COVID-19 Global Situation:
Progress and remaining challenges in ending the acute phase of the COVID-19 pandemic

Member State briefing on the COVID-19 pandemic
21 July 2022
Current global situation

CASES REPORTED TO WHO AS OF 17 July 2022

- Last week new cases: >6.2 million
- Last week new deaths: 11 000

- Cumulative cases: >560 million
- Cumulative deaths: >6.3 million
<table>
<thead>
<tr>
<th>WHO Region</th>
<th>New cases in last 7 days (%)</th>
<th>Change in new cases in last 7 days *</th>
<th>Cumulative cases (%)</th>
<th>New deaths in last 7 days (%)</th>
<th>Change in new deaths in last 7 days *</th>
<th>Cumulative deaths (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>2 785 259 (44%)</td>
<td>-16%</td>
<td>235 432 245 (42%)</td>
<td>3 311 (30%)</td>
<td>-14%</td>
<td>2 036 904 (32%)</td>
</tr>
<tr>
<td>Americas</td>
<td>1 756 694 (28%)</td>
<td>9%</td>
<td>167 081 979 (30%)</td>
<td>5 470 (50%)</td>
<td>7%</td>
<td>2 775 646 (44%)</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>1 444 382 (23%)</td>
<td>37%</td>
<td>66 933 896 (12%)</td>
<td>1 366 (12%)</td>
<td>-3%</td>
<td>241 684 (4%)</td>
</tr>
<tr>
<td>South-East Asia</td>
<td>173 854 (3%)</td>
<td>5%</td>
<td>58 967 419 (11%)</td>
<td>538 (5%)</td>
<td>20%</td>
<td>791 164 (12%)</td>
</tr>
<tr>
<td>Eastern Mediterranean</td>
<td>120 859 (2%)</td>
<td>-1%</td>
<td>22 288 922 (4%)</td>
<td>228 (2%)</td>
<td>15%</td>
<td>344 024 (5%)</td>
</tr>
<tr>
<td>Africa</td>
<td>15 409 (0%)</td>
<td>-27%</td>
<td>9 175 098 (2%)</td>
<td>87 (1%)</td>
<td>-39%</td>
<td>173 861 (3%)</td>
</tr>
<tr>
<td>Global</td>
<td>6 296 457 (100%)</td>
<td>&lt;1%</td>
<td>559 880 323 (100%)</td>
<td>11 000 (100%)</td>
<td>-1%</td>
<td>6 363 296 (100%)</td>
</tr>
</tbody>
</table>
COVID-19 testing and sequencing trends*

Cases and tests per week by WHO region

As of 1 April 2022

As of 13 June 2022

85% decrease in LICs that shared SARS-CoV-2 sequence data (13 to 2 MS)
14% decrease in HICs shared that SARS-CoV-2 genomic sequencing data (51 to 44 MS)

* January 2021 – June 2022, only includes countries where testing data are available for full time series

Source: GISAID/EpiCoV Database
Note: Analysis contains 191 WHO Member States with World Bank income classification
Virus evolution: emergence of VOCs

• Evolution of SARS-CoV-2 has consisted in parallel evolution towards more transmissible variants such as Alpha, Beta, Gamma and (slightly after) Delta.

• Higher transmissibility of these variants mostly driven by virus adaptation to the human host

• Higher transmissibility of Omicron largely driven by immune escape; Omicron replicates better in the upper respiratory tract as compared to Delta or the index virus
A total of 12 million SARS-CoV-2 sequences have been submitted to GISAID as of 18 July 2022. 4.8 million of these are Omicron sequences.

Omicron remains the dominant VOC globally, accounting for 95% of sequences submitted from 13 June to 13 July 2022. The remaining 5% are recombinants, Delta VOC and sequences waiting to be assigned.

Several Omicron lineages have emerged, with over 75 being assigned a PANGO lineage.

Note: Other on the graph include all Omicron lineages which are not listed in the legend as well as sequences which are awaiting PANGO lineage designations (presumed Omicron).
Omicron emergence has consisted in multiple waves of infections driven by subvariants with some additional immune escape; immunity against severe disease is maintained.

All these subvariants (BA.1, BA.2, BA.4, BA.5) have retained the main characteristics of Omicron so far, i.e., ability to escape immunity and preference to replicate in the upper respiratory tract.
### Phenotypic characteristics of BA.4/BA.5

<table>
<thead>
<tr>
<th>Public health domain of impact</th>
<th>BA.1</th>
<th>BA.2</th>
<th>Omicron lineages</th>
<th>BA.4</th>
<th>BA.5</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transmissibility</strong></td>
<td>Lower growth advantage compared to BA.2*, BA.4 and BA.5 ¹</td>
<td>Lower growth advantage compared to BA.4 and BA.5 *</td>
<td>Growth advantage compared to BA.2 ¹</td>
<td>Growth advantage compared to BA.4 ¹</td>
<td></td>
</tr>
<tr>
<td><strong>Disease severity</strong></td>
<td>No difference in disease severity compared to BA.2, BA.4 and BA.5 ²</td>
<td>No difference in disease severity compared to BA.1, BA.4 and BA.5 ²</td>
<td>Currently available evidence does not suggest a difference in disease severity compared to BA.1 and BA.2 ²</td>
<td>Currently available evidence does not suggest a difference in disease severity compared to BA.1 and BA.2 ²</td>
<td></td>
</tr>
<tr>
<td><strong>Risk of reinfection</strong></td>
<td>Reduced risk of reinfection with BA.1 after infection with BA.2</td>
<td>Reduced risk of reinfection following infection with BA.1 ³</td>
<td>Protection against infection following previous BA.2 infection ⁴</td>
<td>Protection against infection following previous BA.2 infection ⁴</td>
<td></td>
</tr>
<tr>
<td><strong>Impact on antibody responses</strong></td>
<td>Lower neutralising antibody titers compared to the index virus ⁵</td>
<td>Lower neutralising antibody titers compared to the index virus ⁵</td>
<td>Lower neutralising antibody titres (7.6-fold) compared to BA.1 ⁶,⁷</td>
<td>Lower neutralising antibody titres (7.5-fold) compared to BA.1 ⁶,⁷</td>
<td></td>
</tr>
<tr>
<td><strong>Impacts on diagnostics</strong></td>
<td>S gene target failure</td>
<td>The majority will be S gene target positive</td>
<td>S gene target failure</td>
<td>S gene target failure</td>
<td></td>
</tr>
<tr>
<td><strong>Impact on treatment</strong></td>
<td>Reduced efficacy of cilgavimab and casirivimab-imdevimab</td>
<td>Reduced neutralising activity of sotrovimab, bamlanivimab, casirivimab, etesevimab, imdevimab and tixagevimab ⁸</td>
<td>Reduced neutralising activity of sotrovimab, bamlanivimab, casirivimab, etesevimab, imdevimab and tixagevimab.</td>
<td>Increased resistance to cilgavimab compared to BA.2 ⁸</td>
<td>Increased resistance to cilgavimab compared to BA.2 ⁸</td>
</tr>
</tbody>
</table>

2 https://www.medrxiv.org/content/10.1101/2022.07.07.22277315v1
3 https://www.medrxiv.org/content/10.1101/2022.06.23.22277682v1
4 https://www.medrxiv.org/content/10.1101/2022.07.11.22277448v1
5 doi:10.1101/2022.02.06.22270533
6 doi:10.1101/2022.05.16.22275151
7 doi:10.1101/2022.04.30.489997
8 https://www.biorxiv.org/content/10.1101/2022.05.03.490409v1.full
Omicron BA.4 and BA.5 driving hospitalization in other countries in EURO, particularly in older populations

SARS-CoV-2 will continue to evolve

Potential driver of emergence of genetically divergent SARS-CoV-2
• Uncontrolled transmission and prolonged human-human transmission in areas with limited surveillance and sequencing
• Novel hosts driving viral adaptation via immune pressure and by hosting different coronaviruses
• Persistent SARS-CoV-2 infection in an immunocompromised
The decline in sequence data continues to be a challenge.

A wave of infections driven by BA.4 and BA.5 has been occurring, bringing an increase in cases, and hospitalizations, particularly in elderly populations in a number of countries, including the United Kingdom, France, and the United States.

An increase in ICU admissions has been observed in some countries, but available evidence does not suggest a change in severity in BA.4 or BA.5 compared to BA.2.

Although the increase in cases has not been accompanied by a proportionate increase in deaths, global COVID-19 mortality remains very high, at over 11,000 deaths per week.
Update on 2022 Strategic Preparedness, Readiness and Response Plan

Strategic objectives to end the global COVID-19 public health emergency in 2022

- Reduce and control incidence of SARS-CoV-2 infection
- Protect individuals (especially the vulnerable) from exposure and reduce risk of future variants
- Optimizing national and international strategies and operational readiness
- Prevent, diagnose and treat COVID-19
- Reduce disease morbidity, mortality and long-term consequences of infection to a minimum
2022 SPRRP planning scenarios*

*All scenarios will need to plan for managing Post COVID-19 condition

**Base case** | The virus continues to evolve. However, severity is significantly reduced over time due to sustained and sufficient immunity against severe disease and death, with a further decoupling between incidence of cases and severe disease leading to progressively less severe outbreaks. Periodic spikes in transmission may occur as a result of an increasing proportion of susceptible individuals over time if waning immunity is significant, which may require periodic boosting at least for high-priority populations; a seasonal pattern of peaks in transmission in temperate zones may emerge.

**Worst case** | A more virulent and highly transmissible variant emerges against which vaccines are less effective, and/or immunity against severe disease and death wanes rapidly, especially in the most vulnerable groups. This would require significant alterations to current vaccines and full redeployment and/or broader boosting of all high-priority groups.

**Best case** | Future variants that emerge are significantly less severe, protection against severe disease is maintained without the need for periodic boosting or significant alterations to current vaccines.
2022 global influenza trends

• **Unusual seasonality** of influenza
  – Early start of season in some southern hemisphere countries
  – Restart of A(H3N2) virus circulating in China after extremely low/none circulation during the COVID-19 pandemic
  – B/Yamagata lineage viruses – low/none circulation globally in the past 3 years, yet to monitor its PH significance re. vaccine composition

• **Novel subtype** and **spread** of avian influenza infection in humans
  – China reported **first** 2 human infections by A(H3N8) subtype.
  – UK and USA reported for the **first-time** human infections of A(H5N1) (one case in each country).
  – Sporadic human infection with zoonotic influenza viruses **continues** to be reported.
Progress in implementing SPRRP 2022, remaining challenges and unknowns

- Integrate COVID surveillance with systems for surveillance of influenza and other respiratory pathogen
- Expand genomic sequencing capacity to increase global coverage
- Maintain & strengthen transmission trend surveillance of cases, deaths, hospital admissions
- Monitor variants and adjust countermeasures as needed
- Scale manufacturing platforms & expanded agreements for technology transfer
- Coordinate procurement & strengthen supply chains to ensure equitable access
- Fully vaccinating most vulnerable and using an optimal schedule of vaccines including boosters.
- Expand social listening systems to facilitate to improve immunization strategies
- Apply context specific public and social measures to reduce risk of spread of the virus
- Strengthen early recognition, triage, safe patient flow and diagnostics to provide timely treatment & resuscitation
- Address gaps infection prevention & control
- Restore essential health services that have disrupted due to COVID
- Integration of COVID-19 into broader health systems and health security strategies & plans
- Coordinated planning, costing & financing across
- Strengthened monitoring and tracking against delivery targets
Preparing for future SARS-CoV-2 variants and respiratory pathogen pandemics

Response & transition

1. Optimize COVID-19 strategies
2. Evolve systems from emergency response posture to prepare for future SARS-CoV-2 variants & other respiratory diseases including disease X

Statement & recommendation

EC noted continued importance of WHO's guidance to support State Parties’ recovery planning & future respiratory pathogen pandemic preparedness

EC recommended State Parties strengthen COVID-19 pandemic response plans… inform current & future response and preparedness efforts

WHO actions

1. WHO Policy Brief: guides countries in respiratory preparedness
2. Simulation exercise: enables countries to review COVID-19 & pandemic influenza plans, assess gaps and kick-start integrated respiratory pathogen pandemic planning approach
3. Country engagement: started through PIP Framework recipient countries, regional initiatives & partner agencies, global SPRP indicator to monitor progress (# countries with updated plans)
4. Global Partner Forum (45 agencies): strengthen coherence
5. Global guidance & community of practice: under development

Future-proofing: integrated respiratory pandemic planning

SPRP 2022 approach

COVID-19 IHR EC April 2022

Planning for respiratory pandemics

World Health Organization
Immediate needs by Member States

- **Reassess** current national epidemiologic situation, capacities, policies and financing for an agile response planning for future waves of SARS-CoV-2 infection

- **Maintain** surveillance to meet the immediate needs of SARS-CoV-2 virus evolution, including sequencing and sharing information, while strengthening longer term surveillance capacities for respiratory diseases

- **Scale up** lines of COVID-19 defense:
  - Tailored use of public health and social measures: calibrate based on risk to prevent infections and reduce pressure on virus
  - Evaluate surge and adjustment capacities to manage COVID-19 disease, early use of diagnostics to ensure early access to antivirals, potential disruptions to key sectors
  - Prepare for potential increased needs to treat severe disease: e.g., O₂, ventilation, therapeutics, trained work force
  - Vaccinate those most at risk for severe disease and at highest risks of exposure in all countries; reach targets

- **Strengthen and reinforce** work force across health sector and beyond, including adequate supplies and use of PPE; Reinforce infection prevention and control actions in health facilities

- **Communicate** regularly and openly with populations, empower, engage, enable with supportive policies

- **Share** success stories and ways in addressing challenges