Introduction

Insufficient financing of public health services to meet either professionally defined patient need or patient demand has become more acute in low income countries over the last decade. Many countries cannot yet provide basic primary health care for much of the population. Despite these constraints, irrational drug use causes a serious waste of resources, which no country can afford. It has been suggested that if all these wastages were stopped, there would be enough funds to buy drugs for everyone’s health needs.

One solution to resource constraints is to impose user fees. However, a review of the economic literature concerning the effects of user fees in developing countries suggests that effects may be equivocal, and specifically that:

(1) fees will usually raise revenue but only in small amounts and at the expense of equity;

(2) fee collection is often inefficient due to administrative incapacity and lack of leadership;

(3) demand often remains low despite low prices, which may reflect poor quality service (rarely measured) and therefore an unwillingness to pay for such services.

The effects of different kinds of user fee on prescribing costs in rural Nepal

KATHLEEN A HOLLOWAY, BHARAT R GAUTAM AND BARNABY C REEVES

1Britain Nepal Medical Trust, Biratnagar, Nepal, 2Essential Drugs and Medicines, World Health Organization, Geneva, Switzerland, 3Clinical Effectiveness Unit, Royal College of Surgeons, London, UK and 4Health Services Research Unit, London School of Hygiene and Tropical Medicine, London, UK

Objectives: (1) To estimate the cost of irrational prescribing, and (2) to compare the effect of three different kinds of user fee on prescribing costs, in rural Nepal.

Methods: A controlled before-after study was conducted in 33 government primary health care facilities in rural eastern Nepal during 1992-95. A fee per prescription (covering all drugs in whatever amounts) was regarded as the control against which two types of fee per drug item (covering a full course of treatment for each item) were compared. The average total cost to the patient for two drug items was the same in all fee systems. Total cost, expected cost (according to standard treatment guidelines) and wastage costs (total minus expected cost) per prescription were calculated from an average of 400 prescribing episodes per facility per year. The proportion of prescriptions conforming to standard treatment guidelines was calculated from 30 prescriptions per facility per year.

Results: 20-52% of total drug costs were due to inappropriate drug prescription. A fee per drug item, as compared with a fee per prescription, was associated with (1) significantly fewer drug items prescribed per patient, (2) significantly lower drug costs per prescription, (3) significantly lower wastage due to inappropriate drug prescription, and (4) a significantly greater proportion of prescriptions conforming to standard treatment guidelines. Average drug cost per prescription (which was 24-33 Nepali rupees [NRs] across districts and time) was 5.7 NRs (95% confidence interval 1.0 to 10.4) and 9.3 NRs (95% confidence interval 4.8 to 13.8) less with the two different item fees, respectively, than with the fee per prescription.

Conclusion: The economic consequences of irrational prescribing are severe, particularly in association with charging a fee per prescription. Item fees in the public sector reduce irrational prescribing and associated costs.

HEALTH POLICY AND PLANNING; 16(4): 421–427 © Oxford University Press 2001
It has been suggested that some types of user fee (e.g. a single fee per prescription) may encourage over-prescription, so that the benefit of the extra funds raised by the user fees. Other types of user fee (e.g. a fee per drug item) may discourage over-prescription and so be more cost-efficient. This article describes the first controlled intervention study to estimate the costs of rational and irrational prescription in association with different kinds of user fee priced at similarly low levels. By keeping overall cost to the patient constant, the confounding effects of changing equity were excluded and the efficiency of different kinds of user fee were assessed in terms of prescribing costs.

This study builds upon other work, which used cross-sectional survey design and looked at similar outcomes in the same region of Nepal and under the same NGO. One study compared drug use in a district where there was a supplementary drug supply and a small prescription fee versus a district without any supplementary drug supply or fee. The other study compared drug use in three health facilities charging a fee per prescription versus three health facilities charging a fee per drug item and where the fee per item was cheaper for the average patient who received two drug items.

**Context**

There are few countries poorer than Nepal, where there are few roads and much of the population is without electricity, sanitation or reasonable access to drinking water. Most people are engaged in agriculture; the Gross National Product (GNP) in 1991 was US$180. The health of the population is poor. In 1991 life expectancy was only 53 years and the infant mortality rate was 101 per 1000 live births.

Health care is undermined by a lack of human resources and essential drugs.

The study took place in areas supplied by drug schemes operated by the Britain Nepal Medical Trust (BNMT), an international non-governmental organization (NGO) which, together with the government, operated drug schemes in the form of subsidized locally revolving drug funds in the hilly and mountainous areas of Eastern Nepal. The aims of these drug schemes were to ensure adequate availability of essential drugs and to develop sustainable drug re-supply systems in public health facilities. Within these schemes, about half the drugs were supplied by the government and half by BNMT, and the patients paid about 25% of the total drug costs through user fees. Only drugs belonging to the essential drug list of Nepal were supplied and there were few other sources of drugs in the rural areas where these schemes operated.

**Aims of the study**

The study's objectives were (1) to estimate the cost of irrational prescribing at government health facilities in Nepal, and (2) to compare the effects of three different kinds of user fees (at similar below-cost-price level) on the cost of rational and irrational prescribing at government health facilities.

**Methods**

A controlled before-after non-randomized study comparing three different types of user fee in 1992 and 1995 was conducted. Three districts used the same fee per prescription in 1992. In 1995 one district continued to charge a fee per prescription, while the other two districts charged a one-band or two-band fee per drug item as shown in Table 1. The new item fees were introduced during 1995-94 and there was an interval of 6-12 months between data collection before and after the new fee systems were implemented.

Implementation of the different user fees throughout the districts was done by BNMT and government district staff over a period of some months and included:

- a preparatory visit to each health facility to ensure an adequate supply of drugs and related materials at the start of the fee changeover;

**Table 1. Details of the user fees for drugs in the three districts**

<table>
<thead>
<tr>
<th>Fee type</th>
<th>Districts where fees were implemented</th>
<th>Fee detailsa (1 = NR s.70–80/- during 1992–95)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1992</td>
<td>1995</td>
</tr>
<tr>
<td>1-Band item fee</td>
<td>Panchthar</td>
<td>N R s.3/- (health post) and N R s.6/- (hospital) per prescription, covering all drugs for a full course of treatment. Fee in Panchthar during the period 1994-5 was increased to N R s.7/- (health post) and N R s.8/- (hospital) per prescription due to inflation and in order to better match the other fees in overall amount charged per prescription.</td>
</tr>
<tr>
<td></td>
<td>Taplejung</td>
<td>N R s.3/- per item (health post) and N R s.5/- per item (hospital), whether cheap or expensive and covering a full course of treatment.</td>
</tr>
<tr>
<td>2-Band item fee</td>
<td>Bhojpur</td>
<td>N R s.5/- per expensive item (e.g. antibiotics and injections) and N R s.2/- per cheap item (e.g. oral rehydration salts, vitamins, paracetamol, anti-helminthics), in both health post and hospital, covering a full course of treatment.</td>
</tr>
</tbody>
</table>

---

a The average total fee per prescription in 1995, for each kind of user fee, amounted in total to approximately the same amount (about NR s.7/-), based on the average prescription having two drugs, one ‘expensive’ and one ‘cheap’. NR s.7/- is equivalent to about one-third of the average day’s cash income previously reported in one study to be NR s.23/- for 73% of village households.
Effect of user fees on prescribing costs

- a limited publicity campaign of 3 months within the district, involving posters and talks in schools and bazaars on market days;
- a 2-day training seminar for health post staff;
- a visit by the NGO staff to the health facility to implement the new fee system and support the health workers during the first few days of charging the new fee.

In addition, there was a second part to the study, consisting of a cross-sectional survey done in 1995–6. In this survey, exiting patients (15–30 per facility) and health workers (1–5 per facility) were interviewed in order to observe the drugs received and the fees paid by patients, and also to ascertain patient and health worker characteristics. This cross-sectional survey is described elsewhere13,14 and was done to:

- check whether the prescribed drugs were dispensed;
- check whether the patients paid the fees they were supposed to pay;
- examine variation in patient and health worker characteristics between facilities which could confound the results.

The three districts were similar in terms of population, health services and ecological factors, and in each district there were 9–11 health posts and one district hospital. There was at least 5 hours walk between different health facilities either within the same district or between two contiguous districts, so reducing the chances of cross-contamination between facilities charging different kinds of user fee.

Average prescribing costs were assessed from a random systematic sample of, on average, 400 carbon copy prescriptions per facility per year (held initially in an Epi Info 6.03 database). These prescriptions in 1992 and 1995 were costed, using SPSS/PC+ (version 5) software, by linking the prescription database with:

1. a drug price database, using 1995 wholesale prices, in order to estimate actual cost per prescription;
2. a diagnosis cost database, calculated from standard treatment guidelines and 1995 wholesale drug prices, in order to estimate expected cost per prescription.

A verage costs (actual and expected) per prescription for each facility were calculated and entered into a summary health facility database along with other indicators collected from health facility records or by observation.

Three potential problems with regard to costing diagnoses were dealt with as follows. First, it was assumed that the profile of disease severity, which could not be evaluated from the prescription, would be similar before and after the fees were introduced. Secondly, a set of rules was devised and applied by the main author for categorizing recorded symptoms and diagnoses that did not match those specified in the standard treatment guidelines into diagnoses that did match. For example, a sore throat without fever or lymphadenopathy was classified as a "viral upper respiratory infection". Thirdly, direct standardization for case-mix was carried out, assuming that the distribution of recorded and unrecorded diagnoses was similar, in order to prevent prescriptions for which no diagnoses were recorded being calculated as having zero cost.

Other data from 1992 and 1995 in the health facility summary database included:

1. average cost per patient of drugs dispensed (as opposed to prescribed) according to health facility records (total drugs dispensed according to the dispensing register divided by the number of patients receiving prescriptions);
2. average number of drug items per prescription from carbon copy prescriptions;
3. average number of units per drug item prescribed from carbon copy prescriptions;
4. a quality of prescribing indicator, namely the percentage of prescriptions conforming to standard treatment guidelines, calculated from a random sample of 30 carbon copy prescriptions per facility per year; this indicator was found to be reliable (see footnote d, Table 2) and valid, since parallel changes occurred in other quality of prescribing indicators13,14.
5. other potential confounding variables13,14 including:
   - patient age, sex and case-mix, from the carbon copy prescriptions;
   - patient attendance and staff availability from health facility records;
   - drug availability from regular observation at the health facilities by BNMT staff;
   - health worker refresher training and supervision from interviews13,14.

Analysis

Multiple linear regression (Stata version 5) was used to analyze summary data at the level of the health facility, thereby accounting for the likelihood of greater similarity of prescribing within facilities than between them.13 The prescription fee district was regarded as the 'baseline' against which the prescribing costs in the two item fee districts in 1995, adjusted for 1992, were compared, i.e. the differences in prescribing costs across districts in 1995 were compared, taking into account the varying baseline levels in 1992. Expected and actual costs per prescription and, consequently, wastage due to irrational prescribing (actual – expected costs) were adjusted for varying case-mix by direct standardization (see footnote a, Table 2).

Multiple linear regression was also used to investigate the effect of potential confounding variables (see above). Variables were added, one at a time, to the regression model that included indicator variables for the two districts (fee systems) and the baseline level of the outcome. Confounding by other variables was judged to have occurred if, after insertion of the potential confounder, the estimates for the relative differences between the item fees and the prescription fee (B coefficients) changed by more than one standard error. No significant confounding was identified by this process. Models which included potential confounding variables are described in full elsewhere13,14.
Results

Table 2 shows simple means for the various prescribing costs and the dispensing costs in 1992 and 1995, and the changes between 1992 and 1995. Table 3 shows the regression coefficients (representing the differences in outcome in 1995, taking into account 1992 levels) of the 1- and 2-band item fee districts, with the fee per prescription district as the 'control'. There was no substantive confounding in any regression model.4,14

Table 2 also shows that irrational prescribing accounted for a large proportion of the cost per prescription. Wastage per prescription (due to irrational prescribing), as a percentage of total drug prescription costs, in the prescription fee, 1-band and 2-band item fee districts was 27, 30 and 21%, respectively in 1992, and 32, 40 and 20%, respectively in 1995. Thus, between 1992 and 1995, the proportion of prescription costs improved by 12% or more in the item fee districts relative to the prescription fee district.

The lower relative costs in the item fee districts were as expected, however, contrary to expectation, absolute savings were not realised. Thus, the observed change in the average cost per prescription in Nepali rupees (NRs), over 1992-95, in the flat prescription fee district was +8.7 as compared with +0.3 in the 1-band item fee district and –1.6 in the 2-band item fee district. This counter-intuitive result probably arose because of a similar increase across all districts in the number of units of each drug prescribed, the reason for this being unknown.

Table 2 shows the mean values for prescribing costs in Nepali Rupees (NRs) and selected prescribing indicators in 1992 and 1995.

### Table 2. Mean values for prescribing costs in Nepali Rupees (NRs) and selected prescribing indicators in 1992 and 1995

<table>
<thead>
<tr>
<th>Prescription (Px) indicators</th>
<th>Flat fee per prescription</th>
<th>1-band item fee</th>
<th>2-band item fee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panchutar</td>
<td>Taplejung</td>
<td>Bhojpur</td>
</tr>
<tr>
<td>Average actual drug cost per prescription (NRs)a</td>
<td>24.3</td>
<td>27.7</td>
<td>25.6</td>
</tr>
<tr>
<td>Average expected drug cost per prescription (NRs)b</td>
<td>17.8</td>
<td>19.4</td>
<td>20.1</td>
</tr>
<tr>
<td>Average wastage per prescription (NRs)c</td>
<td>6.5</td>
<td>8.3</td>
<td>5.5</td>
</tr>
<tr>
<td>Wastage as a % of actual cost per prescription</td>
<td>+27%</td>
<td>+30%</td>
<td>+23%</td>
</tr>
<tr>
<td>Average cost per patient of drugs dispensed (NRs)d</td>
<td>22.1</td>
<td>23.9</td>
<td>22.8</td>
</tr>
<tr>
<td>Average number of drug items per prescription</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>% Pxs conforming to standard treatment guidelines</td>
<td>23.5</td>
<td>13.0</td>
<td>31.2</td>
</tr>
</tbody>
</table>

a Indicators were standardized for case-mix using a standard population based upon the average case-mix across districts in 1995. Ten diagnostic categories, used in the standardization by case-mix were: diarrhoea, respiratory, skin, worms, accident, eye, genito-urinary, gastro-intestinal, symptomatic and other (including all other diagnostic categories).

b Wastage = actual cost – expected cost.

c Dispensed drug costs differed from carbon copy prescription drug costs in two ways. Firstly, dispensed drug costs were calculated using 1992 prices instead of 1995 prices for 1992 and 1995 prices for 1995 as part of an initial process not primarily for this research. The difference in cost per prescription using 1992 instead of 1995 prices was investigated by costing all the 1992 records in the carbon copy prescription database using 1992 prices instead of 1995 ones and estimating the difference. It was found that using 1992 instead of 1995 prices resulted in each prescription costing on average NRs.1.8/- to NRs.2.2/- less. Secondly, dispensed drug costs included dressings and bandages, which constituted 4.5–6.4% of the total cost of drugs in each district.

d Calculation of wastage is based on the assumption that there is no wastage in the flat prescription fee district.

e Wastage = actual cost – expected cost.

The author judged whether the prescriptions conformed to Nepali standard treatment guidelines according to (1) the appropriateness of the drugs for the diagnoses, (2) dosage, (3) contraindications and (4) drug interactions. All prescriptions from one district in one year were examined once prior to the final 'judging' in order to develop a consistent set of rules and following 'judging' the results found in the five health facilities were 0, +3.4 and –6.7% for the Bhojpur facilities, –2.5% for the Panchutar facility and +3.3% for the Taplejung facility.

The lower costs in the item fee districts, compared with the prescription fee district, were due to fewer drug items per prescription, without adverse effects on prescribing quality, as indicated by the percentage of prescriptions conforming to standard treatment guidelines.4,14 Indeed, the regression coefficients in Table 3 indicate that prescribing quality improved by 12% or more in the item fee districts relative to the prescription fee district.

Results
Table 3. Regression models for prescribing costs and selected prescribing indicators

<table>
<thead>
<tr>
<th>Prescription (Px) indicators</th>
<th>1-band item fee</th>
<th>2-band item fee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Taplejung</td>
<td>Bhojpur</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>95% CI</td>
</tr>
<tr>
<td>Prescribing drug cost indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average actual drug cost per prescription (NRs)</td>
<td>$-5.7$</td>
<td>$-10.5$ to $-1.0$</td>
</tr>
<tr>
<td>Average wage rate per prescription (NRs)</td>
<td>$-6.3$</td>
<td>$-12.1$ to $-0.5$</td>
</tr>
<tr>
<td>Average cost per patient of drugs dispensed (NRs)</td>
<td>$-9.2$</td>
<td>$-13.5$ to $-5.0$</td>
</tr>
<tr>
<td>Prescribing indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of drug items per prescription (Px)</td>
<td>$-0.89$</td>
<td>$-1.14$ to $-0.64$</td>
</tr>
<tr>
<td>Number of units per drug item prescribed</td>
<td>$1.5$</td>
<td>$0.8$ to $3.8$</td>
</tr>
<tr>
<td>% Pxs conforming to standard treatment guidelines</td>
<td>$12.0$</td>
<td>$13.0$ to $21.0$</td>
</tr>
</tbody>
</table>

B = regression coefficient; CI = confidence interval; ns = not significant.

a  Prescribing cost 1995 = constant + b1*prescribing cost 1992 + b2*(1-band item fee) + b3*(2-band item fee) + residual error.

b  Standardized for case-mix.

Validity of the results

Verification, across all districts, that patients were (1) charged the correct user fee, 13,14 and (2) dispensed 81–88% of prescribed drugs.14 is described elsewhere. Validity of the cost results is supported by the fact that similar findings were found from two data sources, the carbon copy prescriptions and the dispensing registers (see footnote c, Table 2), with regard to:

1. the level of average drug costs per patient (Table 2); and
2. the significantly lower average drug costs per patient in the item fee districts as compared with the prescription fee district (Table 3).

Discussion

The results show, firstly, that 20–52% of drug costs were wasted due to irrational prescribing increased by 25% in the prescription fee district and 10% in the 1-band item fee district but decreased by 1% in the 2-band item fee district.

There appeared to be few differences of effect between the 1- and 2-band item fees in this study. However, there was some evidence that the higher fee for ‘expensive’ items, such as antibiotics and injections, in the 2-band item fee area resulted in lower prescription costs as compared with the 1-band item fee area. This was probably due to a greater decrease in the use of ‘expensive’ drugs such as antibiotics and injections with the 2-band item fee as compared with the 1-band item fee.13,14

Calculation of the expected costs was dependent upon the diagnoses recorded and, without adjustment, a prescription with an absent diagnosis would have been priced as having zero cost. Thus, poor record keeping, or different practices for recording diagnoses, could have led to different estimates of the expected cost per prescription even though the case-mix would not have justified such differences in reality. This may have accounted for the slight reduction in expected prescription costs observed across all districts during 1992–5. However, direct standardization according to case-mix adjusted not only for variation in case-mix, but also for expected costs of those prescriptions where no diagnosis was recorded. The assumption was that where no diagnoses at all were recorded, the distribution of the unrecorded diagnoses was the same as for those prescriptions where at least one diagnosis was recorded. This may not have been so; for example, if only patients with more complex or more trivial problems had no diagnosis recorded on the prescription. However, since non-recording only occurred, on average, in 0.6–7.2% of cases across health facilities (evenly spread across districts), the potential for bias was small.

Although direct standardization adjusted for non-recording of diagnoses, it did not fully adjust for differences in the number of diagnoses recorded per prescription. However, the average number of diagnoses per prescription, and the average expected costs per prescription, were very similar.
The lower prescribing costs in the item fee districts as compared with the prescription fee district were achieved through a reduction in the numbers of drug items per prescription and an improvement in prescribing quality, measured by the proportion of prescriptions which conformed to standard treatment guidelines. This is in contrast to the findings of the Rand Health Insurance experiment in the USA, where the decreased annual prescribing costs that occurred with increased cost sharing were not associated with improved prescribing quality because a decrease in both unnecessary and necessary antibiotic use was observed. However, the fees in our study were set at the same relatively low level in all districts. It may be that, if the fees in this study had been set as high (relative to patient income) as in the Rand and Health Insurance experiment, reductions in prescribing costs would have been at the expense of prescribing quality.

There is a great deal of evidence that prescribing in the private sector, which charges per drug item, is more costly and of poorer quality. The findings of this study would appear to be in direct contrast to this body of literature. However, there are substantial differences between this study and those others that may explain the contradictory results. First, this study took place only in the public sector and none of the health workers had any financial gain from prescribing drugs, unlike in the private sector. Secondly, the item fees in this study covered a complete course of treatment and so there was no financial incentive for patients to purchase incomplete courses of treatment, as may happen in the private sector. Thirdly, this study took place in a controlled environment where drug availability and cost to the patient was the same irrespective of the fee system, unlike in other studies that have compared drug use in the public and private sectors.

Item fees were associated with cost containment of the order of 15%–25%, as assessed by calculating wastage costs as a proportion of total costs per prescription. This compares with estimated savings of 10% achieved by generic prescribing and substitution in South Africa. The estimate that 20–52% of drug costs, across districts during 1992–95, were ‘wasted’ through irrational prescribing is consistent with other reported estimates.

When considering item fees as a strategy to contain prescribing costs, the size of effect is important since small reductions in cost, though statistically significant, may not be large enough to justify the effort of implementation. The changes during 1992–95 in the average drug costs per prescription as a proportion of 1992 average drug costs were +35.8% (+8.7/24.3) in the 2-band item fee district, +6.3% (~1.6) in the 1-band item fee, and −6.3% (~1.6) in the 2-band item fee district. In other words, there was a percentage increase of 35% or more in the flat prescription fee district compared with no significant change in the item fee districts. A corroboration of a review of all intervention studies aimed at improving the rational use of drugs, this relative difference would be classified as large and important.

The controlled before–after design of the study means that it is likely to have had high internal validity. The feasibility of implementing item fees, and their effects on prescribing costs, is demonstrated by the ‘uncontrolled’ rural conditions in which the study was undertaken. Moreover, in all districts, the average amount of money collected per patient was similar to the expected amount and the resources required to implement the fees were independent of the fee type. All fee systems were acceptable to both patients and health workers, despite 60% of both groups stating that they would prefer the fee per prescription because this system would be cheaper for three drug items. A demand for three drug items per patient is unlikely to lead to cost-effective prescribing.

In summary, this study demonstrates unequivocally the serious economic consequences of irrational prescribing. Charging per drug item, as opposed to charging per prescription, at a low price-level, has been shown to be associated with substantially lower prescribing costs (35% or more) without any adverse effect on prescribing quality. Thus, item fees are likely to be a highly practicable and effective strategy for many developing countries, and there appears to be no justification for charging a fee per prescription as a method of cost recovery. There is still a need to explore the effects of other kinds and level of user fee, and other economic incentives, on prescribing costs and quality.

References

Effect of user fees on prescribing costs


Acknowledgements

For advice on the analysis and writing up of this research: Professor Trudy Harpham, Professor of Uron Health, South Bank University, London, and Professor Ann Taket, Professor of Primary Health Care, South Bank University, London; for collecting data from records and by observation at the health facilities: Yem Bahadur Gurung, Sitaram Thapa and Gokul Mishra; for doing data-entry: Ramesh Pradhan, Minu Bhattarai, Gokul Thapa and Narayan Yakso; for looking after the authors, including the carrying of baggage on field trips: Mongol Singh Limbu and Veshnu Limbu, for giving support that was instrumental in bringing about this research: Dr A Indree Hushere; L London University and adviser to BMNT; for advice on the use of SPSS to cost the prescription data: Judith Rattenbury; and the Nepal government health workers who wrote the prescriptions analyzed in this research. This work was carried out under the auspices of the Britain Nepal Medical Trust, Biratnagar, Nepal and Tonbridge, Kent, UK. Funding was received from the Inter-Church Organization for Cooperation (ICCO), A msterdam, The Netherlands, and John Snow Incorporated, Kathmandu, Nepal.

Biographies

Kathleen Holloway, MRCGP, PhD (Public Health), is the Former Drug Scheme Coordinator with the Britain Nepal Medical Trust, Biratnagar, Nepal. She is currently a Medical Officer in Essential Drugs and Medicines, World Health Organization, Geneva, Switzerland.

Harat G Autam, M.A. (Health Management, Planning and Policy), is the Former Drug Scheme Manager with the Britain Nepal Medical Trust, Biratnagar, Nepal.

Barnaby Reeves, MSc (Epidemiology, D.Phiil, is Director of the Clinical Effectiveness Unit of the Royal College of Surgeons, London, and a Senior Lecturer in the Health Services Research Unit, London School of Hygiene and Tropical Medicine, London, UK.

Correspondence: K.A. Holloway, Medical Officer, Policy, A ccess and R ational Use, Essential Drugs and Medicines Policy, World Health Organization, 19 Avenue Appia, CH-1211 Geneva 27, Switzerland. Email: hollowayk@who.int