INNOVATIVE TECHNOLOGIES THAT ADDRESS GLOBAL HEALTH CONCERNS

OUTCOME OF THE CALL
GLOBAL INITIATIVE ON HEALTH TECHNOLOGIES
2010
INNOVATIVE TECHNOLOGIES
THAT ADDRESS GLOBAL
HEALTH CONCERNS

OUTCOME OF THE CALL
GLOBAL INITIATIVE ON HEALTH TECHNOLOGIES
2010
Table of contents

List of abbreviations 3

Acknowledgements 4

1. Introduction 6

2. Background 7
 2.1 Programme objectives 7
 2.2 Global investment in health technology 7
 2.3 Global Initiative on Health Technologies 8
 2.3.1 Call for innovative technologies 8

3. Call for innovative technologies 10
 3.1 Key phases 10
 3.1.1 Launch 10
 3.1.2 Outreach 10
 3.1.3 Deadline 10
 3.1.4 Announcement of results 10
 3.2 Screening and selection process 10
 3.2.1 Categories 10
 3.2.2 Reception and screening of submissions 11
 3.2.3 Evaluation 11
 3.2.4 Recommendation for selection 11
 3.3 The response 12
 3.3.1 Submissions by category 12
 3.3.2 Global health concerns addressed 13
 3.3.3 Country submissions 14
 3.3.4 Intended users of submitted technologies 15
 3.3.5 Source of submissions 15
 3.4 Submissions 16
 3.4.1 Submitted technologies 16
 3.5 The selected technologies 18
 3.5.1 Stool sample collection and preparation kit 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.2</td>
<td>LED phototherapy unit</td>
<td>21</td>
</tr>
<tr>
<td>3.5.3</td>
<td>System for on-site production of wound irrigation solution</td>
<td>22</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Short messaging service (SMS) smoking cessation system</td>
<td>23</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Reusable neonatal suction system</td>
<td>24</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Fluorescence visualization of abnormalities in oral cavity</td>
<td>25</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Transcutaneous bilirubin measurement system</td>
<td>25</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Isothermal nucleic acid amplification system for tuberculosis diagnosis</td>
<td>26</td>
</tr>
<tr>
<td>3.5.9</td>
<td>Simplified anaesthesia unit</td>
<td>27</td>
</tr>
<tr>
<td>3.5.10</td>
<td>Single use assistive vaginal delivery system</td>
<td>28</td>
</tr>
<tr>
<td>3.5.11</td>
<td>Portable on-site cell sorter and counter for HIV and malaria diagnosis</td>
<td>29</td>
</tr>
<tr>
<td>3.5.12</td>
<td>Decision support system for paediatric HIV</td>
<td>30</td>
</tr>
<tr>
<td>3.5.13</td>
<td>Transcutaneous anaemia monitoring system</td>
<td>31</td>
</tr>
<tr>
<td>3.5.14</td>
<td>Solar-powered autoclave</td>
<td>32</td>
</tr>
<tr>
<td>3.5.15</td>
<td>Portable infant warmer</td>
<td>33</td>
</tr>
</tbody>
</table>

4. Challenges to making innovative technologies available

5. Conclusion

6. References

Annex 1: Rules of the call for innovative technologies
List of Abbreviations

WHO World Health Organization
AGIT Advisory Group for Innovative Technologies
PMD Priority Medical Devices (project)
GBD Global Burden of Disease (study)
MDGs Millennium Development Goals
WHA World Health Assembly
GDP Gross Domestic Product
The WHO call for innovative technologies was funded by the Bill and Melinda Gates Foundation within the framework of the Global Initiative for Health Technologies that was launched in 2008.

The evaluation of submitted technologies was carried out by the Diagnostic Imaging and Medical Devices unit of the Essential Health Technologies department under the direction of Adriana Velazquez, team coordinator, and Björn Fahlgren, with the support of Nicholas Adjabu, Deirdre Dimancesco, Valentina Hafner, Adham Ismail, Mattias Ivarsson, iyad Mobarek, Jiaoru Qian, Kittie Rasmussen, Hayde Reynoso, Benjamin Schanker, Lisa Stroux, Noboru Takamura, and under the overall oversight of Steffen Groth Director of the Essential Health Technologies Department.

The contribution of the following persons and institutions has been invaluable for the evaluation of submitted innovative technologies:

Tony Easty and Anjum Chagpar from the Centre for Global eHealth Innovation, University Health Network & Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.

Euroscan represented by Iñaki Gutiérrez and Sue Robinson and the following Euroscan members:
- Aurora Llanos from Agencia de Evaluación de Tecnologías Sanitarias de Andalucía (DETECTA), Seville, Spain;
- Maria Rosaria Perrini from Agenzia Nazionale per I Servizi sanitari Regionali (Age.na.s), Rome, Italy;
- Anne-Florence Fay from Assistance Publique-Hôpitaux de Paris, Committee for Evaluation and Diffusion of Innovative Technologies (CEDIT), France;
- Brendon Kearney from Australia and New Zealand Horizon Scanning Network (ANZHSN)/HPACT;
- Janet Hiller and Linda Mundy from Australian Health Technology Assessment (AHTA);
- Irving Lee and Alun Cameron from Australian Safety and Efficacy Register of New Interventional Procedures – Surgical (ASERNIPS);
- Iñaki Gutiérrez Ibarluzea from Basque Office for Health Technology Assessment (Osteba), Spain;
- Anda Morrison from Canadian Agency for Drugs and Technologies in Health (CADTH);
- Hans-Peter Dauben from Deutsches Institut für Medizinisches Dokumentation und Information (DIMDI);
- Dr Kees Groeneveld and Cees Postema from Health Council of the Netherlands (GR);
- Martin Flattery from Health Information and Quality Authority (HIQA), Ireland;
- Inger Norderhaug and Helene Arentz-Hansen from HTA Reviews and Dissemination Department, Norwegian Centre for Health Services Research (NOKC);
- Paul Fennessy from Integrated Care & Aged Department of Health, Victoria, Australia; and
- Claire Packer from National Horizon Scanning Centre (NHSC), England and Wales.
The support and guidance of the following experts constituting the Advisory Group on Innovative Technologies that participated in the Copenhagen meeting, where the evaluation was done, has been crucial to the outcome of the project:

We would like to thank Karina Reyes-Moya and Natalya Tarasenko for administrative support throughout the project.

This publication on the outcome of the call was produced by Adriana Velazquez-Berumen, Björn Fahlgren, Jennifer Barragan and Victoria Gerrard. Illustrations were provided by the applicants who submitted the selected technologies.
WHO Call for Innovative Technologies that Address Global Health Concerns

1. Introduction

The World Health Assembly (WHA) Resolution 60.29 on Health Technologies recognizes that medical devices are indispensable tools in health care delivery for prevention, diagnosis, treatment and rehabilitation (1). It acknowledges that medical devices are essential to attain the internationally agreed health-related development goals, including those contained in the Millennium Declaration (2). It is widely accepted that the availability of, and access to appropriate and affordable health technologies in low- and middle-income countries are still insufficient.

In addition the WHA Resolution 61.21 on global strategy and plan of action on public health, innovation and intellectual property, acknowledges that (current) initiatives are not sufficient to surmount the challenges of ensuring access to, and innovation of, much needed health products and medical devices (3).

As a result of these resolutions, the World Health Organization (WHO) launched the Global Initiative on Health Technologies. Funded by the Bill and Melinda Gates Foundation, the initiative’s goal is to make available the benefits of core health technologies at an affordable price particularly to communities in resource limited settings in order to effectively control important health problems. This initiative includes the development of guidelines and tools for health technology management, a call for innovative technologies (the results of which are discussed in this report), and the organization of a Global Forum on Medical Devices in Bangkok in September 2010.

The call for innovative technologies that took place from September 2009 to June 2010 sought to identify and evaluate innovative medical devices (including assistive devices) either existing or under development, which address global health concerns. A total of 84 submissions from 28 countries were received by the deadline of 31 January 2010.

Following an initial screening by WHO, 68 applications were sent for evaluation by external experts. From these, 15 were selected and posted on the web site1 of the WHO Department of Essential Health Technologies in June 2010. This report discusses the selection process of the call and presents the 15 innovative technologies deemed to hold promise in reducing the global burden of disease. It is hoped this report will foster the development and availability of these technologies, particularly for those in low- and middle-income countries. Additional information about the call, including its guidelines and scope, is available in Annex 1.

Selection of these technologies does not imply WHO endorses any particular product; WHO solely aims to draw stakeholders’ attention to innovative technologies to further their development, availability, and access. Interested parties should consider this report a call for further research and evaluation of not just the technologies selected, but all others submitted that can potentially reduce the burden of disease and disability worldwide.

The challenges faced by the applicants to succeed in getting their technologies into resource-limited settings are numerous and have been detailed in the WHO report Medical devices: managing the mismatch (4) as well as being discussed here. Once these challenges are met with the resources from industry, academia, and other stakeholders, these and many other innovative technologies can begin to ameliorate the health and well-being of all people. To this end, WHO will continue to work in search of appropriate, affordable, and available health technologies (in particular medical devices) that can reduce the global burden of disease.

2. Background

2.1 Programme Objectives

Successful health care delivery requires effective medical devices to act as tools for the prevention, diagnosis, and treatment of diseases, as well as for rehabilitation purposes. Despite the exponential growth in scientific and technological development, low- and middle-income countries are still largely excluded from access to appropriate and affordable health technologies. Attainment of the health-related Millennium Development Goals (MDGs),

The WHA Resolution 60.29 on health technologies emphasizes the role of medical devices and health technologies in health care, as well as their current suboptimal contribution to health outcomes:

“Understanding that health technologies, and in particular medical devices, represent an economic as well as a technical challenge to the health systems of many Member States, and concerned about the waste of resources resulting from inappropriate investments in health technologies that do not meet high-priority needs, are incompatible with existing infrastructures, are irrationally or incorrectly used, or do not function efficiently” (1).

A strategic objective of WHO’s plan for 2008–2013 (5) is to ensure improved access, quality, and use of medical products including medical devices; this recognizes medical devices as tools with which to provide health care and enhance the health of people. In order to facilitate equitable access to the necessary core technologies, the WHO Department of Essential Health Technologies is tasked with identifying and promoting innovative technologies that address global health concerns and stimulating their further development.

2.2 Global investment in health technology

The Landscape analysis conducted by WHO (6) investigated the likelihood of any technology corporation developing or adapting technologies for global health purposes using their own funds. The following section summarizes some of the findings of that report relating to technology innovation.

Low- and middle-income countries bear a greater share of the global burden of disease than do high-income countries. In 2004, the regions of South-East Asia and Africa — comprising primarily low- and middle-income countries — bore 54% of the global disease burden, though they account for only about 40% of the world’s population. Despite this inequity, low- and middle-income countries spent much less on health as a percentage of gross domestic product (GDP) than did high-income countries (7).

Since 2002 an average of 200 new technologies per year have been added to the EuroScan database for innovative health technologies (8). A review of EuroScan’s public access database(9), however, showed an apparent lack of information on technologies suitable for low-income countries.

1 http://www.who.int/topics/millennium_development_goals/en/.
2 http://www.euroscan.org.uk/
One common indicator of innovation activities is the number of new patents being registered. In terms of the country of origin the largest number of patent applications in the field of medical technology between 2001 and 2005 came from the United States of America (35%) and Japan (20%) although it is worth noting that several emerging economies such as Brazil, China, and India ranked high on the list (9).

As shown through patent activities and the EuroScan database, the focus of industry is not on innovative technologies for the developing world. In order to address this gap, new strategies are required to encourage investment in health technologies that deal with challenges specifically faced in low- and middle-income countries.

2.3 Global Initiative on Health Technologies

The Department of Essential Health Technologies initiated the Global Initiative on Health Technologies1 in March 2008. The overall goal of the initiative is to help address important health problems associated with communities in resource-limited settings by making available the benefits of core health technologies, through equitable access and affordability. This requires technology innovation, either in the technologies themselves or in the processes designed to facilitate their dissemination, application, and utilization.

The two specific objectives of the initiative are to challenge the international community to establish a framework for the development of national health technology programmes that will lower the burden of disease and ensure effective use of resources; and challenge the business and scientific communities to identify and adapt innovative technologies that can have a significant impact on improving public health in developing countries.

2.3.1 Call for innovative technologies

The call for innovative technologies challenged manufacturers, institutions, universities, governments, individuals, and non-profit organizations which design, manufacture and/or supply any type of medical device to focus their activities towards addressing the global health concerns outlined below.

- Alcohol use disorders
- Birth asphyxia and birth trauma
- Cancer
- Cerebrovascular disease
- Chronic obstructive pulmonary disease
- Deficient maternal health
- Diarrhoeal diseases
- Disability
- HIV/AIDS
- Infant and child (under 5) mortality
- Ischaemic heart disease
- Lower respiratory infections
- Malaria
- Neonatal infections
- Prematurity and low birth weight
- Refractive errors
- Road traffic accidents
- Tuberculosis
- Unipolar depressive disorders

1 http://www.who.int/medical_devices/appropriate_use/en/.
The project aims to optimize public health outcomes by encouraging innovation through:

- increasing understanding among decision-makers about the critical role of health technologies and innovation in promoting public health;
- stimulating the development of new technologies;
- promoting the use of technologies that are safe and/or simpler to use than earlier solutions;
- promoting technologies that are more cost-effective than previous technologies;
- identifying new health-related uses of existing non-health technologies that can have a significant and immediate impact on improving public health; and
- facilitating the dissemination, application, and utilization of new technologies.
3. Call for innovative technologies

3.1 Key phases

The key phases of the call for innovative technologies consisted of the launch, outreach, deadline, and announcement of results; they are detailed below. Further information regarding the call can be found on the website of the Department of Essential Health Technologies1.

3.1.1 Launch

WHO launched the call for innovative technologies at the World Congress on Medical Physics and Biomedical Engineering in Munich on 11 September 2009. The health concerns to be addressed and the selection criteria to be used, which were developed with assistance of the Advisory Group on Innovative Technologies (AGIT) and WHO collaborating centres for health technologies, were also presented.

3.1.2 Outreach

To disseminate the call WHO engaged in outreach activities including participation in MEDICA (the world’s largest medical device trade fair), mailing information out to health technology stakeholders such as professional societies, manufacturers’ umbrella organizations, and posting on health technology websites.

3.1.3 Deadline

The deadline for submissions was 31 January 2010. In total, 84 submissions were received from 28 countries.

3.1.4 Announcement of results

A list of selected technologies was posted on the WHO website2 on 30 June 2010.

3.2 Screening and Selection Process

3.2.1 Categories

The applicants had the opportunity to submit their technology into one of two categories, based on their level of maturity.

Category 1 comprises commercialized products or products which are ready to be commercialized. This includes new products; products which have been commercialized for less than five years in high-income countries and which are not (yet) widely used in low- and middle-income countries; recent adaptation of existing non-health products for a health purpose; and/or recent adaptation of an existing medical device for low- and middle-income settings.

1 http://www.who.int/medical_devices/call_selected_innovative_tech/en/index.html
2 http://www.who.int/medical_devices/call_selected_innovative_tech/en/index.html
Category 2 comprises products in a non-commercialized stage or that are not ready to be commercialized; it includes products which are under development or otherwise in a conceptual stage.

The process for screening, evaluation and selection is shown in Figure 1.

Figure 1. Overview of the screening, evaluation and selection process

3.2.2 Reception and screening of submissions
WHO only considered applications which were complete, within the scope of the call, and which were received by 31 January 2010. An identifier code was assigned to each application and all information about the applicant was removed to maintain confidentiality during the evaluation process.

3.2.3 Evaluation
The 68 anonymous applications that passed the initial screening by WHO in February 2010 were then sent to selected WHO collaborating institutions to determine how well they conformed to the selection criteria of the call and to assess their level of innovation.

The evaluation and grading process was undertaken by WHO staff, two teams of experts at Toronto University (appointed by WHO), and 14 member agencies of EuroScan during a period of approximately six weeks. All external evaluators signed confidentiality agreements. The evaluators were of different professional backgrounds including physicians, biomedical engineers, usability experts and health technology assessment specialists. The applications were graded on a scale from 1 to 5 by the evaluators solely based on the submission forms received without annexes. The grading was returned to the WHO Secretariat, which compiled the data to prepare for the selection process.

3.2.4 Recommendation for selection
The submission forms and the related grading were presented to the Advisory Group on Innovative Technologies (AGIT) by the WHO Secretariat. The AGIT was composed of experts in the field of health technologies representing a wide panel of competencies and geographical origins. Its members declared any conflicts of interest prior to participation; expert reviewers with any conflicts did not participate in the review.

In the advisory group meeting that took place 27–29 April 2010 in Copenhagen, the experts were divided into four groups, two for each category. The four expert groups reviewed the original selection as well as identified outliers. Outliers here refer to technologies that had been graded very differently by different evaluators. Each member of the group read the information provided on the application. Subsequently the groups discussed the submissions
with regard to the six selection criteria. All groups provided their recommendation for or against selection including reasoning and general comments. After reviewing all submissions, the two teams for each category presented their results to each other and engaged in further discussions. The final recommendation to the WHO Secretariat was provided in a plenary session.

Reviewers considered the following criteria when evaluating the submitted technologies:

- level of safety for the user, patient and the environment;
- effectiveness in addressing the health concern in question;
- level of adaptation to local infrastructures in resource-limited settings;
- ease of use and maintenance;
- total cost of ownership, cost-effectiveness and affordability; and
- level of cultural and social acceptability.

The major limitation identified by the experts was the difficulty to apply a single set of criteria in a consistent fashion to applications pertaining to a vast array of medical devices addressing numerous diseases and at very different levels of development.

The final selection of the 15 technologies discussed in this report was made by WHO based on the recommendations from the AGIT.

Evaluations were based solely on the information provided in the submitted documents. Therefore, further independent evaluation will be needed to ensure the successful implementation of the submitted technological innovations.

3.3 The Response

3.3.1 Submissions by category

Of the 68 submissions that passed initial screening more than 50% were commercialized or able to be commercialized (Figure 3).

Figure 3. Submissions by category: commercializable and concept technologies
3.3.2 Global health concerns addressed

Each applicant claimed that the submitted technology addressed one or more of the 19 global health concerns indicated in the scope of the call. Each applicant could select more than one health concern and a number of the products do in fact serve multiple needs within the medical sector (Figure 4).

Figure 4. Global health concerns addressed by the technology (by number of applications)

<table>
<thead>
<tr>
<th>Health concern</th>
<th>Number of applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol use disorders</td>
<td>7</td>
</tr>
<tr>
<td>Birth asphyxia and birth trauma</td>
<td>13</td>
</tr>
<tr>
<td>Cancer</td>
<td>26</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>11</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>11</td>
</tr>
<tr>
<td>Deficient maternal health</td>
<td>21</td>
</tr>
<tr>
<td>Diarrhoeal diseases</td>
<td>16</td>
</tr>
<tr>
<td>Disability</td>
<td>14</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>21</td>
</tr>
<tr>
<td>Infant and child (under 5) mortality</td>
<td>28</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>16</td>
</tr>
<tr>
<td>Low respiratory infections</td>
<td>16</td>
</tr>
<tr>
<td>Malaria</td>
<td>16</td>
</tr>
<tr>
<td>Neonatal infections</td>
<td>19</td>
</tr>
<tr>
<td>Prematurity and low birth weight</td>
<td>18</td>
</tr>
<tr>
<td>Refractive errors</td>
<td>3</td>
</tr>
<tr>
<td>Road traffic accidents</td>
<td>18</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>19</td>
</tr>
<tr>
<td>Unipolar depressive disorders</td>
<td>4</td>
</tr>
</tbody>
</table>
3.3.3 Country submissions

Figure 5 shows the 28 countries from which technologies were submitted. Participation came from countries with diverse income levels.

Figure 5. The number of technology submissions received, by country
3.3.4 Intended users of submitted technologies
Most submissions are intended for use by health-care professionals but 14 are intended for self-use. Each applicant could select more than one intended user and it seems that most innovations can be used in multiple health care settings (Figure 6).

Figure 6. Settings for intended use of proposed technologies

3.3.5 Source of submissions
The vast majority of proposals were submitted by academia and industry; a few were also contributed by individuals and organizations specialized in innovative technologies for resource-scarce settings (see Figure 7).

Figure 7. Submissions received, by type of institution
3.4 Submissions

3.4.1 Submitted technologies
Tables 1 and 2 show the 84 submitted technologies, and reflect the variety of technologies and diversity of intended use.

Table 1. Submitted commercialized technologies or those ready to be commercialized (category 1)

| Cervical cancer screening based on detection of cell membrane cancer markers in cervical smears |
| Clinical decision support software |
| Clinical patient data software |
| Congenital disease screening system |
| Diabetic foot detection system based on temperature measurement |
| Diagnostic/Screening test for bladder cancer |
| Digital X-ray system |
| Electric stimulation neurotherapy |
| Electronic health record patient interface |
| Exercise kit |
| External fixator |
| Face masks |
| Fluorescence visualization of abnormalities in oral cavity |
| Fuel efficient wood stove |
| Gravity-based blood separation system |
| Isothermal nucleic acid amplification system for tuberculosis diagnosis |
| Laryngoscope |
| LED phototherapy unit |
| Magnetic coils for destruction of pathogens |
| Mobile laboratory for diagnosis (cardiac, cancer, respiratory) |
| Mobile phone system for sending microscope images |
| Multi parametric patient monitor |
| Nano filters for water treatment |
| Newborn simulator |
| Patient data information system |
| Patient management system software |
| Portable haemoglobin meter |
| Portable telemedicine system |
| Portable ultrasound imaging system |
| Portable ventilator for chronic obstructive pulmonary disease |
| Radiation treatment system for health care waste |
| Reusable neonatal suction system |
| Rotational field quantum nuclear magnetic resonance |
| Single use male circumcision device |
| Short message service (SMS) for smoking cessation |
| Stool sample collection and preparation kit |
| System for on-site production of wound irrigation solution |
| Telehealth system |
| Transcutaneous bilirubin measurement system |
| Ultrasound transducer disinfection system |
| Vapour sterilization system |
| Water dispenser for hand wash |
| Web-based ECG cardiac diagnosis system |
| Wheelchair based on standard components |
| X-ray imaging system |

Table 2. Submitted technologies in a non-commercialized stage of development (category 2)

| Accuracy tester for electronic fetal heart rate monitor |
| Ambient gas plasma system for antisepsis |
| Anti thrombotic coronary artery bypass graft |
| Bio potential and impedance measurement-based monitoring for cardiovascular diseases |
| Birthing simulator |
| Decision support system for paediatric HIV |
| Drug authentication system |
| Drug packaging with extended shelf life |
| External fixator |
| Isolator system for minimally invasive surgery |
| Laboratory in a backpack |
| Micro-endoscope for cancer screening |
| Mobile phone-based pregnancy risk assessment system |
| Mobile phone-based pulse oximeter |
| Mosquito repellent skin lotion |
| Multi fever diagnosis system |
| Paediatric stretcher |
| Patient data information system |
| Portable infant warmer |
| Portable infusion system |
| Portable on-site cell sorter and counter for HIV and malaria diagnosis |

1 Two submitted applications were incomplete and one was a repeat application and are therefore not presented in the list.
Table of Innovative Technologies

<table>
<thead>
<tr>
<th>Portable telemedicine system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote fetal heart rate and activity monitoring</td>
</tr>
<tr>
<td>Remote palliative radiotherapy system for terminal cancer</td>
</tr>
<tr>
<td>Safety seat for children (road transport)</td>
</tr>
<tr>
<td>Semi-automated system for mycobacteria detection</td>
</tr>
<tr>
<td>Simplified anaesthesia unit</td>
</tr>
<tr>
<td>Single use assistive vaginal delivery system</td>
</tr>
<tr>
<td>Single use male circumcision device</td>
</tr>
<tr>
<td>Solar reading light</td>
</tr>
<tr>
<td>Solar-powered autoclave</td>
</tr>
<tr>
<td>Sub-dermal implant for drug delivery</td>
</tr>
<tr>
<td>System for biological screening to be used in current hygiene products</td>
</tr>
<tr>
<td>Telemedicine resource for emergency care</td>
</tr>
<tr>
<td>Transcutaneous anaemia monitoring system</td>
</tr>
<tr>
<td>Wireless system for transmission of vital signs in neonatal intensive care units</td>
</tr>
</tbody>
</table>

3.5 The selected technologies

Fifteen innovative medical devices were selected from the submissions: eight from category 1 and seven from category 2. In this section, each selected medical device is briefly introduced. Each applicant provided a poster that describes the submitted technology. Applicants’ contact information is also provided to facilitate communication between the innovator and any interested parties.

The innovative technologies that were selected by the AGIT, external evaluators, and the WHO Secretariat, show potential to help reduce the global burden of disease.

Bearing in mind that the evaluation by the team of experts is solely based on the assessment of data and information submitted in the applicants’ dossiers, inclusion in the Lists of Selected Innovative Technologies does not constitute a warranty of the fitness of any selected technology for a particular purpose. Besides, the responsibility for the quality, safety and efficacy of each selected technology remains with the manufacturer. The decision to list a particular technology is subject to change on the basis of new information that may become available to WHO. If there is evidence of serious safety and/or quality issues in relation to a listed technology, WHO may withdraw the technology concerned from the list until results of further investigations become available and are assessed by WHO.

WHO will not be held to endorse nor to recommend any listed technology. The Lists of Selected Innovative Technologies solely aim at drawing stakeholders’ attention to innovative medical devices, either existing or under development, with a view to fostering the development and availability of, and/or access to, innovative health technologies which are likely to be accessible, appropriate and affordable for use in low- and middle-income countries.
Inclusion in the Lists of Selected Innovative Technologies does not furthermore warrant or represent that:
1. the list is complete or error free; and/or that
2. the technologies which have been found to meet the selection criteria will continue to do so; and/or that
3. the use of the selected technologies listed is, or will be, in accordance with the national laws and regulations of any country, including but not limited to patent laws; and/or that
4. any medical device or product that may be developed from selected applications will be successfully commercialized in target countries or that WHO will finance or otherwise support the development or commercialization of any such medical device or product.

WHO disclaims any and all liability and responsibility whatsoever for any injury, death, loss, damage or other prejudice of any kind whatsoever that may arise as a result of, or in connection with the procurement, distribution and/or use of any listed technology or resulting medical device or product and any future development thereof.
3.5.1 Stool sample collection and preparation kit

The purpose of the kit is to simplify faecal examination by reducing the number of consumables and steps required for the procedure. The kit could therefore facilitate the diagnosis of parasitological diseases. Additionally, the kit does not appear to require water or electricity and is claimed to prevent contamination of the environment.

Method of Collection Parasitological Examination

Collecting

Open the plastic bag, remove the container, seal it tightly and open the screw cap.

Fill coned portion of premeasured spoon with stool specimen. Only two full premeasured spoon is required.

In case of diarrhea use two premeasured spoon portions.

Scratch stool specimen against the extractor inside the container to release the stool into formula. Discard premeasured spoon; securely fasten cap and label container; place container back in original packaging and return it to your medical provider.

Laboratory Direction

Remove cap before shaking the flask. It will release any gases generated inside the vial.

Shake the vial until you get a homogenous mixture, then open it up again, in order to release any gases.

With the flask still open, over a paper towel, turn the vial up side down, without pressure, just to remove any excess and put in the tray for at least 15 minutes.

Remove the vial, squeeze gently and place two drops of homogenized sample onto a glass microscope plate.

* Eliminates bad odors
* No refrigeration needed
* Preserves stool sample for over 30 days
* No Ethyl acetate necessary
* Reduces drastically the Diagnostics time and costs

Technological Innovation in the Diagnosis of Enteroparasitosis

Lapenna, José Carlos - Brazil

Introduction

Intestinal parasites are still responsible for the spread of neglected diseases in billions of people, mostly children, in developing and developed countries. Parasitism may compromise physical and cognitive development of its carrier. The practice of deworming in children has been common without proper diagnosis of the causal agents of infection, which may contribute to perpetuating the parasite species in poor communities with poor socioeconomic conditions. Additionally, it may cause the actual conditions of sanitation in these regions, especially the final allocation of human waste and water treatment for human consumption. Therefore, the improvement of parasitological methods is needed to make them more efficient, safe and fully accessible to low-income countries as a social need as well as a priority for global public health.

The future is in our hands.

A Proposal for Technological Innovation in the Coproparasitological Diagnosis

As a proposal for technological innovation, a kit was developed in Brazil, whose principle is based on the spontaneous concentration of parasite forms. This kit involves filtration in a closed system that ensures environmental and technicians’ biocompatibility and contains a liquid for preserving the parasite forms. Easy and inexpensive, the kit is the only innovation in recent years that may contribute to the prevention and control of intestinal parasites, particularly in low-income countries.

Name: José Carlos Lapenna
Email: jczl@globo.com
Country: Brazil
3.5.2 LED phototherapy unit

The purpose of the unit is to treat hyperbilirubinaemia in newborn infants by phototherapy. The unit could increase the safety of the procedure by using a radiation source that produces blue light and minimizes exposure to harmful ultraviolet radiation. Further potential advantages are that the unit measures the actual output of light at useful wavelengths and is claimed to have lower energy consumption than previous designs.

Jaundice: Innovative LED phototherapy

Need of Phototherapy

Phototherapy is used for treatment for jaundice, a common condition in newborn infants caused by high levels of serum bilirubin, which may cause chronic bilirubin encephalopathy (kernicterus). Jaundice newborns have yellowing of the skin and the whites of the eyes. This condition is common in more than 70% of the newborns. Phototherapy treatments decrease the bilirubin levels in the blood by changing the trans-bilirubin into cis-bilirubin isomer, which is water-soluble.

Technology by Super LEDs

Phototherapy is the most effective treatment when the light used is around 450nm of the light spectrum wavelength, which corresponds to the blue color. Super LEDs provide light precisely at this wavelength and have an abrupt attenuation of the irradiance from the infra-red and ultra-violet wavelength ranges, reducing undesired effects to the infant’s skin. The irradiance levels are higher, which decreases treatment time considerably. Also, the power consumption and the heating caused by the Super LEDs are very low when compared with other sources of light.

Product Features

- Reduced Size (23.5cm x 11.5cm)
- Great radiation in both the middle and the borders of the irradiation area
- Low energy consumption
- Advanced blue spectrum irradiation technology
- Infra-red and ultra-violet rays attenuator
- Soft touch buttons and microprocessor of various functions
- Wide adjustment of radiation intensity according to basic necessities
- Watch/Calendar
- Lamp time counter
- Treatment time counter
- Memory of radiation, manual or automatic measurements, to print in report.
- RS-232 output for printers or computers
- Easy Access to the supply module, for cleaning and maintenance
- Radiometer with Optical Probe can be integrated

Versatility

Infant can be treated in cradles, incubators and infant warmers

Data and Testing Methodology

Estimated Radiance at different Distances

Radiance Measured by different light sources

Super LEDs Radiation Spectral Curve Range

Temperature measured at laboratory tests placed at the same distance for treatment by using different light sources

Name: Nancy Gambaroni
E-mail: nancy.gambaroni@terra.com.br
Country: Brazil
3.5.3 System for on-site production of wound irrigation solution

The purpose of the system is to produce aqueous solutions for the topical treatment of wounds and infections using a power source, dematerialized water, and salt. Solutions produced by the system could be used to treat a host of conditions including traumatic injuries, post-natal infections, and neglected tropical diseases that cause ulcerations and infections.

System for On-Site Production of Wound Irrigation Solution

MEDICAL ISSUE

On-site Production of Wound Irrigation Solutions

The Technology and the specifically designed equipment allow for need-based and cost-effective on-site manufacturing of high-quality wound irrigation solutions for decontamination, control of infections and stimulation of wound healing in accordance with modern standards for wound treatment.

Wound Irrigation Solutions for Modern Treatment Standards

The Technology provides means for topical treatment of wounds and infections meeting modern standards of wound management, such as wound irrigation, decontamination and hygiene of wounds. Users are provided with the possibility to manufacture their own solution for wound irrigation and wound Moisture in a basic and cost-effective way. Due to the specific properties of the solutions most wound treatment conditions can be implemented in combination with simple and cost-effective wound dressing materials (e.g. cotton swabs and cotton compresses).

IMPLEMENTATION

Equipment

The production devices are designed for decentralized and on-demand manufacturing of wound irrigation solutions from basic source materials (dematerialized water and sodium chloride) using advanced diaphragm-electrolysis technology.

Operational requirements:
- Water: dematerialized (or distilled, if available)
- Salt: max. 2.0 g per liter
- Electric power: 100-240 V AC or 24 V DC

Production of 1 liter Anode or Anode Neutral solutions (concentrate):
- The production device is a compact, portable desktop device for on-site production of Anode and Anode Neutral solutions. For production of a source solution of dematerialized water and sodium chloride (max. 2.0 g of salt per liter) is prepared and filled into the respective feed container of the device. When the production process is started, the source solution flows through the membrane-electrolytic cell and is electrically activated.
- When finished the device stops automatically.

Production of 1 liter Anode or Anode Neutral solutions (concentrate):
- The production device is a compact, portable desktop device for on-site production of Anode and Anode Neutral solutions. For production of a source solution of dematerialized water and sodium chloride (max. 2.0 g of salt per liter) is prepared and filled into the respective feed container of the device. When the production process is started, the source solution flows through the membrane-electrolytic cell and is electrically activated. When finished the device stops automatically.

IMPLEMENTATION

Equipment

The production devices are designed for decentralized and on-demand manufacturing of high-quality wound irrigation solutions for decontamination, control of infections and stimulation of wound healing in accordance with modern standards for wound treatment.

Wound Irrigation Solutions for Modern Treatment Standards

The Technology provides means for topical treatment of wounds and infections meeting modern standards of wound management, such as wound irrigation, decontamination and hygiene of wounds. Users are provided with the possibility to manufacture their own solution for wound irrigation and wound Moisture in a basic and cost-effective way. Due to the specific properties of the solutions most wound treatment conditions can be implemented in combination with simple and cost-effective wound dressing materials (e.g. cotton swabs and cotton compresses).

IMPLEMENTATION

Equipment

The production devices are designed for decentralized and on-demand manufacturing of high-quality wound irrigation solutions for decontamination, control of infections and stimulation of wound healing in accordance with modern standards for wound treatment.

Wound Irrigation Solutions for Modern Treatment Standards

The Technology provides means for topical treatment of wounds and infections meeting modern standards of wound management, such as wound irrigation, decontamination and hygiene of wounds. Users are provided with the possibility to manufacture their own solution for wound irrigation and wound Moisture in a basic and cost-effective way. Due to the specific properties of the solutions most wound treatment conditions can be implemented in combination with simple and cost-effective wound dressing materials (e.g. cotton swabs and cotton compresses).

IMPLEMENTATION

Equipment

The production devices are designed for decentralized and on-demand manufacturing of high-quality wound irrigation solutions for decontamination, control of infections and stimulation of wound healing in accordance with modern standards for wound treatment.

Wound Irrigation Solutions for Modern Treatment Standards

The Technology provides means for topical treatment of wounds and infections meeting modern standards of wound management, such as wound irrigation, decontamination and hygiene of wounds. Users are provided with the possibility to manufacture their own solution for wound irrigation and wound Moisture in a basic and cost-effective way. Due to the specific properties of the solutions most wound treatment conditions can be implemented in combination with simple and cost-effective wound dressing materials (e.g. cotton swabs and cotton compresses).

IMPLEMENTATION

Equipment

The production devices are designed for decentralized and on-demand manufacturing of high-quality wound irrigation solutions for decontamination, control of infections and stimulation of wound healing in accordance with modern standards for wound treatment.

Wound Irrigation Solutions for Modern Treatment Standards

The Technology provides means for topical treatment of wounds and infections meeting modern standards of wound management, such as wound irrigation, decontamination and hygiene of wounds. Users are provided with the possibility to manufacture their own solution for wound irrigation and wound Moisture in a basic and cost-effective way. Due to the specific properties of the solutions most wound treatment conditions can be implemented in combination with simple and cost-effective wound dressing materials (e.g. cotton swabs and cotton compresses).

IMPLEMENTATION

Equipment

The production devices are designed for decentralized and on-demand manufacturing of high-quality wound irrigation solutions for decontamination, control of infections and stimulation of wound healing in accordance with modern standards for wound treatment. The Technology provides means for topical treatment of wounds and infections meeting modern standards of wound management, such as wound irrigation, decontamination and hygiene of wounds. Users are provided with the possibility to manufacture their own solution for wound irrigation and wound Moisture in a basic and cost-effective way. Due to the specific properties of the solutions most wound treatment conditions can be implemented in combination with simple and cost-effective wound dressing materials (e.g. cotton swabs and cotton compresses).
3.5.4 Short messaging service (SMS) smoking cessation system

The purpose of the system is to provide tailored SMS-based smoking cessation support to its users. According to preliminary research the system facilitates self-management of smoking cessation and increases the likelihood of user adherence to smoking cessation programmes. The interactive system is claimed to be capable of answering messages about cravings to support the user.

Name: Matt Hector-Taylor
Email: matt.hector.taylor@gmail.com
Country: New Zealand
3.5.5 Reusable neonatal suction system

The purpose of this system is to remove obstructive mucus from the air passages of newborn infants, to reduce the risk of asphyxia, and support neonatal resuscitation. The device is claimed to be made of silicone and therefore reusable (capable of being boiled between uses). The device also requires no electricity.

BACKGROUND

Actual need
WHO estimates that nearly 1 million newborns in low and middle income countries die from birth asphyxia each year. A similar number are disabled due to inadequate breathing at birth. To stimulate spontaneous breathing, or perform bag-mask ventilation effectively, an open airway is mandatory. Often this requires clearing the mouth and nose of mucus and meconium using vacuum.1

Current situation
Whereas available neonatal suction devices available cannot be cleaned for reuse, budgets generally prevent single patient use.3

Meeting a challenge
UN’s Millennium Development Goal No 4 (MDG 4) aims at reducing the mortality of children, including newborns, by 2/3 by 2015. To help reach the MDG 4 we have developed a new neonatal suction device which is clinically effective, easy and safe to use, available at a low price and can be reused for multiple patients over a very long period of time. This device is also suitable for large scale training of birth attendants.

PRODUCT QUALITIES

Design
- Ergonomic shape allows convenient one hand operation
- Inviting non-clinical look as represented by a friendly penguin
- Easy opening and closure in connection with emptying and cleaning
- One-part design requires no disassembly/reassembly

Material
- Transparent silicone rubber permits immediate visual inspection of any suctioned matter
- Can be cleaned in high temperatures by methods including boiling and autoclaving
- Soft beak shaped nozzle will not hurt baby’s mouth and nostrils
- Withstands aging and discoloring during storage over extended periods of time

Cleaning
- Penguin head can easily be flipped to the side to allow easy emptying of suctioned matter during use, and can as easily and quickly be flipped back for continued suction
- After mechanical removal of debris boiling in water for 10 min. has been documented to provide effective decontamination to be safely ready for reuse1

Effectiveness
- Meets recommendations of providing vacuum of up to 100 mm Hg (136 cm H2O)

Affordability
- Low purchase price and use for large numbers of patients over years make this suction device most suitable for general use in low income countries.
- Also ideal for large scale sponsor facilitated distribution on a not-for-profit basis.

Reference

Technical specifications

<table>
<thead>
<tr>
<th>Nitel dimensions at tip:</th>
<th>Inner diameter (ID): 3.0 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer diameter (OD): 4.5 mm</td>
<td></td>
</tr>
<tr>
<td>Suction strength (typical):</td>
<td>100 mm Hg (136 cm H2O)</td>
</tr>
<tr>
<td>Operating temperature:</td>
<td>0 °C (32 °F) to 50 °C (122 °F)</td>
</tr>
<tr>
<td>Storage temperature:</td>
<td>-20 °C (-4 °F) to 60 °C (140 °F)</td>
</tr>
<tr>
<td>Material</td>
<td>Transparent silicone rubber</td>
</tr>
</tbody>
</table>

Name: Jens Petter Ianke
Email: suctiondevice@gmail.com
Country: Norway
3.5.6 Fluorescence visualization of abnormalities in oral cavity

The purpose of the system is to use the natural fluorescence of mucosal tissues when excited by a violet/blue light to inform clinicians about the presence of abnormalities in the mucosa in the oral cavity. This system could aid in the early detection of oral/oropharyngeal cancers and thereby reduce morbidity and mortality associated with these diseases.

Name: David Morgan
Email: d.c.morgan@hotmail.com
Country: Canada

3.5.7 Transcutaneous bilirubin measurement system

The purpose of the system is to provide an alternative to blood sample analysis for the diagnosis of hyperbilirubinaemia in newborn infants. The system uses spectral analysis of light reflected from the patient’s vascular bed to determine levels of blood bilirubin. The device is claimed to be non-invasive and to provide a rapid read-out.

Name: Sue Jones
Email: susan.jones115@virginmedia.com
Country: France
3.5.8 Isothermal nucleic acid amplification system for tuberculosis diagnosis

The purpose of the system is to offer a point-of-care alternative to sputum smear microscopy. The technology is claimed to require no additional equipment and to yield a rapid visual read-out of the diagnostic result.

Name: Qimin You
Email: qiminyou2000@163.com
Country: China
CONCEPT TECHNOLOGIES (CATEGORY 2)

3.5.9 Simplified anaesthesia unit

The purpose of the unit is to function as an anaesthesia machine for surgical use in low-resource settings. The device features an innovative valve system with reduced technical complexity compared to traditional devices. The device is claimed to function with oxygen from different sources, including ambient air, and therefore would not require compressed oxygen.

Making Anesthesia

RELIABLE......

The novel breathing system that allows the UAM concept was developed during 10 years 1999-2008 by Dr. Paul Fenton, DTM&H, FRCA, Professor of Anesthesia, with more than 30 years clinical and teaching experience in the UK, Africa, Asia and the Pacific and is manufactured by a UK based manufacturer of anaesthesia equipment and accessories headed by Richard Fiedrowsicz, the Managing Director who has over 20 years experience in the medical engineering market.

The company now consists of a highly skilled workforce dedicated to the manufacture of high quality medical products. The company is certified to CE and ISO standards and is audited semi annually by one of the largest UK independent testing, inspection & certification companies.

As a complete anaesthesia system, the UAM couples the safety and simplicity of older systems with a mainstream modern patient breathing circuit acceptable to all users. So it can be used in any hospital in the world, but without the need for the usual compressed gases.

This system utilizes the useful features of continuous flow (and will include recycling) while retaining the safety and adaptability of old fashioned draw-over. It allows for access to any oxygen source at any pressure and defaults to room air, if both electricity and oxygen are not available.

The Design:
The UAM is a self-contained plug-in-and-go anestheisia machine, which needs no oxygen cylinders, only a volatile agent. Using a work station layout, the system employs a 58 liter/min O2 concentrator, a bellows assembly to control gas flow with conventional patient connections using a Y-piece or coaxial tubing, a large capacity vaporizer (halothane or isoflurane), a reservoir bag, oxygen rotometer and integral fuel cell oxygen monitor. A second rotometer is included for either air or nitrous oxide.

Other features include a fail-safe alternative oxygen inlet, oxygen/nitrous oxide cylinder yokes and air inlet and failure detectors with alarms including an apnea alarm. The patient breathing system allows conventional scavenging and bacterial filters as there is no breathing valve at the patient’s airway. The inclusion of a mechanical ventilator and circle option with soda lime absorber is being considered for a second-generation version.

Affordable....

The aim in pricing the UAM is to ensure that it is affordable and available to non-profit, low-resource health care facilities while ensuring long term sustainability, high-quality manufacture and spares support with local training of BMET service engineers.

.....Available Worldwide

The UAM is a CE/ISO marked device with certificates to all current standards and has been evaluated in Footh NHS Hospital, UK by 5 independent NHS Consultant Anesthetists since April 2000. The UAM is currently installed in Nepal at four sites. Other placement sites are contemplated for 2011 In Africa and Asia.

For more information please contact us:
aygallego@gmail.com

Name: Mark Zimmerman
Email: aygallego@gmail.com
Country: Nepal
3.5.10 Single use assistive vaginal delivery system

The purpose of the system is to assist fetal extraction, in cases of prolonged second stages labour, without having to use forceps, a vacuum extractor, or to resort to caesarean sectioning. The lack of rigid instruments in the system is claimed to reduce the risk of injury to both mother and child.

SINGLE USE ASSISTIVE VAGINAL DELIVERY SYSTEM

Background

WHO Call for Innovative Technologies that Address Global Health Concerns

Country: Argentina

The purpose of the system is to assist fetal extraction, in cases of prolonged second stages labour, without having to use forceps, a vacuum extractor, or to resort to caesarean sectioning. The lack of rigid instruments in the system is claimed to reduce the risk of injury to both mother and child.

Device physical mechanism of action

This instrument has been designed on the basis of a double physical phenomenon consisting of a conical bell and an air clamp. The device consists of a polyethylene sheath with a silted lips on the fetal insertion edge, which fits the fetal head diameter. This sleeve is introduced using two flexible plastic sleeves. One of them is straight and is used to crown the fetal head, while the other sleeve slides over the fetal myometrial collar and allows pushing the device in the adequate final position.

After applying the device, a small amount of air may, or not, be inflated at zero pressure. The atmospheric air entering during the device application with the episkel is generally enough to produce the air clamp around the fetal head. However, the air clamp effect may be enhanced by inflating a small amount of air at zero pressure through the diffusion, which is along the device until creating a chamber in the distal edge of the bell. Thus, an air clamp is obtained, which箟between the inner parts of the fetal skull bones interaction. Such force may be either external, i.e., through contact from outside the device, or internal, i.e., coming from the normal forces that bring about uterine contractions and maternal pushing. The optional traction handle would allow maintaining the polyethylene sleeve diameter, thus facilitating maternal soft tissues dilatation during the extraction of the osophagus pole.

In order to test the physical phenomena, a real-size pregnant uterus was designed. This was a 1-inch glass sleeve at fetal material (10 cm). Through its transparent walls and eyewash both physical phenomena, the air clamp (figure 5) and the bell clamp phenomenon (figure 6).

Simulation Laboratory

To perform a preliminary study, an obstetric simulator was considered. Superior primates (chimpanzees, gorillas, and orangutans) would be the best choice for testing the device. However, this option is not feasible, since any experimental maneuver would require general anesthesia and would interfere in the physiological mechanisms of labor. Previous studies have demonstrated the effectiveness of childbirth simulator for the teaching of forceps placement, and the extraction manipulation (8-9).

According to the authors’ point of view, the research was performed in a childbirth simulator (simulator 3.0 – ‘Mama’) at the Obstetric Simulation Laboratory in the Faculty Medicine University (UML), interior USA. Obstetric Simulators provide a realistic and safe environment for the training and education of medical professional personnel (14). They are the clamping and conically bell-shaped objects of the simulator which are key components of the main physical mechanism.

We believe that the use of the device in human will be technically easier because of the elasticity of tissues and the biological fluids lubrication compared with the rigidity and lack of lubrication of the simulators. On the other hand, uterine contractions and the strength of maternal pushes represent another advantage compared with the simulators.

Potential comparative advantages over other devices: forceps or vacuum

• Medical advantages:
 - It would decrease the risk of maternal injury
 - It could help in the physiologic development of the second stage of labor
 - It would decrease maternal pushing efforts
 - It would decrease maternal discomfort
 - It could reduce prolonged second stage
 - It could reduce postpartum hemorrhage (placenta through a reduction in the second stage of labor)
 - It would decrease operative delivery
 - It would reduce perineal damage (low incidence of episiotomy)
 - It would reduce the 1st stage manipulation claims
 - It would decrease genital infections acquired through the birth canal (MV and Symptomatological Haematomas)

• Technical advantages:
 - It does not require expertise and individual training
 - It is easy to learn it
 - It is simple and smooth insertion
 - It has low production cost
 - It is disposable

FEASIBILITY AND SAFETY STUDY OF THE VAGINAL DELIVERY

Study Objectives: The main objective is to evaluate the safety and feasibility, in terms of ease of application and successful delivery, of the new device in assisting vaginal delivery in singleton term pregnancies during the second stage of labor.

Safety will be assessed by examining potential short- and long-term maternal and infant outcomes. Feasibility will be evaluated by observing successful exit from the fetal head after a brief application of the device under standardized conditions (bell cervical dilation, Before presentation, baby head rudder and device activated), followed by a clinical pregnancy outcome.

Study Design and Population: A prospective study involving 80 pregnant women at the Centro de Gestación del Centro de Salud de La Rosa, Tunuyán, Mendoza, Argentina, with singleton term pregnancies scheduled for mid-term delivery. A total of 80 volunteer women (40-45 years old) will be recruited. The women will be randomized into four equal groups, each corresponding to a different arm of the study.

Ethical Considerations: This project has been approved by CECMB and the World Health Organization Ethical Committees.

Name: Odon Jorge
Email: odonjorge@yahoo.com.ar
Country: Argentina
3.5.11 Portable on-site cell sorter and counter for HIV and malaria diagnosis

This is a lab-on-a-chip device to monitor AIDS in HIV-infected people as well as blood cell alterations indicating malaria. The device appears to be small and portable and it is claimed to allow for rapid automated screening of a blood sample for indicators of AIDS and/or malaria.

Portable on site cell sorter and counter for HIV and malaria diagnosis

GLOBAL HEALTH CONCERN
Developing countries are suffering most for the two global diseases HIV/AIDS and Malaria. A great burden is the lack of a dedicated, mobile, robust, easy-to-use and low-cost diagnostic equipment for CD4+ T-cell enumeration and for the counting of parasitized erythrocytes in the blood, respectively. A simple and portable cell counting device would be of great benefit for diagnostic purposes in resource-limited settings.

PROPOSED SOLUTION: THE CONCEPT
An integrated lab-on-chip solution for cell counting is proposed to bring innovative techniques directly to where they are needed most.

THE PHYSICAL PRINCIPLE
Dielectrophoresis (DEP) is a method for cell handling without physical contact with different cell types and dielectric properties can be separated using optimized-shaped microelectrodes generating high-gradient electric fields and patterned on the silicon substrates of microfluidic channels.

Depending on dielectric properties of different cells and frequency of the electric fields, cells can be attracted at the electrodes by positive (DEP+) force or repelled away by negative (DEP-) force, allowing a separation between different cell populations.

OBJECTIVES
- Schematic view of the designed layout for the CD4+/CD8+ sorter for separation of the developed DEP microelectrode unit for the first separation between blood cells (RBC) and white blood cells (WBC). Schematic view of the sorting and counting of CD4+ T-lymphocytes for HIV diagnosis.
- Schematic top view of the designed DEP microelectrode unit for the separation between blood cells (RBC) and infected red blood cells (IRBC), while parasitized RBC are concentrated at the center for counting and malaria infection assessment.
- Numerical modeling has been performed to describe dielectric cell properties, to simulate the electric field distribution and to quantify the consequent non-Newtonian DEP forces acting at the cell microscale.

STAGE OF DEVELOPMENT
The proposed solution is now at a proof-of-concept research study. It could be ready to be commercialized after the system level integration of its components and the required certifications assessing its diagnostic function. Several microelectrodes manipulation stages have been designed, prototyped and tested as functional units with available demonstrative experimental cell types.

Silicon dies have been embedded in a polyethylene plastic support sheet with the requested properties of biocompatibility and optical transparency.

An optoelectronic image sensor for detecting the collected cells has been included in the same lab-on-chip package, together with the embedded image processing software.

The necessary driving and controlled electronics can be assembled in a compact and battery powered solution, adaptable to a handheld, automatic and low-cost instrument, operable by untrained personnel.

COST EFFECTIVENESS AND AFFORDABILITY
The electronic equipment is an integration of already available low-cost products for mass-market, cheaper than existing diagnostic technologies at high production volumes. The proposed solution for a portable on-site cell sorter and counter for HIV and malaria diagnosis paves the way for an integrated mobile diagnostic lab-on-chip instrument, with low cost and great benefit, especially in rural areas of developing countries.

Name: Sarah Burgarella
Email: sarah.burgarella@gmail.com
Country: Italy
WHO Call for Innovative Technologies that Address Global Health Concerns

3.5.12 Decision support system for paediatric HIV

The purpose of this system is to move away from paper-based medical records while ensuring easy and reliable access to patient-centred information. This electronic health records system is targeted at paediatric HIV cases and is intended to aid clinical decision-making processes such as weight-based dosing support for antiretroviral drugs.

Name: Sangeeta Das Bhattacharya
Email: sangeeta.das.bhattacharya@gmail.com
Country: India
3.5.13 Transcutaneous anaemia monitoring system

The purpose of this system is to screen populations for insufficient levels of haemoglobin in the blood and to carry out diagnosis of severe anaemia. The system is claimed to be based on spectrophotometric analysis. The device appears to be portable, non-invasive and is claimed to provide a read-out in less than a minute.

Name: Aman Midha
Email: screen.anaemia@gmail.com
Country: India
3.5.14 Solar-powered autoclave

This device is intended to sterilize medical instruments and is claimed to run solely on solar power. This technology could allow sterilization of medical instruments in remote areas with no access to electricity and hence reduce the risk of infections associated with performing medical interventions with unhygienic equipment.

Figures and Tables

Figure 3: Proof of concept experimentation was done to ensure that the 250W boiler and parabolic concentrator generated the appropriate amount of steam for a 3L insulated pressure vessel. Early testing showed the system would need two concentrators for this amount of steam. A sterilization indicator is measure temperature and activate an LED when the appropriate measures for sterilization are reached. Advantages of this solar autoclave design include: (1) decoupled solar concentrator and pressure vessel to reduce variability in solar collection (2) ability to scale the system size with additional solar concentrators (3) modular electronics to measure temperature, pressure, sunlight and external energy (4) design for manufacturing and flat pack shipping.

Table 1: Advantages of Solar Sterilization

- **Effectiveness:** Tested in field and laboratory conditions and found to be highly effective in sterilizing medical supplies.
- **Cost:** Lower cost compared to traditional sterilization methods.
- **Portability:** Lightweight and easy to transport.
- **Sustainability:** Solar energy is sustainable and reduces reliance on fossil fuels.

Collaboration: The solar autoclave design was developed in collaboration with University of Illinois, medical professionals and engineers for device design, testing and implementation. The device is designed to be used in remote areas with limited access to electricity.

References:

[1] WHO Call for Innovative Technologies that Address Global Health Concerns

[2] Distributed surgical instrument sterilization using SOLAR POWERED AUTOCLAVES in low resource settings

[5] WHO: Global Burden of Disease Study

[7] Solar Sterilization: A Promising Technology for Rural Health Care in Developing Countries

Name: Matt Pittinger
Email: solarautoclave@gmail.com
Country: United States of America
3.5.15 Portable infant warmer

The purpose of this device is to improve the care of premature and low-birth-weight babies by providing a constant temperature in order to prevent hypothermia. This portable device is claimed to require no electricity and would allow for close mother-to-baby contact. The product is targeted for use in urban and rural health care settings, as well as home settings.

Portable Infant Warmer

Background of Problem

Each year, 20 million low-birth-weight (LBW) and premature babies are born around the world; 4 million of them die annually. Delivery of an optimal thermoneutral environment for low-birth-weight infants at risk for environmental hypothermia is universally accepted as essential. While incubators and heat lamps have traditionally provided a thermoneutral environment, these devices are expensive and require electricity, which poses a problem in developing countries. This portable device is designed for use in clinics and during transport. It also allows for close mother-baby interaction in home settings.

Technology

A precision heat source used to heat the bag within 30 minutes. Modes exist for warming with and without electricity.

- **PRODUCT FEATURES: Clinical version**
 - Maintains a stable temperature for at least 4 hours
 - Easy to sanitize
 - No electricity near infant
 - Allows for close mother-baby interaction

A sealed pouch containing PCM. Maintains a temperature of 32°C for 4+ hours without electricity. Pouch can be reheated repeatedly.

- **PRODUCT FEATURES: Home version**
 - Complements KMC
 - Works without electricity
 - Stable micromotion for at least 8 hours
 - Easy to sanitize
 - Allows for close mother-baby interaction

Data and Testing Methodology

To evaluate the PCM’s ability to maintain a steady temperature, we compared temperature cooling curves between 400 grams of PCM and a 400 gram pure water control and among 400 grams of PCM in varying clinically-relevant ambient air temperatures. For each test, we warmed the PCM in a heated water bath (to 38°C) and placed the pouch into the sleeping bag. Cooling curves were divided into phases: (1) Rapid Cooling and (2) Steady State. Heat loss was calculated in Celsius/minute and averaged across the thermometers in a test. Different tests were compared with ANOVA.

Our bench data confirms that without an internal heat source the temperatures in the interior of the sleeping bag can remain between 35.0°C and 36.0°C (as specified by the WCO for comparable warming technologies) for a period of at least 260 minutes.

Further **in vitro** testing is being conducted with pre-term lambs at the University of Utah, led by Professor Kurt Albright.

A randomized controlled study (standard of care vs Portable Infant Warmer) is currently being conducted in hospitals in Bangalore, India to determine the ability of the device to support thermo-stability in low birth weight neonates within the range of 36.5°C to 37.5°C. Additional studies are being conducted on preterm infants, adding the breath temperature, lasting for 4 hours. Additional studies are also being conducted on preterm infants, adding the breath temperature, lasting for 4 hours. A study conducted at Stanford will test the viability of using phase-change material as a supplemental warming technology in the neonatal unit. Stanford researchers will perform randomized controlled trials comparing the ability of the phase-change material to help warm infants and promote mother-to-child bonding to that of current best practices and technology.

Name: Jane Chen
Email: christinalaurenchao@gmail.com
Country: United States of America
Each applicant was asked to identify any challenges they could foresee with regard to the successful implementation of their technology. Figures 8 and 9 show the challenges cited by applicants of commercialized and non-commercialised technologies respectively. A great challenge foreseen by all applicants was a lack of funding: 39% of category 1 and 83% of category 2 applicants cited this.

Distribution was also identified as a major challenge for innovations in category 1 and 2 (43% and 61% of applicants respectively; Figure 8 and 9). This is the largest concern identified by category 1 technologies, which may be due to the fact that products in this category are either on the market (or soon will be) and therefore require effective distribution channels to ensure their success. Alternatively, applicants of technologies in category 2 noted a greater need for manufacturing partners (50% compared to 14% of category 1 applicants; Figure 9 and 8 respectively), as their products are in the earlier stages of development.

Figure 8. Expected challenges to the success of innovation as described by applicants to category 1

Commercializable technologies (category 1)
Figure 9. Expected challenges to the success of innovations as described by applicants to category 2

Concept technologies (category 2)
This report presents a selection of innovative technologies from those submitted in response to the WHO call for innovative technologies. The call is one of the ways that WHO is working to achieve its strategic objective to ensure improved access, quality and use of medical products and technologies (3). Further work is required to ensure that these innovations are accessible to those in need of them in low- and middle-income countries. In particular, further evaluation of the clinical safety and effectiveness of the technologies and assessment of their robustness and affordability is required.

Innovative technologies are necessary to increase the cost-effectiveness of health care and ease the burden of chronic diseases worldwide. However, much work remains to be done to achieve results in this domain. Specifically, stakeholders need to explore novel ways of approaching distribution and financing which are appropriate to local infrastructure.

WHO will continue to interact with industry, funding agencies, academia and international organizations to raise awareness of the need to design, produce and commercialize innovative, accessible and robust technologies which address the needs of health systems particularly in low-resource settings.

Through this first call for innovative technologies, WHO is working towards making innovative and appropriate technologies affordable and accessible in all settings to increase the quality of health care, and most importantly improve the quality of life of all people.
6. References

WHO Call for Innovative Technologies that Address Global Health Concerns

Annex 1: Rules of the call for innovative technologies

1. Background and Aim of the Call

Medical devices are indispensable in health care delivery as tools for prevention, diagnosis, treatment and rehabilitation. However, despite the exponential growth of scientific and technological development, availability of and access to appropriate and affordable health technologies in low- and middle-income countries are still insufficient.

One of the WHO Department of Essential Health Technologies’ goals is to help make available the benefits of core health technologies with a view to addressing global health concerns by developing a framework for health technology programmes and by challenging the scientific and business community to identify and develop innovative technologies.

This call for innovative technologies aims at identifying and evaluating innovative medical devices, including assistive devices, either existing or under development, which address global health concerns and which are likely to be available, appropriate and affordable for use in low- and middle-income countries.

Selected innovative technologies will be highlighted on the WHO Essential Health Technologies website. They will be shared with governments, donors and other stakeholders, with a view to generally fostering the development, availability of and access to innovative health technologies, particularly in low- and middle-income countries.

2. Key Dates

11 September 2009 Launch of the call for innovative technologies at the World Congress on Medical Physics and Biomedical Engineering, Munich1.

31 January 2010 Deadline for submission of applications.

30 June 2010 Posting of the list of selected innovative technologies on the WHO website4.

3. Eligibility

3.1 Who can apply

The call for innovative technologies targets manufacturers, institutions, universities, governments, individuals and non-profit organizations which design, manufacture and/or supply any type of medical device that address the global health concerns mentioned in section 5. One submission per applicant will be accepted.

4. The Scope of Innovative Technologies

4.1 Medical Devices

Eligible health technologies are limited to medical devices as defined by the Global Harmonization Task Force (GHTF): They include instruments, medical equipment, implants, disposables, assistive devices and software used mainly for the purpose of prevention, diagnosis, monitoring or treatment of disease, rehabilitation, control of conception and/or measuring, restoring correcting physiological functions.

The call for innovative technologies does not cover clinical procedures, medicinal products, vaccines, biological therapeutic products or tissue engineered medical products.

4.2 Innovative Technologies

To qualify for consideration, a technology must be deemed “innovative” by providing the evidence that the solution:

- Has not previously existed;
- Has not previously been made available in low- and middle-income countries;
- Is safer and/or simpler to use than earlier solutions; and/or
- Is more cost effective than previous technologies.

4.3 Two Categories

Category 1 Commercialized/sable products

- New products
- Products which have been commercialized for less than five years in high-income countries and which are not (yet) widely used in low- and middle-income countries
- Recent adaptation of existing non-health products for a health purpose
- Recent adaptation of an existing medical device for low- and middle-income country settings

Category 2 Products in a non-commercialized/sable stage

- Products which are under development or otherwise in a conceptual stage

3 http://www.who.int/medical_devices/en/

2 http://www.who.int/medical_devices/en/
5. The Health Problems to be Addressed

The health problems addressed by the innovative technologies should be related to the following key global health concerns:

- Lower respiratory infections
- Diarrhoeal diseases
- HIV/AIDS
- Malaria
- Prematurity and low birth weight
- Neonatal infections
- Birth asphyxia and birth trauma
- Unipolar depressive disorders
- Ischemic heart disease
- Cerebrovascular disease
- Tuberculosis
- Road traffic accidents
- Chronic obstructive pulmonary disease
- Alcohol use disorders
- Refractive errors
- Deficient maternal health
- Infant and child (under 5) mortality
- Cancer
- Disability.

6. Submission of Applications and Deadline

Interested applicants can download the submission form from: www.who.int/medical_devices. The applications should be completed in English, signed, scanned and e-mailed as a PDF document to medicaldevices@who.int.

Deadline for applications is 31 January 2010. Receipt of applications will be confirmed by e-mail.

7. Screening and Selection

Step 1 — WHO will screen all applications. The ones which are incomplete will, in principle, not be processed further. An identifier code will be assigned to the application and all information about the applicant will be removed to maintain confidentiality.

Step 2 — Applications without identification data will be sent to selected WHO collaborating institutions for a second screening with respect to conformity to the scope of the call for innovative technologies. Those applications which do not fall within the scope of the call will not be sent to the selection committee, the so-called Advisory Group on Innovative Technologies.

Step 3 — Proposals are evaluated and selected by the Advisory Group on Innovative Technologies, which is composed of experts in the field of health technologies. A confidentiality agreement will be signed by the members of such Advisory Group. Any expert reviewer with a declared conflict of interest will not be authorized to participate in the review.

8. Selection Criteria

The following considerations will be taken into account in the selection of the applications:

- Level of safety for user, patient and the environment;
- How effectively the technology addresses the related health concern;
- How well the technology is adapted to local infrastructures in resource-limited settings;
- Ease of use and maintenance;
- Total cost of ownership, cost-effectiveness and affordability; and
- Cultural and social acceptability of the technology.

9. Notification

Each applicant will be notified in writing (by e-mail) in June 2010 whether or not the submission has been selected. A list of the selected innovative technologies will then be posted on the WHO web site.
WHO reserves the right not to select any application or to annul the solicitation process at any time, without thereby incurring any liability or any obligation to inform the applicants of the grounds for the WHO's action. WHO reserves the right, at any time during the solicitation process, to modify the scope of the call. At any step in the evaluation process, WHO reserves the right to issue an amendment to the call detailing the change to only those applicants who have not been officially eliminated at that point in time. Applications will be evaluated by WHO, in collaboration with partner experts and institutions, in its sole discretion, taking into account the criteria outlined above. There is no obligation by WHO to reveal, or discuss with any applicant, how a submission was assessed, or to provide any other information relative to the selection process.

Incomplete applications and applications submitted after the deadline will, in principle, be disregarded, unless WHO in its sole discretion, decides otherwise in respect of such incomplete or late application. WHO may request applicants to submit complementary or additional information as a condition for consideration. Any possible requests to submit complementary information and/or to submit a more detailed application, as well as any discussions ensuing there from, will be exploratory only, and do not mean that the applicant concerned will be selected.

WHO will not be held to offer applicants any explanation or justification as to why their proposal has been rejected and/or why they have not been selected. The list of selected applications will not necessarily be made public as such. The submission of applications, the subsequent selection process and outcome of the selection process will not be subject to any claim of any kind whatsoever, or appeal. Each applicant will be notified in writing by WHO (by e-mail) whether or not the submission has been selected.

Any and all costs and expenses incurred in relation to, or ensuing from, the submission of an application (including the possible complementary information and/or a more detailed proposal, if so requested by WHO) will not be subject to claims for financial compensation of any kind whatever. WHO does not warrant that any medical devices, innovations, concepts or products that may be used, identified or otherwise developed from selected proposals will be successfully commercialized in target countries, or that WHO will finance or otherwise support the development or commercialization of any product. By selecting applications, WHO will not be held to endorse any product but will solely aim at drawing stakeholders' attention to innovative technologies, either existing or under development, with a view to furthering development and availability of, and access to, such innovative health technologies.

The mention of specific companies or of certain manufacturers' products at any stage of the selection process or subsequently will not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned, nor that they have been found to be safe and efficacious.

Without WHO’s prior written approval, selected applicants shall not, in any statement of an advertising or promotional nature, refer to their selection under this call for innovative technologies. In no case shall selected applicants use the name or the emblem of the World Health Organization, or any abbreviation thereof, in relation to their business or otherwise. The same applies to all applicants during the selection process and thereafter.

www.who.int/medical_devices