and for responding to changing circumstances.
Develop an initial communications plan with key messages that explain the project and contingency
plans for dealing with controversy.

Initiate public reporting practices, as through publications, project website, etc., to continue
throughout the project.

Conduct preliminary stakeholder mapping; develop plans for discriminating among those who will be
affected by the research activities through specific interventions or interactions, other members of
host communities who have a stake in the trial, and those who may have legitimate but more distant
interests at stake; identify third parties most likely to influence the success of the project.

Prepare plans for field-site selection; commence discussions with local scientists and community
leaders to collect data for decision-making.

Phase 2: Prior to initial field trials

Develop informational materials appropriate for engagement with government officials, partner
institutions, local community and other stakeholders; develop plans for media engagement.

Conduct more focused assessment of relevant local stakeholders; initiate interactions to build
understanding of the project among critical decision-makers.

Finalize site selection; build knowledge about the host community; develop plans for community
authorization and initiate activities to explain the project and elicit community feedback; enact
ongoing mechanisms to understand and respond to concerns.

Secure community authorization and other necessary institutional and government approvals.

Phase 3: Prior to large-scale release

Review relevant precedents for trial design and broad-scale community engagement.

Develop locally appropriate communications plans for multiple field sites; consider that large-scale
trials will most likely attract global attention and plan to respond accordingly.

Develop a plan for large-scale engagement, which may require additional mechanisms to interact with
and obtain feedback from broad and diverse populations; consider appropriate representational
methods to obtain and maintain authorization and ways to evaluate the validity of these methods.
Take important ethical considerations into account in the development of the trial protocol and
ensure adequate oversight of human subjects research by the institutional ethics committee(s); obtain
all necessary institutional and government approvals.

Phase 4: Prior to deployment

Assist agencies in host countries to develop methods for incorporating the technology into their
disease control programmes.
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5. Regulatory frameworks

Summary: The release of GMM into the environment will be controlled through the laws and regulations
of a nation, state, province, county, or lesser levels of jurisdiction. A number of GMM regulation types,
options and levels exist and may have to be addressed during GMM development, including: institutional
biosafety and ethics committees; laws and regulations governing human and animal pests, diseases and
drugs; laws and regulations pertaining to mosquitoes and threatened, endangered, and protected species
in respect to biodiversity; and new laws and regulations, which may be under development, specifically
for living or genetically modified organisms (LMOs or GMOs). An important resource for specific country
regulations and contacts relevant to GMM is the Cartagena Protocol on Biosafety, Biosafety Clearing-
House.

Regulatory agencies will be involved at most phases in the research and development process for GMM
and may also be involved in post-implementation surveillance. The mechanisms of regulation may include
institutional biosafety and ethics committee approvals, risk assessments, public comment periods, and
permits for importation and experiments, and may involve official review by more than one regulatory
agency.

GMM regulation is useful both for the scientists involved in their development and for the
general public, because it provides a recognized and respected mechanism for protecting
human health and rights, livestock, economics and the environment. A thorough, science-based
GMM regulatory process that is publicly transparent, without conflict of interest, contains minimal
confidential business information, and provides allowance for public stakeholder input, will serve to
strengthen public confidence in and acceptance of GMM biotechnologies, their developers, and the
government agencies that regulate them.

Regulation controls the release of GMMs into the environment within sovereign states as well as
their transboundary movement. Pertinent developments are recorded in Table 5.1. Precedents exist
from the regulation of other technologies, including other GM insects of agricultural importance that
can inform the formulation of regulatory pathways for GMMs. However, fundamental differences
between GMM and other GM technologies must be taken into consideration in order to avoid
inadvertently creating barriers to the development of a public health tool of potentially valuable
utility. Nonetheless, such considerations must not compromise the safe use of GMM:s.

5.1 The purpose of regulations

A regulation is an official rule to manage the conduct of those to whom it applies. Regulations are
usually developed from legal interpretations of enacted legislation, laws, or acts of a legislative body
and are implemented by government ministries or agencies under the authority of legislation, a law
or act. Regulation may be through the laws and official codes of a nation, state or province, county,
municipality, tribe or other jurisdictional unit, and/or under the authority of laws and regulations
enacted through provisions of a treaty ratified by participating states. A regulatory agency (also
called regulatory authority, ministry, regulatory body or regulator) is a public authority or
government entity responsible for exercising autonomous authority over some area of human
activity in a supervisory capacity.
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The purpose of a regulatory agency in regard to GMMs is to ensure that the safety of the public and
environment are protected against risks or damage. Risk and, sometimes, benefit, assessments
(Section 3. Biosafety) are essential components of the regulatory process. A benefit assessment for
GMMs is that of performance or efficacy values for vector and vector-borne disease reduction,
without which the increased or continued risk of disease would probably be increased in the
absence of alternative effective interventions (Section 1. Introduction). Although performance or
efficacy, safety and RA, and public transparency, communication, and acceptance are subsumed as
part of the regulatory process, they are not covered in this section since they are discussed
elsewhere in this guidance.

Government agency regulation of GMMs could involve more than one regulatory authority and
require more than one permit or licence for importation of and research on a GMMs. Further
examples of potentially relevant regulations illustrate this issue.

5.2 Biosafety

Institutional biosafety committees (IBCs) are charged by certain laws with the planning and
implementation of university and other research facility biosafety programmes for the purpose of
protecting the health and safety of all personnel working with potentially hazardous agents. IBCs
may be national or may exist at local, regional, state, provincial, or territorial levels of government
but they may not exist at an institutional level in some countries. Where they do not exist, they
should be part of capacity building by international or foreign aid organizations. IBCs may also draft
institutional biosafety policies and procedures and review individual research proposals for biosafety
concerns. Concerns relevant to GMMs may relate to the safe handling of recombinant DNA or
pathogens perceived to pose a health threat. For example, in the USA, an IBC ensures that research
conducted at an institution is in compliance with National Institutes of Health (NIH) Guidelines for

HEEE 9nd the select agent regulations under the

Research Involving Recombinant DNA Molecules
Public Health Security and Bioterrorism Preparedness and Response Act of 2002, which authorizes
the regulation of the possession, use and transfer of select agents and toxins. The US Federal Select

55588555 g jointly comprised of the Centers for Disease Control and Prevention/Division

Agent Program
of Select Agents and Toxins, and the Animal and Plant Health Inspection Services/Agricultural Select
Agent Program. The Federal Select Agent Program oversees the possession, use and transfer of
biological select agents and toxins, which have the potential to pose a severe threat to public, animal
or plant health, or to animal or plant products. It includes disease agents transmitted by mosquitoes,
but does not include Plasmodium spp. or dengue virus serotypes. This currently requires registration
of facilities including government agencies, universities, research institutions, and commercial

entities that possess, use, or transfer biological agents and toxins.

T S . ; .
NIH guidelines for research involving recombinant DNA molecules:

http://oba.od.nih.gov/rdna_ibc/ibc.html, accessed 25 May 2014.
§§655588

USA Federal Select Agent Programme: http://www.selectagents.gov/index.html, accessed 25 May

2014.
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5.3 Human subjects

In research, regulations on human subjects generally apply when data will be obtained from living
individuals through an intervention or interaction, or identifiable private information will be made
available. This will be the case for certain aspects of GMM trials (Section 4. Ethics and public
engagement). For example, in GMM trials, regulations on human subjects would apply to the taking
of blood specimens to measure epidemiological endpoints (an intervention) or personal opinion
surveys to understand concerns about the research (an interaction).

Institutional ethics committees (IECs), also known as institutional review boards (IRBs) or ethical
review boards, provide oversight for biomedical and behavioural research involving humans with the
aim to protect the rights and welfare of research subjects. Human subjects regulations and IECs
were developed in response to notorious abuses carried out in the past in the name of research (Box
5.3).

One role of IECs is to attempt to ensure that human participants in a clinical study understand the
facts, implications, and consequences of their participation. Informed consent is the mechanism
usually used for this purpose. Informed consent is intended to be a process of communication
between an individual contemplating taking part in a study or trial and the physician or scientist
administering the study, which results in the patient's decision regarding authorization or
agreement. The most important aspect of informed consent is voluntary agreement. In order to give
informed consent, the individual concerned must have adequate reasoning faculties and be in
possession of all relevant facts at the time of consent. Countries will vary in regard to laws and
regulations governing standards of informed consent that are required under common law and
statutory authorities. The components of informed consent have been delineated in many
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venues.

For aspects of GMM trials not falling under the definition of human subjects research, mechanisms
of community engagement and community authorization (Section 4. Ethics and public engagement)
are recommended to communicate goals and risks of the project, and to obtain consent to
undertake testing.

skokskok ok ok ok ok ok

Informed consent form templates: http://www.who.int/rpc/research_ethics/informed_consent/en/,
accessed 25 May 2014.
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Box 5.3 The Nuremberg Code, 1949

In medical research, the “Nuremberg Code” from Trials of War Criminals before the Nuremberg Military Tribunals
set a base standard following 1947 (Nuremberg Code, 1949). There are 10 points concerning informed consent that
are described in the Nuremberg Code and are in National Institutes of Health, Directives for Human Experimentation
(NIH, 2010). The Declaration of Helsinki was issued by the World Medical Association (WMA) as a set of ethical
principles for the medical community regarding human experimentation. The Declaration is not a legally binding
instrument in international law, but instead draws its authority from the degree to which it has been codified in, or
has influenced, national or regional legislation and regulations.

The Declaration more specifically addressed clinical research under the term “human experimentation” used in the
Nuremberg Code. The operating principles of the Declaration are the following: research should be based on a
thorough knowledge of the scientific background (Article 11); a careful assessment of risks and benefits (articles 16
and 17); have a reasonable likelihood of benefit to the population studied (Article 19); be conducted by suitably
trained investigators (Article 15) using approved protocols; and be subject to independent ethical review and
oversight by a properly convened committee (Article 13). The protocol should address the ethical issues and indicate
that it is in compliance with the Declaration (Article 14). Studies should be discontinued if the available information
indicates that the original considerations are no longer satisfied (Article 17). Information regarding the study should
be publicly available (Article 16). Ethical responsibilities extend to publication of the results and consideration of any
potential conflict of interest (Article 27). The interests of the subject after the study is completed should be part of
the overall ethical assessment, including assuring their access to care (Article 30). Wherever possible, unproven
methods should be tested in the context of research where there is reasonable belief of possible benefit (Article 32).

The International Covenant on Civil and Political Rights (ICCPR, 1976) is a multilateral treaty adopted by the UN
General Assembly on 16 December 1966, and implemented on 23 March 1976. It commits its parties to respect the
civil and political rights of individuals, including the right to live, freedom of religion, freedom of speech, freedom of
assembly, electoral rights, and rights to due process and a fair trial. The ICCPR is part of the International Bill of
Human Rights, along with the Universal Declaration of Human Rights (UDHR) and the International Covenant on
Economic, Social and Cultural Rights (ICESCR), of which Article 7 states the following: “No one shall be subjected to
torture or to cruel, inhuman or degrading treatment or punishment. In particular, no one shall be subjected without
his free consent to medical or scientific experimentation.”

Sources: Nuremberg Military Tribunals (1949); WMA (1964); NIH (2010).

5.4 GMO regulation
Mosquito pests

The intent or purpose of introducing genetic traits in suppressing mosquito populations could
possibly be considered and regulated under the definition of a biopesticide when a pesticide is
defined as any substance or mixture of substances intended for preventing, destroying, repelling, or
mitigating any pest, which is the USA’s Federal Insecticide and Rodenticide Act (FIFRA) definition.
Other national pesticide legislation may regulate on the same basis of pesticidal intent.

Mosquitoes are livestock pests as well as human pests. As with existing legislation for crop pests and
diseases, many countries have developed legislation to prevent and control outbreaks of livestock
pests and diseases, as these issues are in the economic interests of most countries. In the USA, living
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modified or GM plants are regulated under legislation intended for the protection of crops under the
Plant Protection Act (PPA) of 2000. GM Drosophila have been subject to importation and interstate
movement permits under this act and more movement permits for GM Drosophila have been issued
than for all other GMOs combined. GMMs have also been moved and tested in quarantine
containment facilities in the past under these same kinds of permits as a courtesy to GMM science
and scientists to facilitate their research.

The USA might have regulated GMMs under the Animal Health Protection Act (AHPA) of 2002
because mosquitoes are livestock pests, as well as human disease vectors and pests. The US
Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) administers
this Act. The USDA had already regulated GM fruit flies and the pink bollworm under the PPA, and
completed the first Environmental Impact Statement (EIS) ever done on any living modified
organism (LMO), plant or animal, as well as two Environmental Assessments (EAs) on GM insects
that are plant pests in accordance with the US National Environmental Policy Act (NEPA). NEPA
includes a number of provisions for public stakeholder participation in the federal decision-making
process. There are also litigation precedents in the USA going up to the Supreme Court that have
established that the implementation of FIFRA is the equivalent to NEPA.

Legislation pertaining to mosquito control exists in many countries including Australia (Queensland),

T This s mainly for the

Malaysia, Singapore, the United Republic of Tanzania and the USA.
purpose of enforcing control programme requirements, such as the elimination of larval habitats by
citizens. According to the Florida Statutes, the creation, maintenance, or causing of any condition
capable of breeding flies, mosquitoes, or other arthropods capable of transmitting diseases, directly
or indirectly to humans, are prohibited by regulation. In Malaysia, there are laws for the prevention
and control of vector-borne diseases. These are: (a) Destruction of Disease-Bearing Insects Act 1975
(Act 154); (b) Prevention and Control of Infectious Diseases Act 1988 (Act 342); and (c) Local
Government Act 1976 (Act 171). In Singapore, three pieces of legislation, namely, the Infectious
Diseases Act (IDA), the Control of Vectors and Pesticides Act (CVPA) and the Environmental Public
Health Act (EPHA) provide broad powers to prevent and control dengue (Seow, 2001). Among those
countries in Africa with laws pertaining to breeding of mosquitoes, Tanzanian law goes back to 1913,
with legislation governing the breeding of Anopheles spp, Aedes, spp. and, more recently, Culex
quinquefasciatus.

GM animals

Genetic modifications to animals are generally for the purpose of affecting their physiology or
biology in ways to provide economic or health benefits. Animal drugs or pharmaceuticals are also
human interventions intended to similarly affect or alter animal physiology or biology. Legislation for
regulation of animal drugs is presently being used to regulate GM animals, including GM salmon,
developed for food and drugs and, more recently GMMs. In the USA, the legislation is the Federal
Food, Drug, and Cosmetic Act (FFDCA), and the implementing agency is the Food and Drug
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The 2009 Florida statutes:
http://archive.flsenate.gov/Statutes/Index.cfm?StatuteYear=2009&Tab=statutes&Submenu=1 (accessed 25
May 2014).
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Administration (FDA) within the Department of Health and Human Services (HHS). GMMs are being
regulated in the USA by the FDA's Center for Veterinary Medicine (FDA-CVM) under FFDCA as animal
drugs.

Environmental protection

Many countries have enacted legislation with regulation by environmental and/or fish and wildlife
management agencies for the protection of certain species against adverse effects from human
activities. Legislation also exists to protect species that have become threatened or endangered due
to human action resulting in potential extinction. Where other regulatory agencies do not have
authority because the nature of a LMO may not clearly fit their regulatory scope, environmental
agencies may have regulatory purview because of potential adverse impacts on protected species
and species diversity in the environment. In this same regard, regulation by other agencies may
require endangered and threatened species impact analysis as part of their regulatory process, as is
presently required in some countries, including the USA. The Convention of Biological Diversity (CBD,
2012)nitnitititit and the Cartagena Protocol on Biosafety’® are examples of treaties or covenants
applying to GMOs/LMOs and are based on protection of species diversity.

Some countries, such as Brazil, Kenya, Malaysia, Nigeria and Panama, have developed specific
legislation for LMOs that is based on GM plant experience, but includes other LMOs. Such legislation
is usually derived from the CPB, described in Appendix 1. New legislation may require a new
regulatory agency to be established or may draw on other agencies or nongovernmental sources for
scientific, regulatory, and enforcement expertise. In some countries, this approach may result in
either biotechnology implementation delays or possibly regulatory decisions compromised by
inadequate science assessment capacity and conflict of interest.

Regulation of GMMs with drive systems capable of autonomous transboundary movement or even
movement by inadvertent human transport may invoke regulatory processes of adjacent countries.
Gene drive systems are designed and intended to spread throughout an ecozone regardless of
political boundaries. If it is known or expected that introduced traits will have transboundary effects,
then the need for multilateral regulatory approval by all countries, not separated by species barriers,
subject to introduction of a specific GMM should be considered. To engage a multilateral regulatory
process may involve international agreements, treaties, covenants, conventions, protocols, or
county approvals prior to introduction to one country within a contiguous ecozone. International
organizations, such as WHO, may be best suited to provide leadership in a multilateral/international
regional regulatory process for deploying GMMs intended to spread widely (see Appendix 2 for
further discussion).

HHEEE Convention of Biological Diversity: http://www.cbd.int/convention/, accessed 13 June 2014.
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Table 5.1 Recent regulatory and biosafety development chronology relevant to the testing and

implementation of modified vector insects

Year Development Relevance Website
2000 Cartagena Protocol on Established Biosafety Clearing-House for http://bch.cbd.int/
Biosafety to the information on national biosafety
International Convention on | regulations and contacts
Biological Diversity
2001- African Model Law on African Union drafted a model legal http://hrst.au.int/en/biosa
2007 Biosafety instrument for developing national fety/modellaw
biosafety legislations in 2001 that was
endorsed by the African Ministerial
Conference on Science and Technology in
November 2007; several African countries
have now approved national biosafety
laws
2002— WHO-TDR Technical Began the process of defining http://www.sciencemag.o
2004 Consultations on GM requirements for testing and rg/content/298/5591/119.
Vectors implementation of GM vectors full
2002—- International Project on Identified and developed scientific http://www.gmoera.umn.
2007 LMO Environmental RA methodologies and teaching tools that can | edu/
Methodologies be used for environmental RA and
management of transgenic plants, in
accordance with the Cartagena Protocol
on Biosafety and other international
agreements
2005 International Plant IPPC approved international standards for | https://www.ippc.int/sites
Protection Convention RM related to biological control agents /default/files/documents/
(IPPC) Guidelines for the capable of self-replication /1323944456 _ISPM_03 2
Export, Shipment, Import 003_En_2011-12-
and Release of 01_Refor.pdf
Biological Control Agents
and Other Beneficial
Organisms
2006 Daegu Protocol on New International effort initiated to establish http://www.biopesticide.u
Technologies for Pest and guidance for regulation of new cr.edu/daegu/daegu.html
Disease Control biotechnologies related to crop pests and
human disease vectors
2006 USDA Environmental USDA Animal and Plant Health Inspection http://www.scribd.com/d
Assessment on field release | Service announced a final environmental 0c/2810616/Notice-
of genetically engineered assessment and finding of no significant Environmental-
pink bollworm impact to issue permit for confined field statements-availability-
trial in southwest US of transgenic plant etc-Pink-bollworm-
pest modified to contain fluorescent genetically-engineered-to-
marker gene express-green-
fluorescence-as-marker-
field-trial
2007 NAPPO Guidelines for NAPPO approved regional standard to http://www.nappo.org/en

Importation and Confined
Field Release of Transgenic
Arthropods in NAPPO
Member Countries

provide guidance in use of transgenic
arthropods while protecting plant health

/data/files/download/Stan
dards/RSPM27-22-10-07-

REV%20RL-e.pdf

100




Guidance Framework for Testing of Genetically Modified Mosquitoes

Year Development Relevance Website
2007 WHO-TDR supported Capacity building through a series of | http://u-
regional centres in Africa, training courses targeting researchers, | bamako.ml.refer.org/IMG/
Asia, and Latin America for policy-makers,  regulators, etc.,, in | pdf/Call_for TDR_Biosecu
training in biosafety developing countries for decision-making | rity Course_Mali_2008.pd
assessment for human on regulatory frameworks, biosafety, RA, | f
health and the environment | and ethical, social and cultural (ESC) issues
of the use of GM disease related to use of GM vectors
vectors
2008— WHO-TDR MosqGuide Development of best practices for the use | http://www.mosgguide.or
2013 project of GM mosquitoes, to be used as guidance | g.uk/
for decision making in disease endemic
countries
2008 FNIH-supported working Development of guidance for the conduct | http://www.liebertonline.
group on contained field of Phase 2 contained field trials for GM | com/doi/pdfplus/10.1089/
trials of vector mosquitoes mosquitoes with self-limiting or self- | vbz.2007.0273
engineered to contain a sustaining gene drive
gene drive system
2009 USDA Environmental Impact | USDA Animal and Plant Health Inspection | http://www.aphis.usda.go
Statement on Use of Service, in cooperation with several states | v/plant_health/ea/downlo
Genetically and foreign countries, conducts a full RA | ads/eis-gen-pbw-ff.pdf
Engineered Fruit Fly and of GE fruit fly species and pink bollworm
Pink Bollworm in APHIS for use in various applications of the
Plant Pest Control sterile insect technique (RIDL), determines
Programmes it to be an environmentally preferable
alternative to current technology, and
announces intention to integrate use of
GM insects into agency invasive plant pest
control programmes
2009 WHO-TDR and FNIH- Reviewed current status and | http://apps.who.int/tdr/sv
sponsored technical requirements for future development of | c/publications/training-
consultation on progress GM mosquitoes for malaria and dengue | guideline-
and prospects for the use of | control; initiated development of a | publications/gmm-report
GM mosquitoes to inhibit guidance framework for the evaluation of
disease transmission GM  mosquitoes including  quality
standards for assessing safety, efficacy,
and ESC considerations (in progress).
2010 Ad hoc Technical Expert Developed a roadmap and guidance on RA | http://www.cbd.int/doc/
Group on Risk Assessment and RM of GMOs to supplement Annex Ill | meetings/bs/bsrarm-
and Risk Management of the Cartagena Protocol, with a special | 02/official/bsrarm-02-05-
under the Cartagena section on living modified mosquitoes en.doc
Protocol on Biosafety
2010- EFSA projects relevant to Environment Agency Austria, International | http://www.efsa.europa.e
2013 GM insects Atomic Energy Agency (IAEA) and the | u/en/scdocs/doc/71e.pdf

University of Bern produced a
scientific/technical report  “Defining
environmental risk assessment criteria for
GM insects to be placed on the EU
market”

Guidance on the environmental RA of GM
animals

http://www.efsa.europa.e
u/en/efsajournal/pub/320
0.htm
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5.5 Regulation in a stepwise research and development process

Regulatory oversight will usually be required in Phase 1 (Figure 1.1) for importation and possibly
interstate/interregional movement permits. Inspections may be conducted to assess the security of
guarantine containment according to established guidelines. Institutional biosafety committees,
where they exist, would also be involved at the beginning of this stage. Other regulatory
requirements could be for permits to rear mosquitoes and for permission to work with human
disease vectors and the disease agents, if applicable, in the regulatory jurisdictions where the
research is to be conducted. Provisions for surveillance and monitoring for escaped GMMs also
should be part of the regulatory requirements at Phase 1 because of possible containment failures,
since mosquitoes are small and mobile. Regulation at this stage of research and development should
also provide for emergency control or mitigation measures to eliminate escaped GMMs through
proven means, such as pesticide applications. International biotechnology product movement
permits and quarantine systems are already established in many countries for movement of living
plant and animal agents that may become pests.

Physically, physiologically and ecologically confined field trials in Phase 2 should require regulation in
which a RA (Section 3. Biosafety) or other similar environmental assessment is conducted and
documented to supply scientific rationale and evidence that the confinement will provide the
expected degree of assurance that the GMMs will not escape into the surrounding environment and
become established and spread or result in spread of the genetic construct(s) into native sexually
compatible species. Provisions for surveillance and monitoring should also be part of the regulatory
requirements at this phase. Regulation should also provide for emergency control or mitigation
measures to eliminate escaped and established GMMs and constructs through proven methods.
Clear distinctions should be made between physically and ecologically confined field trials to define
what each means relative to the inadvertent dispersion of the GMMs because there would most
likely be different regulatory requirements according to the degree of containment or confinement
provided.

Open release trials under Phase 3 should require regulatory RA or other similar environmental
assessment documentation to provide a scientific rationale and evidence that the genetic
construct(s) are either self-limiting or self-mitigating, and if not 100% self-limiting, that the releases
will not then introduce genetic constructs into indigenous wild populations of vectors that may
result in increased biological fitness, increased or broadened disease vector capacity, or increased
human and animal nuisance impacts. The regulatory RA requirements for open release would be
commensurately more stringent than for confined or contained trials in which escape is prevented
by physical, physiological, or other barriers. For constructs that are intended to spread within a
vector population for the purposes of population suppression or reducing capacity to transmit
diseases, there likewise should be regulatory requirements to establish scientifically that the genetic
construct(s) do not otherwise increase biological fitness, broaden vector capacity to other disease
agents, or increase human and animal nuisance impacts. In case of failure to perform as expected or
required, appropriate control or mitigation measures need to be available to eliminate escaped and
established GMMs. When transboundary movement to adjacent countries or states with separate
regulatory jurisdiction is expected or intended, then prior to the release of GMMs with genetic
constructs capable of expanding in a vector population, the regulatory requirement of the countries
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or states into which animals containing the transgene may move also needs to be addressed (see
discussion of transboundary movement under paragraph 5.6.4 below). Phase 2 and/or 3 also will
also require assessment of impact on non-target and beneficial species and include species that are
threatened or endangered in the environment. Satisfactory completion of Phase 3 trials may result
in regulatory approvals for programmatic implementation and no longer require regulatory
supervision for post implementation when all safety-testing parameters are satisfied.

In Phase 4, post implementation surveillance regulation, when required, should be intended,
designed and implemented to detect movement and introgression of the genetic construct within
vector populations and detect unintended changes in vector biology that may result in changes in
biological fitness, adverse changes in vectorial capacity, and changes in nuisance impacts. In case of
failure to perform as expected or required, emergency control or mitigation measures need to be
available to eliminate escaped and established GMMs.

5.6 Additional considerations pertinent to GMM regulation

5.6.1 Public consultation

Regulatory decision-making should include opportunities for public consultation. In many cases, this
is mandated within the national regulatory process. For example, in the USA, agencies are required
to make efforts to provide meaningful public involvement in their processes under NEPA 555555555 This
principle is also applied in certain multinational agreements. The Cartagena Protocol specifies that
Parties shall promote and facilitate public awareness, education and participation, and ensure that
the public has access to information on LMOs that may be imported, and shall, in accordance with
their respective laws and regulations, consult the public in the decision-making process. The United
Nations Economic Commission for Europe (UNECE) Convention on Access to Information, Public
Participation in Decision-Making and Access to Justice in Environmental Matters " likewise
establishes a number of rights of the public (individuals and their associations) with regard to

transparency, consultation and access to justice.

Decision-makers must be able to weigh all the evidence that they receive with regard to relevance
and quality. An example is provided in the WHO Handbook for Guideline Development (WHO, 2012),
which takes into account factors such as the comprehensiveness of the materials, the method by
which risk of bias was assessed, the method by which the data were presented, and the similarity of
results from different studies.

5.6.2 Litigation

Regulation by litigation may occur when the regulation does not have sufficient basis in law, or is
flawed by RA that does not meet Good Laboratory Practice and refereed publication standards or by
legally required administrative procedures. Litigation or lawsuits, court injunctions, court orders,
fines and penalties may then drive the regulatory process, usually after actions have occurred. There
have been several such lawsuits over GM/living modified crop plants. This is the least desirable

555555555 National Environmental Policy Act (NEPA). Basic information:

http://www.epa.gov/compliance/basics/nepa.html, accessed 25 May 2014.
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Aarhus Convention: http://www.unece.org/env/pp/introduction.html, accessed 25 May 2014.
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regulatory outcome for GMMs and may result in the loss or delay of beneficial public health
innovation as well as loss of public confidence.

5.6.3 Capacity and institution building as an essential component of an informed
regulatory infrastructure

The building of regulatory capacity to evaluate GMMs will be unequivocally important. It may be
anticipated that there will be a need to train members of national regulatory authorities on issues
relevant to the review of entomological intervention trials. In many countries, members of the
national regulatory authority may have a pharmacy or medical background with experience in
regulating drugs, vaccines and devices. There is a strong probability that they will be unfamiliar with
trials of vector control tools, although there are exceptions (for example, in the United Republic of
Tanzania, review of vector control trials is done by the Tropical Pesticides Research Institute).

Moreover, although many developing countries have enacted national biosafety legislation, others
still do not have a regulatory framework to deal with GMOs. Even if legislation is present, there may
not be a functional system in place to regulate GMM:s. If experience with RA and regulation of GMOs
exists, GM plants or crops may provide the only precedent. Because most legislation dealing with
GMOs assigns regulatory responsibility to a separate national biosafety authority, and because the
focus of those authorities will probably have been on GM crops, the composition of those bodies will
consist of members who have little experience with the technologies involved in producing GMMs or
how to regulate them. Regulatory paradigms set by experience with multinational GM plant or crop
corporations may result in high costs and extended indecision on regulatory approvals. Adoption of
a strict interpretation of the precautionary approach or principle (Appendix 2) could also mean that
regulatory approvals would not be granted until all possible safety issues are resolved, regardless of
societal needs and potential benefits. This strict interpretation may be incorporated in capacity
building efforts conducted by groups opposed to GM technology.

Thus, it will be critical to begin working with regulators very early on in a GMM project to identify
the appropriate regulatory pathway and to initiate proactive communications that will build
understanding about the GMM technology as well as the goals and methodologies of the project.
There may be a need for additional training in vector biology procedures and/or biosafety to ensure
that decision-makers are empowered to competently assess plans for GMM trials and reach
definitive and defensible conclusions. These needs must be anticipated, and means to address them
must be identified and budgeted for accordingly.

5.6.4 Regulatory precedents for transboundary movement

Transboundary regulatory issues that apply to GMMs have been raised because mosquitoes are
mobile. For example, the anthropophilic Aedes aegypti vector of dengue and other diseases has
been spread by humans worldwide wherever suitable habitats exist, especially with increasingly
favourable peridomestic habitats provided by ever increasing human urbanization. Thus, RA and RM
plans should take into account the possibility that GMMs that are not 100% sterile may move
autonomously across political borders into suitable habitats that are contiguous, or even into
regions separated by geographical or biological barriers due to human travel and transport.
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The general consensus of international conventions that address transboundary movement of GMOs
or exotic agents, and that therefore may apply to GMMs, is that prior to release into the
environment or implementation, there should be a notification and a bilateral or multilateral
consultative process with other countries to which the GMMs may spread. With respect to GMMs
that are disease vectors, this could be within the context of a collaborative process for control of the
vector.

Relevant conventions that address transboundary movement include the following:

* The World Trade Organization (WTO) Agreement on the Application of Sanitary and
Phytosanitary Measures (SPS Agreement) (WTO, 1994), Articles 3, 5 and 6;

* The Convention of Biological Diversity, (CBD, 2014),* Articles 3, 4, 5, 14 and 17;

* The Cartagena Protocol on Biosafety, Articles 4, 6, 8, 14, and 19;

* The International Plant Protection Convention (IPPC) Article 7 (International Cooperation)

and IPPC International Standards for Phytosanitary Measures (ISPM), Nos. 3 and

Tttt
11;

* Code of Conduct for the Import and Release of Exotic Biological Control Agents;1E1E1E1E1E1E1E1E1E1E

* The ASEAN Agreement on the Conservation of Nature and Natural Resources, Article 3
(ASEAN, 1985);

* The Convention of Conservation of Nature in the South Pacific, Article V;

* The Convention for the Conservation of Biodiversity and the Protection of Wilderness
Areas in Central America, Article 24;

®* The International Health Regulations, as amended, 1982.

Countries who are Parties to such conventions must develop their own regulations to implement the
requirements. The Cartagena Protocol describes an Advance Informed Agreement process that
would apply prior to the first intentional transboundary movement of GMMs intended for
environmental release in the receiving country (Article 7, paragraph 1). An example of how this
provision has been implemented within Europe is found under Regulation (EC) No
1946/2003%%%%%%%%% of 15 July 2003 of the European Parliament and of the Council on transboundary
movement of genetically modified organisms Official Journal L287 of 05.11.2003.”"" This
regulation “aims to set up a common system for notifying and exchanging information on
transboundary movements of GMOs to third countries. The ultimate goal is to ensure that
movements of GMOs that may have adverse effects on the sustainable use of biological diversity
and on human health take due account of the environment and human health.”

T nternational Standards for Phytosanitary Measures: https://www.ippc.int/core-activities/standards-

setting/ispms, accessed 22 June 2014.

HHEHE Code of conduct for the import and release of exotic biological control agents. FAO Corporate

Document Repository, Report of the Conference of FAO, 28th Session:
http://www.fao.org/docrep/x5585e/x5585e0i.htm, accessed 25 May 2014.

3958835555 EUR-Lex. Regulation No. 1946/2003: http://eur-
lex.europa.eu/smartapi/cgi/sga_doc?smartapilcelexplus!prod!DocNumber&Ig=en&type_doc=Regulation&an
doc=2003&nu_doc=1946, accessed 25 May 2014.
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Summaries of EU legislation. Transboundary movement of genetically modified organisms:
http://europa.eu/legislation_summaries/agriculture/food/I128119 en.htm, accessed 25 May 2014.
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5.6.5 Precedents from biocontrol and other areas

The most relevant examples of multilateral collaborative transboundary efforts come from
the field of biocontrol. One such success was the introduction the parasitic wasp, Epidinocarsis lopezi
of the cassava mealybug, Phenacoccus manihoti, in Africa (Neuenschwander & Herren, 1988). The
parasite was released in more than 50 sites and by the end of 1986, it was established with good
results in 16 countries. National introductions were facilitated by inputs from international
organizations to guarantee the safety and efficacy of the introductions, including the International
Institute of Tropical Agriculture (lITA), the International Institute of Biological Control (lIBC) and the
African Union's Phytosanitary Commission (IAPSC). The IAPSC did not make blanket decisions for
member countries and releases were national decisions, once imported into quarantine. The IIBC
main concern was to ensure freedom from disease and hyperparasites, while [ITA assisted
governments with local production, release and monitoring of parasites. IITA also coordinated a
large capacity building element in the programme, which helped create a generation of technical
people across Africa with knowledge of both biocontrol and quarantine, and this has been helpful to
further biocontrol projects in Africa (Wagge, 2011, personal communication).

Another example of a successful regional programme is the biological control of the hibiscus
mealybug, Maconellicoccus hirsutus Green, in the Caribbean (Kairo et al.,, 2000). Examples of
regional disease control programmes include the Pan African Tsetse and Trypanosomiasis
Eradication Campaign (ADF, 2004) and the Onchocerciasis Control Programme,TTTTTTTTTTT both of
which contain vector control components.

Tttt . . .
Onchocerciasis Control Programme in West

Africa: http://www.who.int/apoc/onchocerciasis/ocp/en/, accessed 25 May 2014.
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Appendix 1. Examples of national legislation and regulation
pertaining to GMMs

This appendix provides a brief description of the regulatory framework of several countries that
have engaged in or are contemplating GMM research. The most important resource for specific
country GMM regulation and contacts is the Cartagena Protocol on Biosafety, Biosafety Clearing-

FEERREE RS

House. Another source of information is the Convention of Biological Diversity, Biosafety

Information Resource Centre, 559555855

Brazil
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In Brazil, Federal Law # 11.105, of March 2005, is the principal legal framework for
biotechnology and provides safety regulation and inspection tools for activities concerning GMOs
and their by-products. This law was implemented by the National Biosafety Council (CNBS), provided
a new format for the National Biosafety Technical Commission (CTNBio), and established a
framework through the National Biosafety Policy (PNB). CNBS is linked directly to the Office of the
President of Brazil and is responsible for providing the PNB. The CNBS is responsible for establishing
principles and guidelines for the administration of federal agencies that regulate biotechnology.
Also, CNBS analyses the socioeconomic impact of the commercial use of GMOs and their by-
products and issues the final approval of licences and policies, when deemed necessary.

CTNBio belongs to the Ministry of Science and Technology of the Federal Government of Brazil and is
a consulting and deliberating multidisciplinary body that provides technical assistance to support
biotechnology decisions at the federal level. CTNBio is responsible for approvals of research and
development of GMOs under specific conditions and approval for tests or commercialization of any
biotechnology product for human, animal, and plant use. CTNBio must approve every laboratory or
facility that intends to manipulate genes for the creation of GMOs prior to operation. The
Commission has 27 members that include scientists with biotechnology backgrounds, federal
officers, lawyers and other experts.

In order to have a prior analysis before submission to CTNBio, all organizations (university, research
institution, and industry) must have an internal Biosafety Commission that does the initial evaluation
of the research. After approval at this first level, the research project is submitted to CTNBio. The
requirements for approval of commercial products are quite strict and may take years to be
accepted, but mainly involve new plant varieties. After approval, the executing organization must
periodically report on implementation and provide results to CTNBio.

HHEEHEE Convention of Biological Diversity, Cartagena Protocol on Biosafety, Biosafety Clearing-House:

http://bch.cbd.int, accessed 25 May 2014.
S5555855555. Convention of Biological Diversity, the Biosafety Information Resource Centre (BIRC):
http://bch.cbd.int/database/resources/, accessed 25 May 2014.

Government of Brazil. Lei No. 11.105, de 24 de Marco de 2005:
http://www.planalto.gov.br/ccivil_03/ Ato2004-2006/2005/Lei/L11105.htm, accessed 25 May 2014.
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Malaysia

Tttt

The Biosafety Act (2007) (Act 678) established the National Biosafety Board to regulate the
release, import, export, and contained use of LMOs, and the release of their products with the
objectives of protecting human, plant and animal health, the environment and biological diversity.
The Board consists of the following members: Secretary General of the Ministry of Natural
Resources and Environment, who is the Chairman, and representatives from the ministries of
agriculture and agro-based industry; the Ministry of Health, Ministry of Plantation Industries and
Commodities; Ministry of Domestic Trade and Consumer Affairs; Ministry of International Trade and
Industry; Ministry of Science, Technology, and Innovation; and not more than four other persons
who have the knowledge or experience or both in any of the disciplines or matters relevant to this
Act. A Director General is the Secretary of the Board and carries out duties required by it.

The stated functions of the Board are to: decide on all applications; to monitor activities relating to
LMOs and products of such organisms; promote research, development, education and training
activities relating to biosafety; and establish mechanisms to facilitate the collection, storage and
dissemination of data relating to LMOs and products of such organisms and biosafety. The Genetic
Modification Advisory Committee has been established to provide scientific, technical and other
relevant advice to the Director General.

An application for the approval of any release activity, or any importation of LMOs, or both is
submitted to the Director General and is accompanied with a RA, a RM report, and an emergency
response plan. The RA and RM reports are in a form prescribed by the Minister and contain an
assessment of the risk and adverse effect that such LMOs and products of such organisms will have
or are likely to have on human, plant and animal health; the environment and biological diversity;
and the proposed measures to be undertaken to prevent, reduce or control the risks and adverse
effects that they will have or are likely to have. The emergency response plan provides safety
measures and procedures for the protection of human, plant and animal health, the environment,
and biological diversity against harm or damage caused directly or indirectly by LMOs or products of
such organisms, as well as all necessary measures to be taken in the event of an emergency.

Information on Malaysian biosafety regulations and the National Safety Board decision to approve
GMM experimentation can be obtained from http://www.biosafety.nre.gov.my

Mexico

Mexico actively participated in negotiations leading to the Agreement on Biological Diversity and
when the Cartagena Protocol on Biosecurity was adopted. The Interministerial Commission on
Biosecurity and Genetically Modified Organisms (CIBIOGEM)1E1E1E1E1E1E1E1E1E1E1E1E was created by Presidential
Decree on the 5 November 1999 (Villalobos, 2006). Under Mexican Federal law, CIBIOGEM functions
to: present suggestions to the National Normalization Commission about Mexican official standards

Tttt

Malaysian Biosafety Act 2007: http://science.kukuchew.com/2008/04/09/malaysian-biosafety-act-
2007/, accessed 25 May 2014.

HHEEEEE CIBIOGEM: http://www.conacyt.gob.mx/cibiogem/, accessed 25 May 2014.
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for the research, production, trade, import, export, movement, commercial use, and consumption of
LMOs; promote, together with the Comisién Nacional para el Uso y Conocimiento de la
Biodiversidad (CONABIO) [National Commission on the Use and Knowledge of Biodiversity], the
establishment of a data bank on the presence and distribution of native species related to LMOs,
and monitor mechanisms and evaluate the environmental impact, and the impact on human and
animal health resulting from the production and consumption of LMOs; set up an uniform
programme for the inspection of LMO research and production plants; and recommend methods for
the dissemination of information regarding the benefits, and possible risks of the use and
consumption of LMOs to the public.

Additionally, the 1999 decree established the Executive Secretary, the Technical Committee, and the
Consultative Council on Biosecurity. The Executive Secretary responsibilities include, but are not
limited to: ensuring that laws regarding biosecurity and the regulations of CIBIOGEM are followed by
government institutions; registering LMOs and their products and sub-products; establishing and
maintaining an up-to-date registry of LMOs; and, establishing and maintaining an up-to-date data
bank regarding on the presence and distribution of native species related to LMOs. The activities of
the Technical Committee are coordinated by the Executive Secretary of CIBIOGEM, and include
preparing and suggesting to the Executive Secretary issues and regulations that have to be
submitted for consideration by CIBIOGEM, and, when suggested by CONABIO, reaching agreements
with the responsible institutions regarding the performance of risk analyses for LMOs and their
products and sub-products.

USA

The USA is not a signatory agent to the CPB and uses its existing national legislation and agencies to
regulate LMOs under the Coordinated Framework for Regulation of Biotechnology, (US Office of
Science and Technology, 1986). The 26 June 1986 Coordinated Framework for Regulation of
Biotechnology exists as an Executive Office of the President, Office of Science and Technology Policy
Federal Register 51 FR 23302, announcement of policy notice for public comment, and is a guidance
and not a law in the USA.

In summary, this Federal Register notice announces the policy of the Federal agencies involved with
the review of biotechnology research and products. This notice includes separate descriptions of the
regulatory policies of FDA, EPA, Occupational Safety and Health Administration (OSHA), and USDA
and the research policies of the National Institutes of Health (NIH), National Science Foundation
(NSF), EPA, and USDA. The agencies will seek to operate their programmes in an integrated and
coordinated fashion, and together should cover the full range of plants, animals, and
microorganisms derived by the new genetic engineering techniques. To the extent possible,
responsibility for product use will lie with a single agency. Where regulatory oversight or review for a
particular product is to be performed by more than one agency, the policy establishes a lead agency
and consolidated or coordinated reviews.

While certain USDA and US Environmental Protection Agency requirements are in part new, the
underlying regulatory regimens are not new. Members of the agricultural and industrial
communities are familiar with the general requirements under these laws, which include the Federal
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Plant Pest Act, The Plant Quarantine Act, the Toxic Substances Control Act (TSCA), the FFDCA, and
the FIFRA. Because this comprehensive regulatory framework uses a mosaic of existing federal law,
some of the statutory nomenclature for certain actions may seem inconsistent. Certain laws, such as
USDA's Federal Plant Pest Act, require a "permit" before a microorganism pathogenic to plants may
be transported between states or imported. Under other laws such as FIFRA, the agencies “license”
or “approve” the use of particular products. TSCA requires a “premanufacturing notification”. There
are also some variations among the agencies in the use of the phrase “genetic engineering.”
Agencies have agreed to have scientists from each other's staff participate in reviews. Each
regulatory review will require that the safety, or safety and efficacy, of a particular agricultural or
industrial product be satisfactorily demonstrated to the regulatory agency prior to
commercialization.

NEPA imposes procedural requirements, including an open public comment period consultation
phase announced in the USA Federal Register, on all Federal agencies to prepare an analysis prior to
making a decision to take any action that may significantly affect the environment. Depending on
the characteristics of a proposal, an environmental assessment (EA), or a broader environmental
impact statement (EIS) may need to be prepared in connection with the release of genetically
manipulated organisms. Threatened and endangered species impact assessment is required under
the Endangered Species Act (ESA). Federal regulatory decisions regarding permits for GMO
environmental release in the USA are subject to either EA for some trials or EIS for large-scale or
programmatic use under NEPA. Examples of EAs and EIS can be found for Use of Genetically
Engineered Fruit Fly and Pink Bollworm in APHIS Plant Pest Control Programmes (USDA, 2008). The
EIS was both a USA and international precedent because it was the first EIS ever done on any LMO in
the USA or elsewhere under comparable environmental laws of other countries. EA and/or EIS
environmental documentation required in the federal decision-making process must provide for
alternatives so that different approaches may be considered besides the preferred or proposed
alternative. The Record of Decision for the final EIS on Use of Genetically Engineered Fruit Flies and
Pink Bollworm authorized the development and use of these genetically engineered insects in SIT for
USDA/state cooperative plant pest eradication and control programmes. Field release testing of GM
pink bollworm has been conducted in the USA. However, further large-scale implementation has not
yet occurred, although an irradiated GE pink bollworm strain expressing a fluorescent marker gene
was used by the APHIS Plant pest programme (under permit), to mitigate accidental escapes of
fertile moths around the SIT pink bollworm mass-rearing facility and to assess moth dispersal.

Although the USA regulatory route appears straightforward for GE insects that are plant pests, the
route for non-plant pest species, such as GE mosquitoes, has been less clear. Although USDA-APHIS
have experience with the regulation of GE insects, the two of the relevant statutes under which
USDA-APHIS operates are the Plant Pest Act and the Animal Health Protection Act. Clearly, GE
mosquitoes are not plant pests and therefore could only be regulated by USDA-APHIS under the
Animal Health Protection Act, which prohibits the importation or entry of any animal that is deemed
to disseminate any pest or disease of livestock within the USA. Mosquitoes are known to transmit
diseases to livestock, and USDA-APHIS might be involved in their regulation from that standpoint.
However, when Oxitec Ltd, a UK based company, submitted an application to USDA-APHIS for the
import and field release of GM Aedes aegypti for dengue control in 2010, USDA-APHIS decided that
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they had no jurisdiction for the regulation of GM Aedes aegypti as there was no animal health risk.
The FDA-CVM emerged as the lead agency with authority under the FFDCA. Their authority comes
from the definition of a drug under FFDCA for GE mosquitoes as “articles intended for the use in the
diagnostic, cure, mitigation, treatment or prevention of disease in man and other animals“ and
“articles intended to affect the structure or any function of the body of man or other animals”. The
recombinant DNA construct when expressed in a GM animal including mosquitoes, meets the
definition of a drug in the FFDCA. Under this statute, FDA-CVM therefore become the lead agency,
under the coordinated framework for all GE animals requiring pre-market approval. However, FDA-
CVM has indicated in their Guidance document (FDA, 2011), that they intend to exert enforcement
discretion for certain categories of GE animal. These include: (1) GM animals of non-food-species
that are regulated by other government agencies or entities, such as GM insects being
developed for plant pest control or animal health protection, and that are under APHIS
oversight; and (2) GM animals of non-food species that are raised and used in contained and
controlled conditions such as GM laboratory animals used in research institutions. The FDA can
also exercise enforcement discretion based on the risk profile as it did in the case of the zebra
fish (Glo-fish) genetically engineered to express a fluorescent gene and glow in the
dark 555555555588 \When FDA reviews an Investigational New Drug Application (INDA) or a New
Animal Drug Application (NADA) it is also subject to NEPA requirements, including a review of
environmental risks, as described previously.

European Union

In the European Union (EU), a formal RA is the mechanism by which the risks of the release of a LMO
are evaluated. The benefits of such a release are not taken into account within a RA in the EU. The
release of a GM insect within any EU member state is controlled by a directive of the European
Parliament and of the Council, known as the Deliberate Release Directive (EU, 2001), which
regulates the release of all LMOs into the environment. For example, in the United Kingdom, the
release of a GM insect is controlled by ‘Deliberate Release’ regulations transposed from the EU
Directive. In the case of a non-commercial release, such as a field trial, the decision to approve
release would be made at national level by the United Kingdom’s Department for Environment,
Food, and Rural Affairs (DEFRA) in consultation with the independent scientific experts of its
Advisory Committee on Releases to the Environment (ACRE), which is responsible for assessing the
risks of the technology. For a commercial release, there is an initial assessment by one ‘lead’
member state, which must be satisfied with the information provided before the consultation is
opened up to the other member states. At the end of the process, the EFSA would be asked to
provide its opinion on any unresolved scientific issue. Member states must then reach a qualified
majority to approve any release based on scientific evidence. Should the member states fail to reach
a decision, the application then passes to the European Commission, which can approve or deny the
application based on the scientific opinion of EFSA. The EFSA has developed Guidance on the
Environmental Risk Assessment of Genetically Modified Animals, including insects.

S55555555555 Genetic engineering:

http://www.fda.gov/animalveterinary/developmentapprovalprocess/geneticengineering/geneticallyengineere
danimals/ucm113672.htm, accessed 25 May 2014.
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Appendix 2. Guidance to additional information relevant to GMM
regulation

International organizations, treaties and covenants

The World Trade Organization (WTQO) Agreements and Public Health; A Joint Study by WHO and the
WTO Secretariat (WHO/WTO, 2002). This study explains how WTO Agreements relate to different
aspects of health policies. It covers several areas including infectious disease control, environment,
and biotechnology. The study explains that countries have the right to take measures to restrict
imports or exports of products when necessary to protect the health of humans, animals, or plants.
If necessary, governments may put aside WTO commitments in order to protect human life. The
study discusses application of biotechnology to foods and potential health effects such as gene
transfer from plants to microbial or mammalian cells, transfer of antibiotic resistance, and allergenic
effects.

The WTO Agreement on the Application of Sanitary and Phytosanitary Measures (SPS

Agreement)* articles include, but are not limited to the following, which also pertain to
autonomous transboundary movement of GMMs:

Article 1, General provisions — This Agreement applies to all sanitary and phytosanitary measures,
which may, directly or indirectly, affect international trade. A sanitary or phytosanitary measure is
any measure applied to protect animal or plant life or health within the territory of a member from
risks arising from the entry, establishment or spread of pests, diseases, disease-carrying organisms,
or disease-causing organisms.

Article 2, Basic rights and obligations — Members have the right to take sanitary and phytosanitary
measures necessary for the protection of human, animal or plant life and health.

Article 3, Harmonization — To harmonize sanitary and phytosanitary measures on as wide a basis as
possible, members shall base their sanitary or phytosanitary measures on international standards,
guidelines, or recommendations. Members shall play a full part, within the limits of their resources,
in the relevant international organizations and their subsidiary bodies, in particular the Codex
Alimentarius Commission, the International Office of Epizootics, and the international and regional
organizations operating within the framework of the International Plant Protection Convention, to
promote the development and periodic review of standards, guidelines, and recommendations with
respect to all aspects of sanitary and phytosanitary measures.

Article 5, Assessment of Risk and Determination of the Appropriate Level of Sanitary or
Phytosanitary Protection — Members shall ensure that their sanitary or phytosanitary measures are
based on an assessment, as appropriate to the circumstances, of the risks to human, animal, or
plant life and health, taking into account risk assessment techniques developed by the relevant
international organizations. In the assessment of risks, members shall take into account available
scientific evidence; relevant processes and production methods; relevant inspection, sampling and

sk sk sk ok sk ok ok sk ok ok ok

Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement):
http://www.wto.org/english/tratop_e/sps_e/spsagr_e.htm, accessed 25 May 2014.
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testing methods; prevalence of specific diseases or pests; existence of pest- or disease-free areas;
relevant ecological and environmental conditions; and quarantine or other treatment.

Article 6, Adaptation to Regional Conditions, Including Pest- or Disease-Free Areas and Areas of Low
Pest or Disease Prevalence — Members shall ensure that their sanitary or phytosanitary measures
are adapted to the sanitary or phytosanitary characteristics of the area, whether all of a country,
part of a country, or all or parts of several countries from which the product originated and to which
the product is destined.

Article 12, Administration — A Committee on Sanitary and Phytosanitary Measures is hereby
established to provide a regular forum for consultations. It shall carry out the functions necessary to
implement the provisions of this Agreement and the furtherance of its objectives, in particular with
respect to harmonization.

Tttt

The SPS Agreement, Module 8.1, Genetically Modified Organisms recognizes standards
developed by the IPPC and the World Organization for Animal Health and applies them to LMOs in

respect to the following:

* protection of human or animal life from risks arising from additives, contaminants, toxins, or
disease-causing organisms in food, beverages, and feedstuffs;

* protection of human life from plant- or animal-carried diseases (zoonoses);

* protection of animal or plant life from pests, diseases, or disease-causing organisms and;

* protection of a country from damage caused by the entry, establishment, or spread of pests.

Regulations on GMMs should conform to the provisions of this Agreement, such as scientific RA and
least trade-restrictive measures.

The WTO Agreement on Technical Barriers to Trade (TBT)it1E1E1E1E1E1E1E1E1E1E1E1E allows governments to take
appropriate measures if they have a legitimate objective, such as protecting health or the
environment.

The CBD (UN, 1992). Since the adoption of the Convention, the Conference of the Parties have
initiated national action plans in over 100 countries and raised biodiversity awareness, which led to
the adoption of the CPB.?* Mechanisms for implementing the CBD consist of National Biodiversity
Strategies and Action Plans (NBSAPs). The articles of the CBD that may pertain to transboundary
movement of GMMs include the following:

Article 3, Principle — States have the sovereign right to exploit their own resources pursuant to their
own environmental policies and the responsibility to ensure that activities within their jurisdiction
do not cause damage to the environment of other states or of areas beyond the limits of national
jurisdiction.

I opg Agreement Training Module: Chapter 8. Current issues: 8.1 Genetically modified organisms

(LMOs): http://www.wto.org/english/tratop_e/sps_e/sps_agreement_cbt e/c8slpl_e.htm#LMO, accessed 25

May 2014.
T

SPS Agreement Training Module: Chapter 9. Health and other WTO Agreements: 9.3 Technical
barriers to trade: http://www.wto.org/english/tratop_e/sps_e/sps_agreement_cbt_e/c9s3p1_e.htm, accessed
25 May 2014.
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Article 4, Jurisdictional Scope — The Convention applies to each contracting party, regardless of
whether the effects of their activities occur within or beyond the area of their national jurisdiction.

Article 5, Cooperation — Each party shall, as far as possible and as appropriate, cooperate with other
contracting parties, directly or through competent international organizations in respect of areas
beyond national jurisdiction.

Article 8, In-situ Conservation — Each party shall establish or maintain means to regulate, manage, or
control the risks associated with the use and release of living modified organisms, which are likely to
have adverse environmental impacts, taking into account the risks to human health.

Article 14, Impact Assessment and Minimizing Adverse Impacts - Each Party shall introduce
appropriate procedures requiring environmental impact assessment of its proposed projects that
are likely to have significant adverse effects and allow for public participation. Each party shall
promote, on the basis of reciprocity, notification, exchange of information, and consultation;
bilateral, regional, or multilateral arrangements within the area under jurisdiction of other states.
Each Party shall notify immediately affected states of danger or damage.

Article 17, Exchange of Information — The contracting parties shall facilitate the exchange of
information from all publicly available sources relevant to the conservation and sustainable use of
biological diversity, taking into account the special needs of developing countries.

The CPB is the most significant internationally ratified treaty to influence regulation of GMMs in
developing countries. It is a supplementary agreement to the CBD and is an international treaty
governing the movements of LMOs. It entered into force in September 2003 when the number of
signatory countries reached 50 and it now includes at least 160 nations, including most developing
countries. The CPB affirms the precautionary approach contained in Principle 15 of the Rio
Declaration on Environment and Development and Annex Il of the Deliberate Release Directive of
the European Economic Community requiring regulators to consider all potential risks, even when
there is scientific uncertainty about their extent or existence. Principle 15 of the Declaration states
the following: “In order to protect the environment, the precautionary approach shall be widely
applied by States according to their capabilities. Where there are threats of serious or irreversible
damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective
measures to prevent environmental degradation”.§§§§§§§§§§§§§

The precautionary principle or approach is analysed in the published European Commission of the
European Communities Communication on the Precautionary Principle (EC, 2000). EU codifications
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of the precautionary principle are further described in the Summaries of EU /egis/ation.**

In the precautionary principle or approach, if an action or policy has a suspected risk of causing harm
to the public or to the environment, in the absence of scientific consensus that the action or policy is
harmful, the burden of proof that it is not harmful falls on those taking the action. This principle
allows policy-makers to make discretionary decisions in situations where there is the possibility of
harm from taking a particular course or making a certain decision when extensive scientific

S555555555555 Rio Declaration on Environment and Development, Annex 1, Principle 15:

http://www.un.org/documents/ga/conf151/aconf15126-1annex1.htm, accessed 25 May 2014.
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Summaries of EU legislation:

http://europa.eu/legislation_summaries/consumers/consumer_safety/132042_en.htm, accessed 25 May 2014.
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knowledge on the matter is lacking. The principle implies that there is a social responsibility to
protect the public from exposure to harm when scientific investigation has found a plausible risk, but
interpretation has been extended by some to mean that regulatory approvals should not be granted
until all possible or theoretical risk and safety issues are scientifically resolved, regardless of societal
needs and potential benefits.

A significant provision of Protocol Article 21 is the establishment of the Biosafety Clearing-House
(BCH)* for the compilation and international exchange of important information on movement and
release of GM organisms. This useful database contains information relevant to LMOs and national
legislation with some governments having provided their biosafety regulatory frameworks and other
pertinent regulatory information including important contacts. The BCH purpose is to (a) facilitate
the exchange of scientific, technical, environmental and legal information on, and experience with
LMOs; and (b) assist parties to implement the CPB.

The Biosafety Information Resource Centre (BIRC)* is an electronic catalogues of biosafety-related
publications and information resources including: news services, e-mail list servers, online databases
and search engines, reports and case studies, journals, newsletters, and teaching materials
(manuals, toolkits, and presentations). Its objective is to increase the accessibility and utilization of
available biosafety information and resources for policy-makers, educators, researchers, and the
general public.

Whereas national regulations take precedence, aspects of the CPB to be considered for planning of field trials
of GMM s are outlined below.

Protocol Article 4 — The Protocol applies to the transboundary movement, transit, handling, and use
of LMOs, taking also into account risks to human health. Under the protocol, a country that wants to
export LMOs for intentional introduction into the environment must seek advance informed
agreement from the importing recipient country.

Article 6 — The provisions of this Protocol with respect to the advance informed agreement
procedure shall not apply to LMOs in transit and transboundary movement of LMOs destined for
contained use. Contained use means any operation, undertaken within a facility, installation, or
other physical structure, which involves LMOs that are controlled by specific measures that
effectively limit their contact with, and their impact on, the external environment.

Article 8 — Pertains to notification and that “The notification shall contain, at a minimum, the
information specified in Annex I.”

Article 10 — Concerns decision procedures and that decisions taken by the party of import shall be in
accordance with Article 15, which addresses risk assessment.

Article 14 — Concerns bilateral, regional and multilateral agreements and arrangements. “The
Parties shall inform each other, through the Biosafety Clearing-House, of any such bilateral, regional
and multilateral agreements and arrangements that they have entered into.”

Article 17 — Concerns unintentional transboundary movements of living modified organisms and
emergency measures.

Article 19 — Regarding competent national authorities, states “Each Party shall designate one or
more competent national authorities, which shall be responsible for performing the administrative
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functions required by this Protocol and which shall be authorized to act on its behalf with respect to
those functions.”

Articles 8, 10 and 13 and Annex Il — Concerns environmental risk assessment, taking into account
human health.

Part Il of the Final Report of the Ad Hoc Technical Expert Group on Risk Assessment and Risk
Tttt

Management under the CPB on Specific Types of LMOs and Traits, C. Risk Assessment of

Living Modified Mosquitoes addresses the following:

* scope: This document focuses on the specific aspects of RA of LM mosquitoes developed for use
in the control of human and zoonotic diseases;

* issues to be considered in the RA: effects on biological diversity (species, habitats, and
ecosystems); new or more vigorous pests, especially those that have adverse effects on human
health; harm to or loss of other species; and disruption of ecological communities and
ecosystem processes;

¢ gene flow: gene flow through cross-fertilisation; horizontal gene flow; and persistence of the
transgene in the environment;

* evolutionary responses (especially in target mosquito vectors or pathogens of humans and
animals); and

* risk management strategies.

The Nagoya—Kuala Lumpur Supplementary Protocol on Liability and Redress to the Cartagena
Protocol on Biosafety concerns the question of what would happen if the transboundary movement
of LMOs had caused damage. The negotiators were, however, unable to reach any consensus
regarding the details of a liability regime under the Protocol. As a result, an enabling clause to that
effect was included in the final text of the Protocol (Article 27), which states:

The Conference of the Parties serving as the meeting of the Parties to this Protocol shall, at its first
meeting, adopt a process with respect to the appropriate elaboration of international rules and
procedures in the field of liability and redress for damage resulting from transboundary movements
of living modified organisms, analyzing and taking due account of the ongoing processes in
international law on these matters, and shall endeavor to complete this process within four years.

In February 1999, the African Group in the CBD and the Organization for African Unity (OAU, now
the African Union) began to develop the African Model Law on Safety in Biotechnology. Its first
purpose was to provide for a harmonized approach towards biosafety in Africa serving as a model
legal instrument for developing national biosafety Iegislations.n1E1E1E1E1E1E1E1E1E1E1E1E

The IPPC living modified organisms and pest risk analysis (Devorshak, 2006) discussed the following
of relevance to transboundary movement of LMOs. The IPPC is a multilateral treaty with the purpose

T Convention of Biological Diversity, Cartagena Protocol on Biosafety, Biosafety Clearing-House Risk

Assessment of Living Modified Mosquitoes:

http://bch.cbd.int/onlineconferences/guidancedoc_ra_mosquitoes.shtml, accessed 25 May 2014.
TR

African Union Model Law on Biosafety: http://hrst.au.int/en/biosafety/modellaw, accessed 25 May

2014.
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of protecting plants and plant health from the introduction and spread of pests of plants, and to
promote measures for the control of plant pests. Biological control agents used to control plant
pests fall under the scope of the IPPC. The IPPC is identified in the WTQ’s SPS Agreement as the
international standard-setting organization for plant health, and both the IPPC and SPS Agreement
also affirm the sovereign right of all member nations to take necessary measures to protect plant life
or health from the introduction and spread of pests. Members of the WTO are legally obligated to
base their phytosanitary measures on ISPM developed under the auspices of the IPPC. Like the SPS
Agreement and the IPPC, the CPB also requires countries to base measures for LMOs on RA. An
open-ended expert working group that met in June 2000 included phytosanitary experts and
representatives of the CBD, agreed that organisms that do not pose a threat to plant health (e.g.
transgenic mosquitoes) do not fall within the scope of the IPPC.

Provisions of the IPPC that may be relevant to GMM research and implementation include the
following.

e |PPC Standards for Phytosanitary Measures (2009)%%%%%%5%55%5 _ Contain guidance that may be
useful for adopting and incorporating into national regulation of GMMs, especially pertaining to
international movement, release, and RA.

e |PPC ISPM No. 2, Framework for Pest Risk Analysis (2009) — This standard provides a framework
that describes the pest risk analysis (PRA) process within the scope of the IPPC. It introduces the
three stages of pest risk analysis: initiation, pest risk assessment, and pest risk management.

* |PPC Guidelines for the Export, Shipment, Import, and Release of Biological Control Agents and
Other Beneficial Organisms (ISPM No. 03) (FAO, 2005) — This standard provides guidelines for
RM related to the export, shipment, import, and release of biological control agents and other
beneficial organisms. It lists the related responsibilities of contracting parties to the IPPC,
National Plant Protection Organizations (NPPOs), or other responsible authorities, importers,
and exporters. The standard addresses biological control agents capable of self-replication
(including predators, parasites, nematodes, phytophagous organisms, and pathogens, such as
fungi, bacteria, and viruses, as well as sterile insects and other beneficial organisms and also
includes those packaged or formulated as commercial products. Provisions are also included for
import for research in quarantine facilities of non-indigenous biological control agents and other
beneficial organisms. The scope of this standard does not include LMOs.

The IPPC includes the following provision in relation to the regulation of biological control agents
and other beneficial organisms. Article 7(1) states:

With the aim of preventing the introduction and/or spread of regulated pests into their territories,
contracting parties shall have sovereign authority to regulate, in accordance with applicable
international agreements, the entry of plants and plant products and other regulated articles and to
this end, may...c) prohibit or restrict the movement of regulated pests into their territories and d)
prohibit or restrict the movement of biological control agents and other organisms of phytosanitary
concern claimed to be beneficial into their territories.

S5555555555555 | nternational Standards for Phytosanitary Measures:

https://www.ippc.int/index.php?id=13399&L=0, accessed 25 May 2014.
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Contracting Parties (member nations) should designate an authority with appropriate competencies
to be responsible for export certification and to regulate the import or release of biological control
agents and other beneficial organisms. The responsible authority should:

* carry out pest-risk analysis prior to import or release of biological control agents and other
beneficial organisms;

* ensure, when certifying exports, that the regulations of importing countries are complied with;

* provide and assess documentation as appropriate, relevant to the export, shipment, import or
release of biological control agents and other beneficial organisms;

¢ ensure that biological control agents and other beneficial organisms are taken either directly to
designated quarantine facilities or, if appropriate, passed to mass-rearing facilities or directly
released into the environment;

* ensure that importers and, where appropriate, exporters meet their responsibilities; and

* consider possible impacts on the environment, such as impacts on non-target invertebrates.

sk sk sk sk ok ok sk ok ok ok ok ok ok ok ok

IPPC ISPM No. 11 addresses risk analysis for quarantine pests including analysis of
environmental risks and LMOs. The standard provides details for the conduct of pest-risk analysis to
determine if pests are quarantine pests. It describes the integrated processes to be used for RA as
well as the selection of RM options. Section S2 of ISPM-11 includes guidance on evaluating potential
phytosanitary risks to plants and plant products posed by LMOs. This guidance does not alter the
scope of ISPM No. 11 but is intended to clarify issues related to the pest-risk analysis for LMOs.

The Food and Agriculture Organization (FAO), Code of Conduct for the Import and Release of Exotic

P The objectives of this Code are to facilitate the safe import,

Biological Control Agents.
export and release of exotic biological control agents by introducing internationally acceptable
procedures for all public and private entities involved particularly where national legislation to
regulate their use does not exist or is inadequate. The Code describes the shared responsibility of
the many segments of society involved and the need for cooperation between importing and
exporting countries. Standards are described that encourage responsible and generally accepted
trade practices, and assist countries to design regulations to control the suitability and quality of
imported exotic biological control agents. They also address the safe handling, assessment, and use
of such products. Responsibilities are outlined for the entities which are addressed by this Code,
including governments, individually or in regional groupings; international organizations; research
institutes; industry, including producers, trade associations, and distributors; users; and public-

sector organizations such as environmental groups, consumer groups, and trade unions.

All references in this Code to a government or governments shall be deemed to apply equally to
regional groupings of governments for matters falling within their areas of competence.
Governments should designate the competent authority empowered to regulate or otherwise
control and, where appropriate, issue permits for the importation and release of biological control
agents. The organization should prepare a dossier for submission to the national authority if the
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International Plant Protection Convention: https://www.ippc.int/, accessed 25 May 2014.

I Code of conduct for the import and release of exotic biological control agents. FAO Corporate

Document Repository, Report of the Conference of FAO, 28th Session:
http://www.fao.org/docrep/x5585e/x5585e0i.htm, accessed 25 May 2014.
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organism has already been imported and is currently being held in containment, or if the organism is
being imported directly for release. It should include among other information, a RA to estimate the
possible environmental impact in the new area in which any possible risks to animal and human
health should be identified. This authority should consult with authorities in neighbouring countries
within the same ecological area and with relevant regional organizations to clarify and resolve any
potential conflicts of interest that may arise between countries. Where problems (i.e. unexpected
deleterious incidents) are identified, the authority is to consider and, where appropriate, ensure
corrective action is taken and inform all relevant interested parties.

The NAPPO, RSPM No. 27, Guidelines for Importation and Confined Field Release of Transgenic
Arthropods in NAPPO Member Countries (NAPPO, 2007) is a standard designed to provide guidance
to NAPPO member countries (Canada, Mexico and the USA) on importation and confined field
release of transgenic arthropods that are known plant pests or have the potential to affect plant
health. This includes transgenic arthropods used for biological control and transgenic beneficial
arthropods with the potential to affect plant health. Transgenic arthropod species that are not plant
pests, but that may pose a phytosanitary risk, because of genetic modification may also be
considered under this standard. Issues relating to the potential adverse impact of transgenic
arthropods on human and animal health or on biological diversity, and the environment beyond
direct and indirect impacts on plant health are not relevant to plant pest issues and fall outside the
scope of this NAPPO Standard. Guidance for unconfined release of transgenic arthropods into the
environment is not provided in this Standard.

The International Organization for Biological Control (IOBC) is an international body involved with
transgenic organisms. It has set up a global Working Group on LMOs in integrated plant

p roduction 'iiiiiiiiiiiiiii

The World Organization for Animal Health®555555588888%8 \yas founded in 1924 and is the world
organization for animal health. Some standards developed by the World Organisation for Animal
Health (OIE) deal with diseases that have human health and biosafety significance. The OIE has had a
Working Group on Biotechnology since 1996. The OIE is principally concerned with animal or
livestock health issues that may be associated with GM animals and vaccines. Examples of subjects
from OIE sources involving biotechnology include:

* regulations governing veterinary medicinal products containing GMOs in the European
Community

* biotechnology applications in animal health and production

* disease-resistant GM animals

* DNA vaccines for aquaculture

* traceability of biotech-derived animals.

FEHHEEEE The International Organisation for Biological and Integrated Control (IOBC). Working Group on

LMO's in integrated plant production: http://www.iobc-wprs.org/expert_groups/wg.html, accessed 25 May

2014.
§8§555556565858

World Organization for Animal Health: http://www.oie.int/eng/en_index.htm, accessed 25 May

2014.
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Reports, studies and initiatives

The Report on Defining Environment Risk Assessment Criteria for Genetically Modified Insects to
be Placed on the EU Market (Benedict, et al., 2010), written by the Environment Agency Austria,
International Atomic Energy Agency and the University of Bern, describes the ongoing developments
in the field of GM-arthropods (transformed species, development purposes, and construction of
GM-arthropods), and identifies potential adverse effects, as well as methods to investigate them.
Crucial arthropod characteristics and necessary baseline information are discussed and the
surrogate and modelling approaches evaluated for utility regarding the environmental RA of GM-
arthropod. It was concluded that:

..the ERA of GM-arthropods should consider various issues regarding the genetic modification, the
respective species, and the receiving environment. Potential risks could be identified concerning
gene flow and its consequences, effects on target and non-target organisms, management practices
and measures, biogeochemical processes and human health. Since potential risks depend on the
method used for modification, the purpose of the GM-arthropod and the species itself, it is
recommended to follow a case-by-case approach for the ERA of GM-arthropods.

The University of Minnesota International Project on LMO Environmental Risk Assessment
Methodologies (IPLMO),*************M is an initiative driven by public sector scientists, most of
whom have strong expertise in environmental science, as well as biotechnology, and
socioeconomics. The project has identified and developed scientific methodologies and teaching
tools (LMO, Environmental RA Project, 2008)""

management of transgenic plants in accordance with the Cartagena Protocol on Biosafety and other

that can be used for environmental RA and

international agreements. IPLMO has also produced a Problem Formulation and Options Assessment
Handbook (PFOA), which is a guide to the PFOA process and how to integrate it into an
environmental RA of LMOs (LMO, ERA Project, 2007). The PFOA relies upon being transparent,
inclusive of all appropriate stakeholders, and rationally informed by the best available science.

HEHRREES 49 funded by WHO-TDR to provide best practice guidance for

The MosqGuide project
the deployment of GMMs to control mosquito-borne disease. The project is developing a series of
modules dealing with: 1) overview of technology options, social, and regulatory issues; 2) technology
research and production phase decisions; 3) pre-deployment country decisions; 4) data handling and
environmental monitoring; 5) field survey on attitudes for alternative control methods; 6) curricula
for capacity building; and 7) a prototype issues and response model. Also see, MosqGuide Module 7:
Prototype issues/response model for decision making in deployment of GM mosquitoes — PROPOSAL.
This module is for a bio-economic model designed to compare the costs and benefits of various

options for malaria control.
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International Project on LMO Environmental Risk Assessment Methodologies:
http://bch.cbd.int/database/record.shtml?documentid=11564, accessed 25 May 2014.
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Scientific Methodologies and Teaching Tools: http://www.gmoera.umn.edu/, accessed 22 June

2014.

R MosqgGuide project: http://www.mosqguide.org.uk/, accessed 25 May 2014.
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The Daegu Protoco| 9999999955555 proposes regulatory use of an environmental impact assessment
(E1A), which may also be known as a strategic environmental assessment or environmental impact
statement, according to the country of use, but the purpose and content are generally similar. The
guidance is based on the use of EIA documentation and analysis, commonly used in Australia,
Canada, North America, the EU, and other countries as a format to provide for public transparency
of the process and to meet country government regulatory agency decision-making requirements.
The EIA is a document that is developed openly to the public with all available scientific, societal,
and stakeholder input. Therefore, the public is provided the opportunity to be informed and
comment on decisions to release new forms of biotechnology into the environment before release
occurs.

Publications and conference reports

The objective of a meeting on status and RA of the use of transgenic arthropods in plant protection,
proceedings of a technical meeting organized by the Joint FAO/IAEA Programme of Nuclear
Techniques in Food and Agriculture and the Secretariat of the International Plant Protection
Convention (Devorshak, 2006) were to: (1) review the current state of the art of transgenic insect
technology; (2) review the current regulatory framework in different countries; and (3) develop a set
of guidelines for RA of transgenic insects. Presentations addressed regulatory issues in Argentina,
Mexico, New Zealand, the USA and Zimbabwe. The participants concluded that regulatory approval
of any transgenic arthropod release will be on this case-by-case basis. With transgenic technology,
intellectual property rights of the strains will need to be addressed and the commercial deployment
of a transgenic strain will require a complex set of negotiations related to licensing and royalty
payments.

From a Risk Assessment Workshop on Transgenic Insects held in Kuala Lumpur, November 2008,
sponsored by the United Nations Development Programme (UNDP) (Beech et al., 2009), a published
paper on deployment of innovative genetic vector control strategies: Progress on regulatory and
biosafety aspects, capacity building and development of best-practice guidance reviewed current
regulation of GMMs in respect to the CPB and individual country needs.

The report from Progress and prospects for the use of genetically modified mosquitoes to inhibit
disease transmission: technical consultation on current status and planning for future development
of genetically modified mosquitoes for malaria and dengue control (TDR, 2009) includes
presentations on GMM mosquito technologies in development; community communication and
collaboration strategies; public engagement; ecological RA; the transgenic insect environmental
impact statement done in the USA; Malaysia’s GMM regulatory experience; ethical, legal and social
implications; and guidance on GMM testing and development. Regulatory discussions included the
trilateral North American Plant Protection Organization standard, ratified in October 2007, the
guidance developed by APHIS for permits; and the IPPC standard on deployment of beneficial
organisms.

Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system:
recommendations of a scientific working group (Benedict et al., 2008). Section 8, concerns regulation

5555555555555555 Daegu Protocol: http://biopesticide.ucr.edu/daegu/daegu.html, accessed 25 May 2014.
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of genetically engineered mosquitoes and the following topics were addressed in this section: 1)
regulation at different international and national levels; 2) regulatory costs; 3) regulatory impact; 4)
international organizations and covenants with potential relevance to genetically engineered vector
mosquitoes, including the Cartagena Protocol on Biosafety; 5) addressing regulatory requirements;
6) a proactive approach to regulatory approval; and 7) the USDA, APHIS Environmental Impact
Statement on GM insects.

Ethical, social, and cultural considerations for site selection for research with genetically modified
mosquitoes (Lavery, Harrington & Scott, 2008) addresses regulatory issues and administrative
discussions and concluded the following:

The prevailing international framework governing the import of GM organisms is the Cartagena
Protocol on Bio-safety...Signatories of the Cartagena Protocol (and countries that voluntarily
acceded to the terms of the agreement without being formal signatories) are required to establish
mechanisms to deal with the import and regulation of GM organisms...The process of determining
the key authorities proved to be extremely important, because it provided a clear point of contact
(in at least one candidate country) to address detailed questions related to the proposed
research...Because all research activities must conform to local laws, it is important to have a clear
understanding of what laws deal with the issues in the host country, especially if specific legislation
is not yet in force...It is common, under these conditions, for activities related to the import and
research with LMOs to be conducted under the auspices of a battery of existing laws, each of which
might address specific elements of the proposed import and research uses...Another regulatory
issue with important implications for the ethics of research involving GM insects is the requirement
for risk assessment before the research, which varies from country to country...This issue may be
particularly contentious with respect to environmental impact assessments of the research, which

may be a regulatory requirement...and thus may be a formal requirement for the investigators.

A monograph on Ethical, legal and social issues of genetically modifying insect vectors for public
health (Macer, 2003; 2005) considered a range of ethical issues including animal rights, informed
consent, community consensus and environmental viewpoints and states that each community
needs to decide its own priorities for methodology of disease policy guidance for ethical genetic
engineering and to negotiate with neighbouring countries.

The approach to genetically modify insects raises few intrinsic ethical issues; however, important
environmental and human health concerns need to be assessed before release of any GM
insects...The policy that each community adopts should be the product of open dialogue involving all
sectors of society. It can be expected that this process will take years and not all communities will
endorse genetic control approaches to insect vectors.

An article entitled When biotech crosses borders (Angulo & Gilna, 2008) states that rapid action is
needed to address loopholes in the international governance of self-dispersing GMOs purposefully
released for the management of wild species and diseases.

A letter to the editor in Nature Biotechnology by Marshall (2010) titled The Cartagena Protocol and
genetically modified mosquitoes discussed in Part Il, C. the Risk assessment of living modified
mosquitoes, and posed issues and called for a broader discussion on GMMs to address their
unresolved biosafety concerns. The author proposed that:
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Perhaps the most important issue inadequately addressed by the guidance document is the ability
of mosquitoes engineered with gene drive systems to propagate transgenes across national borders
in the absence of an international agreement...The scenario of containment is particularly relevant
to GM mosquitoes because, before an open release, trials are being discussed that would take place
in field cages exposed to the ambient environment in a location that the species naturally inhabits.

Ostera and Gostin (2011) advocate for new regulatory pathways for research and development of

GM arthropods to control disease, including “an international process for rigorous examination of
scientific evidence, ethical values, and dispassionate review before genetically or biologically modified

arthropod vectors are released into the natural environment.” They argue for a balanced approach in any
new regulation and that, “if the scientific evidence demonstrates significant disease reduction with
low ecological risks, the precautionary principle should not impede meaningful benefits for human
health.”

A guide to designing legal and institutional frameworks on alien invasive species (Shine, Williams &
Gundling, 2000) addresses alien species including those that may be unintentionally introduced and
LMOs as a subset of alien species stating that: “it is possible that the release or escape of transgenic,
recombinant or novel DNA might have severe and irreversible effects on environmental safety.”
Potential health impacts are discussed in respect to invasive microorganisms with west Nile virus
provided as a recent example. A number of regional international agreements, not previously
mentioned, with applicability to GMMs are listed in this chapter including the following:

* the ASEAN Agreement on the Conservation of Nature and Natural Resources (ASEAN, 1985)
requires parties to endeavour to regulate and, where necessary, prohibit introduction of alien
species (Article 3[3]);

* the Convention of Conservation of Nature in the South Pacific provides that parties shall
carefully consider the consequences of deliberate introduction into ecosystems of species not
previously occurring therein (Article V [4]);

* the Convention for the Conservation of Biodiversity and the Protection of Wilderness Areas in
Central America (Managua, 1992) that requires the adoption of mechanisms to control all exotic
species, which threaten ecosystems, habitats, and wild species (Article 24);

* The International Health Regulations (IHR) (Geneva, 1969, as amended, 1982) were adopted by
the WHO’s World Health Assembly. They are designed to insure maximum security against the
spread of infectious diseases to humans.

An Overview of existing international/regional mechanisms to ban or restrict trade in potentially
invasive alien species (Council of Europe, 2006) summarizes:

Globalization provides vastly expanded opportunities for species to be transported to new locations
through a wide range of pathways. Those alien species that become established and spread can
have serious implications, not just for the environment and communities, but also for national trade
and development...Prevention measures should be applied to pathways for introduction and be
internationally or regionally coordinated.

A report by the PEW Initiative on Food and Biotechnology (2004) made the following statements
concerning GM insects: “Genetically modified insects may offer public health and agricultural
benefits, but clear regulatory oversight is lacking...It is not clear which legal authority would apply or
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whether the agency involved would have the tools it needed to assess and manage the risks
involved.” This report concludes that the USA federal government “lacks a coordinated regulatory
approach to ensure that all GM insects are reviewed for potential environmental, agricultural, food
safety, and public health risks and that the international regulatory regime for approving such
releases is not at all clear.”
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