PROPOSED INN LIST 91
INTERNATIONAL NONPROPRIETARY NAMES
FOR PHARMACEUTICAL SUBSTANCES

WORLD HEALTH ORGANIZATION · GENEVA
WHO Drug Information

Contents

Aspects of Quality Assurance
- Stability testing for hot and humid climates 113

Safety and Efficacy Issues
- Efficacy of artesunate for emergency malaria treatment 117
- Natural health products and drug interactions 120
- Valdecoxib: severe cutaneous reactions 121

International Nonproprietary Names
- An international role for nomenclature through INNs 123

Regulatory and Safety Action
- SSRIs: behavioural and emotional changes and risk of self-harm 127
- Proposed rule on combination products 128
- European Medicines Agency: new name and advisory role 128
- Atypical antipsychotics warning 129
- Tegaserod maleate: updated precautions 129
- Rotavirus vaccine ready for licensing 129
- Tenofovir approved for HIV 130
- Rosuvastatin: revised package insert 130
- Sulphur hexafluoride: contraindicated in heart disease 131
- Oxandrolone and warfarin 131
- Oseltamivir: new preclinical findings 131
- Muromonab: nervous system complications 132
- Domperidone and unapproved use 132

Safety of Medicines
- Combating counterfeit medicines 133

Current Topics
- New oral rehydration solution adopted by WHO and UNICEF 138
- A single oral rehydration solution for global use? 138
- Principles for fixed-dose combination drug products 140
- Mozambique issues compulsory license for HIV antiretrovirals 141
- Improved use of medicines 141
- Rapid TB diagnostic test by 2005 142
- Research bioethics training 142

Consultation Document
- The International Pharmacopoeia: monographs for antiretrovirals 143
- Didanosine 143

ATC/DDD Classification
- Final list 148
- Temporary list 150

Recent Publications and Sources of Information
- Specifications for pharmaceutical preparations 153
- WHO model formulary 153
- Guidance on risk management 153
- Clinical trial fellowships 154
- On-line course in medicines management 154

Proposed International Nonproprietary Names: List 91
- 155
WHO Drug Information

is now available at:
http://www.who.int/druginformation
Stability testing for hot and humid climates

In 1996, the WHO Expert Committee on Specifications for Pharmaceutical Preparations adopted the WHO Guidelines on Stability Testing (1). In 2000, the International Conference on Harmonization (ICH) Expert Working Group proposed a modification to the WHO guidelines concerning long-term conditions for climatic zone IV (hot and humid) from 30 °C and 70% relative humidity (RH) to 30 °C and 60% relative humidity. After broad consultation, conditions for real-time stability studies for climatic zone IV were agreed as 30 °C (± 2 °C) and 65% (± 5%) RH (2). Where special transportation and storage conditions did not comply with these criteria, additional study data supporting these conditions might be needed (3).

The Association of South East Asian Nations (ASEAN) comprises Brunei Darussalam, Cambodia, Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand and Vietnam. These countries are all situated in climatic zone IV and ASEAN regulatory authorities are in the process of defining harmonized requirements for marketing authorization for pharmaceuticals with a view to establishing a common market for pharmaceutical products. Such a process would include harmonization of requirements for stability testing. Regulators and experts from ASEAN countries have met regularly with WHO and IFPMA experts to discuss whether the conditions outlined in current WHO and ICH (4) guidelines are appropriate for countries which have vast areas with climatic conditions that are above the average relative humidity (RH) and temperature used to characterize zone IV. None the less, the most recent of such meetings, held in Jakarta on 12–13 January 2004, concluded that the conditions described in WHO and ICH guidelines do not adequately address the climatic conditions prevalent in the majority of ASEAN countries and has proposed that the conditions shown in Table 1 below should be adopted for stability studies in ASEAN countries. Arguments supporting this conclusion are set out as follows.

Average conditions versus more stressful conditions

Both WHO and ICH guidelines base their calculations on values of temperature and humidity that are the mean of the values calculated for 23 cities situated in Zone IV. These conditions are less stressful than those measured in half of the 23

Table 1 – Proposed conditions for stability testing in ASEAN countries

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products in primary containers</td>
<td>30 °C ± 2 °C/75% ± 5% RH</td>
</tr>
<tr>
<td>permeable to water vapour</td>
<td></td>
</tr>
<tr>
<td>Products in primary containers</td>
<td>30 °C ± 2 °C/RH not specified</td>
</tr>
<tr>
<td>impermeable to water vapour</td>
<td></td>
</tr>
<tr>
<td>Accelerated studies</td>
<td>40 °C ± 2 °C/75% ± 5% RH</td>
</tr>
<tr>
<td>Stress studies</td>
<td>Unnecessary if accelerated studies at above conditions are available</td>
</tr>
</tbody>
</table>

Article contributed by Dr. Lucky S. Slamet, Deputy Director for Therapeutic Products, Narcotic, Psychotropic and Addictive Substance Control, National Agency of Drug and Food Control, Indonesia and Ms. Hjh Siti Mariam Hj Md. Jaafar, Principal Pharmaceutical Chemist, Department of Pharmaceutical Services, Ministry of Health, Brunei Darussalam.
Aspects of Quality Assurance

cities. It should be noted that climatic data of cities are not necessarily representative of conditions of large areas of the countries sampled, which may experience higher humidity and/or temperature extremes. In addition, as pointed out in WHO guidelines (5), badly conditioned storage facilities may mitigate the lower extremes of temperature but not the higher ones. Finally, storage facilities are likely to be less protective in developing countries, and especially outside of cities.

On the basis of these considerations, as a matter of principle, testing should be biased towards more stressful rather than less stressful conditions so as to provide a margin of error in favour of the patients and to increase the likelihood of identifying substances or formulations that pose particular stability problems.

Activation energy and mean kinetic temperature

Activation energy (Ea) is a determining factor in the calculation of mean kinetic temperature (MKT) as drawn from climatic data. WHO and ICH guidelines refer to published data (6) which indicate the average value of 19.8 kcal/mole (or 82.8 kJ/mole) for Ea to be used for calculating MKT. These published data show that Ea for 38 active ingredients and excipients (many no longer in use) ranged from 9 to 47 kcal/mole.

Consequently, for many drugs, MKT is either overestimated or underestimated when the average of 19.8 kcal/mole is used. This in turn leads to underestimating or overestimating shelf-life values. Sample calculations have shown that shelf life values can be divided by four when Ea values are increased from 10 to 100 kcal/mole. It can be assumed that most degradation reactions have very low Ea and therefore long shelf-life values, but this needs to be demonstrated. What is relevant is that the use of an average value based on a limited sample of substances may be inappropriate to help identify substances or formulations that pose particular stability problems.

Calculations based on climatic data from ASEAN counties

ASEAN average values for temperature and RH are, respectively, 27.76 °C and 78.79% RH. Most ASEAN member countries have average RH values that are above the mean RH of the 23 cities used as a basis for the ICH Q1F guideline, which are 26.7 °C and 76% RH. ICH and WHO guidelines assume that, at a given temperature, the amount of water in the air, or absolute humidity (AH), is the most relevant factor to consider when setting conditions for stability testing. Based on this assumption, AH values for ASEAN climatic conditions were calculated as follows:

a) data on dew point and temperature were obtained from tables published by the World Meteorological Organization (WMO) and the European Centre for Medium-Range Weather Forecasts;

b) from these data, calculations were performed to obtain:

partial vapour pressure, using Wexler’s equation:

\[
P_D = 6.112 \times e^{(17.67 \times T / (243.5 + T))}
\]

(\text{where } T \text{ is the dew point obtained from meteorological data}).

absolute humidity (or mix ratio), expressed as mass of water per kilogram of dry air using the following equation:

\[
AH = \frac{0.018 \times P_D}{0.029 \times (P - P_D)}
\]

\text{where:}

- 0.018 = molar mass of water [kg]
- 0.029 = molar mass of dry air [kg]
- P = total atmospheric pressure [mbar]
- P_D = partial vapour pressure of water [mbar]

saturation vapour pressure (P_s) from Wexler’s equation at the corresponding measured temperature instead of dew point.

c) the relationship between RH, P_s and P_D is based on:

\[
RH = P_D \times 100 / P_s
\]

The data obtained are reproduced in Table 2 overleaf:

The table shows that the ASEAN average AH is 0.0186 Kg water/Kg dry air, and that the pair temperature/RH closest to that is 30 °C/70% RH. In line with the need for setting test conditions that better reflect extremes rather than mere average, and in order to provide a safety margin, the meeting agreed that the pair 30 °C/75% RH be recommended for long term stability studies.
It was also noted that the pair 40 °C/75% RH used in accelerated studies represents a better stress than the 25 °C/80% RH proposed for stress testing in the ICH Q1F Guideline. On this basis, the meeting agreed to eliminate the requirement for stress testing if data on accelerated studies conducted at 40 °C /75% RH are made available.

Stability and packaging materials
Stability is obviously affected to a large extent by the permeability of primary packaging materials. Products packed in primary containers demonstrated to be impermeable to water vapour do not require testing at any specific RH, storage at constant temperature of 30 °C throughout real time testing being sufficient. However, guidelines will be needed to specify parameters, such as a thickness and permeability coefficient, which indicates demonstrated impermeability of packaging materials.

Cost implications for setup of new test conditions
It was noted that no significant costs are imposed on manufacturers to set up testing conditions at different RHs. The most practical approach would be to fill a container up to a certain level with an appropriate saturated salt solution that can keep the air in container at the required RH when the container is hermetically closed. The test samples would then be enclosed in the container kept in a room of constant temperature of 30 °C for the entire duration of the study.

Implementation strategies
Implementation of the above decision will be preceded by a transition period during which existing national guidelines will still be applicable. In addition, a science-based approach will be taken to ensure correct evaluation when submitted data is based on conditions that are less stressful than those required (e.g. 30 °C/65% RH). Factors to be taken into consideration include:

- complementary data provided to enable proper scientific evaluation;
- detected instability
- data obtained under accelerated conditions
- when more protective packaging is provided
- commitment to generate data under the new guideline conditions (30 °C/75% RH, or 40 °C/75% RH, or both) within a specified period.

A suitable label recommendation such as “Store below 30 °C and protect from moisture” may also be applied.

Additional inputs from member countries will be considered during finalization and throughout the implementation of this new ASEAN guideline. In the light of the above there may be a need to review the WHO and ICH guidelines.

References

<table>
<thead>
<tr>
<th>Temperature/Relative Humidity</th>
<th>Absolute Humidity Kg<sub>water</sub>/Kg<sub>dry air</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 °C /60% RH</td>
<td>0.0161</td>
</tr>
<tr>
<td>25 °C /80% RH</td>
<td>0.0160</td>
</tr>
<tr>
<td>30 °C /65% RH</td>
<td>0.0174</td>
</tr>
<tr>
<td>30 °C /70% RH</td>
<td>0.0188</td>
</tr>
<tr>
<td>30 °C /75% RH</td>
<td>0.0202</td>
</tr>
<tr>
<td>40 °C /75% RH</td>
<td>0.0361</td>
</tr>
<tr>
<td>27.76 °C /78.79% RH</td>
<td>0.0186 (*)</td>
</tr>
</tbody>
</table>

(*) ASEAN average

Table 2.
WHO action plan for stability testing

In view of the decisions taken by ASEAN as described in the article above, WHO has responded with the following action plan:

1. Development of a WHO restricted working document, which has been circulated to interested parties for consultation. The document requests comments by 30 June 2004 on whether the WHO guidance on stability testing should be modified for long-term stability testing conditions (hot and humid climatic zone) and seeks suggestions on how modifications should be implemented.

2. Organization of an informal consultation to discuss comments received, and presentation of conclusions in an advisory report to be prepared for the WHO Expert Committee on Specifications for Pharmaceutical Preparations which will meet in October 2004.

3. In the event that ASEAN guidance is confirmed and adopted, WHO will organize a meeting including ASEAN, WHO, and International conference on Harmonization (ICH) experts and other interested parties in November/December 2004.

4. Depending on the outcome of action taken, revise and/or prepare WHO guidelines for implementation and compatibility of the different conditions with all parties involved in this process.
Safety and Efficacy Issues

Efficacy of artesunate for emergency malaria treatment

Plasmodium falciparum malaria causes hundreds of thousands of deaths annually, especially in children in sub-Saharan Africa. Many of those living in malaria-endemic areas do not have ready access to health facilities and for patients too ill to take oral medication, delay in access to prompt injectable therapy can be fatal. Rural health workers and even parents can be taught to identify the symptoms and signs of severe, life-threatening malaria (1) and rectal artesunate makes for a rapidly acting and effective drug for patients with acute malaria.

The UNDP, World Bank, and WHO Special Programme for Tropical Diseases Research (TDR) selected artesunate on the basis of its rapid antimalarial activity (2, 3), favourable bioavailability (4), and reassuring safety (5) and efficacy profiles (6) compared with other available treatments. Despite isolated case reports of failed supervised treatment (7, 8), no evidence exists of stable parasite resistance developing during lengthy clinical use with artemisinins (9). A thermostable suppository formulation of artesunate was developed for reasons of easy storage and administration in difficult settings.

A study recently reported in the *Lancet* (10) has assessed the reliability, absorption and initial therapeutic efficacy of rectal artesunate. The Trial involved 109 children in Malawi and a smaller number of 35 adults in KwaZulu Natal, South Africa. Patients with moderately severe malaria were randomly assigned to a single dose of 10 mg/kg rectal artesunate or parenteral quinine. Since artemisinin derivatives are the most rapidly acting antimalarials known (4), the study aimed to determine whether early administration of rectal artesunate would provide beneficial initial antimalarial cover, indicated by a rapid fall in the density of parasitaemia (less than 60% of baseline after

<table>
<thead>
<tr>
<th>Table 1: Selected baseline clinical and laboratory parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
</tr>
<tr>
<td>Rectal artesunate (n=87)</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Median (range) age</td>
</tr>
<tr>
<td>Mean (SD) weight (kg)</td>
</tr>
<tr>
<td>Mean (SD) respiratory rate (breaths/minute)</td>
</tr>
<tr>
<td>Mean (SD) temperature (°C)*</td>
</tr>
<tr>
<td>Median (range) parasitaemia (ring forms per µL)</td>
</tr>
<tr>
<td>Mean (SD) plasma lactate (mmol/L)</td>
</tr>
<tr>
<td>Mean (SD) packed cell volume (%)</td>
</tr>
</tbody>
</table>

12 hours), and clinical improvement without serious adverse reactions. In both study groups, treatment was completed with the administration of sulfadoxine-pyrimethamine according to prevailing national policy.

Clinical outcome
Rectal artesunate, given as a single dose of 10 mg/kg, showed rapid antimalarial efficacy within 24 hours of administration in moderately severe falciparum malaria in children and adults (Table 1). All patients had either pharmacodynamic or pharmacokinetic evidence of absorption of the drug. Clearance of asexual parasites from the peripheral blood was consistently faster with rectal artesunate than parenteral quinine, as is expected when an artemisinin is absorbed adequately (Table 2). The results were highly significant not only in the large study of children, but also in the smaller study in adults, which was powered to detect only large effects. The clinical and parasitological responses show that rectal artesunate provides effective initial management of acute malaria in patients who cannot take medication by mouth, particularly when parenteral treatment is not available.

A faster decrease in peripheral parasitaemia does not necessarily ensure improved clinical outcome. In this study, the clinical success rate for rectal artesunate was similar to that for parenteral quinine. This is consistent with other studies comparing intramuscular artemether with intravenous quinine in severe malaria, where artemether showed more rapid decrease in parasitaemia but equivalent clinical outcomes (11).

Table 2: Parasite density over time by allotted treatment group

<table>
<thead>
<tr>
<th></th>
<th>Children</th>
<th>Adults</th>
<th>p</th>
<th></th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rectal artesunate (n=87)</td>
<td>Quinine IM/IV (n=22)</td>
<td>Rectal artesunate (n=27)</td>
<td>Quinine IM (n=8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasitaemia (ring forms per µL blood)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>185977 (12 411-336 000)</td>
<td>230738 (170 078-325 029)</td>
<td>0.69</td>
<td>56480 (26 536-126 000)</td>
<td>58340 (45 110-118 230)</td>
<td>0.666</td>
</tr>
<tr>
<td>12 h</td>
<td>50596 (18 771-107 698)</td>
<td>210335 (170 078-325 029)</td>
<td><0.0001</td>
<td>5560 (1 295-25 840)</td>
<td>35160 (22 720-80 400)</td>
<td>0.025</td>
</tr>
<tr>
<td>% baseline</td>
<td>26.7% (13.8-42.7%)</td>
<td>82.0% (62.5-102%)</td>
<td><0.0001</td>
<td>12.8% (3.2-33.8%)</td>
<td>64.7% (35.5-85.5%)</td>
<td>0.002</td>
</tr>
<tr>
<td>24 h</td>
<td>222 (37-625)</td>
<td>111223 (24 590-168 143)</td>
<td><0.0001</td>
<td>400 (120-1 000)</td>
<td>17320 (4 980-37 403)</td>
<td>0.004</td>
</tr>
<tr>
<td>% baseline</td>
<td>0.1% (0.02-0.5%)</td>
<td>59.2% (15-75%)</td>
<td><0.0001</td>
<td>1% (0-3%)</td>
<td>27.5% (5-58.5%)</td>
<td>0.0004</td>
</tr>
<tr>
<td>PCT (h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (95% CI)</td>
<td>36 (30-42)</td>
<td>45 (42-48)</td>
<td>0.0003*</td>
<td>49 (43-55.7)</td>
<td>63 (45.4-80.6)</td>
<td>0.10*</td>
</tr>
<tr>
<td>Censored observations</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Data are median (IQR) unless specified otherwise. IM=intramuscular. IV=intravenous. PCT=parasite clearance time. *Unpaired t test.
Fever clearance times are shorter in artemisinin-treated patients than in quinine-treated patients (12). Rapid fever clearance is an important clinical benefit, but it does not reflect cure and might create a false sense of security since combination with a second effective antimalarial agent, or a prolonged treatment regimen for 5–7 days, is required to achieve cure (13). Health-care providers need to ensure that patients or caregivers understand the need for further curative treatment at a referral centre. Thus, single administration of rectal artesunate alone is not intended to cure malaria although repeated administration of parenteral quinine and artesinin derivatives are proven effective treatments for severe \textit{P. falciparum} malaria once a patient is admitted to hospital (14–17).

Earlier reappearance of parasites in artesunate-treated patients might reflect the fact that they received a single dose of medication (at the time of admission), whereas patients on quinine received a total of three to seven doses (over 24–72 hours). Late parasitaemia could be due either to failed treatment or to reinfection. Our study in children was not designed to distinguish between recrudescence and reinfection, but rather to establish the benefit of a single dose of rectal artesunate over the initial 24 hours. Careful clinical neurological examination in our studies detected no signs of neurotoxicity, which is consistent with other human studies of the artesininins (5, 18–20) although few data are available in young children, and neurological examinations are less reliable in patients under 5 years of age (18, 21).

The study was confined to patients with moderately severe malaria, presenting to well-equipped units where close observations could be made. Many patients with potentially life-threatening malaria have more severe disease than those in this study, with deeper levels of coma, severe acidosis, severe anaemia, and impairment of pulmonary and renal function. Studies are being conducted to investigate the early administration of rectal artesunate in the planned context of remote rural communities in Africa and Asia.

Although artesinin derivatives have been widely used in southeast Asia, this is not yet the case in Africa where they have a potentially important role, both in combination therapies and as prompt treatment of potentially life-threatening malaria. Our results provide evidence that in children and adults with malaria of moderate severity, artesunate given by suppository is effective in most individuals and is well tolerated. Artesunate suppositories can be given safely by personnel with little training, even in the home. Staff, patients, and parents should be informed of the need to watch for the expulsion of suppositories, and of the need to ensure follow-up with an effective curative treatment. Patients and their relatives readily accepted the use of rectal treatment in this study. Provided early administration of rectal artesunate does not deter patients from reaching a health-care facility that can provide further effective antimalarial treatment and appropriate supportive management, prerereferral rectal artesunate has the potential to reduce malaria-related morbidity and mortality. This treatment is of greatest relevance to communities in rural areas of malaria-endemic countries, which commonly bear the heaviest malaria burden and for whom parenteral treatment is often not immediately available.

References

Natural health products and drug interactions

Canadian Natural Health Products Regulations came into force in January 2004, and will be implemented in stages over 6 years. As with other product lines, reporting of adverse reactions (AR) to natural health products is now mandatory for industry. Also, because of their role in reporting ARs, health care professionals and consumers need to be aware of the reporting system for natural health products.

Health Canada has chosen three popular herbal medicines (echinacea, ginkgo biloba and St. John’s wort) to illustrate some current safety concerns associated with the use of natural health products. Health Canada’s database of spontaneous ARs was consulted for the period 1 January 1998 to 30 June 2003.

Echinacea species belong to the same family as ragweed and daisies (Asteraceae). Allergic reactions, including anaphylaxis, following the use of echinacea have been reported. The Health Canada database had 23 reports of suspected ARs associated with echinacea; 4 cases were allergic reactions, 3 of which involved single ingredient products. Symptoms ranged from rash to swelling of the tongue and lips, to anaphylactic reaction.

There were 21 reports of suspected ARs associated with ginkgo biloba. Most involved platelet, bleeding and clotting disorders, which is in line with its ability to inhibit platelet activating factor. One report was of a fatal gastrointestinal hemorrhage in which the suspect products included ticlopidine and ginkgo, both taken over two years, along with multiple concomitant
medications. There was also a report of stroke in a patient taking multiple drugs, including clopidogrel and ASA, as well as a herbal product containing ginkgo. Caution should be exercised when ginkgo is used concomitantly with anti-coagulants and drugs that affect platelet aggregation (e.g., warfarin, ASA, NSAIDs, ticlopidine and clopidogrel).

Patients also need to heed medical instructions regarding pre- and postoperative use of herbal products; for example, it has been recommended that patients stop taking ginkgo at least 36 hours before surgery.

Because **St. John’s wort** (*Hypericum perforatum*) is a potent inducer of cytochrome P450, its concomitant use with CYP3A4 substrates may result in subtherapeutic levels of these drugs and may necessitate increased dosage requirements. St. John’s wort may trigger serotonin syndrome, a result of potentiated serotonin (5-HT) reuptake inhibition when St. John’s wort is taken concomitantly with 5-HT reuptake inhibitors or other drugs that enhance serotonergic activity (e.g., triptans).

There were 45 reports of suspected ARs associated with St. John’s wort. The most common reactions involved central and peripheral nervous system disorders and psychiatric disorders. Of the psychiatric reactions, two cases involved suspected serotonin syndrome as a result of an interaction with sertraline, and one case included symptoms suggestive of serotonin syndrome as a result of an interaction with venlafaxine. There were two cases in which St. John’s wort was suspected of inducing mania (one involved concomitant lithium and the other concomitant bupropion treatment).

Jenna Griffiths, Scott Jordan, Karen Pilon. *Published in Canadian Adverse Reaction Newsletter, Volume 14, Issue 1, January 2004*

References

Valdecoxib: severe cutaneous reactions

Valdecoxib (Bextra™), a selective inhibitor of cyclo-oxygenase 2 (COX-2), is indicated for the treatment of acute and chronic signs and symptoms of adult rheumatoid arthritis and osteoarthritis as well as for the relief of pain associated with primary dysmenorrhea (1). Severe cutaneous adverse reactions (ARs) associated with valdecoxib, including erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis, have been reported internationally (2, 3). The Canadian product monograph (1) contains the following information:

- a recommendation to discontinue valdecoxib therapy at the first appearance of a rash or other sign of hypersensitivity;

- a contraindication for use in patients who have had allergic-type reactions to sulfonamides;

- a contraindication for use in patients who have experienced asthma, urticaria or an allergic-type reaction after taking ASA or other NSAIDs.

In a published case report, a patient with a previous allergy to an antimicrobial sulfonamide was diagnosed with toxic epidermal necrolysis after treatment with valdecoxib (5). Controversy
exists regarding the potential for cross-reactivity between sulfonamide antimicrobials and other sulfonamide-containing compounds (6). A recent study suggests that a predisposition to allergic reactions, rather than a crossreactivity with sulfonamide-based drugs, is possible (4). Health Canada has received reports of serious cutaneous reactions associated with celecoxib and rofecoxib in patients with and without a history of sulfa allergy. Valdecoxib and celecoxib have similar structures: both contain a benzene-sulfonamide moiety (5). The structure of rofecoxib contains a methylsulfonyl moiety (5).

At least 50% of patients with Stevens-Johnson syndrome and toxic epidermal necrolysis experience a one to 14-day prodrome of flu-like symptoms, including fever, malaise, rhinitis, chest pain, vomiting, sore throat, cough, diarrhea, headache, myalgia and arthralgia (7). The progression from rash to desquamation can occur within a few days, or hours, and may result in fatal complications, such as infection and renal or respiratory failure (8, 9). It has previously been shown that early discontinuation of drugs with half-lives of less than 24 hours may decrease the rate of death from Stevens-Johnson syndrome and toxic epidermal necrolysis (8). Because valdecoxib has a half-life of about 8 hours (1), withdrawal of this drug when flu-like symptoms develop may decrease the risk of Stevens-Johnson syndrome and toxic epidermal necrolysis in certain patients. Therefore, health care professionals should encourage patients taking valdecoxib to seek medical attention if any cutaneous or flu-like symptoms occur (1).

Violetta Skalski

Extracted from: Canadian Adverse Reaction Newsletter, Volume 14, Issue 1, January 2004

References

International Nonproprietary Names (INN)

An international role for nomenclature through INNs

The global pharmaceuticals market is characterized by the huge choice of medicinal preparations available to satisfy the demands of many diseases and conditions. As the range of preparations has expanded internationally, it has become increasingly important to have a centralized system for specialists to find their way through different pharmaceutical nomenclatures and simplify the choice and naming of drugs.

A vital reference for pharmaceutical preparations is the system of International Nonproprietary Names (INN) for Pharmaceutical Substances (1). The existence of an international nomenclature for pharmaceutical substances in the form of an INN is important for the precise and unambiguous identification, safe prescribing and delivery of drugs to patients as well as to promote communication and exchange of information between health specialists and scientists throughout the world.

By the same token, in order to ensure the unimpeded use of INNs in international practice the nomenclature must be free from any legal constraints. Consequently, in contrast to a proprietary (brand) name, which is given to a preparation containing one or several active ingredients, produced in a particular pharmaceutical form and dose and which belongs to the manufacturer (or trademark owner), an INN identifies the actual active pharmaceutical substance under a single internationally recognized nonproprietary (generic) name.

The INN system has been developed by WHO and is regulated with the aim of protecting the generic name of a pharmaceutical substance from infringement of property rights to guarantee international availability. It is thus possible to systematize the nomenclature of pharmaceutical preparations registered under numerous proprietary (brand) names and produced by different pharmaceutical firms in various countries of the world using a single criterion – the presence in the preparation of a specific active substance(s).

The INN process

The INN selection process is the responsibility of members of the INN Expert Panel and is coordinated by the WHO INN Programme Secretariat based in the Department of Essential Drugs and Medicines Policy at the World Health organization. The composition of the INN Expert Panel follows a selection process and the following countries are currently represented: France, Japan, Nigeria, Poland, Russia, Singapore, Spain, United Kingdom, United States of America, and Tunisia. WHO also collaborates closely with national nomenclature committees and national regulatory agencies in the selection of a name which is unique, distinctive in sound and spelling and informative and that may be adopted throughout the world for each individual active pharmaceutical substance.

Nomenclature agencies exist in many countries and exercise different levels of authority. Together with the pharmaceutical industry, they are concerned with the selection of a suitable nonproprietary name for pharmaceuticals entering national markets. Because manufacturers supply their products to markets in other countries besides their own, and medical and pharmaceutical literature is widely translated throughout the world, the need for harmonized nomenclature between the main pharmaceutical-producing countries is vital.

As a whole, the INN Programme, the national committees and nomenclature bodies undertake the task of standardizing and unifying nomenclature and associated rules at the international level in order to guarantee precise and accurate information on product summary characteristics and thus avoid any confusion that could arise if different nonproprietary names were used for a medicine in one or several countries. The INN Expert Panel establishes rules and formulates the basic principles for selecting INNs.

Article prepared by Galina Sashkova, and I.M. Setzenov, Moscow Medical Academy, Russia
Brief history of the INN programme
The need to identify pharmaceutical substances by means of a single and freely available nonproprietary name was officially recognized for the first time in 1915 by the International Pharmaceutical Federation which set up a committee on international nomenclature of medicines. In 1924, the committee drew up the first such list of names which was used in the pharmacopoeia of several countries.

The concept of International Nonproprietary Names for pharmaceutical substances (INNs) was established during a meeting of the Committee on the Unification of Pharmacopoeias in 1949. At the time, when WHO was asked to take the lead in INN activities, a number of countries already had national nomenclature programmes to unify the names of pharmaceutical substances defined by each national pharmacopoeia committee. The first task facing WHO was to organize coordination of activities among national programmes. In 1949, an Expert Panel was constituted and set about drawing up general rules and a programme of work for determining and selecting international nonproprietary names.

The INN Programme in its present form was promulgated by World Health Assembly resolution WHA3.11 in 1951 and became effective in 1953 with the publication of the first INN list. The current procedure for selecting recommended INNs was adopted by the Executive Board in 1955, as endorsed in resolution EB15.R7.

Subsequently, only one change has been made to the initial text – replacement of the term “pharmaceutical preparation” by the term “pharmaceutical substance”. Currently, there is a proposal to update the procedure. This has been circulated for comment to all interested parties, including national drug regulatory authorities, pharmacopoeia committees, and the International Federation of Pharmaceutical Manufacturers Associations (IFPMA).

National and international nonproprietary names
In some countries, official lists of national nonproprietary names are regularly published; for example, British Approved Names (BAN), United States Pharmacopeia USP Dictionary of USAN and International Drug Names, and Japanese Accepted Names for Pharmaceuticals (JAN). Through long and permanent collaboration, national nonproprietary names of pharmaceutical substances (NNN) adopted by the pharmacopoeia committees or ad-hoc committees on nomenclature are nowadays, with few exceptions, identical to the INNs (2).

However, there are some countries where national nonproprietary names different from INNs are also used to designate pharmaceutical substances. Many of these differences are frequently insignificant, the INN spelling is different only on account of the requirements of the language or pronunciation or on account of the replacement of certain letters (“t” for “th”, “f” for “ph”, “i” for “y” and so on). Moreover, pharmaceutical regulations in the European Union require the use of recommended INNs as common names to describe the composition of medicinal products (3, 4).

In Russia, the adoption of an INN is particularly necessary for the registration of pharmaceuticals. At present, the nomenclature of drugs authorized for medicinal use contains a list of Russian preparations whose names present the designation of the pharmacopoeial item corresponding to the pharmaceutical substance, for example: amiridin, arbidol, etaden, etacidin, fenazeepam, proksodolol etc. There is therefore a need for a thorough review of the list of Russian substances and pharmaceutical preparations based on the concept of international and national nonproprietary names. Where newly developed substances are concerned, they should be composed in accordance with procedures followed by WHO.

Procedure and criteria for selecting an INN
Under the current procedure, a request for an INN is made on the relevant form and submitted to WHO. In countries where there is a national committee on nomenclature, the application is made through the appropriate national body. Should a nomenclature body not be active in a specific country, an application can be filed directly with the INN Programme at WHO. Nowadays, the number of direct requests is increasing and corresponding efforts have been made to streamline the INN selection process.

Data on the chemical structure, molecular formula (5), Chemical Abstract Service (CAS) registry number, company code designation, mechanism of action, and information on therapeutic use of the active substance, must be provided by the originator of the request, as well as suggested INNs (from 1 to 6 proposals) in English. The INN is selected, in principle, for a single, well-defined substance and designated for the active part of the molecule only. To avoid the multiplication of entries in cases where several salts and esters
are used, the user has to create a modified INN (INNm). For example, oxacillin and ibufenac are INNs and their salts are named oxacillin sodium and ibufenac sodium. The latter are referred to as modified INNs. The texts of the procedure and of General Principles are regularly published in WHO Drug Information as annexes to lists of proposed INNs.

The name proposed by a manufacturer for consideration is examined, and the corresponding INN adopted by consensus among all members of the Expert Panel. The name is then published as a proposed INN. For a period of four months, the INN Secretariat receives comments or objections to the proposed name, for example, objections based on similarity with a brand name. If no objections are made to the proposed INN, it is then published as a recommended international nonproprietary name.

When INNs are selected for pharmaceutical substances, the following basic principles are to be followed:

- An INN must be distinctive in sound and spelling; should not be too long or liable to confusion with other names in common use.

- INNs for substances belonging to a pharmacologically related group of substances should as far as possible demonstrate this relationship. Care should be taken to avoid names that might convey to patients an anatomical, physiological, pathological or therapeutic suggestion.

In addition to the basic principles, when choosing an INN there are a number of other rules that should be followed in order for them to be suitable for international use. First of all, there are a number of linguistic and phonetic requirements. For example, use of the letters “h” and “k” is to be avoided; it is recommended that “e” should be used instead of “ae” and “oe”, “i” instead of “y”, “f” and “t” instead of “ph” and “th”, etc.

When choosing INNs for pharmaceutical substances, specialists should be guided by the following WHO documents:

- Procedure for selection of recommended International Nonproprietary Names (INN) for Pharmaceutical Substances;

- General Principles for guidance in devising International Nonproprietary Names (INN) for Pharmaceutical Substances.

INN stem system

Of particular interest is the INN stem system. Many INNs consist of a common stem, mainly a series of letters — a suffix, prefix, infix or a combination of these — which shows the relationship between the pharmacologically related substance and use in combination with the distinctive part of the name. Table 1 presents examples of widely used stems. Among these are two examples of stems that are placed as prefixes (def- and grado-) whereas others are used mainly as suffixes, or in some cases as infixes. WHO regularly publishes a document on the use of common stems (6).

These stems and their definitions have been selected by INN experts and must be used when choosing new INNs for pharmaceutical substances related to an established group (series) of related compounds. For example, the stem -caine” includes 64 INNs classified as local anaesthetics: benzocaine, procaine, lidocaine, tetracaine, etc. In Russia, different preparations based on 12 pharmaceutical substances are registered in this category of compounds; their international nonproprietary names contain the stem -caine.

Conclusion

The process of selecting INNs becomes increasingly complicated each year. This is due to the constant development of innovative pharmaceutical preparations and biological products, new classes of compounds, and discovery of new mechanisms of action. Specific nomenclature systems are being established for these areas in collaboration with drug regulatory authorities and biological experts.

In accordance with World Health Assembly resolution WHA46.19, it is necessary to determine that brand names derived from international nonproprietary names or INN stems are not used as trade marks. The practice of unjustified use of stems in trade marks or brand names for pharmaceutical products undermines the principle whereby INNs are public domain property. Non respect of the INN system may impede future rational selection of INNs and ultimately jeopardize the safety of patients by creating confusion in drug nomenclature.

The INN system owes its success in great part to the international suitability, flexibility and application of the names. INNs are accessible to specialists dependent on drug nomenclature when
Table 1. Examples of widely used common stems (7)

<table>
<thead>
<tr>
<th>Stem</th>
<th>Name of pharmacological group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac</td>
<td>anti-inflammatory agents, ibufenac derivatives</td>
</tr>
<tr>
<td>adol</td>
<td>analgesics</td>
</tr>
<tr>
<td>ast</td>
<td>anti-asthmatic, anti-allergic substances not acting primarily as antihistaminics</td>
</tr>
<tr>
<td>astine</td>
<td>antihistaminics</td>
</tr>
<tr>
<td>azepam</td>
<td>diazepam derivatives</td>
</tr>
<tr>
<td>bol</td>
<td>steroids, anabolic</td>
</tr>
<tr>
<td>cain</td>
<td>class I antiarrhythmics, procainamide and lidocaine derivatives</td>
</tr>
<tr>
<td>caine</td>
<td>local anaesthetics</td>
</tr>
<tr>
<td>cef-</td>
<td>antibiotics, cefalosporanic acid derivatives</td>
</tr>
<tr>
<td>cillin</td>
<td>antibiotics, 6-aminopenicillanic acid derivatives</td>
</tr>
<tr>
<td>conazole</td>
<td>systemic antifungal agents, miconazole derivatives</td>
</tr>
<tr>
<td>cort</td>
<td>corticosteroids, except prednisolone derivatives</td>
</tr>
<tr>
<td>coxib</td>
<td>selective cyclo-oxygenase inhibitors</td>
</tr>
<tr>
<td>entan</td>
<td>endothelin receptor antagonists</td>
</tr>
<tr>
<td>gab</td>
<td>gabamimetic agents</td>
</tr>
<tr>
<td>gado-</td>
<td>diagnostic agents, gadolinium derivatives</td>
</tr>
<tr>
<td>gatran</td>
<td>thrombin inhibitors, antithrombotic agents</td>
</tr>
<tr>
<td>gest</td>
<td>steroids, progestogens</td>
</tr>
<tr>
<td>gli</td>
<td>antihyperglycaemics</td>
</tr>
<tr>
<td>io</td>
<td>iodine-containing contrast media</td>
</tr>
<tr>
<td>metacin</td>
<td>anti-inflammatory, indometacin derivatives</td>
</tr>
<tr>
<td>mycin</td>
<td>antibiotics, produced by Streptomyces strains</td>
</tr>
<tr>
<td>nidazole</td>
<td>antiprotozoal substances, metronidazole derivatives</td>
</tr>
<tr>
<td>olol</td>
<td>α-adrenoreceptor antagonists</td>
</tr>
<tr>
<td>oxacin</td>
<td>antibacterial agents, nalidixic acid derivatives</td>
</tr>
<tr>
<td>platin</td>
<td>antineoplastic agents, platinum derivatives</td>
</tr>
<tr>
<td>poetin</td>
<td>erythropoietin type blood factors</td>
</tr>
<tr>
<td>pril(at)</td>
<td>angiotensin-converting enzyme inhibitors</td>
</tr>
<tr>
<td>profen</td>
<td>anti-inflammatory substances, ibuprofen derivatives</td>
</tr>
<tr>
<td>prost</td>
<td>prostaglandins</td>
</tr>
<tr>
<td>relin</td>
<td>pituitary hormone release-stimulating peptides</td>
</tr>
<tr>
<td>sartan</td>
<td>angiotensin II receptor antagonists, antihypertensive (non-peptidic)</td>
</tr>
<tr>
<td>vaptan</td>
<td>vasopressin receptor antagonists</td>
</tr>
<tr>
<td>vin</td>
<td>vinca-type alkaloids</td>
</tr>
</tbody>
</table>

providing information on the pharmacological and therapeutic action of preparations. INN classification is also used by WHO, particularly for drug evaluation and safety monitoring.

References

Regulatory and Safety Action

SSRIs: behavioural and emotional changes and risk of self-harm

Canada — Health Canada is advising that selective serotonin re-uptake inhibitors (SSRIs) and other new antidepressants now carry stronger warnings. These warnings indicate that patients of all ages taking these drugs may experience behavioural and/or emotional changes that may put them at increased risk of self-harm or harm to others. Health Canada has not authorized these drugs for use in patients under 18 years of age. The prescribing of drugs is a physician’s responsibility although off-label use of these drugs in children is acknowledged to be an important tool for doctors.

In February 2004, a scientific advisory panel set up by Health Canada provided a clinical practice perspective on paediatric clinical trial safety data and spontaneous post-marketing reports for SSRIs and other newer antidepressants. The panel agreed that a contraindication was not warranted for these medications, and supported Health Canada’s recommendation for warnings.

Consequently, the manufacturers of citalopram hydrobromide (Celexa®), venlafaxine (Effexor®), fluoxetine (Prozac®), mirtazapine (Remeron®), sertraline (Zoloft®), paroxetine (Paxil®), fluvoxamine (Luvox®) and bupropion (Wellbutrin®) (Zyban® for smoking cessation) have issued a class warning regarding the possibility that SSRIs (selective serotonin reuptake inhibitors) and other newer antidepressants may be associated with behavioural and emotional changes, including risk of self-harm.

Potential association with the occurrence of behavioural and emotional changes, including self harm

Patients under 18 years of age (paediatric): placebo-controlled clinical trial data

- Recent analyses of placebo-controlled clinical trial safety databases from SSRIs and other newer antidepressants suggests that use of these drugs in patients under the age of 18 may be associated with behavioural and emotional changes, including an increased risk of suicidal ideation and behaviour over that of placebo.

- The small denominators in the clinical trial database, as well as the variability in placebo rates, preclude reliable conclusions on the relative safety profiles among these drugs.

Adult and paediatric patients: additional data

- There are clinical trial and post-marketing reports with SSRIs and other newer antidepressants, in both paediatrics and adults, of severe agitation-type adverse events coupled with self-harm or harm to others. The agitation-type events include: akathisia, agitation, disinhibition, emotional lability, hostility, aggression, depersonalization. In some cases, the events occurred within several weeks of starting treatment. Given that bupropion may be prescribed as either an antidepressant or a smoking cessation product, these conditions affect the conditions of use of both products.

Rigorous clinical monitoring for suicidal ideation or other indicators of potential for suicidal behaviour is advised in patients of all ages. This includes monitoring for agitation-type emotional and behavioural changes.

Patients currently taking SSRIs should NOT discontinue treatment abruptly, due to risk of discontinuation symptoms. At the time that a medical decision is made to discontinue an SSRI or other newer antidepressant drug, a gradual reduction in the dose rather than an abrupt cessation is recommended.

It should be noted that a causal role for SSRIs and other newer antidepressants in inducing self-harm or harm to others has not been established. The possibility of a suicide attempt is inherent in depression and other psychiatric disorders, and may persist until remission occurs. Therefore, patients should be closely supervised throughout therapy with appropriate consideration to the possible need for hospitalization. The warning informs practitioners that all patients being treated with SSRIs and other newer antidepressants...
should be rigorously monitored for clinical worsening, or onset/worsening of agitation-type adverse events, or other indicators of potential for suicidal behaviour.

Proposed rule on combination products

United States of America — The Food and Drug Administration (FDA) has announced a proposed rule to assign a lead centre with responsibility for premarket review and regulation of a combination product.

Combination products are considered as a combination of a drug, a device, or a biological product. They represent a growing category of products incorporating cutting edge, novel technologies that hold great promise for advancing patient care. Products, such as drug-eluting stents (which combine a drug with a medical device), orthopedic implants with genetically engineered human protein, and antibiotic bone cement, often do not fit neatly into traditional categories of FDA-regulated items. But such innovative combination products have the potential to make treatments safer, more effective, more convenient or more comfortable for patients.

The purpose of the proposed rule is twofold: to codify the definition of “primary mode of action” (PMOA), the criterion the agency has used for more than a decade when assigning combination products for review; and to simplify the assignment process by providing a defined framework that sponsors may use when recommending and/or considering the PMOA and assignment of a combination product to an FDA Center.

Under the proposal, the “primary mode of action” would be defined as “the single mode of action (e.g., drug, device, biological product) of a combination product that provides the most important therapeutic action of the combination product.” This would be the mode of action that is expected to make the greatest contribution to the overall therapeutic effects of the combination product.

In certain cases, it is not possible for either FDA or the product sponsor to determine, at the time a request for assignment is submitted, which mode of action of a combination product provides the most important therapeutic action. In those cases, the agency would assign the combination product to the FDA Center that regulates other combination products presenting similar questions of safety and effectiveness with regard to the combination product as a whole.

References

European Medicines Agency: new name and advisory role

European Union — The European Agency for the Evaluation of Medicinal products (EMEA) has recently undergone a review based on experience gained during the six years since its establishment. EMEA will now be renamed The European Medicines Agency and the Committee on Proprietary Medicinal Products (CPMP) is renamed the Committee for Human Medicinal Products (CHMP), both with effect from 1 May 2004.

Among improvements to operations, an amendment concerning the scope of the Agency’s mandate to increase cooperation with the World Health Organization is reflected in Article 58, which states:

“The Agency may give scientific opinion, in the context of cooperation with the World Health Organization, for the evaluation of certain medicinal products for human use intended exclusively for markets outside the Community. For this purpose, an application shall be submitted to the Agency in accordance with the provisions of Article 6. The Committee for Medicinal Products for Human Use may, after consulting the World Health Organization, draw up a scientific opinion in accordance with Articles 6 and 9. The provisions of Article 10 shall not apply),

Additionally, Article 27 on pharmacovigilance provides that “The Agency shall collaborate with the World health Organization in matters of international pharmacovigilance and shall take the necessary steps to submit to it, promptly, appropriate and adequate information regarding the measures taken in the Community which have a bearing on public health protection in third countries ...”

Atypical antipsychotics warning

United States of America — In 2003, the Food and Drug Administration (FDA) asked all manufacturers of atypical antipsychotic medications, to add a warning on the increased risk of hyperglycaemia and diabetes in patients taking these medications.

The manufacturer of quetiapine fumarate (Seroquel®) tablets has advised of changes to prescribing information in the form of a warning for hyperglycaemia and diabetes mellitus. Hyperglycaemia, in some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients treated with atypical antipsychotics, including quetiapine fumarate. Assessment of the relationship between atypical antipsychotic use and glucose abnormalities is complicated by the possibility of an increased background risk of diabetes mellitus in patients with schizophrenia and the increasing incidence of diabetes mellitus in the general population. Given these confounders, the relationship between atypical antipsychotic use and hyperglycaemia-related adverse events is not completely understood. However, epidemiological studies suggest an increased risk of treatment-emergent hyperglycaemia-related adverse events in patients treated with the atypical antipsychotics. Precise risk estimates for hyperglycaemia-related adverse events in patients treated with atypical antipsychotics are not available.

Patients with an established diagnosis of diabetes mellitus who are started on atypical antipsychotics should be monitored regularly for worsening of glucose control. Patients with risk factors for diabetes mellitus (e.g., obesity, family history of diabetes) who are starting treatment with atypical antipsychotics should undergo fasting blood glucose testing at the beginning of treatment and periodically during treatment.

Any patient treated with atypical antipsychotics should be monitored for symptoms of hyperglycaemia including polydipsia, polyuria, polyphagia, and weakness. Patients who develop symptoms of hyperglycaemia during treatment should undergo fasting blood glucose testing. In some cases, hyperglycaemia has resolved when the atypical antipsychotic was discontinued; however, some patients required continuation of antidiabetic treatment despite discontinuation of the suspect drug.

Reference: Communication from AstraZeneca 4 May 2004 on http://www.fda.gov/medwatch

Tegaserod maleate: updated precautions

United States of America — The manufacturer of tegaserod maleate tablets (Zelnorm®) has advised prescribers of an important drug warning and prescribing information. Tegaserod maleate is a serotonin 5-HT4 receptor partial agonist indicated for the short-term treatment of women with irritable bowel syndrome (IBS) whose primary symptom is constipation.

This new information relates to a warning for serious consequences of diarrhoea and a precaution for rare reports of ischaemic colitis in post marketing use. Serious consequences of diarrhoea, including hypovolaemia, hypotension, and syncope, have been reported in clinical trials and during marketed use. Tegaserod maleate should be discontinued immediately in patients who develop hypotension or syncope.

Rotavirus vaccine ready for licensing

In 1999, the oral rotavirus vaccine, Rotashield® was withdrawn from the market by the manufacturer following reports of intussusception (1, 2). The US National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), has now announced a new license agreement for global commercialization of RotaShield® (3).

Worldwide, rotavirus is implicated in more than 135 million episodes of diarrhoea each year in infants and children younger than 5 years of age, resulting in almost 600 000 deaths annually. Rotaviruses are egalitarian viruses: they readily infect and cause illness in infants and young children in both developed and developing countries. The overall consequences of these illnesses, however, are quite different. Approximately 1600 rotavirus-related deaths each day occur predominantly in the developing countries.

Rotavirus infection develops quickly and in addition to diarrhoea, may include vomiting, fever and dehydration. The resulting dehydration can
be reversed through oral rehydration therapy or, in more serious cases, through hospitalization and intravenous fluids. Although effective, these therapies are not readily available or used in many parts of the developing world. Children in developing countries are more vulnerable to severe and fatal illness.

References

Tenofovir approved for HIV

Canada — Health Canada has issued a marketing authorization for tenofovir disoproxil fumarate (Viread®), a new nucleotide reverse transcriptase inhibitor which is conditional on the conduct of confirmatory studies to verify the clinical benefit seen to date. Tenofovir is indicated for the treatment of HIV-1 infection in combination with other antiretroviral agents in patients 18 years of age and older who have experienced virologic failure on other regimens.

Routine monitoring of renal function is recommended and particular caution should be exercised when administering to patients with known risk factors for renal disease or a history of renal dysfunction (although cases of renal failure have also been reported in patients with no known risk factors). Tenofovir should not be used concurrently with a nephrotoxic agent nor be administered to patients with renal insufficiency (creatinine clearance < 60 mL/min).

Co-administration of tenofovir and didanosine should be undertaken with caution because the C_max and AUC of didanosine increases approximately 48 to 64%. Increases in didanosine concentration of this magnitude could potentiate didanosine-associated adverse events, including pancreatitis, lactic acidosis, and neuropathy. Patients receiving this combination should be monitored closely and didanosine should be discontinued in patients who develop didanosine-associated adverse events.

Early virologic failure and high rates of resistance mutations have been reported in HIV-infected patients receiving once-daily triple nucleotide reverse transcriptase inhibitor regimens containing tenofovir disoproxil fumarate/lamivudine/didanosine, and tenofovir DF/lamivudine/abacavir, or abacavir and lamivudine as a triple antiretroviral therapy is not recommended when considering a new treatment regimen for patients with HIV infection.

The most common adverse events in patients receiving tenofovir in clinical studies were mild to moderate gastrointestinal events, such as nausea, diarrhoea, vomiting and flatulence. In general, laboratory abnormalities observed in clinical studies occurred with similar frequency in the tenofovir and placebo-treated groups.

Adverse events reported during clinical practice include renal insufficiency, kidney failure, Fanconi syndrome, increased creatinine levels, asthenia, pancreatitis, hypophosphataemia, lactic acidosis, dizziness, dyspnoea and rash.

Rosuvastatin: revised package insert

United States of America — The manufacturer of rosuvastatin (Crestor®) has released a revised package insert for use in 22 member countries of the European Union (EU). The changes to the European labeling are in response to post-marketing spontaneous adverse event reports in patients receiving rosuvastatin and highlight certain patient populations who may be at an increased risk for serious muscle toxicity (myopathy) associated with use, especially at the highest approved dose of 40 mg.

Rosuvastatin is a cholesterol-lowering drug approved in the USA in August 2003. At that time, the FDA identified that an increased baseline risk for myopathy warranted more careful monitoring, and labeling included a specific section on myopathy/rhabdomyolysis. Elderly patients (≥ 65 years) with hypothyroidism, and/or renal insufficiency should be considered to be at greater risk for developing myopathy while receiving a statin. Physicians are warned to prescribe rosuvastatin
with caution in these patients, particularly at higher doses, as the risk of myopathy increases with higher drug levels.

Healthcare professionals are reminded of the following key safety messages: start doses and maintenance doses of drug should be based on individual cholesterol goals and apparent risks for side-effects; all patients should be informed that statins can cause muscle injury, which in rare, severe cases, can cause kidney damage and other organ failure that are potentially life-threatening; and patients should be told to promptly report to their physician signs or symptoms of muscle pain and weakness, malaise, fever, dark urine, nausea, or vomiting. The current FDA-approved label can be obtained at http://www.fda.gov/cder/foi/label/2003/21366_crestor_lbl.pdf

Sulphur hexafluoride: contraindicated in heart disease

European Union — Severe allergy and heart problems have been reported as rare side effects occurring within minutes of sulphur hexafluoride administration (Sonovue®), a diagnostic contrast medium for use with ultrasound imaging where study without contrast enhancement is inconclusive. As such, it is only used in the hospital or clinical setting. On the basis of reported adverse events and as a precautionary measure, the European Medicines Agency has restricted use by a temporary suspension in heart imaging pending further evaluation.

Sulphur hexafluoride is now contraindicated in patients with known coronary artery disease, myocardial infarction, unstable angina, acute cardiac failure, class II/IV cardiac failure, severe rhythm disorders, acute endocarditis and prosthetic valves. Patients should be kept under close medical supervision during and for at least 30 minutes following administration of sulphur hexafluoride.

Adverse events included severe hypotension, bradycardia, cardiac arrest and acute myocardial infarction, in the context of an idiosyncratic hypersensitivity reaction.

Oxandrolone and warfarin

United States of America — The manufacturer of oxandrolone (Oxandrin®) has provided new safety information when used concurrently with the oral anticoagulant warfarin for systemic anticoagulation. Oxandrolone, a synthetic derivative of testosterone, is indicated as adjunctive therapy to promote weight gain after weight loss following extensive surgery, chronic infections, or severe trauma, and in some patients who without definite pathophysiologic reasons fail to gain or to maintain normal weight, to offset the protein catabolism associated with prolonged administration of corticosteroids, and for the relief of the bone pain frequently accompanying osteoporosis.

As a class, anabolic androgenic steroids may increase susceptibility, specifically to oral anticoagulants, with reduction of the anticoagulant dosage necessary to maintain the desired prothrombin time (PT). No specific directions have previously been available for any anabolic androgenic agents. A recent clinical study conducted by Savient demonstrated a significant decrease (80–85%) in the warfarin dose needed to achieve therapeutic effect in subjects also treated with oxandrolone. The recommendations are specific and cannot be presumed to be applicable for other anabolic androgenic steroids.

Concurrent dosing of oxandrolone and warfarin may result in unexpectedly large increases in the International Normalized Ratio (INR) or PT. When oxandrolone is prescribed to patients being treated with warfarin, doses of warfarin may need to be decreased significantly to maintain a desirable INR level and diminish the risk of potentially serious bleeding.

Physicians should instruct patients to report immediately any use of warfarin and any bleeding. Furthermore, in patients receiving both drugs, careful monitoring of the INR or PT, and adjustment of the warfarin dosage if indicated, are recommended when the oxandrolone dose is changed or discontinued. Patients should be closely monitored for signs and symptoms of occult bleeding.

Oseltamivir: new preclinical findings

Singapore — Oseltamivir (Tamiflu®, Roche) was recently licensed for the treatment of uncomplicated illness due to influenza infections in children.
one year of age and older who have been symptomatic for no more than 2 days. It has been licensed for use in adults since October 2000. The findings of a recent preclinical study alerts potential concerns pertaining to the use of Tamiflu® in very young children.

The manufacturer has recently released findings of its preclinical study carried out in juvenile rats (7-day old) and highlighted the concerns to the regulatory authorities regarding the use of Tamiflu® in infants. Juvenile rats that were treated with a single dose of 1000 mg/kg oseltamivir (about 250 times the recommended total daily dose) died due to the unusually high levels of oseltamivir and its phosphate salt found in the brain of these young animals. The concentrations of oseltamivir phosphate were approximately 1500 times those seen in adult rats given the same dose. It is likely that these high exposures are related to an immature blood brain barrier of the juvenile rats. Studies showed no death or other significant effects in older juvenile rats given the same or higher doses of Tamiflu®.

HSA’s recommendation
The clinical significance of these data to human infants is uncertain. Due to the uncertainty in predicting the exposures in infants with immature blood brain barrier, prescribers are advised that Tamiflu® should not be given to children under 1 year of age. The above findings have been included in the package insert of Tamiflu®.

Muromonab: nervous system complications

Canada — The manufacturer of muromonab-CD3 (Orthoclone OKT*3®) has informed Canadian hospitals of important new safety information. Muromonab is used to treat acute rejection from liver, kidney, and heart transplants that do not respond to other therapies.

Muromonab is not approved for use in children in Canada. Children treated with muromonab may be at increased risk of nervous system complications, most notably a buildup of excess fluid in the brain (cerebral oedema) that may result in a fatal condition called cerebral herniation. Children may also be at increased risk of lymphomas and infections.

Since 1986, a total of nine (9) cases of cerebral oedema have been reported around the world in children, with subsequent cerebral herniation and death in 6 of the 9 cases. The majority of the cases of cerebral herniation in paediatric patients occurred within a few hours to one day after the first injection. Signs of cerebral oedema and cerebral herniation may include the sudden appearance of severe headache, seizures, impaired mental function, drowsiness and lethargy, coma.

Patients with high blood pressure and excess fluid buildup in their bodies (fluid overload) are at increased risk of developing these conditions.

Domperidone and unapproved use

United States of America — In response to reports that women may be using an unapproved drug, domperidone, to increase milk production (lactation), the Food and Drug Administration (FDA) is warning breastfeeding women not to use this product because of safety concerns. The FDA has also issued six letters to pharmacies that compound products containing domperidone and firms that supply domperidone for use in compounding.

FDA has become aware that some women are purchasing domperidone to increase breast milk production. Domperidone may increase the secretion of prolactin, a hormone that is needed for lactation. The potential public health risks associated with domperidone include cardiac arrhythmias, cardiac arrest, and sudden death in patients receiving an intravenous form of domperidone. The oral form of domperidone by breastfeeding women can expose a breastfeeding infant to unknown risks. Domperidone is not approved in the USA for any indication.

Safety of Medicines

Combating counterfeit medicines*

Substandard medicines are products whose composition and ingredients do not meet the correct scientific specifications and which may consequently be ineffective and often dangerous to the patient. Substandard products may occur as a result of negligence, human error, insufficient human and financial resources or counterfeiting.

Counterfeit medicines are part of the broader phenomenon of substandard pharmaceuticals. The difference is that they are deliberately and fraudulently mislabeled with respect to identity and/or source. Counterfeiting can apply to both branded and generic products and counterfeit medicines may include products with the correct ingredients but fake packaging, with the wrong ingredients, without active ingredients or with insufficient active ingredients. In wealthier countries, new expensive medicines are frequently counterfeited such as hormones, corticosteroids, cancer drugs or antiretrovirals. In developing countries, the most counterfeited medicines are those used to treat life-threatening conditions such as malaria, tuberculosis and HIV/AIDS.

Trade in these medicines is more prevalent in countries with weak drug regulation control and enforcement, scarcity and/or erratic supply of basic medicines, unregulated markets and unaffordable prices (http://www.who.int/medicines). It is estimated that counterfeits make up a significant proportion of the global medicines market and are present in both industrialized and developing countries. Industry figures estimate annual earnings from the sales of counterfeit and substandard medicines at over US$ 32 billion globally.

International action against counterfeiting

A workshop on counterfeit medicines, was held from 13 to 14 February 2004 in Madrid, Spain on the occasion of the International Conference of Drug Regulatory Authorities (ICDRA).

The workshop was attended by national drug regulatory authorities, international organizations, nongovernmental organizations, industry associations, and the media. The programme included presentations on national experience, investigation and action against counterfeits, control of e-commerce counterfeiting, and perspectives from regulatory authorities and international organizations. A draft concept paper on a framework convention against counterfeiting was debated and recommendations proposed. A summary of highlights is set out on the following pages and a full report of the event is available at http://www.who.int/medicines

Industry response to counterfeiting

The view of a leading multinational pharmaceutical company was presented. It is generally agreed that counterfeit drugs endanger health, threaten the reputation of drug companies and undermine regulatory action to control counterfeiting. The presence of counterfeits can also cause a loss of trust in the public health system by patients. Strong internal company strategies to combat counterfeiting are therefore a responsive solution. These may include formal investigative procedures, anti-counterfeiting features in packaging, maintaining secure manufacturing and supply sources, and conduct of market surveys. External strategies may include consumer education, tougher laws, strengthened enforcement and stricter penalties. Both covert and overt measures are available to companies to combat counterfeiting. Measures taken should be difficult...
to copy, combinatorial, easy to incorporate, and not require regulatory approval and may include user education or deterrents to counterfeiting.

The Pharmaceutical Security Institute (PSI) represents a group of multinational pharmaceutical companies. Its role is to combat counterfeiting through collection, collation, and dissemination of information and to identify and satisfy training needs. Drug investigations by law enforcement agencies are often under-resourced due to other crime priorities. PSI key findings in 2003 concluded that of 327 reported incidents of crime in pharmaceuticals, 81% involved counterfeits. Most incidents occurred in the USA, followed by India and China. A key trend indicates that counterfeiting operations are small. In all, 363 people were arrested with an average value of seizure at US$ 3 million. Fifty-three percent of arrests were made at the point of sale; 13% were manufacturers and 5% were at borders. The US market is predicted to become an attractive target for counterfeit medicines and drug diversion. International mail is highlighted as a distribution corridor readily exploited by medicine traffickers.

A presentation from the self medication industry provided statistical information in relation to the prevalence of counterfeits in Latin America and globally. It confirmed that counterfeit drugs pose a significant public health risk and stated that counterfeiting involves established, sophisticated, regional criminal organizations and international organized crime. Factors that make counterfeiting a widespread activity are:

- Lack of access to many drugs, making low-priced counterfeit products attractive.
- Possibility of selling counterfeit drugs from varied outlets.
- Sale of products without a physician’s prescription facilitates the selling of fake or counterfeit products.
- Outside of pharmacies, vendors do not possess the same ability to detect counterfeit products as pharmacists do.
- Counterfeiting is not a specific crime and inadequate penalties are applied to drug counterfeiting.
- Existence of free trade zones.
- Internet sales leading to cross-border trade in counterfeits.

Factors that are successful in combating counterfeiting are:

- Interagency cooperation.
- Categorizing counterfeiting as a specific crime.
- Establishment of stiffer penalties.
- Monitoring of wholesalers and pharmacies.
- The development of best practice manuals on distribution and dispensing of medicines.
- Consumer education.

In conclusion, essential benefits could be gained from collaboration between the pharmaceutical industry and regulators through development of a comprehensive plan.

E-commerce and challenges to pharmaceutical trading
Sale of drugs on the Internet has both positive and negative aspects. Prescription drug sales on the Internet can provide benefits to consumers, especially to the disabled or homebound patients who cannot move easily. It is convenient for shopping 24 hours a day and gives privacy and anonymity to those who do not want to discuss their medical condition in a public place. However, the negative aspects include possible sale of unapproved new drugs, absence of doctor/patient relationship and possibility of obtaining information on correct use, dispensing of prescription drugs without prescription, and availability of products with fraudulent claims.

The United States Food and Drug Administration has taken steps to customize and expand its enforcement efforts by setting priorities, improving data acquisition, and coordinating case assessment. This has resulted in the evaluation of over 400 websites and an increased number of civil and criminal actions, improved collaboration with international regulatory officials and the issuance of cyber letters. Hard copies of each cyber letter are sent to the website operator, the US Customs Service and the regulatory authority officials in the country in which the operator is based. Other
strategies used to control the sale of drugs on the Internet include, collaboration with other law enforcers and regulatory partners, professional organizations, public outreach-media campaigns, and public education.

In the Netherlands, the Internet plays an important role in the distribution of medicinal products that are being used without prescription. However, where normal safeguards are bypassed, consumers are put at risk. The greatest areas of risk were identified as lifestyle and similar drugs such as anabolic steroids, drugs used for weight loss and hair loss. To maintain public confidence in the health care system it is necessary to prevent unreliable products from entering the Internet, which is by definition a highly volatile mechanism for mass cross-border trade and difficult to police.

In Thailand, websites offering pharmaceuticals for sale provide detailed information on products, as well as order procedures. In Thailand, three main organizations are involved in the purchasing and controlling procedures for pharmaceutical trade via e-commerce: Food and Drug Administration, Customs and the information technology department. Laws are in place to enforce website activity and cooperation to trace the offenders.

The control procedure includes a check of the website for illegal electronic advertisement and sale, and follow up on complaints received from individuals in the form of a letter, telephone, e-mail and random spot checks. If the website is located in Thailand, an e-mail message is sent ordering them to stop illegal advertisement and distribution. In addition, an investigation and inspection of the company and storage site is carried out. FDA personnel also check mail parcels randomly in collaboration with customs and the post office.

Impediments to effective control of illegal trade in pharmaceuticals via the Internet include:

- Servers located in other countries.
- Use of incorrect company name or address.
- Clandestine pharmaceutical storage/unlicensed drug stores.
- Limited resources.
- Insufficient cooperation and collaboration among government agencies.
- Sites close and open easily.

International perspectives

The Interpol Intellectual Property Crime Action Group (IIPCAG) is a multi-agency Action Group made up of different partners such as the European Union, World Customs Organization, World Intellectual Property Organization, REACT UK, law enforcement agencies, and customs officials from Canada, China, Europol, Finland, Ireland, Northern Ireland, Italy and USA. IIPCAG is involved in training and best practices promotion, information and intelligence sharing, and raising public awareness. The Action Group has carried out several successful investigations based on information received from industry and law enforcement agencies. It has developed reporting systems, trained national authorities, and developed a guide on best practices. Increasing scale-up is proof of organized crime and organized criminal activity.

The World Customs Organization (WCO) aims to provide an effective response to fraud or any other form of transnational criminal activity, in particular counterfeiting and piracy. The WCO has developed a strong working relationship with the private sector and has developed model legislation to help countries in drafting or revising their existing customs legislation. A specific website has also been created to provide a full range of international property rights services, including on-line applications for customs protection.

The International Chamber of Commerce (ICC) Counterfeiting Intelligence Bureau provided examples of incidences that occurred in different countries as a result of counterfeit medicines. In many cases, the problem of counterfeiting is difficult to solve due to lack of resources and corruption. Counterfeiting of medicines involves both backstreet and more advanced production facilities and increasingly involves organized crime. In some developing countries, such as Argentina, Mexico or Colombia, 40% of medicines on the market are counterfeit and in many parts of West Africa up to 70% of the market is awash with counterfeits.

The ICC publishes a Counterfeit Pharmaceutical Digest hosts a dedicated website, and collaborates with governments, law enforcement and customs who can assist in tracking pharmaceutical counterfeits. In order to combat counterfeiting, information sharing is vital with a need for greater public awareness and political will.

The global approach of the World Intellectual property organization (WIPO) to address counter-
feiting includes coordination at the international level, as well as training, awareness, and information exchange. At the national level, WIPO will assist Member States in concluding effective public/private partnerships, educate consumers and help develop judicial infrastructures under which counterfeiters will receive deterrent sanctions and right holders will obtain adequate relief and/or compensation.

The World Health Organization’s (WHO) is very active in supporting countries to combat counterfeit drugs. Guidelines have been developed, while training on detection and investigation of counterfeit drugs has been carried out in several countries. WHO has also established a working group with pharmaceutical industry associations and nongovernmental organizations which has carried out advocacy and awareness activities. At present, WHO is operating a programme in six countries in the Greater Mekong area. Activities include promoting public awareness, surveillance of the quality of medicines, training of inspectors in detection and investigation of counterfeit medicines, promoting cooperation between drug regulatory authorities and other law enforcement agencies such as the police, customs and prosecutors.

International framework convention to combat counterfeiting of medicines

A draft concept paper on the establishment of an international framework convention to combat counterfeit medicines was presented for debate. The aim of such a framework is to encourage collaboration, including the application of universal jurisdiction, whereby suspected counterfeiting criminals could be prosecuted where they are found, rather than where they had committed the crime. The convention could also be used to form international organizations as well as promote uniformity of sanctions. Drug regulatory authorities have important roles to play in development of the framework.

The convention would clearly define medicines as public health goods while outlining the moral and commercial concerns at stake. The convention would need to concentrate on regional differences and concerns for public access to good quality, safe and effective medicines.

The following issues were discussed and considered relevant to development of a convention:

- Adoption of a convention would assist countries that did not have a legal framework in place and would be an important tool for regulators to show how counterfeiting is a major transnational crime and not only a public health matter. Additionally, establishment of a convention would remove jurisdictional problems amongst countries and help in intelligence gathering.

- Although the focus of a convention should be international, it would also urge national authorities to act on non-compliance and unauthorized use of intellectual property rights within their own country and to introduce laws to protect public health. Counterfeiting thrives in areas of regulatory weakness. Strengthened international cooperation could lead to improved domestic effectiveness, particularly where requirements for registration of medicines, implementation of good manufacturing practice, or licensing of producers has so far been lacking.

- Disparities in sophistication between regions would make centralized discussions difficult for less prominent countries. However, countries could be involved as members of sub-committees, technical advice groups or common interest country blocs. A procedure within the framework of the International Conference of Drug Regulatory Authorities (ICDRA) could also be considered. Regulators must remain engaged in development of the convention until its finalization.

- There is a need to make information on counterfeits available to the public and a convention should make it mandatory for members to report cases.

In conclusion:

- Delegates agreed on a need to urgently endorse the concept for an international framework convention on counterfeiting of medicines.

- Regulatory authorities should be actively engaged in development of the concept.

- Improvement of existing structures was to be encouraged.

- A secretariat should be established to coordinate implementation.
Summary
Participants of the meeting appreciated the efforts made by governments, WHO and other international organizations, nongovernmental organizations and pharmaceutical industries to combat the circulation of counterfeit medicines in national and international markets. However, greater cooperation at all levels should be engaged. The following preliminary action points were identified:

- clarify national definitions and seek harmonization for law enforcement purposes;
- aggregate databases, increase transparency and functionality;
- build on and coordinate existing structures;
- consider the feasibility of having a functioning secretariat to administer and coordinate cooperation and collaboration;
- review and analyse national and international laws relating to counterfeiting.
- Convene a meeting prior to the Twelfth ICDRA to consider progress on development of the concept paper.

Recommendations from the meeting

Participants should:
- Follow the *WHO Guidelines on Developing Measures for Combating Counterfeit Drugs* and make counterfeiting pharmaceuticals a specific crime punishable with appropriate sanctions.
- Establish effective pharmaceuticals regulation includingexport controls and licensing of establishments engaged in the manufacture, import, export, distribution, supply and sale of drugs; product registration, inspection, quality surveillance, etc.
- Increase local and international cooperation.
- Raise public and political awareness of counterfeiting of medicines as a serious public health risk.
- Develop and implement best practice manuals regarding distribution and dispensing of medicines.
- Publish and provide information on drugs to consumers, health professionals and retailers.
- Report any suspected cases of counterfeit drugs to the appropriate body and publish and disseminate information.
- Raise awareness of consumers and policy makers to the links between counterfeiting and organized crime.
- exchange data and information between all interested parties.

The World Health Organization should:
- Collaborate with all stakeholders in the development of a concept paper proposing an international framework convention on counterfeit medicines.
Current Topics

New oral rehydration solution adopted by WHO and UNICEF

For more than 25 years, WHO and UNICEF have recommended a single formulation of glucose based oral rehydration solution to prevent or treat diarrhoeal dehydration, no matter from what cause or affected age group. This solution has played a major role in dramatically reducing global mortality due to diarrhoea. During this time, researchers have sought to develop an ‘improved’ ORS formulation that was as safe and effective as the original in preventing and treating diarrhoeal dehydration but also reduced stool output or offered additional clinical benefits. Reducing the concentrations of glucose and salt in the solution accomplished this goal (see article below).

Because of the improved effectiveness of reduced osmolarity oral rehydration solution, especially for children with acute, non-cholera diarrhoea, WHO and UNICEF are recommending that countries manufacture and use the following formulation in place of the previously recommended oral rehydration solution.

Composition of reduced osmolarity ORS

<table>
<thead>
<tr>
<th>Reduced osmolarity ORS grams/litre</th>
<th>Reduced osmolarity ORS mmol/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium chloride</td>
<td>2.6</td>
</tr>
<tr>
<td>Glucose, anhydrous</td>
<td>13.5</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>1.5</td>
</tr>
<tr>
<td>Trisodium citrate, dihydrate</td>
<td>2.9</td>
</tr>
<tr>
<td>Total weight</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A single oral rehydration solution for global use?

Diarrhoeal diseases remain important causes of death and morbidity in developing countries, with an estimated 1.5 billion episodes and 1.5 million to 2.5 million deaths each year among children younger than 5 years (1–4). A critical factor in reducing diarrhoeal deaths has been the wide-spread adoption of oral rehydration solution (ORS) programmes for the treatment and prevention of diarrhoea-associated dehydration (5, 6). An article recently appearing in the *Journal of the American Medical Association* (7) has proposed that the composition of oral rehydration solution is now in need of a revision and proposes the following argument.

The composition of oral rehydration solution has proven to be both safe and effective in worldwide use, based on its efficacy in replacing water and electrolytes in individuals with cholera infection. However, concern that the sodium concentration of 90 mEq/L was too high for the lower salt losses of viral and other causes of childhood diarrhoea (8) was invoked to explain its low acceptance among paediatricians in industrialized countries who were concerned about the possible occurrence of hypernatraemia (9). Some authors also noted that the standard WHO ORS was occasionally associated with hypernatraemia in children in developing countries (10).

Based on relevant data, WHO and UNICEF convened a meeting in 2001 to review all published studies comparing standard and reduced-osmolarity ORS (11). The conclusions were as follows:
1. Reduced osmolarity ORS was more effective than standard ORS for acute noncholera diarrhoea in children, as measured by clinically important outcomes such as reduced stool output, reduced vomiting, and reduced need for supplemental intravenous therapy. Although data were more limited, reduced-osmolarity ORS also appeared safe and effective for children with cholera;

2. Among adults with cholera, clinical outcomes were not different among those treated with reduced-osmolarity ORS compared with standard ORS, although the risk of transient asymptomatic hyponatraemia was noted;

3. Given the programmatic and logistical advantages of using a single ORS composition globally, it was recommended that this be a reduced-osmolarity ORS (Table 1); and

4. Further monitoring, including postmarketing surveillance studies, were strongly encouraged to better assess any risk of symptomatic hyponatraemia in cholera-endemic parts of the world (11).

A number of randomized controlled trials have established the superiority of reduced-osmolarity ORS over standard ORS in the management of diarrhoeal diseases in children. Concerns about the safety of reduced-osmolarity ORS centre on its use in patients with cholera, especially adults. While the provision of 17% less sodium to patients with cholera may lead to a slightly greater negative sodium balance at the end of treatment, this deficit should be rapidly corrected when a normal diet is resumed. Experience to date provides no evidence that transient hyponatraemia, which may also occur with standard ORS, has significant adverse clinical consequences for cholera patients.

The benefits of promoting the use of a single ORS solution for all patients with diarrhoea, including cholera, are enormous, as has been clearly established with standard ORS. It is recognized, however, that any single ORS formulation, including standard ORS, that is promoted for use in patients of all ages and with diarrhoea of any aetiology must be a compromise that takes into consideration both the substantial differences in stool sodium losses that occur across the spectrum of diarrhoeal disease as well as substantial differences in the global burden of cholera vs noncholera diarrhoea.

It is estimated that acute noncholera diarrhoea in children causes 1.5 million to 2.5 million deaths per year, whereas cholera causes significantly fewer deaths in all age groups. Reduced-osmolarity ORS has the potential to substantially reduce childhood deaths from noncholera diarrhoea due to the reduced requirement for supplementary intravenous fluids. Although reduced-osmolarity ORS may not have the same benefit for cholera patients, clinical trials show it to be as effective as standard ORS. It is the authors view that the current evidence demonstrates the benefits of reduced-osmolarity ORS for the world’s children, and that use of the revised formulation is fully justified.

References

Table 1 Composition of oral rehydration solutions

<table>
<thead>
<tr>
<th>Component</th>
<th>Standard WHO (1975)</th>
<th>Reduced osmolarity WHO (20002)</th>
<th>Glucose plus glycine</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucose, mmol/L</td>
<td>111</td>
<td>75</td>
<td>110</td>
</tr>
<tr>
<td>sodium, mEq/L</td>
<td>90</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>potassium, mEq/L</td>
<td>20</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>chloride, mEq/L</td>
<td>80</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>base 1</td>
<td>10</td>
<td>10</td>
<td>48 (15)</td>
</tr>
<tr>
<td>glycine, mmol/L</td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>osmolarity, mOsm/L</td>
<td>311</td>
<td>245</td>
<td>510</td>
</tr>
</tbody>
</table>

*WHO = World Health Organization
1 Citrate in mmol/L
2 The base was bicarbonate in the original study (9)
3 Potassium citrate

Principles for fixed–dose combination drug products

A statement has been issued by the Southern African Development Community (SADC), United Nations Joint Programme on HIV/AIDS (UN-AIDS), US Department of Health and Human Services (HHS) and the World Health Organization (WHO) on the scientific and technical principles for fixed-dose combination drug products.

In March 2004, officials and representatives of drug regulatory agencies from 23 countries, the research-based and generic pharmaceutical industries, public health leaders, health care providers, advocacy groups, academia and members of nongovernmental organizations met in Botswana to discuss the scientific and technical principles for fixed-dose combination drug products (FDCs) for use in the treatment of HIV/AIDS, tuberculosis and malaria.

Combination therapies, either using single drugs administered together, or FDCs are considered by many to be essential for treating these diseases as well as to limiting the development of drug resistance. Among other advantages, FDCs simplify dosing which could result in better patient adherence to therapy.

An expert panel had previously met in Cape Town, South Africa, in February 2004 to develop a working draft of shared scientific and technical principles for evaluating FDCs. This draft was then posted on the web for comment.

Before and during the conference, concerns were raised that this initiative was biased towards favouring innovator above generic manufacturers, in a way that might negatively affect access to badly needed medicines. However, it was agreed that the principles, in whatever final form, were not intended to impede access to safe, efficacious and quality FDCs and progress was made towards drafting a document based on comments provided by conference participants and those who submitted feedback electronically. In mid-April this revised draft document was posted for two weeks at: http://www.globalhealth.gov/fdc.shtml for further comment via e-mail. An expert panel will consider these additional comments and proceed to write the final document which is expected to be made available in mid-May 2004.

It is anticipated that the document will be of use to regulatory agencies around the world, as well as to pharmaceutical companies and other organizations involved in developing and evaluating FDCs. It is not intended to be a therapeutic or regulatory guideline, nor address the procurement and distribution of specific products.

Reference: http://www.globalhealth.gov/fdc.shtml
8 April 2004.
Mozambique issues compulsory license for HIV antiretrovirals

The HIV/AIDS pandemic constitutes a serious handicap in Mozambique’s struggle against hunger, illness, underdevelopment and misery. High rates of morbidity and mortality have put Mozambique among the ten countries in Africa worst hit by HIV. It is estimated that by the end of 2002 over 1.5 million Mozambicans were infected by HIV, of whom more than 100 000 are suffering from full-blown AIDS. The AIDS death toll is so far well over 200 000 and about 360 000 children have been orphaned by the pandemic. Despite vigorous prevention campaigns, HIV is still spreading.

On 14th November 2001, WTO Members adopted the Ministerial Declaration on the TRIPS Agreement and Public Health (the Doha Declaration) which affirmed the right of each Member to take measures to protect public health, and in particular to promote access to medicines, by using the flexibilities and public health safeguards contained in the TRIPS Agreement. These flexibilities include the use of compulsory licences, and the Doha Declaration confirms that each Member has the right to grant compulsory licences and the freedom to determine the grounds upon which such licences are granted (that is to say that the granting of compulsory licences is not only limited to cases of national emergencies).

Antiretroviral drugs are available which prolong the lives of those infected with HIV/AIDS. However, such drugs are not accessible at affordable prices to large numbers of the Mozambican population. In view of the above, the Mozambique Ministry of Industry and Commerce, in a notice dated 5 April 2004, granted a compulsory licence (No. 01/MIC/04) for the local manufacture of a triple combination of lamivudine, stavudine and nevirapine; antiretrovirals which have proved to be the most effective and economical treatments. The compulsory license will expire as soon as conditions of national emergency and extreme urgency created by the HIV/AIDS pandemic have come to an end.

Other countries have also used the flexibilities in the TRIPS Agreement to protect public health and promote access to medicines. On 29 October 2003, the Ministry of Domestic Trade and Consumer Affairs, Malaysia issued a notice of Section 84 of the Patents Act, to authorize the import of generic antiretrovirals from India, under compulsory licence. In 2002, Zimbabwe declared an emergency (Declaration of Period of Emergency on (HIV/AIDS) Notice 2002, General Notice 240 of 2002) for a period of five years, taking effect from 1 January 2003, for the purpose of enabling local manufacture or import of ‘any patented drug used in the treatment of persons suffering from HIV/AIDS or HIV/AIDS-related conditions’.

Reference: Communications and letters posted at Consumer Project on Technology http://www.cptech.org

Improved use of medicines

Over 450 leading multi-disciplinary researchers, national and international policy makers, patient advocates and clinicians representing nearly 80 countries recently gathered in Thailand for the Second International Conference on Improving Use of Medicines (ICIUM 2004).

Participants reported on the many advances made during the past years but expressed concern over the continued, widespread improper use of medicines. They cautioned that increased access to quality drugs is beneficial only if the medicines are used properly. Overuse, underuse, and misuse of medicines along with poor patient adherence to therapy are contributing to the emergence and rapid spread of disease strains that are resistant to currently available treatment. Resistance to conventional drugs has been observed in patients with respiratory infections, HIV/AIDS, diarrhoeal diseases, tuberculosis, and malaria along with other ailments. Once the ability to use important drugs is lost due to resistance, their effectiveness is lost to every patient, whether in Africa, Asia or anywhere else in the world.

Members of the international community who assembled for ICIUM 2004 reviewed research generated since the first International Conference on Improving Use of Medicines in 1997. The previous conference was a milestone which resulted in unprecedented consensus on interventions to improve medicine use and a definitive global research agenda to increase understanding of issues that impact the appropriate use of medicines.

Reference: www.icium.org
Rapid TB diagnostic test by 2005

The Foundation for Innovative New Diagnostics (FIND) has announced development of a rapid economical TB test aimed to provide tuberculosis results within 48 hours, rather than weeks. The new TB test is expected to be available in 2005.

Following the launch of FIND in May 2003 at the World Health Assembly, a first development agreement has been signed with Biotec Laboratories Ltd, an established independent UK company with expertise in the development of a number of diagnostic products.

FIND’s involvement will accelerate the development, evaluation and demonstration of two improved diagnostic tests. One of these tests will enable rapid and sensitive detection of tuberculosis in patients seeking a diagnosis, while the other will be used to detect multi-drug resistance directly from sputum.

The development target is a test that is as accurate as culture, the current internationally recognized standard, but that gives results in 48 hours rather than several weeks, while using a simple manual procedure that is easy to perform in routine laboratories. The FIND investment will be used primarily to enhance the capacity of Biotec’s R&D facilities in Cape Town, South Africa, which will accelerate the development of these tests.

This technology has the potential to replace existing slow culture methods, boosting TB case detection far above that achieved with microscopy alone by bringing a rapid and sensitive test to developing country laboratories.

FIND, a non-profit organisation, will leverage its development investment with Biotec to ensure affordability of the tests for low-income countries where they are most urgently needed. Under the terms of this agreement, FIND has obtained a royalty-free license for the use of this technology in the public health sector of low-income countries, with Biotec retaining exclusive rights for the private health sector in low-income countries and all markets in high income countries.

One use of the new FASTPlaque tests is to screen for rifampicin resistant strains directly from sputum. FIND is collaborating with the UNICEF/ UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) to evaluate the accuracy and effectiveness of this newly developed test for drug resistance.

The announcement coincides with the release of the World Health Organization’s third global report on ‘Anti-TB Drug Resistance in the Developing World’ which highlights the utility of rapid rifampicin resistance tests in TB to predict multi-drug resistance in areas where it is prevalent.

Research bioethics training

The Johns Hopkins University Bloomberg School of Public Health and Bioethics Institute, in collaboration with the US National Institutes of Health (NIH), Department of Clinical Bioethics, are pleased to announce the availability of a one year training programme in research ethics for scientists and professionals from sub-Saharan Africa. This training programme is supported by the Fogarty International Center, US National Institutes of Health (NIH). The training programme will provide funding for African scientists, professionals, and senior scholars to study bioethics and research ethics, and also to do an independent project in their home country related to research ethics.

Consultation Document

The International Pharmacopoeia: monographs for antiretrovirals (second draft)

Within the framework of the Pilot Procurement Project for Quality and Sourcing of HIV Drugs (http://www.who.int/medicines), the International Pharmacopoeia is collaborating with manufacturers, independent analytical drug quality control laboratories, national and regional pharmacopoeial bodies, research, governments, and regulatory bodies to provide specifications and monographs for the following antiretroviral agents:

- abacavir, didanosine, efavirenz, indinavir, lamivudine, nelfinavir, nevirapine, ritonavir, saquinavir, stavudine, zidovudine

Specifications for the respective dosage forms are now being developed and a draft monograph for didanosine is now available for consultation as presented below. This second draft monograph has been developed following comments received on the first draft published in WHO Drug Information, Vol. 17, No. 3 2003. Comments should be sent to: Quality and Safety: Medicines, World Health Organization, 1211 Geneva 27, Switzerland or kopps@who.int.

DIDANOSINUM

Didanosine

Molecular formula: $C_{10}H_{12}N_4O_3$

Relative Molecular Mass: 236.23

Graphic formula:

Chemical name: 9-[(2R,5S)-5-(hydroxymethyl)tetrahydrofuran-2-yl]-1,9-dihydro-6$\hat{\text{H}}$purin-6-one; 9-(2,3-dideoxy-β-D-glycero-pentofuranosyl)-1,9-dihydro-6$\hat{\text{H}}$purin-6-one; 2',3'-dideoxyinosine (DDI); CAS Reg. No. 69655-05-6.
Description: A white to almost white powder.

Solubility: Sparingly soluble in water; slightly soluble in methanol R and ethanol (95 per cent) R

Melting point: about 170 °C with decomposition.

Category: Antiretroviral (nucleoside reverse transcriptase inhibitor).

Storage: Didanosine should be kept in a tightly closed container.

Requirements

Didanosine contains not less than 98.5% and not more than 101.0% of C₁₀H₁₂N₄O₃ calculated with reference to the dried substance.

Identity test

Carry out the examination as described under “Spectrophotometry in the infrared region” (Vol. 1, p. 40*). The infrared absorption spectrum is concordant with the spectrum obtained from didanosine RS or with the reference spectrum of didanosine.

If the spectra are not concordant, use didanosine RS. Dissolve the sample in a small amount of methanol R, evaporate and carry out the IR spectrum as mentioned above. Treat didanosine RS in the same way. The infrared absorption spectrum is concordant with the spectrum obtained from didanosine RS.

Specific Optical Rotation. Use a 10 mg/ml solution and calculate with reference to the dried substance: \([\alpha]_D^{20} = -24°\) to \(-28°\).

Heavy metals. Use 1.0 g for the preparation of the test solution as described under “Limit test for heavy metals”, Procedure 1 (Vol. 1, p. 118*); determine the heavy metal content according to Method A (Vol. 1, p. 119*); not more than 20 µg/g.

Sulfated ash. Not more than 1.0 mg/g.

Loss on drying. Dry for 4 hours at 105 °C; it loses not more than 5 mg/g.

Related Substances

Note: Prepare fresh solutions and perform the tests without delay.

Carry out the test as described under “High-performance liquid chromatography” (Vol. 5, p. 257*), using a stainless steel column (25 cm x 4.6 mm), packed with octadecysilyl base-deactivated silica gel for chromatography R (5µm). (Hypersil BDS is suitable.)

Maintain the column temperature at 20 – 25 °C.

The mobile phases for gradient elution consist of a mixture of aqueous phase (Mobile phase A) and methanol (Mobile phase B), using the following conditions:

Mobile phase A: A 0.05 M solution of ammonium acetate R adjusted to pH 8.0 using a 20% v/v ammonia solution.

Mobile phase B: Methanol.

* Refers to *The international Pharmacopoeia*
WHO Drug Information Vol 18, No. 2, 2004

Prepare the following solutions in a mixture of 92 volumes of mobile phase A and 8 volumes of mobile phase B (dissolution solvent).

For solution (1) dissolve 5 mg of hypoxanthine R and 5 mg of inosine R in the dissolution solvent and dilute to 100.0 ml with the same solvent. Dilute 1.0 ml in 10.0 ml with the same solvent. For solution (2) dissolve 25 mg of Didanosine in the dissolution solvent and dilute to 50.0 ml with the same solvent. For solution (3) dilute 5.0 ml of solution (2) to 50.0 ml with the dissolution solvent. Then dilute 5.0 ml of this solution to 50.0 ml with the same solvent.

Operate with a flow rate of 1.0 ml per minute. As a detector use an ultraviolet spectrophotometer set at a wavelength of about 254 nm.

Inject 20 \(\mu l \) of solution (1). The test is not valid unless the resolution factor between the peaks due to hypoxanthine and inosine is greater than 8.0, if necessary reduce the amount of methanol in the mobile phase and adjust the proportion of aqueous phase pH 8.0 accordingly.

Inject separately 20 \(\mu l \) of solution (3) in replicate injections in the chromatographic system. The relative standard deviation for peak areas of didanosine in replicate injections of solution (3) is not more than 5.0%.

Inject separately 20 \(\mu l \) each of solution (2) and of mobile phase in the chromatographic system. Examine the mobile phase chromatogram for any extraneous peaks and disregard the corresponding peaks observed in the chromatogram obtained with solution (2).

In the chromatogram obtained with solution (2), the following peaks are eluted at the following relative retention with reference to didanosine: hypoxanthine (A) = about 0.08; inosine (B) = about 0.23; 2’-deoxyinosine (C) = about 0.30; 2’,3’-didehydrodidanosine (D) = about 0.71; didanosine acetate (E) = about 1.85.

Measure the areas of the peak responses obtained in the chromatograms from solutions (2) and (3), and calculate the content of related substances as a percentage. For the calculation of limit contents, multiply the peak areas of the following impurities by the corresponding correction factor: hypoxanthine (A) = 0.6. For any other peaks eluting apart from the above mentioned relative retention, apply a response factor of 1.

In the chromatogram obtained with solution (2) the area of any individual peaks corresponding to A, B, C, D and E is not greater than 0.3 times the area of the principal peak obtained with solution (3) (0.3%). Any other impurity peak is not greater than 0.1 times the area of the principal peak obtained with solution (3) (0.1%). The sum of the areas of all peaks, other than the principal peak, is not greater than the area of the principal peak obtained with solution (3) (1.0%). Disregard any peak with an area less than 0.05 times the area of the principal peak obtained with solution (3) (0.05%).

* Refers to The international Pharmacopoeia
Assay

Dissolve about 0.200 g, accurately weighed, in 50 ml glacial acetic acid R1 and titrate with perchloric acid (0.1 mol/l) VS as described under “Non-aqueous titration”; Method A (Vol. 1, p.131*) determining the end point potentiometrically.

Each ml of perchloric acid (0.1 mol/l) VS is equivalent to 23.62 mg of C_{10}H_{12}N_{4}O_{3}.

Tested impurities

A. “Hypoxanthine” = 1,7-dihydro-6H-purin-6-one

B. “Inosine” = 9-ß-D-ribofuranosyl-1,9-dihydro-6H-purin-6-one

C. “2′-Deoxyinosine” = 9-(2-deoxy-ß-D-erythro-pentofuranosyl)-1,9-dihydro-6H-purin-6-one

D. “2′,3′-Didehydrodidanosine” = 9-[(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]-1,9-dihydro-6H-purin-6-one; 9-(2,3-dideoxy-ß-D-glycero-pent-2-enofuranosyl)-1,9-dihydro-6H-purin-6-one

E. “Didanosine acetate” = [(2S,5R)-5-(6-oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-2-yl]methyl acetate; 9-(5-O-acetyl-2,3-dideoxy-ß-D-glycero-pentofuranosyl)-1,9-dihydro-6H-purin-6-one

F. “3′-Deoxyinosine” = 9-(3-deoxy-ß-D-erythro-pentofuranosyl)-1,9-dihydro-6H-purin-6-one

G. “Olefine” = [(2S,5R)-5-(6-oxo-1,6-dihydro-9H-purin-9-yl)-2,5-dihydrofuran-2-yl]methyl acetate; 2′,3′-didehydrodidanosine acetate; 9-(5-O-acetyl-2,3-dideoxy-ß-D-glycero-pent-2-enofuranosyl)-1,9-dihydro-6H-purin-6-one

H. “Dioxolane” = 9-[(2RS,3aR,4R,6R,6aR)-6-(hydroxymethyl)-2-methoxy-2-methyltetrahydrofuro[3,4-d]-1,3-dioxol-4-yl]-1,9-dihydro-6H-purin-6-one; 2′,3′-O-(1-methoxyethylidene)inosine; 9-[2,3-O[(1RS)-1-methoxyethylene]-ß-D-ribofuranosyl]-1,9-dihydro-6H-purin-6-one

I. “Bromoesters” = mixture of 9-(3,5-di-O-acetyl-2-bromo-2-deoxy-ß-D-arabinofuranosyl)-1,9-dihydro-6H-purin-6-one and 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-ß-D-xylofuranosyl)-1,9-dihydro-6H-purin-6-one

Reagents

Hypoxantine R. 1,7-dihydro-6H-purin-6-one; C_{5}H_{4}N_{4}O.

A commercially available reagent of suitable grade.

Description. A white, crystalline powder.

Solubility. Very slightly soluble in water, sparingly soluble in boiling water, soluble in dilute acids and in dilute alkali hydroxide solutions.

Melting point. Decomposes without melting at about 150°C.

Thin-Layer Chromatography. Examine as prescribed in the monograph on Mercaptopurine (Vol. 4, p.77-79*); the chromatogram shows only one principal spot.

* Refers to The international Pharmacopoeia
Inosine R. 9-ß-D-ribofuranosyl-1,9-dihydro-6H-purin-6-one; C\(_{10}\)H\(_{12}\)N\(_4\)O\(_5\).

A commercially available reagent of suitable grade.

Description. A crystalline powder. Dihydrate, long rectangular plates from water, melting point = 90 °C. Anhydrous needles from 80% alcohol, decomposition 218 °C (rapid heating).

Solubility. Sparingly soluble in water.

Specific optical rotation. \([\alpha]_{D}^{\text{c}} = -49^\circ\) (c = 0.9 in H\(_2\)O with c = concentration by volume, g/100 ml after optical rotation only).

Silica gel for chromatography, octadecylsilyl, base-deactivated

A very finely divided silica gel, pretreated before the bonding of octadecylsilyl groups to minimize the interaction with basic components.
ATC/DDD Classification (Final)

The following final anatomical therapeutic chemical (ATC) classifications and defined daily doses (DDDs) were agreed at a meeting of the WHO International Working Group for Drug Statistics Methodology which took place in October 2003. They came into force on 1 March 2004 and will be included in the January 2005 issue of the ATC index. The inclusion of a substance in the lists does not imply any recommendation of use in medicine or pharmacy. The WHO Collaborating Centre for Drug Statistics Methodology can be contacted through e-mail: whocc@nmd.no.

New ATC level codes (other than 5th level):

Other hormone antagonists and related agents

L02BX

New ATC 5th level codes:

<table>
<thead>
<tr>
<th>INN/Common name</th>
<th>ATC code</th>
</tr>
</thead>
<tbody>
<tr>
<td>abarelix</td>
<td>L02BX01</td>
</tr>
<tr>
<td>aprepitant</td>
<td>A04AD12</td>
</tr>
<tr>
<td>aripiprazole</td>
<td>N05AX12</td>
</tr>
<tr>
<td>buprenorphine, combinations</td>
<td>N07BC51</td>
</tr>
<tr>
<td>cetuximab</td>
<td>L01XC06</td>
</tr>
<tr>
<td>enfuvirtide</td>
<td>J05AX07</td>
</tr>
<tr>
<td>enoxolone</td>
<td>D03AX10</td>
</tr>
<tr>
<td>flutrimazole</td>
<td>G01AF18</td>
</tr>
<tr>
<td>fosamprenavir</td>
<td>J05AE07</td>
</tr>
<tr>
<td>ibuprofen</td>
<td>C01EB16</td>
</tr>
<tr>
<td>insulin glulisine</td>
<td>A10AB06</td>
</tr>
<tr>
<td>methazolamide</td>
<td>S01EC05</td>
</tr>
<tr>
<td>micafungin</td>
<td>J02AX05</td>
</tr>
<tr>
<td>olmesartan medoxomil</td>
<td>C09CA08</td>
</tr>
<tr>
<td>sacrosidase</td>
<td>A16AB06</td>
</tr>
<tr>
<td>strontium ranelate</td>
<td>M05BX03</td>
</tr>
<tr>
<td>temoporfin</td>
<td>L01XD05</td>
</tr>
<tr>
<td>undecylenic acid, combinations</td>
<td>D01AE54</td>
</tr>
</tbody>
</table>

New DDDs:

<table>
<thead>
<tr>
<th>INN/common name</th>
<th>DDD</th>
<th>Unit</th>
<th>Adm.R</th>
<th>ATC code</th>
</tr>
</thead>
<tbody>
<tr>
<td>adalimumab</td>
<td>2.9</td>
<td>mg</td>
<td>P</td>
<td>L04AA17</td>
</tr>
<tr>
<td>apraclonidine</td>
<td>0.3</td>
<td>ml</td>
<td></td>
<td>S01EA03</td>
</tr>
<tr>
<td>clofocotol</td>
<td>1.5</td>
<td>g</td>
<td></td>
<td>J01XX03</td>
</tr>
<tr>
<td>colistin</td>
<td>3</td>
<td>MU</td>
<td></td>
<td>J01XB01</td>
</tr>
<tr>
<td>enfuvirtide</td>
<td>0.18</td>
<td>g</td>
<td>P</td>
<td>J05AX07</td>
</tr>
<tr>
<td>everolimus</td>
<td>1.5</td>
<td>mg</td>
<td>O</td>
<td>L04AA18</td>
</tr>
</tbody>
</table>
New DDDs (continued):

<table>
<thead>
<tr>
<th>INN/common name</th>
<th>DDD</th>
<th>Unit</th>
<th>Adm.R</th>
<th>ATC code</th>
</tr>
</thead>
<tbody>
<tr>
<td>laronidase</td>
<td>1</td>
<td>TU</td>
<td>P</td>
<td>A16AB05</td>
</tr>
<tr>
<td>methazolamide</td>
<td>0.2</td>
<td>g</td>
<td>O</td>
<td>S01EC05</td>
</tr>
<tr>
<td>olmesartan medoxomil</td>
<td>20</td>
<td>mg</td>
<td>O</td>
<td>C09CA08</td>
</tr>
<tr>
<td>paracetamol</td>
<td>3</td>
<td>g</td>
<td>P</td>
<td>N02BE01</td>
</tr>
<tr>
<td>rokitamycin</td>
<td>0.8</td>
<td>g</td>
<td>O</td>
<td>J01FA12</td>
</tr>
<tr>
<td>sacrosidase</td>
<td>68</td>
<td>TU</td>
<td>O</td>
<td>A16AB06</td>
</tr>
<tr>
<td>testosterone</td>
<td>50</td>
<td>mg</td>
<td>TD gel</td>
<td>G03BA03</td>
</tr>
</tbody>
</table>
ATC/DDD Classification (temporary)

The following temporary anatomical therapeutic chemical (ATC) classifications, defined daily doses (DDDs) and alterations were agreed at a meeting of the WHO International Working Group for Drug Statistics Methodology which took place on 22–23 March 2004. Comments or objections to the decisions from the meeting should be forwarded to the WHO Collaborating Centre for Drug Statistics Methodology, e-mail: whocc@nmd.no before 1 September 2004. If no objections are received before this date, the new ATC codes and DDDs will be considered final and be included in the January 2005 issue of the ATC index. The inclusion of a substance in the lists does not imply any recommendation of use in medicine or pharmacy.

<table>
<thead>
<tr>
<th>ATC level</th>
<th>INN/Common name</th>
<th>ATC code</th>
</tr>
</thead>
<tbody>
<tr>
<td>New ATC level codes (other than 5th level):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-generation cefalosporins</td>
<td>J01DB</td>
<td></td>
</tr>
<tr>
<td>Fourth-generation cefalosporins</td>
<td>J01DE</td>
<td></td>
</tr>
<tr>
<td>Second-generation cefalosporins</td>
<td>J01DC</td>
<td></td>
</tr>
<tr>
<td>Third-generation cefalosporins</td>
<td>J01DD</td>
<td></td>
</tr>
<tr>
<td>New ATC 5th level codes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anecortave</td>
<td>S01XA16</td>
<td></td>
</tr>
<tr>
<td>atorvastatin, combinations</td>
<td>C10AA55</td>
<td></td>
</tr>
<tr>
<td>bevacizumab</td>
<td>L01XC07</td>
<td></td>
</tr>
<tr>
<td>cefoperazone, combinations</td>
<td>J01DA82</td>
<td></td>
</tr>
<tr>
<td>cromoglicic acid</td>
<td>D11AX17</td>
<td></td>
</tr>
<tr>
<td>darifenacin</td>
<td>G04BD10</td>
<td></td>
</tr>
<tr>
<td>eplerenone</td>
<td>C03DA04</td>
<td></td>
</tr>
<tr>
<td>hydroxybutyric acid</td>
<td>N07XX04</td>
<td></td>
</tr>
<tr>
<td>insulin detemir</td>
<td>A10AE05</td>
<td></td>
</tr>
<tr>
<td>mecobalamin</td>
<td>B03BA05</td>
<td></td>
</tr>
<tr>
<td>melatonin</td>
<td>N05CM17</td>
<td></td>
</tr>
<tr>
<td>olmesartan medoxomil and diuretics</td>
<td>C09DA08</td>
<td></td>
</tr>
<tr>
<td>pemetrexed</td>
<td>L01BA04</td>
<td></td>
</tr>
<tr>
<td>pravastatin, combinations</td>
<td>C10AA53</td>
<td></td>
</tr>
<tr>
<td>rasagiline</td>
<td>N04BD02</td>
<td></td>
</tr>
<tr>
<td>sulfamerazine and trimethoprim</td>
<td>J01EE07</td>
<td></td>
</tr>
<tr>
<td>typhoid – hepatitis A</td>
<td>J07CA10</td>
<td></td>
</tr>
<tr>
<td>ziconotide</td>
<td>N02BG08</td>
<td></td>
</tr>
</tbody>
</table>

Change of ATC codes (operational January 2005):

<table>
<thead>
<tr>
<th>INN/common name</th>
<th>Previous ATC</th>
<th>New ATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>cefacectril</td>
<td>J01DA34</td>
<td>J01DB10</td>
</tr>
<tr>
<td>cefaclor</td>
<td>J01DA08</td>
<td>J01DC04</td>
</tr>
<tr>
<td>INN/common name</td>
<td>Previous ATC</td>
<td>New ATC</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>cefadroxil</td>
<td>J01DA09</td>
<td>J01DB05</td>
</tr>
<tr>
<td>cefalexin</td>
<td>J01DA01</td>
<td>J01DB01</td>
</tr>
<tr>
<td>cefaloridine</td>
<td>J01DA02</td>
<td>J01DB02</td>
</tr>
<tr>
<td>cefalotin</td>
<td>J01DA03</td>
<td>J01DB03</td>
</tr>
<tr>
<td>cefamandole</td>
<td>J01DA07</td>
<td>J01DC03</td>
</tr>
<tr>
<td>cefapirin</td>
<td>J01DA30</td>
<td>J01DB08</td>
</tr>
<tr>
<td>cefatrizine</td>
<td>J01DA21</td>
<td>J01DB07</td>
</tr>
<tr>
<td>cefazedone</td>
<td>J01DA15</td>
<td>J01DB06</td>
</tr>
<tr>
<td>cefazolin</td>
<td>J01DA04</td>
<td>J01DB04</td>
</tr>
<tr>
<td>cefdinir</td>
<td>J01DA42</td>
<td>J01DD15</td>
</tr>
<tr>
<td>cefepime</td>
<td>J01DA24</td>
<td>J01DE01</td>
</tr>
<tr>
<td>cefetamet</td>
<td>J01DA26</td>
<td>J01DD10</td>
</tr>
<tr>
<td>cefixime</td>
<td>J01DA23</td>
<td>J01DD08</td>
</tr>
<tr>
<td>cefmenoxime</td>
<td>J01DA16</td>
<td>J01DD05</td>
</tr>
<tr>
<td>cefmetazole</td>
<td>J01DA40</td>
<td>J01DC09</td>
</tr>
<tr>
<td>cefodizime</td>
<td>J01DA25</td>
<td>J01DD09</td>
</tr>
<tr>
<td>cefonicide</td>
<td>J01DA17</td>
<td>J01DC06</td>
</tr>
<tr>
<td>cefoperazone</td>
<td>J01DA32</td>
<td>J01DD12</td>
</tr>
<tr>
<td>cefotaxime</td>
<td>J01DA10</td>
<td>J01DD01</td>
</tr>
<tr>
<td>cefotetan</td>
<td>J01DA14</td>
<td>J01DC05</td>
</tr>
<tr>
<td>cefotiam</td>
<td>J01DA19</td>
<td>J01DC07</td>
</tr>
<tr>
<td>cefoxitin</td>
<td>J01DA05</td>
<td>J01DC01</td>
</tr>
<tr>
<td>cefpiramide</td>
<td>J01DA27</td>
<td>J01DD11</td>
</tr>
<tr>
<td>cefpirome</td>
<td>J01DA37</td>
<td>J01DE02</td>
</tr>
<tr>
<td>cepodoxime</td>
<td>J01DA33</td>
<td>J01DD13</td>
</tr>
<tr>
<td>ceprozil</td>
<td>J01DA41</td>
<td>J01DC10</td>
</tr>
<tr>
<td>cefradine</td>
<td>J01DA31</td>
<td>J01DB09</td>
</tr>
<tr>
<td>cefroxadine</td>
<td>J01DA35</td>
<td>J01DB11</td>
</tr>
<tr>
<td>cefsulodin</td>
<td>J01DA12</td>
<td>J01DD03</td>
</tr>
<tr>
<td>ceftazidime</td>
<td>J01DA11</td>
<td>J01DD02</td>
</tr>
<tr>
<td>ceftezole</td>
<td>J01DA36</td>
<td>J01DB12</td>
</tr>
<tr>
<td>cefitobuten</td>
<td>J01DA39</td>
<td>J01DD14</td>
</tr>
<tr>
<td>ceftizoxime</td>
<td>J01DA22</td>
<td>J01DD07</td>
</tr>
<tr>
<td>ceftriavox</td>
<td>J01DA13</td>
<td>J01DD04</td>
</tr>
<tr>
<td>ceftriazone, combinations</td>
<td>J01DA63</td>
<td>J01DD54</td>
</tr>
<tr>
<td>cefuroxime</td>
<td>J01DA06</td>
<td>J01DC02</td>
</tr>
<tr>
<td>latamoxef</td>
<td>J01DA18</td>
<td>J01DD06</td>
</tr>
<tr>
<td>loracarbef</td>
<td>J01DA38</td>
<td>J01DC08</td>
</tr>
</tbody>
</table>

ATC name change:

<table>
<thead>
<tr>
<th>Previous</th>
<th>New</th>
<th>ATC code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbilli vaccines</td>
<td>Measles vaccines</td>
<td>J07BD</td>
</tr>
<tr>
<td>Morbilli, combinations with parotitis and rubella, live attenuated</td>
<td>Measles, combinations with mumps and rubella, live attenuated</td>
<td>J07BD52</td>
</tr>
<tr>
<td>Morbilli, combinations with parotitis, live attenuated</td>
<td>Measles, combinations with mumps, live attenuated</td>
<td>J07BD5</td>
</tr>
<tr>
<td>Morbilli, combinations with rubella, live attenuated</td>
<td>Measles, combinations with rubella, live attenuated</td>
<td>J07BD53</td>
</tr>
<tr>
<td>Morbilli, live attenuated</td>
<td>Measles, live attenuated</td>
<td>J07BD01</td>
</tr>
<tr>
<td>Parotitis vaccines</td>
<td>Mumps vaccines</td>
<td>J07BE</td>
</tr>
<tr>
<td>Parotitis, live attenuated</td>
<td>Mumps, live attenuated</td>
<td>J07BE01</td>
</tr>
</tbody>
</table>
New DDDs:

<table>
<thead>
<tr>
<th>INN/common name</th>
<th>DDD</th>
<th>Unit</th>
<th>Adm.R</th>
<th>ATC code</th>
</tr>
</thead>
<tbody>
<tr>
<td>aprepitant</td>
<td>95</td>
<td>mg</td>
<td>O</td>
<td>A04AD12</td>
</tr>
<tr>
<td>aripiprazole</td>
<td>15</td>
<td>mg</td>
<td>O</td>
<td>N05AX12</td>
</tr>
<tr>
<td>atomoxetine</td>
<td>80</td>
<td>mg</td>
<td>O</td>
<td>N06BA09</td>
</tr>
<tr>
<td>benzathine benzylpenicillin</td>
<td>3.6</td>
<td>g</td>
<td>P</td>
<td>J01CE08</td>
</tr>
<tr>
<td>benzathine phenoxymetylpenicillin</td>
<td>2</td>
<td>g</td>
<td>O</td>
<td>J01CE10</td>
</tr>
<tr>
<td>brodimoprim</td>
<td>0.2</td>
<td>g</td>
<td>O</td>
<td>J01EA02</td>
</tr>
<tr>
<td>buprenorphine</td>
<td>1.2</td>
<td>mg</td>
<td>TD</td>
<td>N02AE02</td>
</tr>
<tr>
<td>cefmenoxime</td>
<td>2</td>
<td>g</td>
<td>P</td>
<td>J01DA16</td>
</tr>
<tr>
<td>ceftezole</td>
<td>6</td>
<td>g</td>
<td>P</td>
<td>J01DA36</td>
</tr>
<tr>
<td>cloperastine</td>
<td>60</td>
<td>mg</td>
<td>O</td>
<td>R05DB21</td>
</tr>
<tr>
<td>clotiapine</td>
<td>80</td>
<td>mg</td>
<td>O,P</td>
<td>N05AX09</td>
</tr>
<tr>
<td>flumequine</td>
<td>1.2</td>
<td>g</td>
<td>O</td>
<td>J01MB07</td>
</tr>
<tr>
<td>flurithromycin</td>
<td>0.75</td>
<td>g</td>
<td>O</td>
<td>J01FA14</td>
</tr>
<tr>
<td>methotrexate</td>
<td>0.4</td>
<td>g</td>
<td>O</td>
<td>N05AL07</td>
</tr>
<tr>
<td>nesiritide</td>
<td>2.5</td>
<td>mg</td>
<td>O</td>
<td>L04AX03</td>
</tr>
<tr>
<td>rufloxacin</td>
<td>0.2</td>
<td>g</td>
<td>O</td>
<td>J01MA10</td>
</tr>
<tr>
<td>sodium folinate</td>
<td>60</td>
<td>mg</td>
<td>P</td>
<td>V03AF06</td>
</tr>
<tr>
<td>solifenacin</td>
<td>5</td>
<td>mg</td>
<td>O</td>
<td>G04DB08</td>
</tr>
<tr>
<td>sulfamazole</td>
<td>1.5</td>
<td>g</td>
<td>O,R</td>
<td>J01ED09</td>
</tr>
</tbody>
</table>

Change of DDDs (operational January 2005)

<table>
<thead>
<tr>
<th>INN/common name</th>
<th>DDD</th>
<th>Unit</th>
<th>Adm.R</th>
<th>ATC code</th>
</tr>
</thead>
<tbody>
<tr>
<td>alosetron</td>
<td>2</td>
<td>mg</td>
<td>O</td>
<td>A03AE01</td>
</tr>
<tr>
<td>(new)</td>
<td>1</td>
<td>mg</td>
<td>O</td>
<td>A03AE01</td>
</tr>
<tr>
<td>amoxcillin and enzyme inhibitor</td>
<td>1</td>
<td>g</td>
<td>P</td>
<td>J01CR02</td>
</tr>
<tr>
<td>(new)</td>
<td>3</td>
<td>g</td>
<td>P</td>
<td>J01CR02</td>
</tr>
<tr>
<td>esomeprazole</td>
<td>20</td>
<td>mg</td>
<td>O</td>
<td>A02BC05</td>
</tr>
<tr>
<td>(new)</td>
<td>30</td>
<td>mg</td>
<td>O</td>
<td>A02BC05</td>
</tr>
<tr>
<td>fentanyl</td>
<td>0.6</td>
<td>mg</td>
<td>TD</td>
<td>A02BC05</td>
</tr>
<tr>
<td>(new)</td>
<td>1.2</td>
<td>mg</td>
<td>TD</td>
<td>A02BC05</td>
</tr>
<tr>
<td>levitiracetam</td>
<td>2</td>
<td>g</td>
<td>O</td>
<td>N03AX14</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>g</td>
<td>O</td>
<td>N03AX14</td>
</tr>
</tbody>
</table>
Recent Publications and Sources of Information

Specifications for pharmaceutical preparations

The latest report from the WHO Expert Committee on Specifications for Pharmaceutical Preparations has now been published. The report contains recommendations on the quality assurance of pharmaceuticals, including good manufacturing practices, inspection, distribution and trade, risk analysis and drug supply. The report is complemented by the following annexes.

• International chemical reference substances and infrared reference spectra.
• Good trade and distribution practices for pharmaceutical starting materials.
• WHO pharmaceutical starting materials certification scheme: guidelines on implementation.
• Procedure for assessing the acceptability, in principle, of quality control laboratories for use by United Nations agencies.
• Guidelines for the preparation of a procurement agency information file.
• Interim guidelines for the assessment of a procurement agency.

WHO model formulary

The 2004 edition of the WHO Model Formulary is now available. This is an indispensable source of independent information on essential medicines for policy makers and prescribers.

It describes how to make effective use of medicines on the WHO Model List of Essential Medicines by improving patient safety and limiting unnecessary medical spending. For each medicine, the Model Formulary provides information on use, dosage, adverse effects, contraindications and warnings with guidance on selecting medicines.

World Health Organization. Model Formulary (2004) Available from Marketing and Dissemination, 1211 Geneva 27, Switzerland or publications@who.int

Guidance on risk management

The US Food and Drug Administration (FDA) has announced the availability of three draft guidances to help industry develop risk management activities when needed for some drugs and biological products. The documents, Premarket Risk Assessment, Development and Use of Risk Minimization Action Plans, and Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment, address safety issues that can arise throughout a product’s entire lifecycle, including its development, the review and approval process, and after it is available on the market.

The draft guidances describe additional safety testing, monitoring, and interventions that may be helpful in selected circumstances and address premarket risk assessment; the development, implementation, and evaluation of risk minimization action plans (called RiskMAPs); and good pharmacovigilance practices and assessment of reported adverse events.

For example, the draft guidance on premarket risk assessment focuses on measures sponsors might consider during the later stages of clinical development of products that are known to, or might, present special safety issues. The recommended risk assessment strategies for such cases can include long-term controlled safety studies, enrolment of diversified patient population, and phase 3 trials with multiple dose levels.

the risks of drug products. The draft guidance on heightened postmarketing vigilance identifies recommended reporting and analytical practices involving adverse events associated with high-risk drug and biological products.

The agency invites written or electronic comments on the draft guidances until 6 July 2004. FDA is specifically soliciting public comment on how to best characterize the types and levels of risk that might suggest the need for a risk management plan.

Clinical trial fellowships

The European & Developing Countries Clinical Trials Partnership (EDCTP) is an initiative by European Union Member Countries and Norway to reinforce research into the development of new clinical interventions against HIV/AIDS, tuberculosis and malaria in developing countries. A Partnership Board (PB) will oversee the scientific aspects.

EDCTP will focus activities on accelerating the clinical evaluation of candidate new interventions including conducting controlled trials of new and improved drugs and vaccines against target diseases, and increasing the capacity of scientists and institutions to undertake such trials.

A major objective is to encourage and facilitate networking and coordination of clinical trial activities on the target diseases within Europe and sub-Saharan Africa. The EDCTP intends to identify and support senior researchers capable of building up teams in African institutions that will be internationally competitive and capable of winning grants from international funding bodies for research on the three major poverty-related diseases in Africa (HIV/AIDS, tuberculosis and malaria).

EDCTP Fellows will undertake applied research in clinical trial related disciplines such as epidemiology, clinical medicine, virology, immunology, parasitology, pharmacology and molecular biology.

Reference: http://www.edctp.org

On-line course in medicines management

Management of medicines in International health is a new distance learning course provided by InWEnt in English, French, Spanish and German. It is being run currently as a pilot with more than 30 students. The InWEnt website (http://www.gc21.de/ibt/opengc21/ibt/index.htm) leads to information about online courses

InWEnt is a German organization for international human resources development, advanced training and dialogue. The Federal Government of Germany is its main partner and the Federal Ministry for Economic Cooperation and Development its chief commissioning authority. The health division of InWEnt also offers training programmes for capacity development, supporting individuals, institutions and governments for improving health service delivery.

E-learning, developed by InWEnt, provides a unique opportunity where participants who are separated by huge geographic distances and work in different parts of the health sector can learn together as a cyber group. The “Management of medicines in International health” is especially suitable for such an international and interdisciplinary learning process. The course is accessed through the internet but does not require continuous access because modules can be downloaded.

The structure consists of 3 phases.

1. The Contact Phase is focused on the participant interaction and their special needs. Participants get to know each other, analyse their needs and become familiar with the course.

2. The Online Course consists of 7 modules with one main-topic each followed by tests.

3. After a successful online course participants are invited to a workshop to reinforce learning and develop a project proposal to improve a specific medicine management problem in the working environment.

Reference: health@inwent.org or claudia.kornahrens@inwent.org
International Nonproprietary Names for Pharmaceutical Substances (INN)

Notice is hereby given that, in accordance with article 3 of the Procedure for the Selection of Recommended International Nonproprietary Names for Pharmaceutical Substances, the names given in the list on the following pages are under consideration by the World Health Organization as Proposed International Nonproprietary Names. The inclusion of a name in the lists of Proposed International Nonproprietary Names does not imply any recommendation of the use of the substance in medicine or pharmacy.

Lists of Proposed (1–85) and Recommended (1–45) International Nonproprietary Names can be found in Cumulative List No. 10, 2002 (available in CD-ROM only). The statements indicating action and use are based largely on information supplied by the manufacturer. This information is merely meant to provide an indication of the potential use of new substances at the time they are accorded Proposed International Nonproprietary Names. WHO is not in a position either to uphold these statements or to comment on the efficacy of the action claimed. Because of their provisional nature, these descriptors will neither be revised nor included in the Cumulative Lists of INNs.

Dénominations communes internationales des Substances pharmaceutiques (DCI)

Il est notifié que, conformément aux dispositions de l'article 3 de la Procédure à suivre en vue du choix de Dénominations communes internationales recommandées pour les Substances pharmaceutiques les dénominations ci-dessous sont mises à l'étude par l'Organisation mondiale de la Santé en tant que dénominations communes internationales proposées. L'inclusion d'une dénomination dans les listes de DCI proposées n'implique aucune recommandation en vue de l'utilisation de la substance correspondante en médecine ou en pharmacie.

On trouvera d'autres listes de Dénominations communes internationales proposées (1–85) et recommandées (1–45) dans la Liste récapitulative No. 10, 2002 (disponible sur CD-ROM seulement). Les mentions indiquant les propriétés et les indications des substances sont fondées sur les renseignements communiqués par le fabricant. Elles ne visent qu'à donner une idée de l'utilisation potentielle des nouvelles substances au moment où elles sont l'objet de propositions de DCI. L'OMS n'est pas en mesure de confirmer ces déclarations ni de faire de commentaires sur l'efficacité du mode d'action ainsi décrit. En raison de leur caractère provisoire, ces informations ne figureront pas dans les listes récapitulatives de DCI.

Denominaciones Comunes Internacionales para las Sustancias Farmacéuticas (DCI)

De conformidad con lo que dispone el párrafo 3 del "Procedimiento de Selección de Denominaciones Comunes Internacionales Recomendadas para las Sustancias Farmacéuticas", se comunica por el presente anuncio que las denominaciones detalladas en las páginas siguientes están sometidas a estudio por la Organización Mundial de La Salud como Denominaciones Comunes Internacionales Propuestas. La inclusión de una denominación en las listas de las DCI Propuestas no supone recomendación alguna en favor del empleo de la sustancia respectiva en medicina o en farmacia.

Las listas de Denominaciones Comunes Internacionales Propuestas (1–85) y Recomendadas (1–45) se encuentran reunidas en Cumulative List No. 10, 2002 (disponible sólo en CD-ROM). Las indicaciones sobre acción y uso que aparecen se basan principalmente en la información facilitada por los fabricantes. Esta información tiene por objeto dar una idea únicamente de las posibilidades de aplicación de las nuevas sustancias a las que se asigna una DCI Propuesta. La OMS no está facultada para respaldar esas indicaciones ni para formular comentarios sobre la eficacia de la acción que se atribuye al producto. Debido a su carácter provisional, esos datos descriptivos no deben incluirse en las listas recapitulativas de DCI.
Proposed International Nonproprietary Names: List 91

Comments on, or formal objections to, the proposed names may be forwarded by any person to the INN Programme of the World Health Organization within four months of the date of their publication in WHO Drug Information, i.e., for List 91 Proposed INN not later than 15th December 2004.

Dénominations communes internationales proposées: Liste 91

Des observations ou des objections formelles à l’égard des dénominations proposées peuvent être adressées par toute personne au Programme des Dénominations communes internationales de l’Organisation mondiale de la Santé dans un délai de quatre mois à compter de la date de leur publication dans WHO Drug Information, c’est à dire pour la Liste 91 de DCI Proposées le 15 décembre 2004 au plus tard.

Denominaciones Comunes Internacionales Propuestas: Lista 91

Cualquier persona puede dirigir observaciones u objeciones respecto de las denominaciones propuestas, al Programa de Denominaciones Comunes Internacionales de la Organización Mundial de la Salud, en un plazo de cuatro meses, contados desde la fecha de su publicación en WHO Drug Information, es decir, para la Lista 91 de DCI Propuestas el 15 de Diciembre 2004 a más tardar.

<table>
<thead>
<tr>
<th>Proposed INN (Latin, English, French, Spanish)</th>
<th>Chemical name or description: Action and use: Molecular formula</th>
<th>Chemical Abstracts Service (CAS) registry number: Graphic formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>abataceptum</td>
<td>1-25-oncostatin M (human precursor) fusion protein with CTLA-4 (antigen) (human) fusion protein with immunoglobulin G1 (human heavy chain fragment), bimolecular (146→146')-disulfide immunomodulator</td>
<td></td>
</tr>
<tr>
<td>abatacept</td>
<td>(146→146')-disulfure bimoléculaire de [Gln^{151}, Ser^{156}, Ser^{162}, Ser^{165}, Ser^{174}] (protéine de fusion entre le précurseur de l’oncostatine M humaine-(1-25)-peptide (séquence signal), la protéine 4 cytotoxique du lymphocyte-T humaine-[2-126]-peptide (partie extracellulaire de l’antigène CD152) et le peptide de 233 résidus fragment C-terminal de la chaîne lourde de l’immunoglobuline G1 humaine) immunomodulateur</td>
<td></td>
</tr>
<tr>
<td>abatacept</td>
<td>1-25-oncostatina M (precursor humano) proteína de fusión con CTLA-4 (antigeno) (humano) proteína de fusión con immunoglobulina G1 (fragmento humano de la cadena pesada), bimolecular (146→146')-disulfido immunomodulador</td>
<td></td>
</tr>
</tbody>
</table>
C 3750H5872N982O1154S38
332348-12-6
MGVLLTQRSL LSLVLALLFS SMASMANVRA QPAVLASSR
GIASFPSYVRV TVLRQADSVQ TEVCAATYMM
GNELTFLDDS LGTSGSNQ VNLIQGTVR MDTGLI1CKV
ELMYPPPYYL GIGNQTEIYY IDPECPFSDQ QERKSSDKTH
TSPSSAPHEL LGSSVFLFF PKKKTLMIS RTPEVTVVV
DVSHEDEPKV FNWYYGVEV HNATKPRH QYNSYRVS
VLTVLHQLDL NGKEYKCRVS NKALPAPIEK TISKAKGPR
EPQVYLPPS RDELTKNQVS LTLVKGFFP SDIAVEWESN
GQPENYKPIF FVVLDSGDFS FLÝSKLTVDK SRWQGMVFS
CSYHNLNN HYTVKSLLS PGK
* glycosylation site
* sites de glycosylation
* posiciones de glicosilación

acotiamidum
acotiamide N-[2-[bis(1-methylethyl)amino]ethyl]-2-[(2-hydroxy-4,5-dimethoxybenzoyl)amino]thiazol-4-carboxamide
antiemetic (parasympathomimetic)

acotiamide N-[2-[bis(1-méthyléthyl)amino]éthyl]-2-[(2-hydroxy-4,5-diméthoxybenzoyl)amino]thiazol-4-carboxamide
antiémetique (parasympathomimétique)

acotiamida N-[2-[bis(1-metiletil)amino]etil]-2-[(2-hidroxi-4,5-dimetoxibenzoil)]=
amino]tiazol-4-carboxamida
antiemético (parasimpaticomimético)

C 21H30N4O5S 185106-16-5

alagebrium chloridum
alagebrium chloride 4,5-dimethyl-3-(2-oxo-2-phenylethyl)thiazolium chloride
agent influencing protein glycosylation

chlorure d'alagébrium chlorure de 4,5-diméthyl-3-(2-oxo-2-phényléthyl)thiazolium
agent modifiant la glycation des protéines

cloruro de alagebrio cloruro de 4,5-dimetil-3-(2-fenil-2-oxoetil)thiazolio
agente que modifica la glicosilación de las proteínas

C 13H14ClNOS 341028-37-3
algłucosidasum alfa

human lysosomal prepro-α-glucosidase-(57-952)-peptide
199-arginine-223-histidine variant
enzyme

algłucosidase alfa

199-arginine-223-histidine variant du (57-952)-peptide de la prépro-α-glucosidase lysosomale humaine
enzyme

algłucosidasa alfa

199-arginina-223-histidina variante del (57-952)-peptido de la prepro-α-glucosidasa lysosómica humana
enzima

C_{449}H_{682}N_{1197}O_{1298}S_{32} 420784-05-0

QQGASRPGPR DAQAHPGRPR AVPTQCDVPP NSRFDCAPDK
AITEQCEEAR GCCYIPAKQG LQGAQMQQFW CFFPPSYPSY
KLE\text{NLSSSEM} GYTATLTTT PTFFFKDLT LRLDVMETE
NRLHPTIKDP ANRRXQPLE TPRVHSRAPS PLSVEFSEE
PFGVIVHRQL DGRVLLN\text{TTTV} APLFFADQQL QLSTSIPSOY
ITGLAEHLSP LMLSTSWTRI TLWNRLDAPT PGANLYGSHP
FYLALDEGGS AHGVFLLSNS AMDVVLQPSPL ALSWRSTSGGI
LDVYIFLGPE PKSVVQYLD VVGYPPMPYY WGLGFHLCRW
GYSSTAITEQ VVE\text{NMTRAHF} PLDVQGNDLD YMDSRREDFT
NKGSDRFPPA MVQELHQGGR RYMIVDPAI SSXPGASRYR
PFDGLNRLRV FIT\text{NETQGPL} IGVKVPQGTA FPDPNTPLAL
AWMEDVMAF HDPQFDGMW IMMEINSFIN ZGSEDCAYNN
ELE\text{NPYYPG} VVGGTLQAT ICASHQFQLS THYLNHLNYG
LRTAIAHRA LVKARGRTPF VISRTFAGH GRAYHWTGD
VNS\text{SEQLAS} SVPEILQFNL LGVLPGLAGV CGFLGNTSEE
LCR\text{VRLQLGA} FYPPQRNHSN LLLQPEQPS FSEPAAQAMR
KALTLYRALL PHYTLMFQHA HVAGETVARP LFLFEPKQSS
TNTWIDQLLW GEALLIPPVQL QAGKAEVTGY FLGPLNYLQ
TVPIEALGSL PPPPAAPREP AIHSEGQWVT LPAPLDLTVN
HLRGYVIPLL QGPGMTTTE RQQPMVALA LTKGEARGE
LF\text{WDGESLE} VLERGAYTTYF IFLLANNTIV NELVRUVTSEG
AGLQLOKQVTV LGVATAPQQQ LGNPVRAFT YSPDTKVLK
ICV\text{SLLMGEQ} FLVSC

* glycosylation sites
* sites de glycosylation
* posiciones de glicosilación
armodafinilum
armodafinil
armodafinilo

2-[(R)-(diphenylmethyl)sulfanyl]acetamide
psychostimulant

(-)-2-[(R)-(diphenylmethyl)sulfanyl]acétamide
psychostimulant

(-)-2-[(R)-(difenilmetil)sulfenil]acetamida
psicoestimulante

C_{15}H_{15}NO_{2}S
112111-43-0

bamirastinum
bamirastine
bamirastina

2-[[3-4-(diphenylmethoxy)piperidin-1-yl]propyl]amino]=imidazo[1,2-b]pyridazin-2-yl][2-methylpropanoic acid
histamine H_{1} receptor antagonist

acide 2-[[3-4-(diphénylméthoxy)pipéridin-1-yl]propyl][amino]=imidazo[1,2-b]pyridazin-2-yl][2-méthylpropanoïque
antagoniste du récepteur H_{1} de l'histamine

ácido 2-[[3-4-(difenilmetoxi)piperidin-1-il]propil]amino]imidazo=[1,2-b]piridazin-2-il][2-metilpropanoico
antagonista del receptor H_{1} de la histamina

C_{31}H_{37}N_{5}O_{3}
215529-47-8

befetupitantum
befetupitant
béfétupitant
befetupitant

2-[3,5-bis(trifluomethyl)phenyl]-N,2-dimethyl-N-[4-(2-methylphenyl)-6-(morpholin-4-yl)pyridin-3-yl]propanamide
neurokinin NK_{1} receptor antagonist

2-[3,5-bis(trifluométhyl)phényl]-N,2-diméthyl-N-[4-(2-méthylphényl)-6-(morfolin-4-y]pyridin-3-yl]propanamide
antagoniste du récepteur NK_{1} de la neurokinine

2-[3,5-bis(trifluometil)fenil]-N,2-dimetil-N-[4-(2-metilfenil)-6-(morfolin-4-il)]piridin-3-il]propanamida
antagonista del receptor NK_{1} de neurokinina
belotecanum
belotecan
(4S)-4-ethyl-4-hydroxy-11-[(2-isopropylamino)ethyl]-1,12-dihydro-14H-pyran[3',4':6,7]indolizin[1,2-b]quinoline-3,14(4H)-dione antineoplastic agent

carmoterolum
carmoterol 8-hydroxy-5-[(1R)-1-hydroxy-2-[[2R]-2-(4-methoxyphenyl)propan-2-yl]amino]ethyl]quinolin-2(1H)-one bronchodilator
carmotérol 8-hydroxy-5-[(1R)-1-hydroxy-2-[[1(R)-2-(4-méthoxyphényl)-1-méthylethyl]amino]éthyl]quinolin-2(1H)-one bronchodilatateur
carmoterol 8-hidroxi-5-[(1R)-1-hidroxi-2-[[1(R)-2-(4-metoxifenil)-propan-2-il]amino]etil]quinolin-2(1H)-ona broncodilatador
cetilistatum
cetilistat 2-(hexadecyloxy)-6-methyl-4H-3,1-benzoxazin-4-one gastro-intestinal lipase inhibitor
cétilistat 2-(hexadécyroxy)-6-méthyl-4H-3,1-benzoxazin-4-one inhibiteur des lipases gastrointestinales
cetilistat 2-(hexadecyloxy)-6-methyl-4H-3,1-benzoxazin-4-one inhibidor de la lipasa gastrointestinal
C_{25}H_{39}NO_{3} 282526-98-1

dasantafilum
dasantafil 7-(3-bromo-4-methoxyphenylmethyl)-1-ethyl-8-[(1R,2R)-2-hydroxycyclopropyl]amino)-3-(2-hydroxyethyl)-3,7-dihydro-1H-purine-2,6-dione vasodilator
dasantafilo 7-(3-bromo-4-méthoxybenzyl)-1-éthyl-8-[(1R,2R)-2-hydroxyéthyl]amino)-3-(2-hidroxietil)-3,7-dihidro-1H-purina-2,6-diona vasodilatador
C_{22}H_{28}BrN_{5}O_{5} 569351-91-3

daxalipramum
daxalipram (5R)-5-(4-methoxy-3-propoxyphenyl)-5-methyl-1,3-oxazolidin-2-one phosphodiesterase IV inhibitor
daxalipram (5R)-5-(4-méthoxy-3-propoxyphényl)-5-méthyl-oxazolidin-2-one inhibiteur de la phosphodiésterase IV
daxalipram (5R)-5-(4-metoxi-3-propoxifenoil)-5-metiloxazolidin-2-ona inhibidor de la fosfodiésteras IV
C_{14}H_{16}NO_{4} 189940-24-7
denufosolum
denufosol

2'-deoxycytidine(5')tetraphospho(5')uridine
P2Y2 receptor agonist

dénufosol
dénufosol 2'-désoxycytidine(5')tétraphospho(5')uridine
agoniste des purinorécepteurs P2Y2

denufosol
denufosol 2'-desoxicitidina(5')tetrafosfo(5')uridina
agonist del receptor P2Y2

C_{18}H_{27}N_{5}O_{21}P_{4} 211448-85-0

depellestatum
depellestat

human recombinant neutrophil elastase inhibitor, bovine pancreatic trypsin inhibitor (BPTI) homologue:

neutrophil elastase inhibitor

dépélestat
dépélestat inhibiteur de l’élastase neutrophile humaine, homologue de l’inhibiteur de la trypsine pancréatique bovine (BPTI), obtenu par génie génétique :

inhibiteur de l’élastase

depelestat
depelestat inhibidor de la elastasa de neutrófilos humana, homólogo del inhibidor de la tripsina pancreatica bovina (BPTI), obtenido por ingeniería genética :

inhibidor de la elastasa de neutrófilos
Proposed INN: List 91

\[C_{282}H_{412}N_{74}O_{75}S_6 \]

506433-25-6

H-Glu-Ala-Cys-Asn-Leu-Pro-Ile-Val-Arg-Gly-Pro-Cys-Ile-Ala-

| Phe-Phe-Pro-Arg-Val-Ala-Phe-Asp-Ala-Val-Lys-Gly-Lys-Cys = |
| \[20 \] |
| Val-Leu-Phe-Pro-Tyr-Gly-Gly-Cys-Gin-Gly-Gly-Asn-Gly-Asn-Lys = |
| \[40 \] |
| Phe-Tyr-Ser-Glu-Lys-Glu-Cys-Arg-Glu-Tyr-Cys-Gly-Val-Pro-OH |
| \[50 \] |

dirlotapidum
dirlotapide

\[N\text{-}\{(1S)-2\text{-}[benzyl\text{(methyl)amino}]2\text{-oxo-1-phenylethyl}\}-1\text{-methyl}-5\text{-}[[4\text{-}(5\text{-fluoromethyl}2\text{-carboxamido}]1\text{-H-indol-2-carboxamide} \]

antihyperlipidaemic (veterinary drug)

dirlotapide

\[N\text{-}\{(1S)-2\text{-}(benzyl\text{méthylamino})2\text{-oxo-1-phényléthyl]}\text{-1-méthyl-5\text{-}[[4\text{-}(5\text{-fluorométhyl}2\text{-yl]carbonylamino}]1\text{-H-indole-2-carboxamide} \]

antihyperlipidéant (usage vétérinaire)

dirlotapida

\[N\text{-}\{(1S)-2\text{-}(bencilmetilamino)2\text{-oxo-1-feniletil]}\text{-1-metil-5\text{-}[[4\text{-}(5\text{-trifluorometil}2\text{-il]carbonil]amino}]1\text{-H-indol-2-carboxamida} \]

antihyperlémico (medicamento veterinario)

\[C_{40}H_{33}F_{3}N_{4}O_{3} \]

481658-94-0

édaglitazonum
édaglitazone

(5RS)-5\text{-}[[4\text{-}[2\text{-}(5\text{-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy]-1\text{-benzothiophen-7-yl]methyl}]1,3-thiazolidine-2,4-dione \]

antidiabetic agent

édaglitazone

(5RS)-5\text{-}[[4\text{-}[2\text{-}(5\text{-méthyl-2-phényloxazol-4-yl)éthoxy]-1\text{-benzothiophén-7-yl]méthyl]thiazolidine-2,4-dione \]

hypoglycémiant

édaglitazona

(5RS)-5\text{-}[[4\text{-}[2\text{-}(2\text{-fenil-5-metiloxazol-4-il)etoxi]-1-benzotiofen-7-il]metil]tiazolidina-2,4-diona \]

hipoglucemiante
exbivirumab

exbivirumab immunoglobulin G, anti-(hepatitis B surface antigen) (human monoclonal 19.79.5 heavy chain), disulfide with human monoclonal 19.79.5 \(\lambda \) chain, dimer antiviral

exbivirumab immunoglobulin G, anti-(antigène de surface du virus de l'hépatite B) dimère du disulfure entre la chaîne lourde et la chaîne \(\lambda \) de l'anticorps monoclonal humain 19.79.5 antiviral

exbivirumab immunoglobulina G, anti-(antígeno de superficie del virus de la hepatitis B) dímero del disulfuro entre la cadena pesada y la cadena \(\lambda \) del anticuerpo monoclonal humano 19.79.5 antiviral

\[\text{exbivirumab} \]

\[\text{C}_{6416}\text{H}_{9924}\text{N}_{1732}\text{O}_{1982}\text{S}_{44} \]

569658-80-6

fampronilum

fampronil 2-{5-chloro-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-3-methyl-1H-pyrazol-4-yl}-1H-imidazole-4,5-dicarbonitrile antiparasitic agent (veterinary drug)

fampronil 2-[5-chloro-1-[2,6-dichloro-4-(trifluorométhyl)phényl]-3-méthyl-1H-pyrazol-4-yl]-1H-imidazole-4,5-dicarbonitrile antiparasitaire (usage vétérinaire)

fampronilo 2-[5-cloro-1-[2,6-dicloro-4-(trifluorometil)fenil]-3-metil-1H-pirazol-4-il]-1H-imidazol-4,5-dicarbonitrilo antiparasitario (medicamento veterinario)

\[\text{fampronil} \]

\[\text{C}_{16}\text{H}_{6}\text{Cl}_{3}\text{F}_{3}\text{N}_{6} \]

134183-95-2
Fidexabanum

Fidexaban

\[\text{fidexabanum} \]

\[(2-(5\text{-carbamimidoyl}-2\text{-hydroxyphenoxy})-3,5\text{-difluoro-6-[3-\{1\text{-methyl-4,5-dihydro-1H-imidazol-2-yl\text{-}phenoxy\text{-}pyridin-4-yl\text{-}methylamino\}\text{-}acetic\text{ acid}]}\right) \]

Blood coagulation factor Xa inhibitor

Fidexaban

\[\text{acide [2-(5\text{-carbamimidoyl}-2\text{-hydroxyphénoxy})-3,5\text{-difluoro-6-[3-\{1\text{-méthyl-4,5-dihydro-1H-imidazol-2-yl\text{-}phénoxy\text{-}pyridin-4-yl\text{-}méthylamino\}\text{-}acétique]}\right) \]

Inhibiteur du facteur de coagulation Xa

Fidexabán

\[\text{ácido [2-(5\text{-carbamimidoil}-2\text{-hidroxifenoxi})-3,5\text{-difluoro-6-[3-\{1\text{-metil-4,5-dihidro-1H-imidazol-2-ii\text{-}fenoxi\text{-}piridin-4-ii\text{-}metilamino\}\text{-}acético]}\right) \]

Inhibidor del factor Xa de la coagulación sanguínea

\[\text{C}_{25}\text{H}_{24}\text{F}_{2}\text{N}_{6}\text{O}_{5} \]

183305-24-0

![Chemical Structure of Fidexabanum](image)

Fingolimodum

Fingolimod

\[\text{fingolimodum} \]

\[2\text{-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol} \]

Immunomodulator

Fingolimod

\[2\text{-amino-2-[2-(4-octylphényl)éthyl]propane-1,3-diol} \]

Immunomodulateur

Fingolimod

\[2\text{-amino-2-[2-(4-octilfenil)etil]propano-1,3-diol} \]

Immunomodulador

\[\text{C}_{19}\text{H}_{33}\text{NO}_{2} \]

162359-55-9

![Chemical Structure of Fingolimodum](image)
gadodenteratum

gadodenterate

NC 585H927Gd24N165O213

544697-52-1

C 585H927Gd24N165O213 544697-52-1

proposed INN: list 91

WHO drug information, vol. 18, no. 2, 2004

166
Proposed INN: List 91

gantacurium chloridum
gantacurium chloride
(1R,2S)-2-[3-[[2Z]-2-chloro-4-[[1S,2R]-6,7-dimethoxy-2-methyl-1-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydroisoquinolinium-2-yloxy]propoxy]-4-oxobut-2-enoxy]oxy]-6,7-dimethoxy-2-methyl-1-[(3,4,5-trimethoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinolinium dichloride

neuromuscular blocking agent

chlorure de gantacurium
dichlorure de (1R,2S)-2-[3-[[2Z]-2-chloro-4-[[1S,2R]-6,7-diméthoxy-2-méthyl-1-(3,4,5-triméthoxyphényl)-1,2,3,4-tétrahydroisoquinoléinium]propoxy]-4-oxobut-2-énoxy]oxy]-6,7-diméthoxy-2-méthyl-1-(3,4,5-triméthoxybenzyl)-1,2,3,4-tétrahydroisoquinoléinium
antagoniste des récepteurs neuromusculaires

cloruro de gantucuro
dicloruro de (1R,2S)-2-[3-[[2Z]-2-cloro-4-[[1S,2R]-2-metil-6,7-dimetoxi-1-(3,4,5-trimetoxifenil)-1,2,3,4-tetrahidroisoquinolinio]=propoxi]-4-oxobut-2-enoixi]propil]-2-metil-6,7-dimetoxi-1-(3,4,5-trimetoxibencil)-1,2,3,4-tetrahidroisoquinolinio
bloqueador neuromuscular

C\text{53}H\text{69}Cl\text{3}N\text{2}O\text{14}
213998-46-0

golimumabum
golimumab
immunoglobulin G1, anti-(human tumor necrosis factor \(\alpha\)) (human monoclonal CNTO 148 \(\gamma1\)-chain), disulfide with human monoclonal CNTO 148 \(\kappa\)-chain, dimer
immunomodulator

golimumab
immunoglobuline G1, anti-(facteur \(\alpha\) de nécrose tumorale humain)
dimère du disulfure entre la chaîne \(\gamma1\) et la chaîne \(\kappa\) de l'anticorps monoclonal humain CNTO 148
immunomodulateur

golimumab
immunoglobulina G1, anti-(factor \(\alpha\) of tumor necrosis factor human)
dímero del disulfuro entre la cadena \(\gamma1\) y la cadena \(\kappa\) del anticuerpo monoclonal humano CNTO 148
immunomodulador

C\text{6530}H\text{10068}N\text{1752}O\text{2026}S\text{44}
476181-74-5
idronoxil

idronoxil
3-(4-hydroxyphenyl)-2H-chromen-7-ol
antineoplastic agent

idronoxi
tl
3-(4-hydroxyphényl)-2H-1-benzopyran-7-ol
antinéoplasique

idronoxil
3-(4-hidroxifenil)-2H-1-benzopiran-7-ol
antineoplasico

C_{15}H_{12}O_{3} 81267-65-4

imiglitazar

imiglitazar
(E)-4-[(4-[[5-methyl-2-phenyl-1,3-oxazol-4-yl]methoxy]phenyl)methoxy]imino]-4-phenylbutanoic acid
antidiabetic agent

imiglitazar
acide (4E)-4-[[4-[[5-méthyl-2-phényloxazol-4-yl]méthoxy]benzyl]oxy]imino]-4-phénylbutanoïque
antidiabétique

imiglitazar
ácido (4E)-4-[[4-[[2-fenil-5-metiloxazol-4-il]metoxi]bencil]oxi]imino]-4-fenilbutanoico
hipoglicemiante

C_{28}H_{26}N_{2}O_{5} 250601-04-8

indacaterol

indacaterol
5-{{1R}-2-{{5,6-diethyl-2,3-dihydro-1H-inden-2-yl}amino}-1-hydroxyethyl}-8-hydroxyquinolin-2(1H)-one
bronchodilator

indacatérol
5-{{1R}-2-{{5,6-diéthyl-2,3-dihydro-1H-indén-2-yl}amino}-1-hydroxyéthyl]-8-hydroxyquinoléin-2(1H)-one
bronchodilatateur

indacaterol
5-{{1R}-2-{{5,6-dietil-2,3-dihidro-1H-inden-2-il}amino}-1-hidroxietil]-8-hidroxiquinolinin-2(1H)-ona
broncodilatador
indibulinum
indibulin 2-[1-(4-chlorophenylmethyl)-1H-indol-3-yl]-2-oxo-N-(pyridin-4-yl)acetamide
antineoplastic agent

indibiline 2-[1-(4-chlorobenzyl)-1H-indol-3-yl]-2-oxo-N-(pyridin-4-yl)acétamide
antineoplasique

indibulina 2-[1-(4-chlorobenzil)-1H-indol-3-il]-2-oxo-N-(piridin-4-il)acetamida
antineoplásico

C_{23}H_{28}N_{2}O_{3} 312753-06-3

ismomultinum alfa
ismomultin alfa 47-261-Glycoprotein gp 39 (human clone CDM8-gp39 reduced)
antirheumatic

ismomultine alfa 290-Isoleucine glycoprotéine 39 constituant du cartilage humain
(glycoforme alfa)
antirhumatismal

ismomultina alfa 47-261 de la glicoproteina 39 constituyente del cartílago humano (variante [Arg^{124}] producida por el clon humano CDM8-gp39)
antirreumático
lanimostimum
lanimostim

4-221-colony-stimulating factor 1 (human clone p3ACSF-69 reduced)

immunomodulator

lanimostim
facteur-1 de stimulation de colonie de macrophage humain-(4-221)-peptide (clone humain p3ACSF-69)

immunomodulateur

lanimostim
factor-1 de la estímulo de colonia de macrófago humano -(4-221)-péptido (clon humano p3ACSF-69)

inmunomodulador

lemuteporfinum
lemuteporfin
dimethyl (2RS,2’S)R)-8-ethenyl-13,17-bis= [3-(2-hydroxyethoxy)carbonyl]-3-oxopropyl]-2,7,12,18-tetramethyl-2,2’-dihydrobenzol[b]porphyrine-2’,2’-dicarboxylate
gotosensizating agent

lémutéporfine
trans-8-éthényl-13,17-bis[3-(2-hydroxyéthoxy)-3-oxopropyl]-2,7,12,18-étatétraméthyl-2,2’-dihydrobenzo[b]porphyrine-2’,2’-dicarboxylate de diméthyle
gotosensibilisant

lemuteporfinas
trans-8-etenil-13,17-bis[3-(2-hidroxiétoxi)-3-oxopropiil]-2,7,12,18-etenatetraméthil-2,2’-dihidrobenzo[b]porphyrine-2’,2’-dicarboxylate de dimétile
gotosensibilizante
lenalidomidum
lenalidomide

(3RS)-3-(4-amino-1-oxo-1,3-dihydro-2H-isoindol-2-yl)piperidine-2,6-dione
antineoplastic agent

lénalidomide

(3RS)-3-(4-amino-1-oxo-1,3-dihydro-2H-isoindol-2-yl)pipéridine-2,6-dione
antineoplasique

lenalidomide

(3RS)-3-(4-amino-1-oxo-1,3-dihidro-2H-isoindol-2-il)piperidina-2,6-diona
antineoplásico

C₁₃H₁₃N₃O₃ 191732-72-6

and enantiomer
et énantiomère
y enantiómero

lestaurtinibum
lestaurtinib

(9S,10S,12R)-10-hydroxy-10-(hydroxymethyl)-9-methyl-2,3,9,10,11,12-hexahydro-1H-9,12-epoxydiindolo-[1,2,3-fg:3',2',1'kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one
antineoplastic agent

lestaurtinib

(9S,10S,12R)-10-hydroxy-10-(hydroxyméthyl)-9-méthyl-2,3,9,10,11,12-hexahydro-9,12-époxy-1H-diindolo-[1,2,3-fg:3',2',1'kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one
antineoplasique

lestaurtinib

(9S,10S,12R)-10-hidroxi-10-(hidroximetil)-9-metil-2,3,9,10,11,12-hexahidro-9,12-epoxi-1H-diindolo[1,2,3-fg:3',2',1'kl]pirrolo[3,4-i][1,6]benzodiazoxin-1-ona
antineoplásico
libivirumabum

libivirumab

Immunoglobulin G, anti-(hepatitis B surface antigen) (human monoclonal 17.1.41 heavy chain), disulfide with human monoclonal 17.1.41 κ-chain, dimer antiviral

libivirumab

Immunoglobuline G, anti-(antigène de surface du virus de l'hépatite B) ; dimère du disulfure entre la chaîne lourde et la chaîne κ de l'anticorps monoclonal humain 17.1.41 antiviral

libivirumab

Immunoglobulina G, anti-(antígeno de superficie del virus de la hepatitis B) ; dimero del disulfuro entre la cadena pesada y la cadena κ del anticuerpo monoclonal humano 17.1.41 antiviral

maravirocum

maraviroc

Isopropyl, 4,4-difluoro-N-[(1S)-3-[(1R,3s,5S)-3-[3-méthyl-5-(1-méthyléthyl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl]octan-8-yl]-1-phenylpropyl)cyclohexanecarboxamide antiviral

maraviroc

4,4-difluoro-N-[(1S)-3-[(1R,3s,5S)-3-[3- méthyl-5-(1-méthyléthyl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl]1- phénylpropyl]=cyclohexanecarboxamide antiviral

maraviroc

4,4-difluoro-N-[(1S)-1-fenil-3-[(1R,3s,5S)-3-[3-isopropil-5-metil-4H-1,2,4-triazol-4-il]-8-azabicielo[3.2.1]oct-8-il] propil]=ciclohexanocarboxamida antiviral
mecaserminum rinfabatum
mecasermin rinfabate

insulin-like growth factor I (human), complex with insulin-like growth factor-binding protein IGFBP-3 (human)

antidiabetic agent

mécasermine rinfabate

facteur I de croissance humain analogue à l’insuline (mécasermine) lié à la [5-alanine]protéine-3 humaine se liant au facteur I de croissance analogue à l’insuline (IGFBP-3 humaine)

antidiabétique

mecasemina rinfabato

factor I del crecimiento humano semejante a la insulina (mecasemina) unida a la [5-alanina]proteína-3 humana unida con el factor I de crecimiento similar a la insulina (IGFBP-3 humana)

hipoglucemiante

C 1231H 1967N 371O 384S 20

478166-15-3

GPETLCAEL VDALQFVCGD RGFYFNKPTG YGSSRRAPQ
TGIVDECCFR SCDLRLEMY CAFLPKAKSA
GASSAGLGPV VRCEPCDARA LAQCAPPAV CAELVREPGE
GCCLTCALSE GQQCGIYTER CGSGLRCOPS PDEARPLQAL
LDGRGLCVA NA SVSRLRAYL LPAPPAGNA SESEEDRASAG
SVESEPVSST HRVSDKFHP LHSKIIIIKK GHAKDQRYK
VDYESQSTD TQNSSESKE REYGaCRCREM EDTLNHLKFL
NVLSPRGVHI PNCDDKGFYK KKKCRFSKGR KRGCWCVDK
YGQPLPGYTT KGKEDVHCYS MQSK
milataxelum
milataxel
1,10β-dihydroxy-9-oxo-5β,20-epoxy-3β,11-ene-2α,4,7β,13α-tetrayl 4-acetate 2-benzoate 13-[(2R,3R)-3-{(tert-butoxy carbonylamino)-3-(furan-2-yl)-2-hydroxypropanoate] 7-propanoate
antineoplastic agent

milataxel
12b-acetate, 12-benzoate, 9-[(2R,3R)-3-[[1,1-dimethyléthoxy]carbonyl]amino]-3-(furan-2-yl)-2-hydroxypropanoate] et 4-propanoate de (2αR,4S,4αS,6R,7E,9S,11S,12S,12bS)-6,11-dihydroxy-4α,8,13,13-tétraméthyl-5-oxo-3,4α,5,6,9,10,11,12,12a-décahydro-7,11-méthano-1H-cyclodeca[3,4]benzo[1,2-b]oxétyle 4,9,12,12b(2αH)-tétrayle
antineoplasique

milataxel
12b-acetato, 12-benzoato, 9-[(2R,3R)-3-[[1,1-dimetiletoxi]carbonil]amino]-3-(furan-2-il)-2-hidroxipropanoato] y 4-propanoato de (2αR,4S,4αS,6R,7E,9S,11S,12S,12bS)-6,11-dihidroxi-4α,8,13,13-tetrametil-5-oxo-3,4α,5,6,9,10,11,12,12a-decahidro-7,11-metano-1H-ciclodeca[3,4]benzo[1,2-b]oxeto 4,9,12,12b(2αH)-tetrafil
antineoplásico

C₄₄H₅₅NO₁₆ 393101-41-2

mirococeptum
anti-inflammatory

anti-inflammatoire

mirococept (238-17')-disulfuro entre el [41-metionil]precursor del receptor de tipo 1 del complemento-(41-238)- péptido y el (N-tetradecanoilglicil)-L-seril-L-seril-L-lysil-L-seril-L-profil-L-seril-L-lysil-L-lysil-L-lysil-L-lysil-L-lysil-L-profílglicil-L-aspartil-L-cisteinamida
antiinflamatorio
Proposed INN: List 91

C1054H1635N293O312S16 507453-82-9

H-MQGCNAPELWP FARPTNLDE FEPPGTYLNE YECRPQGYSGR
PPSIIČLKNVEWTGAKDRČR KSKCRNPDFPVNGMVHYIKG
IQFSQIKYS ČTGYRLIGSSATčIISGDTVIWNETPI
ČDRIFCGLPFSITNGDFIŠTRNRENHYGSVTYRCNFPSG
GRKVPELVGE PSIYČTSNDD QVGIFSGPAP QČIIPNKC-OH

paclitaxel ceribatum

7β-(2RS)-2,3-dihydroxypropoxycarbonyloxy]-1-hydroxy-9-oxo-5β,20-epoxytax-11-ene-2,4,10,13tetrayl 4,10-diacetate 2-benzoate 13-[(2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoate] antineoplastic agent

céribate de paclitaxel

6,12b-diacétate, 12-benzoate, 4-[(2RS)-2,3-dihydroxypropoxy]=carboxylate et 9-[(2R,3S)-3-(benzoylamo)-2-hydroxy-3-phenylpropanoate] de (2aR,4S,4aS,6R,7E,9S,11S,12aR,12bS)-11-hydroxy-4a,8,13,13-tétraméthyl-5-oxo-3,4,4a,5,6,9,10,11,12,12a-decahydro-7,11-méthano-1H-cyclodécac[3,4]benzo[1,2-b]oxéte-4,6,9,12,12b(2ah)-pentayle antinéoplasique

ceribato de paclitaxel

6,12b-diacetato, 12-benzoato, 4-[(2RS)-2,3-dihidroxioproxi]=carboxilato y 9-[(2R,3S)-3-(benzolamino)-3-fenilpropanoato-2-hidroxi] de (2aR,4S,4aS,6R,7E,9S,11S,12aR,12bS)-11-hidroxi-4a,8,13,13-tetrametil-5-oxo-3,4,4a,5,6,9,10,11,12,12a-decahidro-7,11-metano-1H-ciclodec[a3,4]benzo[1,2-b]oxeto-4,6,9,12,12b(2ah)-pentailo antineoplásico

C51H57NO18 186040-50-6

and epimer at C* et l’épimère en C* y el epímero en el C*
palosuranum
palosuran
1-[2-[(4-benzyl-4-hydroxypiperidin-1-yl)ethyl]-3-(2-methylquinolin-4-yl)urea
urotensin receptor antagonist

palosuran
1-[2-[(4-benzyl-4-hydroxypéridin-1-yl)éthyl]-3-(2-méthylquinoléin-4-yl)urée
antagoniste du récepteur de l'urotensine

palosurán
1-[2-[(4-bencil-4-hidroxipiperidin-1-il)etil]-3-(2-metilquinolin-4-il)urea
antagonista del receptor de la urotensina

\[C_{25}H_{30}N_4O_2 \]
540769-28-6

panitumumabum
panitumumab
immunoglobulin, anti-(human epidermal growth factor receptor)
(human monoclonal ABX-EGF heavy chain), disulfide with human monoclonal ABX-EGF light chain, dimer
antineoplastic agent

panitumumab
immunoglobuline, anti-(récepteur du facteur de croissance épidermal humain) dimère du disulfure entre la chaîne lourde et la chaîne légère de l'anticorps monoclonal humain ABX-EGF
antineoplasique

panitumumab
immunoglobulina, anti-(receptor del factor de crecimiento epidérmico humano) dímero del disulfuro entre la cadena pesada y la cadena ligera del anticuerpo monoclonal humano ABX-EGF
antineoplásico

\[C_{630}H_{973}N_{1672}O_{1994}S_{46} \]
339177-26-3

pegamotecanum
pegamotecan
\[\alpha\text{-}[2\text{-}[(2S)\text{-}1\text{-}[[4(4S)\text{-}4\text{-}ethyl-3,14\text{-}dioxo-3,4,12,14\text{-}tethydro-1H\text{-}pyrazo}[3\text{'},4\text{'},6,7]\text{indolizin}[1,2\text{-}b]\text{quinolin}-4\text{-}yl]oxy]\text{-}1\text{-}oxopropan-2\text{-}amino\text{-}2\text{-}oxoethoxy} \text{-poly(oxyethylene-1,2-diyl)} \]
antineoplastic agent

pégamotécan
dérivé pegylé de la camptothécine obtenu par amidification entre le (2S)-2-aminopropanoate de
(4S)-4-éthyl-3,14-dioxo-3,4,12,14-tétrahydro-1H-pyrazo[3',4',6,7]indolizino[1,2-b]quinoléin-4-yle
(L-alaninate de camptothécine) et le \(\alpha\text{-}(\text{carboxyméthyl})\text{-}\omega\text{-}(\text{carboxyméthoxy})\text{poly(oxyéthylène)} \)
antineoplasique
pegamotecán
derivado pegilado de la camptotecina obtenido por amidificación entre el (2S)-2-aminopropanoato de (4S)-4-etil-3,14-dioxo-3,4,12,14-tetrahidro-1H-pirano[3',4':6,7]indolizino[1,2-b]quinolin-4-ilolo (l-alaninato de camptotecina) y el α-(carboximetil)-ω-(carboximetoxi)poli(oxietileno)
antineoplásico
\[\text{C}_{126}\text{H}_{44}\text{N}_{6}\text{O}_{13}\] 203066-49-3

pelitinibum
pelitinib
\((2E)-N-[4\{3\text{-chloro-4-fluorophenyl}\text{amino}\}-3\text{-cyano-7-ethoxyquinolin-6-yl}\}-4\text{-}(\text{dimethylamino})\text{but-2-enamido}\)
antinéoplásique
\[\text{C}_{24}\text{H}_{23}\text{ClFN}_{5}\text{O}_{2}\] 257933-82-7

perflubutanum
perflubutane
1,1,2,2,3,3,4,4,4-decafluorobutane
ultrasound contrast agent

perflubutane
décafluorobutane
produit de contraste aux ultrasons

perflubutano
decafiuorobutano
contrast para ultrasonido
perzinfotelum
perzinfotel

\[\text{[2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)ethyl]phosphonic acid} \]

NMDA receptor antagonist

perzinfotel
acide \([2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)éthyl]phosphonique\)

antagoniste du récepteur du NMDA

perzinfotel
ácido \([2-(8,9-dioxo-2,6-diazabici[5.2.0]non-1(7)-en-2-il)etil]fosfónico\)

antagonista del receptor de NMDA

\[\text{C}_{11}\text{H}_{19}\text{N}_{2}\text{O}_{5}\text{P} \quad 144912-63-0\]

prasugrelum
prasugrel

\[5-\{1(RS)-2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl\}-4,5,6,7-
\text{tetrahydrothieno}[3,2-c]\text{pyridin-2-yl acetate} \]

platelet aggregation inhibitor

prasugrel
acétate de \(5-\{1(RS)-2-cyclopropyl-1-(2-fluorophényl)-2-oxoéthyl\}-
\text{4,5,6,7-tétrahydrothiéno}[3,2-c]\text{pyridin-2-yle} \)

antiagrégant plaquettaire

prasugrel
acetato de \(5-\{1(RS)-2-ciclopropil-1-(2-fluorofenil)-2-oxoetil\}-4,5,6,7-
\text{tetrahidrotieno}[3,2-c]\text{piridin-2-ilo} \)
inhibidor de la agregacion plaquetaria

\[\text{C}_{20}\text{H}_{20}\text{FNO}_{3}\text{S} \quad 150322-43-3\]

and enantiomer
et énantiomère

y enantiómero
radafaxinum
radafaxine
(2S,3S)-2-(3-chlorophenyl)-3,5,5-trimethylmorpholin-2-ol
antidepressant

radafaxine
(+)-(2S,3S)-2-(3-chlorophényl)-3,5,5-triméthylmorpholin-2-ol
psychoanaleptique

radafaxina
(+)-(2S,3S)-2-(3-clorofenil)-3,5,5-trimetilmorfolin-2-ol
antidepresivo

C_{13}H_{18}ClNO_2
192374-14-4

ranirestatum
ranirestat
(3R)-2''-(4-bromo-2-fluorobenzyl)spiro[pyrrolidine-3,4'(1'H)-pyrrolo[1,2-a]pyrazine]-1',2,3',5(2'H)-tetrone
aldose reductase inhibitor

ranirestat
(−)-(3R)-2''-(4-bromo-2-fluorobenzyl)spiro[pyrrolidine-3,4'(1'H)-pyrrolo[1,2-a]pyrazine]-1',2,3',5(2'H)-tétrone
inhibiteur de l'aldose réductase

ranirestat
(−)-(3R)-2''-(4-bromo-2-fluorobenzyl)spiro[pyrrolidine-3,4'(1'H)-pyrrolo[1,2-a]pyrazine]-1',2,3',5(2'H)-tetrona
inhibidor de la aldosa reductasa

C_{17}H_{11}BrFN_3O_4
147254-64-6

regadenosonum
regadenoson
1-(6-amino-9-β-D-ribofuranosyl-9H-purin-2-yl)-N-methyl-1H-pyrazole-4-carboxamide
adenosine receptor A agonist

régadénoson
1-(6-amino-9-β-D-ribofuranosyl-9H-purin-2-yl)-N-méthyl-1H-pyrazole-4-carboxamide
agoniste des récepteurs A de l’adénosine

regadensón
1-(6-amino-9-β-D-ribofuranosil-9H-purin-2-il)-N-metil-1H-pirazol-4-carboxamida
agonista del receptor A de adenosina
reparixinum
(reparixin)
(2R)-2-[4-(2-methylpropyl)phenyl]-N-methylsulfonylpropanamide
anti-inflammatory action through the inhibition of cytokine (IL-8)

réparixine
(−)-(2R)-2-[4-(2-méthylpropyl)phényl]-N-(méthylsulfonyl)propanamide
anti-inflammatoire (inhibiteur de l’interleukine 8)

reparixina
(−)-(2R)-2-[4-(2-metilpropi)fenil]-N-(metilsulfonil)propanamida
inhibidor de citokina (interleukina-8) con acción antiinflamatoria

C₁₅H₁₈N₈O₅
313348-27-5

C₁₄H₂₁NO₃S
266359-83-5

retapamulinum
(retapamulin)
(3aS,4R,5S,6S,8R,9R,9aR,10R)-6-ethenyl-5-hydroxy-4,6,9,10-tetramethyl-1-oxodecahydro-3a,9-propanocyclopenta[8]annulen-8-yl{(1R,3s,5S)-8-methyl-8-azabicyclo[3.2.1]octan-3-yl}=sulfanyl)acetate
antibiotic

rétapamuline
[(1R,3s,5S)-8-méthyl-8-azabiciclo[3.2.1]octan-3-yl]sulfanyl]acétate de
(3aS,4R,5S,6S,8R,9R,9aR,10R)-6-éthényl-5-hydroxy-4,6,9,10-tétraméthyl-1-oxodecahydro-3a,9-propano-3aH-cyclopenta= [8]annulén-8-yde
antibiotique

retapamulina
[(1R,3s,5S)-8-metyl-8-abiciclo[3.2.1]oct-3-il]sulfanil]acetato de
(3aS,4R,5S,6S,8R,9R,9aR,10R)-6-etenil-5-hidroxi-4,6,9,10-tetrametil-1-oxodecahidro-3a,9-propano-3aH-ciclopenta[8]anulen-8-ilo
antibiótico
Revaprazanum (revaprazan) is a 3,4-dihydroisoquinoline-2(1H)-yl acid pump inhibitor, with the chemical formula C_{30}H_{47}NO_{4}S and INN number 224452-66-8.

Révaprazan (révaprazan) is the French version of the same drug, also known as inhibiteur de la pompe à protons.

Revaprazán (revaprazán) is the Spanish version of the drug, known as inhibidor de la bomba de protones.

Rilpivirineum (rilpivirine) is a cyanoethenyl pyrimidin-2-ylbenzonitrile, used as an antiviral agent, with the chemical formula C_{22}H_{23}FN_{4} and INN number 199463-33-7.

Rilpivirine (rilpivirine) is the French version of the drug, used as an antiviral agent.

Rilpivirina (rilpivirina) is the Spanish version of the drug, used as an antiviral agent.

C_{22}H_{18}N_{6} 500287-72-9
ritobegronum

ritobegron
[4-[(1R,2S)-1-hydroxy-1-(4-hydroxyphenyl)propan-2-yl]amino]-ethyl]-2,5-dimethylphenoxy]acetic acid
β_3-adrenoreceptor agonist

ritobégron
adice [4-[(1S,2R)-2-hydroxy-2-(4-hydroxyphényl)-1-méthyléthyl]amino][éthyl]-2,5-diméthylphénoxy]acétique
agoniste des récepteurs β_3-adrénergiques

ritobegrón
ácido [4-[(1R,2S)-1-hidroxi-1-(4-hidroxifenil)prop-2-il]amino][etil]-2,5-dimetilfenoxi]acético
agonista del receptor adrenérgico β_3

C₂₁H₂₇NO₅

±

robenacoxibum

robenacoxib
(5-ethyl-2-[(2,3,5,6-tetrafluorophenyl)amino]phenyl)acetic acid
selective cyclo-oxygenase inhibitor (veterinary drug)

robénacoxib
adice [5-éthyl-2-[(2,3,5,6-tétrafluorophényl)amino]phényl]acétique
anti-inflammatoire (médicament vétérinaire)

robenacoxib
ácido [5-etil-2-(2,3,5,6-tetrafluoroanilino)fenil]acético
inhibidor selectivo de la cicloxigenasa (medicamento veterinario)

C₁₆H₁₃F₄NO₂

±

rostafuroxinum

rostafuroxin
21,23-epoxy-24-nor-14β,5β-chola-20,21-diene-3β,14,17α-triol
hypotensive agent

rostafuroxine
17-[(furan-3-yl)-5β]-14β-androstane-3β,14,17α-triol
hypotenseur

rostafuroxina
17-[(furan-3-il)-5β]-14β-androstano-3β,14,17α-triol
antihipertensivo
selodenosonum

Selodenoson

1-[6-(cyclopentylamino)-9H-purin-9-yl]-1-deoxy-N-ethyl-β-D-ribofuranuronamide

Selective adenosine A1 receptor agonist

Taltobulinum

Taltobulin

\(\text{C}_{23}\text{H}_{34}\text{O}_{4}\) 156722-18-8

\(\text{C}_{17}\text{H}_{24}\text{N}_{6}\text{O}_{4}\) 110299-05-3
tandutinib

tandutinib

4-{6-methoxy-7-[3-(piperidin-1-yl)propoxy]quinazolin-4-yl}-N-[4-(propan-2-yloxy)phenyl]piperazine-1-carboxamide

Antineoplastic agent

C\textsubscript{31}H\textsubscript{42}N\textsubscript{6}O\textsubscript{4} 387867-13-2

teglicarum

teğlicar

(3R)-3-[(tetradecylaminocarbonylamino]-4-(trimethylazaniumyl)-butanoate

Palmitoylcarnitine transferase I inhibitor

C\textsubscript{22}H\textsubscript{45}N\textsubscript{3}O\textsubscript{3} 250694-07-6
telavancinum
telavancin
telavancine
telavancina
tetomilastum
tetomilast
6-[2-(3,4-diethoxyphenyl)-1,3-thiazol-4-yl]pyridine-2-carboxylic acid
phosphodiesterase IV inhibitor
tétomilast
acide 6-[2-(3,4-diéthoxyphényl)thiazol-4-yl]pyridine-2-carboxylique
inhibiteur de la phosphodiésterase IV
tetomilast
ácido 6-[2-(3,4-dietoxifenil)bisazol-4-il]piridina-2-carboxílico
inhibidor de la fosfodiesterasa IV

C₁₉H₁₈N₂O₄S
145739-56-6

tifuviridum
tifuviride
antiviral
tifuviride
antiviral
tifuvirida
antiviral

C₉₁₅H₇₄N₅₇O₆₇
251562-00-2

topilutamidum
(2RS)-2-hydroxy-2-methyl-N-[4-nitro-3-[(trifluoromethyl)phenyl]-3-[(trifluoroacetyl)amino]propanamide
antiandrogen

topilutamide
(2RS)-2-hydroxy-2-methyl-N-[4-nitro-3-[(trifluorométhyl)phényl]-3-[(trifluoroacétyle)amino]propanamide
anti-androéne

topilutamida
(2RS)-2-hidroxí-2-metil-N-[4-nitro-3-(trifluorometil)fenil]-3-[(trifluoroacetil)amino]propanamida
antiandrógeno

C_{13}H_{11}F_{6}N_{3}O_{5}
260980-89-0

and enantiomer
et énantiomère
y enantiómero

torapselum
torapsel
42-89-glycoprotein (human clone PMT21:PL85 P-selectin glycoprotein ligand fusion protein with immunoglobulin (human constant region)
antithrombotic agent

dimère de la protéine de fusion de la [48-proline]glycoprotéine (ligand 1 de la sélectine-P humaine)-(1-48)-peptide avec le peptide de 224 résidus, partie C-terminale de la chaîne lourde de l'immunoglobuline G1 humaine
antithrombotique

dímero de la proteína de fusión de la [48-prolina]glicoproteína (ligando 1 de la selectina-P humana)-(1-48)-péptido con el péptido de 224 residuos, parte C-terminal de la cadena pesada de la inmunoglobulina G1 humana
antitrombótico

C_{272}H_{136}N_{7}O_{84}S_{20}
204658-47-9

KPKDTLMISR
YNSTYRVVSV
PQVYTLPPSR
NWYVDGVEHR
INSTYRVSVD
GHEYKCVSN
ISKAGQPRE
EEMTKNQVSL
DIAVEWESNG
PVLDSGSSF
RWQGQVFSC
YTQKSLSLP GK
trodusqueminum

(24R)-3β-[[3-[[4-[[3-amino(propyl)amino]butyl]amino]propyl]amino]-7α-hydroxy-5α-cholestan-24-yl hydrogen sulfate

appetite suppressant

trodusquemine

hydrogénosulfate de (24R)-3β-[[3-[[4-[[3-amino(propyl)amino]butyl]amino]propyl]amino]-7α-hydroxy-5α-cholestan-24-yl

anorexigène

trodusquemina

hidrogénosulfato de (24R)-3β-[[3-[[4-[[3-amino(propyl)amino]butyl]amino]propyl]amino]-7α-hidroxi-5α-colestan-24-ilo

supresor del apetito

C_{37}H_{72}N_{4}O_{5}S

186139-09-3

vandetanibum

N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine

angiogenesis inhibitor

vandetanib

N-(4-bromo-2-fluorophenyl)-6-méthoxy-7-[(1-méthylpipéridin-4-yl)méthoxy]quinazolin-4-amine

inhibiteur de l'angiogénèse

vandetanib

N-(4-bromo-2-fluorofenil)-7-[(1-metilpiperidin-4-il)metoxi]-6-metoxiquinazolin-4-amina

inhibidor de la angiogénesis

C_{22}H_{24}BrFN_{4}O_{2}

338992-00-0
vestipitant

vestipitant (2S)-N-[(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethyl]-2-(4-fluoro-2-methylphenyl)-N-methylpiperazine-1-carboxamide

neurokinin NK1 receptor antagonist

(+)-(2S)-N-[(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethyl]-2-(4-fluoro-2-methylphenyl)-N-methylpiperazine-1-carboxamide

antagoniste du récepteur NK1 de la neurokinine

(+)-(2S)-N-[(1R)-1-[3,5-bis(trifluorométhyl)phényl]éthyl]-2-(4-fluoro-2-méthylphényl)-N-méthylpipérazine-1-carboxamida

antagonista del receptor NK1 de neurokinina

C23H24F7N3O3 334476-46-9

yttrium (90Y) tacatuzumab

yttrium (90Y) tacatuzumab

immunoglobulin G1, anti-(human α-fetoprotein) (human-mouse monoclonal hAFP-31 γ1-chain), disulfide with human-mouse monoclonal hAFP-31 κ-chain, dimer, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugate, yttrium-90Y chelate

chelate d'yttrium (90Y) d'immunoglobuline G1, anti-α-fétoprotéine humaine) ; dimère du disulfure entre la chaîne γ1 et la chaîne κ de l’anticorps monoclonal de souris humanisé hAFP-31 liée à l’acide 2,2’,2”,2’’- (1,4,7,10-tétraazacyclododécane-1,4,7,10-tétryl)tétraacétique par une fonction amide

yttrium (90Y) tacatuzumab

chelate d'yttrium (90Y) de la immunoglobulina G1, anti-(α-fetoproteína humana) ; dímero del disulfuro entre la cadena γ1 y la cadena κ del anticuerpo monoclonal de ratón humanizado hAFP-31 vinculada al ácido 2,2’,2”,2’’-(1,4,7,10-tetraazaciclododecano-1,4,7,10-tetril)= tetraacético por una función amida

yttrium (90Y) tacatuzumab

yttrium (90Y) tacatuzumab

yttrium (90Y) tacatuzumab

C6470H9970N1712O2007S42Y 476413-07-7
AMENDMENTS TO PREVIOUS LISTS
MODIFICATIONS APPORTÉES AUX LISTES ANTÉRIEURES
MODIFICACIONES A LAS LISTAS ANTERIORES

Proposed International Non Proprietary Names (Prop. INN): List 71
Dénominations communes internationales proposées (DCI Prop.): Liste 71
Denominaciones Comunes Internacionales Propuestas (DCI Prop.): Lista 71
(WHO Drug Information, Vol. 8, No. 2, 1994)

p. 22 verteoporfinum replace the graphic formula by the following:
verteporfin remplacer la formule développée par la suivante:
verteporfina sustitúyase la fórmula desarrollada por:

Proposed International Non Proprietary Names (Prop. INN): List 78
Dénominations communes internationales proposées (DCI Prop.): Liste 78
Denominaciones Comunes Internacionales Propuestas (DCI Prop.): Lista 78
(WHO Drug Information, Vol. 11, No. 4, 1997)

p. 292 delete / supprimer / suprimase insert / insérer / insértese
targininum tilargininum
targinine tilarginine
targinine tilarginina

Proposed International Non Proprietary Names (Prop. INN): List 90
Dénominations communes internationales proposées (DCI Prop.): Liste 90
Denominaciones Comunes Internacionales Propuestas (DCI Prop.): Lista 90
(WHO Drug Information, Vol. 18, No. 1, 2004)

p. 55 eslicarbazepinum replace the molecular formula by the following:
eslicarbazepine remplacer la formule brute par:
eslicarbazépine sustitúyase la fórmula empírica por:
C_{15}H_{14}N_{2}O_{2}

p. 64 razaxabanum replace the description by the following:
razaxaban 1-\{3-amino-1,2-benzisoxazol-5-yl\}-N-\{4-[2-(dimethylaminomethyl)-1H-imidazol-1-yl]-2-fluorophenyl\}-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide
Annex 1

PROCEDURE FOR THE SELECTION OF RECOMMENDED INTERNATIONAL NONPROPRIETARY NAMES FOR PHARMACEUTICAL SUBSTANCES*

The following procedure shall be followed by the World Health Organization in the selection of recommended international nonproprietary names for pharmaceutical substances, in accordance with the World Health Assembly resolution WHA3.11:

1. Proposals for recommended international nonproprietary names shall be submitted to the World Health Organization on the form provided therefore.

2. Such proposals shall be submitted by the Director-General of the World Health Organization to the members of the Expert Advisory Panel on the International Pharmacopoeia and Pharmaceutical Preparations designated for this purpose, for consideration in accordance with the “General principles for guidance in devising International Nonproprietary Names”, appended to this procedure. The name used by the person discovering or first developing and marketing a pharmaceutical substance shall be accepted, unless there are compelling reasons to the contrary.

3. Subsequent to the examination provided for in article 2, the Director-General of the World Health Organization shall give notice that a proposed international nonproprietary name is being considered.

 A. Such notice shall be given by publication in the *Chronicle of the World Health Organization* and by letter to Member States and to national pharmacopoeia commissions or other bodies designated by Member States.

 (i) Notice may also be sent to specific persons known to be concerned with a name under consideration.

 B. Such notice shall:

 (i) set forth the name under consideration;

 (ii) identify the person who submitted a proposal for naming the substance, if so requested by such person;

 (iii) identify the substance for which a name is being considered;

 (iv) set forth the time within which comments and objections will be received and the person and place to whom they should be directed;

 (v) state the authority under which the World Health Organization is acting and refer to these rules of procedure.

 C. In forwarding the notice, the Director-General of the World Health Organization shall request that Member States take such steps as are necessary to prevent the acquisition of proprietary rights in the proposed name during the period it is under consideration by the World Health Organization.

4. Comments on the proposed name may be forwarded by any person to the World Health Organization within four months of the date of publication, under article 3, of the name in the *Chronicle of the World Health Organization*.1

5. A formal objection to a proposed name may be filed by any interested person within four months of the date of publication, under article 3, of the name in the *Chronicle of the World Health Organization*.1

 A. Such objection shall:

 (i) identify the person objecting;

1 The title of this publication was changed to *WHO Chronicle* in January 1959. From 1987 onwards lists of INNs are published in *WHO Drug Information*.
(ii) state his interest in the name;
(iii) set forth the reasons for his objection to the name proposed.

6. Where there is a formal objection under article 5, the World Health Organization may either reconsider the proposed
name or use its good offices to attempt to obtain withdrawal of the objection. Without prejudice to the consideration by the
World Health Organization of a substitute name or names, a name shall not be selected by the World Health Organization
as a recommended international nonproprietary name while there exists a formal objection thereto filed under article 5 which
has not been withdrawn.

7. Where no objection has been filed under article 5, or all objections previously filed have been withdrawn, the Director-
General of the World Health Organization shall give notice in accordance with subsection A of article 3 that the name has
been selected by the World Health Organization as a recommended international nonproprietary name.

8. In forwarding a recommended international nonproprietary name to Member States under article 7, the Director-General
of the World Health Organization shall:
A. request that it be recognized as the nonproprietary name for the substance; and
B. request that Member States take such steps as are necessary to prevent the acquisition of proprietary rights in the name,
including prohibiting registration of the name as a trade-mark or trade-name.

Annex 2

GENERAL PRINCIPLES FOR GUIDANCE IN DEVISING INTERNATIONAL
NONPROPRIETARY NAMES FOR PHARMACEUTICAL SUBSTANCES*

1. International Nonproprietary Names (INN) should be distinctive in sound and spelling. They should not be inconveniently
long and should not be liable to confusion with names in common use.

2. The INN for a substance belonging to a group of pharmacologically related substances should, where appropriate, show
this relationship. Names that are likely to convey to a patient an anatomical, physiological, pathological or therapeutic
suggestion should be avoided.

These primary principles are to be implemented by using the following secondary principles:

3. In devising the INN of the first substance in a new pharmacological group, consideration should be given to the possibility
of devising suitable INN for related substances, belonging to the new group.

4. In devising INN for acids, one-word names are preferred; their salts should be named without modifying the acid name,
e.g. “oxacillin” and “oxacillin sodium”, “ibufenac” and “ibufenac sodium”.

5. INN for substances which are used as salts should in general apply to the active base or the active acid. Names for
different salts or esters of the same active substance should differ only in respect of the name of the inactive acid or the
inactive base.

For quaternary ammonium substances, the cation and anion should be named appropriately as separate components of a
quaternary substance and not in the amine-salt style.

* In its twentieth report (WHO Technical Report Series, No. 581, 1975), the WHO Expert Committee on Nonproprietary Names for Pharmaceutical Substances
reviewed the general principles for devising, and the procedures for selecting, international nonproprietary names (INN) in the light of developments in
pharmaceutical compounds in recent years. The most significant change has been the extension to the naming of synthetic chemical substances of the practice
previously used for substances originating in or derived from natural products. This practice involves employing a characteristic “stem” indicative of a common
property of the members of a group. The reasons for, and the implications of, the change are fully discussed.
6. The use of an isolated letter or number should be avoided; hyphenated construction is also undesirable.

7. To facilitate the translation and pronunciation of INN, “f” should be used instead of “ph”, “t” instead of “th”, “e” instead of “ae” or “oe”, and “i” instead of “y”; the use of the letters “h” and “k” should be avoided.

8. Provided that the names suggested are in accordance with these principles, names proposed by the person discovering or first developing and marketing a pharmaceutical preparation, or names already officially in use in any country, should receive preferential consideration.

9. Group relationship in INN (see Guiding Principle 2) should if possible be shown by using a common stem. The following list contains examples of stems for groups of substances, particularly for new groups. There are many other stems in active use.1 Where a stem is shown without any hyphens it may be used anywhere in the name.

<table>
<thead>
<tr>
<th>Latin</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>-acum</td>
<td>ac</td>
</tr>
<tr>
<td>-actidum</td>
<td>actide</td>
</tr>
<tr>
<td>-adolum</td>
<td>adol)</td>
</tr>
<tr>
<td>-astum</td>
<td>ast</td>
</tr>
<tr>
<td>-astinum</td>
<td>astine</td>
</tr>
<tr>
<td>-azepamum</td>
<td>azepam</td>
</tr>
<tr>
<td>-bactamum</td>
<td>bactam</td>
</tr>
<tr>
<td>bol</td>
<td>bol</td>
</tr>
<tr>
<td>-buzonum</td>
<td>buzone</td>
</tr>
<tr>
<td>-cain-</td>
<td>cain-</td>
</tr>
<tr>
<td>-cainum</td>
<td>caine</td>
</tr>
<tr>
<td>cef-</td>
<td>cef</td>
</tr>
<tr>
<td>-cillinum</td>
<td>-cillin</td>
</tr>
<tr>
<td>cort</td>
<td>cort</td>
</tr>
<tr>
<td>-dipinum</td>
<td>dipine</td>
</tr>
<tr>
<td>-fibratum</td>
<td>fibrate</td>
</tr>
<tr>
<td>gest</td>
<td>gest</td>
</tr>
<tr>
<td>gli-</td>
<td>gli</td>
</tr>
<tr>
<td>io-</td>
<td>io</td>
</tr>
<tr>
<td>-ium</td>
<td>-ium</td>
</tr>
<tr>
<td>-metacinum</td>
<td>-metacin</td>
</tr>
<tr>
<td>-mycinum</td>
<td>-mycin</td>
</tr>
<tr>
<td>-nidazolum</td>
<td>-nidazole</td>
</tr>
<tr>
<td>-ololum</td>
<td>-olol</td>
</tr>
<tr>
<td>-oxacinum</td>
<td>-oxacin</td>
</tr>
<tr>
<td>-pridum</td>
<td>-pride</td>
</tr>
<tr>
<td>-pril(at)um</td>
<td>pril(at)</td>
</tr>
<tr>
<td>-profenum</td>
<td>-profen</td>
</tr>
<tr>
<td>prost</td>
<td>prost</td>
</tr>
<tr>
<td>-relinum</td>
<td>-relin</td>
</tr>
<tr>
<td>-terolum</td>
<td>-terol</td>
</tr>
<tr>
<td>-tidinum</td>
<td>-tidine</td>
</tr>
<tr>
<td>-trexatum</td>
<td>-trexate</td>
</tr>
<tr>
<td>-verinum</td>
<td>-verine</td>
</tr>
<tr>
<td>vin-</td>
<td>vin-</td>
</tr>
<tr>
<td>-vin-</td>
<td>-vin-</td>
</tr>
</tbody>
</table>

1 A more extensive listing of stems is contained in the working document WHO/EDM/QSM 2003.2 which is regularly updated and can be requested from the INN Programme, WHO, Geneva.
Annexe 1

PROCEDURE A SUIVRE EN VUE DU CHOIX DE DENOMINATIONS COMMUNES INTERNATIONALES RECOMMANDÉES POUR LES SUBSTANCES PHARMACEUTIQUES*

L’Organisation mondiale de la Santé observe la procédure exposée ci-dessous pour l’attribution de dénominations communes internationales recommandées pour les substances pharmaceutiques, conformément à la résolution WHA3.11 de l’Assemblée mondiale de la Santé:

1. Les propositions de dénominations communes internationales recommandées sont soumises à l’Organisation mondiale de la Santé sur la formule prévue à cet effet.

2. Ces propositions sont soumises par le Directeur général de l’Organisation mondiale de la Santé aux experts désignés à cette fin parmi les personnalités inscrites au Tableau d’experts de la Pharmacopée internationale et des Préparations pharmaceutiques; elles sont examinées par les experts conformément aux “Directives générales pour la formation des dénominations communes internationales”, reproduites ci-après. La dénomination acceptée est la dénomination employée par la personne qui découvre ou qui, la première, fabrique et lance sur le marché une substance pharmaceutique, à moins que des raisons majeures n’obligent à s’écarter de cette règle.

3. Après l’examen prévu à l’article 2, le Directeur général de l’Organisation mondiale de la Santé notifie qu’un projet de dénomination commune internationale est à l’étude.

A. Cette notification est faite par une insertion dans la Chronique de l’Organisation mondiale de la Santé1 et par l’envoi d’une lettre aux Etats Membres et aux commissions nationales de pharmacopée ou autres organismes désignés par les Etats Membres.

(i) Notification peut également être faite à toute personne portant à la dénomination mise à l’étude un intérêt notoire.

B. Cette notification contient les indications suivantes:

(i) dénomination mise à l’étude;

(ii) nom de l’auteur de la proposition tendant à attribuer une dénomination à la substance, si cette personne le demande;

(iii) définition de la substance dont la dénomination est mise à l’étude;

(iv) délai pendant lequel seront reçues les observations et les objections à l’égard de cette dénomination; nom et adresse de la personne habilitée à recevoir ces observations et objections;

(v) mention des pouvoirs en vertu desquels agit l’Organisation mondiale de la Santé et référence au présent règlement.

C. En envoyant cette notification, le Directeur général de l’Organisation mondiale de la Santé demande aux Etats Membres de prendre les mesures nécessaires pour prévenir l’acquisition de droits de propriété sur la dénomination proposée pendant la période au cours de laquelle cette dénomination est mise à l’étude par l’Organisation mondiale de la Santé.

4. Des observations sur la dénomination proposée peuvent être adressées à l’Organisation mondiale de la Santé par toute personne, dans les quatre mois qui suivent la date de publication de la dénomination dans la Chronique de l’Organisation mondiale de la Santé (voir l’article 3).

5. Toute personne intéressée peut formuler une objection formelle contre la dénomination proposée dans les quatre mois qui suivent la date de publication de la dénomination dans la Chronique de l’Organisation mondiale de la Santé (voir l’article 3).

A. Cette objection doit s’accompagner des indications suivantes:
 i) nom de l’auteur de l’objection;
 ii) intérêt qu’il porte à la dénomination en cause;
 iii) raisons motivant l’objection contre la dénomination proposée.

6. Lorsqu’une objection formelle est formulée en vertu de l’article 5, l’Organisation mondiale de la Santé peut soit soumettre la dénomination proposée à un nouvel examen, soit intervenir pour tenter d’obtenir le retrait de l’objection. Sans préjudice de l’examen par elle d’une ou de plusieurs appellations de remplacement, l’Organisation mondiale de la Santé n’adopte pas d’appellation comme dénomination commune internationale recommandée tant qu’une objection formelle présentée conformément à l’article 5 n’est pas levée.

7. Lorsqu’il n’est formulé aucune objection en vertu de l’article 5 ou que toutes les objections présentées ont été levées, le Directeur général de l’Organisation mondiale de la Santé fait une notification conformément aux dispositions de la sous-section A de l’article 3, en indiquant que la dénomination a été choisie par l’Organisation mondiale de la Santé en tant que dénomination commune internationale recommandée.

8. En communiquant aux États Membres, conformément à l’article 7, une dénomination commune internationale recommandée, le Directeur général de l’Organisation mondiale de la Santé:
 A. demande que cette dénomination soit reconnue comme dénomination commune de la substance considérée, et
 B. demande aux États Membres de prendre les mesures nécessaires pour prévenir l’acquisition de droits de propriété sur cette dénomination, notamment en interdisant le dépôt de cette dénomination comme marque ou appellation commerciale.

Annexe 2

DIRECTIVES GENERALES POUR LA FORMATION DE DENOMINATIONS COMMUNES INTERNATIONALES APPLICABLES AUX SUBSTANCES PHARMACEUTIQUES*

1. Les dénominations communes internationales (DCI) devront se distinguer les unes des autres par leur consonance et leur orthographe. Elles ne devront pas être d’une longueur excessive, ni prêter à confusion avec des appellations déjà couramment employées.

2. La DCI de chaque substance devra, si possible, indiquer sa parenté pharmacologique. Les dénominations susceptibles d’évoquer pour les malades des considérations anatomiques, physiologiques, pathologiques ou thérapeutiques devront être évitées dans la mesure du possible.

* Dans son vingtième rapport (Série de Rapports techniques de l’OMS, No. 581, 1975), le Comité OMS d’experts des Dénominations communes pour les Substances pharmaceutiques a examiné les directives générales pour la formation des dénominations communes internationales et la procédure à suivre en vue de leur choix, compte tenu de l’évolution du secteur pharmaceutique au cours des dernières années. La modification la plus importante a été l’extension aux substances de synthèse de la pratique normalement suivie pour désigner les substances tirées ou dérivées de produits naturels. Cette pratique consiste à employer des syllabes communes ou groupes de syllabes communes (segments clés) qui sont caractéristiques et indiquent une propriété commune aux membres du groupe des substances pour lequel ces segments clés ont été retenus. Les raisons et les conséquences de cette modification ont fait l’objet de discussions approfondies.

1 Depuis janvier 1959, cette publication porte le titre de Chronique OMS. À partir de 1987, les listes des DCI sont publiées dans les Informations pharmaceutiques OMS.
Outre ces deux principes fondamentaux, on respectera les principes secondaires suivants:

3. Lorsqu'on formera la DCI de la première substance d'un nouveau groupe pharmacologique, on tiendra compte de la possibilité de former ultérieurement d'autres DCI appropriées pour les substances apparentées du même groupe.

4. Pour former des DCI des acides, on utilisera de préférence un seul mot. Leurs sels devront être désignés par un terme qui ne modifie pas le nom de l'acide d'origine: par exemple "oxacilline" et "oxacilline sodique", "ibufénac" et "ibufénac sodique".

5. Les DCI pour les substances utilisées sous forme de sels devront en général s'appliquer à la base active (ou à l'acide actif). Les dénominations pour différents sels ou esters d'une même substance active ne différeront que par le nom de l'acide inactif (ou de la base inactive).

En ce qui concerne les substances à base d'ammonium quaternaire, la dénomination s'appliquera de façon appropriée au cation et à l'anion en tant qu'éléments distincts d'une substance quaternaire. On évitera de choisir une désignation évoquant un selaminé.

6. On évitera d'ajouter une lettre ou un chiffre isolé; en outre, on renonce de préférence au trait d'union.

7. Pour simplifier la traduction et la prononciation des DCI, la lettre "f" sera utilisée à la place de "ph", "t" à la place de "th", "e" à la place de "ae" ou "oe" et "i" à la place de "y"; l'usage des lettres "h" et "k" sera aussi évité.

8. On tiendra de préférence, pour autant qu'elles respectent les principes énoncés ici, les dénominations proposées par les personnes qui ont découvert ou qui, les premières, ont fabriqué et lancé sur le marché les préparations pharmaceutiques considérées, ou les dénominations déjà officiellement adoptées par un pays.

9. La parenté entre substances d'un même groupe (voir Directive générale 2) sera si possible indiquée dans les DCI par l'emploi de segments clés communs. La liste ci-après contient des exemples de segments clés pour des groupes de substances, surtout pour des groupes récents. Il y a beaucoup d'autres segments clés en utilisation active. 1 Les segments clés indiqués sans trait d'union pourront être insérés n'importe où dans une dénomination.

<table>
<thead>
<tr>
<th>Latin</th>
<th>Français</th>
</tr>
</thead>
<tbody>
<tr>
<td>-acum</td>
<td>-ac substances anti-inflammatoires du groupe de l'ibufénac</td>
</tr>
<tr>
<td>-actidum</td>
<td>-actide polypeptides synthétiques agissant comme la corticotropine</td>
</tr>
<tr>
<td>-adol</td>
<td>-adol alkénes</td>
</tr>
<tr>
<td>-astum</td>
<td>-ast antihistaminiques, antiiallergiques n'agissant pas principalement en tant qu'antiallergiques</td>
</tr>
<tr>
<td>-astinum</td>
<td>-astine antihistaminiques</td>
</tr>
<tr>
<td>-bactamum</td>
<td>-bactame inhibiteurs de β-lactamasases</td>
</tr>
<tr>
<td>bol</td>
<td>bol stéroïdes anabolisants</td>
</tr>
<tr>
<td>-buzonum</td>
<td>-buzone inhibiteurs anti-inflammatoires du groupe de la phénylbutazone</td>
</tr>
<tr>
<td>-cain-</td>
<td>-caïn substances antifibrillantes à action anesthésique locale</td>
</tr>
<tr>
<td>-cainum</td>
<td>-caïne anesthésiques locaux</td>
</tr>
<tr>
<td>-cef-</td>
<td>-cété antibiotiques, dérivés de l'acide céphalosporanique</td>
</tr>
<tr>
<td>-cilimum</td>
<td>-ciline antibiotiques, dérivés de l'acide 6-aminopénicillanique</td>
</tr>
<tr>
<td>-conazolum</td>
<td>-conazole agents antifongiques systémiques du groupe du miconazole</td>
</tr>
<tr>
<td>cort</td>
<td>cort corticostéroïdes, autres que les dérivés de la prednisolone</td>
</tr>
<tr>
<td>-dipinum</td>
<td>-dipine inhibiteurs du calcium du groupe de la nitédipine</td>
</tr>
<tr>
<td>-fibratum</td>
<td>-fibrate substances du groupe du clofibrate</td>
</tr>
<tr>
<td>gest</td>
<td>gest stéréoids progestogènes</td>
</tr>
<tr>
<td>gli-</td>
<td>gli- sulfamides hypoglycémiants</td>
</tr>
<tr>
<td>io-</td>
<td>io- produits de contraste iodés</td>
</tr>
</tbody>
</table>

1 Une liste plus complète de segments clés est contenue dans le document de travail WHO/EDM/QSM 2003.2 qui est régulièrement mis à jour et qui peut être demandé auprès du Programme des DCI, OMS, Genève.
Proposed INN: List 91

<table>
<thead>
<tr>
<th>Latin</th>
<th>Français</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ium</td>
<td>-ium ammoniums quaternaires</td>
</tr>
<tr>
<td>-metacinum</td>
<td>-métacine substances anti-inflammatoires du groupe de l’indométacine</td>
</tr>
<tr>
<td>-mycinum</td>
<td>-mycine antibiotiques produits par des souches de Streptomyces</td>
</tr>
<tr>
<td>-nidazolum</td>
<td>-nidazole substances antiprotozoaires du groupe du métronidazole</td>
</tr>
<tr>
<td>-ololum</td>
<td>-olol antagonistes des récepteurs β-adrénergiques</td>
</tr>
<tr>
<td>-oxacinum</td>
<td>-oxacine substances antibactériennes du groupe de l’acide nalidixique</td>
</tr>
<tr>
<td>-pridum</td>
<td>-pride substances du groupe du sulpiride</td>
</tr>
<tr>
<td>-profenum</td>
<td>-profène substances anti-inflammatoires du groupe de l’ibuprofène</td>
</tr>
<tr>
<td>-pril(at)um</td>
<td>-pril(ate) inhibiteurs de l’enzyme de conversion de l’angiotensine</td>
</tr>
<tr>
<td>-prost</td>
<td>prost prostaglandines</td>
</tr>
<tr>
<td>-relinum</td>
<td>-réline peptides stimulant la libération d’hormones hypophysaires</td>
</tr>
<tr>
<td>-terolium</td>
<td>-tréol bronchodilatateurs, dérivés de la phényléthylamine</td>
</tr>
<tr>
<td>-tidinum</td>
<td>-tidine antagonistes des récepteurs H2 de l’histamine</td>
</tr>
<tr>
<td>-trexatum</td>
<td>-trexate antagonistes de l’acide folique</td>
</tr>
<tr>
<td>-verinum</td>
<td>-vérine spasmolytiques agissant comme la papavérine</td>
</tr>
<tr>
<td>-vin-</td>
<td>vin-) alkaloides du type vinca</td>
</tr>
<tr>
<td>-vin-</td>
<td>-vin-)</td>
</tr>
</tbody>
</table>

Anexo 1

PROCEDIMIENTO DE SELECCION DE DENOMINACIONES COMUNES INTERNACIONALES RECOMENDADAS PARA LAS SUSTANCIAS FARMACEUTICAS

La Organización Mundial de la Salud seguirá el procedimiento que se expone a continuación para la selección de denominaciones comunes internacionales recomendadas para las sustancias farmacéuticas, de conformidad con lo dispuesto en la resolución WHA3.11 de la Asamblea Mundial de la Salud:

1. Las propuestas de denominaciones comunes internacionales recomendadas se presentarán a la Organización Mundial de la Salud en los formularios que se proporcionan a estos efectos.

2. Estas propuestas serán sometidas por el Director General de la Organización Mundial de la Salud a los Miembros del Cuadro de Expertos de la Farmacopea Internacional y las Preparaciones Farmacéuticas encargados de su estudio, para que las examinen de conformidad con los "Principios Generales de Orientación para formar Denominaciones Comunes Internacionales para Sustancias Farmacéuticas", anexos a este Procedimiento. A menos que haya poderosas razones en contra, la denominación aceptada será la empleada por la persona que haya descubierto, fabricado o puesto a la venta por primera vez una sustancia farmacéutica.

3. Una vez terminado el estudio a que se refiere el artículo 2, el Director General de la Organización Mundial de la Salud notificará que está en estudio un proyecto de denominación internacional.

A. Esta notificación se hará mediante una publicación en la *Crónica de la Organización Mundial de la Salud* y el envío de una carta a los Estados Miembros y a las comisiones nacionales de las farmacopeas u otros organismos designados por los Estados Miembros.

 (i) La notificación puede enviarse también a las personas que tengan un interés especial en una denominación objeto de estudio.

* Denominada *Crónica de la OMS* desde enero de 1959. A partir de 1987, las listas de DCI se publican en *Información Farmacéutica OMS*.

197
B. En estas notificaciones se incluyen los siguientes datos:

(i) denominación sometida a estudio;

(ii) nombre de la persona que ha presentado la propuesta de denominación de la sustancia si lo pide esta persona;

(iii) definición de la sustancia cuya denominación está en estudio;

(iv) plazo fijado para recibir observaciones y objeciones, así como nombre y dirección de la persona a quien deban dirigirse, y

(v) mención de los poderes conferidos para el caso a la Organización Mundial de la Salud y referencia al presente procedimiento.

C. Al enviar esta notificación, el Director General de la Organización Mundial de la Salud solicitará de los Estados Miembros la adopción de todas las medidas necesarias para impedir la adquisición de derechos de propiedad sobre la denominación propuesta, durante el periodo en que la Organización Mundial de la Salud tenga en estudio esta denominación.

4. Toda persona puede formular a la Organización Mundial de la Salud observaciones sobre la denominación propuesta, dentro de los cuatro meses siguientes a su publicación en la Crónica de la Organización Mundial de la Salud, conforme a lo dispuesto en el artículo 3.

5. Toda persona interesada puede presentar una objeción formal contra la denominación propuesta, dentro de los cuatro meses siguientes a su publicación en la Crónica de la Organización Mundial de la Salud, conforme a lo dispuesto en el artículo 3.

A. Esta objeción deberá acompañarse de los siguientes datos:

i) nombre de la persona que formula la objeción;

ii) causas que motivan su interés por la denominación, y

iii) causas que motivan su objeción a la denominación propuesta.

6. Cuando se haya presentado una objeción formal en la forma prevista en el artículo 5, la Organización Mundial de la Salud puede someter a nuevo estudio la denominación propuesta, o bien utilizar sus buenos oficios para lograr que se retire la objeción. Sin perjuicio de que la Organización Mundial de la Salud estudie una o varias denominaciones en sustitución de la primitiva, ninguna denominación podrá ser seleccionada por la Organización Mundial de la Salud como denominación común internacional recomendada en tanto que exista una objeción formal, presentada como previene el artículo 5, que no haya sido retirada.

7. Cuando no se haya formulado ninguna objeción en la forma prevista en el artículo 5, o cuando todas las objeciones presentadas hayan sido retiradas, el Director de la Organización Mundial de la Salud notificará, conforme a lo dispuesto en el párrafo A del artículo 3, que la denominación ha sido seleccionada por la Organización Mundial de la Salud como denominación común internacional recomendada.

8. Al comunicar a los Estados Miembros una denominación común internacional conforme a lo previsto en el artículo 7, el Director General de la Organización Mundial de la Salud:

A. solicitará que esta denominación sea reconocida como denominación común para la sustancia de que se trate, y

B. solicitará de los Estados Miembros la adopción de todas las medidas necesarias para impedir la adquisición de derechos de propiedad sobre la denominación, incluso la prohibición de registrarlo como marca de fábrica o como nombre comercial.
Anexo 2

PRINCIPIOS GENERALES DE ORIENTACION PARA FORMAR DENOMINACIONES COMUNES INTERNACIONALES PARA SUSTANCIAS FARMACEUTICAS*

1. Las Denominaciones Comunes Internacionales (DCI) deberán diferenciarse tanto fonéticamente como ortográficamente. No deberán ser incómodamente largas, ni dar lugar a confusión con denominaciones de uso común.

2. La DCI de una sustancia que pertenezca a un grupo de sustancias farmacológicamente emparentadas deberá mostrar apropiadamente este parentesco. Deberán evitarse los nombres que puedan inducir fácilmente en el paciente sugestiones anatómicas, fisiológicas, patológicas o terapéuticas.

Estos principios primarios deberán ser tenidos en cuenta al aplicar los siguientes principios secundarios:

3. Al idear la DCI de la primera sustancia de un nuevo grupo farmacológico, deberá tenerse en cuenta la posibilidad de formar DCI convenientes para las sustancias emparentadas que vengan a incrementar el nuevo grupo.

4. Al idear DCI para ácidos, se preferirán las de una sola palabra; sus sales deberán denominarse sin modificar el nombre de ácido; p. ej., "oxacilina" y "oxacilina sódica", "ibufenaco" e "ibufenaco sódico".

5. Las DCI para las sustancias que se usan en forma de sal, deberán en general aplicarse a la base activa o, respectivamente, al ácido activo. Las denominaciones para diferentes sales o ésteres de la misma sustancia activa solamente deberán diferir en el nombre de ácido o de la base inactivas.

En los compuestos de amonio cuaternario, el catión y el anión deberán denominarse adecuadamente por separado, como componentes independientes de una sustancia cuaternaria y no como sales de una amina.

6. Deberá evitarse el empleo de una letra o un número aislado; también es indeseable el empleo de guiones.

7. Para facilitar la traducción y la pronunciación se emplearán de preferencia las letras "f" en lugar de "ph", "t" en lugar de "th", "e" en lugar de "ae" o "oe" e "i" en lugar de "y"; se deberá evitar el empleo de las letras "h" y "k".

8. Siempre que las denominaciones que se sugieran estén de acuerdo con estos principios, recibirán una consideración preferente las denominaciones propuestas por la persona que haya descubierto la sustancia, o la que primeramente fabrique o ponga a la venta la sustancia farmacéutica, así como las denominaciones oficialmente adoptadas en cualquier país.

9. En las DCI, la relación de grupo o parentesco (véanse los Principios Generales de Orientación, apartado 2) se indicará en lo posible utilizando una partícula común. En la lista siguiente se dan algunos ejemplos de estas partículas en relación con diversos grupos de sustancias, en particular los de nuevo cuño. Hay otras muchas partículas comunes en uso.1 Cuando la partícula no lleva ningún guión, cabe utilizarla en cualquier parte de la denominación.

* En su 20o informe (OMS, Serie de Informes Técnicos, No. 581, 1975) el Comité de Expertos de la OMS en Denominaciones Comunes para Sustancias Farmacéuticas examina los principios generales de orientación para formar denominaciones comunes internacionales (DCI) y el procedimiento de selección de las mismas, teniendo en cuenta las novedades registradas en los últimos años en materia de preparaciones farmacéuticas. Entre las modificaciones, la más importante ha sido la extensión a las sustancias químicas sintéticas de la práctica reservada anteriormente para designar sustancias originarias o derivadas de productos naturales. Esta práctica consiste en emplear una partícula característica que indique una propiedad común a los miembros de un determinado grupo de sustancias. En el informe se examinan a fondo las razones de esta modificación y sus consecuencias.

1 El documento de trabajo WHO/EDM/QSM 2003.2, que se pone al día regularmente, contiene una lista más extensa de partículas comunes. Las personas que deseen recibirlo deberán solicitar su envío al Programa DCI, OMS, Ginebra (Suiza).
<table>
<thead>
<tr>
<th>Latin</th>
<th>Español</th>
</tr>
</thead>
<tbody>
<tr>
<td>-acum</td>
<td>antiinflamatorios del grupo del ibufenaco</td>
</tr>
<tr>
<td>-actidum</td>
<td>polipéptidos sintéticos de acción semejante a la corticotropina</td>
</tr>
<tr>
<td>-adol</td>
<td>analgésicos</td>
</tr>
<tr>
<td>-adol-</td>
<td></td>
</tr>
<tr>
<td>-astum</td>
<td>antiasmáticos y antialérgicos que no actúan principalmente como antihistamínicos</td>
</tr>
<tr>
<td>-astinum</td>
<td>antihistamínicos</td>
</tr>
<tr>
<td>-azeepamum</td>
<td>sustancias del grupo del diazepam</td>
</tr>
<tr>
<td>-bactamum</td>
<td>inhibidores de β-lactamasas</td>
</tr>
<tr>
<td>bol</td>
<td>esteroides anabólicos</td>
</tr>
<tr>
<td>-buzonum</td>
<td>analgésicos antiinflamatorios del grupo de la fenilbutazona</td>
</tr>
<tr>
<td>-cain-</td>
<td>antifibrilantes con actividad anestésica local</td>
</tr>
<tr>
<td>-cainum</td>
<td>anestésicos locales</td>
</tr>
<tr>
<td>cef-</td>
<td>antibióticos derivados del ácido cefalosporánico</td>
</tr>
<tr>
<td>-cilinum</td>
<td>antibióticos derivados del ácido 6-aminopenicilánico</td>
</tr>
<tr>
<td>-conazolum</td>
<td>antifúngicos sistémicos del grupo del miconazol</td>
</tr>
<tr>
<td>cort</td>
<td>corticosteroides, excepto los del grupo de la prednisolona</td>
</tr>
<tr>
<td>-dipinum</td>
<td>antagonistas del calcio del grupo del nifedipino</td>
</tr>
<tr>
<td>-fibratum</td>
<td>sustancias del grupo del clofibrato</td>
</tr>
<tr>
<td>gest</td>
<td>esteroides progestágenos</td>
</tr>
<tr>
<td>gli-</td>
<td>sulfonamidas hipoglucemiantes</td>
</tr>
<tr>
<td>io-</td>
<td>medios de contraste que contienen yodo</td>
</tr>
<tr>
<td>-ium</td>
<td>compuestos de amonio cuaternario</td>
</tr>
<tr>
<td>-mycinum</td>
<td>antibióticos, producidos por cepas de Streptomyces</td>
</tr>
<tr>
<td>-nidazolum</td>
<td>antibióticos, producidos por cepas de Streptomyces</td>
</tr>
<tr>
<td>ololium</td>
<td>bloqueadores β-adrenérgicos</td>
</tr>
<tr>
<td>-oxacinum</td>
<td>antibacterianos del grupo del ácido nalidíxico</td>
</tr>
<tr>
<td>-pridum</td>
<td>sustancias del grupo de la sulpirida</td>
</tr>
<tr>
<td>-pril(at)um</td>
<td>inhibidores de la enzima transformadora de la angiotensina</td>
</tr>
<tr>
<td>-profenum</td>
<td>antiinflamatorios del grupo del ibuprofeno</td>
</tr>
<tr>
<td>prost</td>
<td>prostaglandinas</td>
</tr>
<tr>
<td>-relinum</td>
<td>péptidos estimulantes de la liberación de hormonas hipofisarias</td>
</tr>
<tr>
<td>-terol</td>
<td>broncodilatadores derivados de la fenetilamina</td>
</tr>
<tr>
<td>-tidinum</td>
<td>antagonistas del receptor H2 de la histamina</td>
</tr>
<tr>
<td>-trexatum</td>
<td>antagonistas del ácido fólico</td>
</tr>
<tr>
<td>-verinum</td>
<td>espasmoílicos de acción semejante a la de la papaverina</td>
</tr>
<tr>
<td>vin-</td>
<td>alcaloides de la vinca</td>
</tr>
<tr>
<td>-vin-</td>
<td></td>
</tr>
</tbody>
</table>