Validity and Comparability of Out-of-pocket Health Expenditure from Household Surveys: A review of the literature and current survey instruments

DISCUSSION PAPER

NUMBER 1 - 2011

Department "Health Systems Financing" (HSF)
Cluster "Health Systems and Services" (HSS)
Abstract

Objective: Measurement errors have been a persistent concern in survey research. In this study we investigate the current evidence on measurement errors in self-reported household expenditure and health expenditure.

Methodology: We performed a review of the literature on measurement error in healthcare-related surveys. A Pubmed-search was performed and in addition reference tracking was used. In the second part of the study we examined current survey instruments. We collected 90 household surveys, such as household budget surveys, from the International Household Survey Network. We included surveys that were conducted after 1990, with a focus on low-income countries and studied differences in survey design features.

Results: The literature review demonstrated that the probability of misreporting increases when the time between interview and event increases. Also, longer and shorter recall periods have generated different outcomes, although the magnitude of this difference varied across populations. Furthermore, respondents reported higher aggregate household spending when more items were used. Respondents may also lose motivation in long-term diaries. Some studies found a relationship between measurement error and respondent characteristics, although results were inconsistent. The review of current household surveys showed a non-negligible variation in design features such as the recall period, the number of disaggregation items and the wording of questions.

Conclusion: From reviewing the existing studies and literature we did not find evidence of the optimal survey design features in collecting data on health spending. However, some practical suggestions emerge from the study in terms of question design, recall period and methods of data collection. The study strongly suggests the need for validation studies in order to improve survey instruments and data quality. In the meantime, standardization could improve the comparability across countries and surveys, yet this may discourage the efforts on further exploring the best survey instruments and compromise within-country, over-time comparison efforts.
Introduction

In many health systems out-of-pocket payments (OOP), which refer to payments made by the patients to both public and private providers at the point of receiving health services, comprise a considerable part of total health spending. Across health systems out-of-pocket payments range from less than 10% to more than 80% of total national health spending. The level of OOP and their distribution have great impact on overall health system performance (WHO 2008). When a system relies heavily on OOP, the payments required to access health care in relation to income can be high enough to result in financial catastrophe for individuals or households. Moreover, the impact of these out-of-pocket payments for health care go beyond catastrophic spending and many people, particularly the poor, may decide not to use services, simply because they cannot afford the direct costs (Xu et al. 2003).

This leads to a persistent interest in the impact of out-of-pocket spending on the affordability and equity of health systems. As a result, the level and distribution of out-of-pocket payments have been widely used as key indicators in the monitoring and evaluation of health system reforms (e.g. Murray et al. 2003). National Health Accounts (NHA), which have been established in many countries, report out-of-pocket payments at the national level. In 55 countries these NHA estimates are routinely reported. At the same time, there are an increasing number of studies addressing the distribution of out-of-pocket payments and its impact on financial wellbeing and poverty across households (Wagstaff et al. 1999; Murray et al. 2003; Xu et al. 2003(2); Knaul and Frenk 2005; Dooslaer et al. 2006). These types of studies have triggered health system reform in many contexts (Knaul and Frenk 2005; Frenk et al. 2006).

In most countries the main (most complete) data source for measuring out-of-pocket payments is the household survey, such as Household Budget Surveys (HBS), Living Standard Measurement Surveys (LSMS), Socio-Economic Surveys (SES) and Income and Expenditure Surveys (IES). However, the instruments vary across different types of surveys and, even within the same type of survey questions may vary from country to country. The value of any such survey depends crucially on the validity and comparability of the data. Measurement error in the context of expenditure data derived from surveys is a well-known problem (Visaria 1980; Branch 1994; Anand and Harris 1994), and could be introduced at any stage of the survey; design of the survey instrument, data collection, or data entry. Well-
known causes of measurement error during the survey are for example incorrect formulation/interpretation, the respondent forgetting past (health-related) events, or socially desirable answering (Bradburn et al. 1987; Bradburn 2004).

This paper aims to contribute to the ongoing efforts in improving the quality of out-of-pocket expenditure data, and in improving the comparability of data across surveys and overtime. We summarize the characteristics of existing survey questionnaires in collecting information on household general expenditure and health expenditures and review literature which addresses data validity of household expenditure, in particular, the health expenditures.

Scope of the study

Understanding measurement error in household surveys is important for appropriately interpreting the results from existing surveys and to improve data quality in future household surveys. Biemer et al. (1991) identified four primary sources of measurement error: questionnaires (topics, wording, questionnaire length), data collection methods (mail, diary, in-person), interviewers (incorrect reading or interpretation of answers) and respondents (interpretation of questions, memory loss). The focus of this review is on the questionnaire design and data collection methods (both also reflect respondent behaviour issues), specifically: the wording/phrasing of questions, the recall period used in collecting different expenditure items; the number of breakdown items for goods and services in the survey; whether the data is collected using a diary or an interview; whether health expenditure is collected in a general budget survey or in a health survey; in the case of a multiple purpose survey, whether the OOP data is collected in the health module or expenditure module. These issues will be addressed through the review of the literature and of existing survey instruments. Errors resulting from the sample selection process (selection bias) are not within the scope of this study.

Study materials

Literature

For the literature review, we searched in Pubmed and other digital sources for validation studies of out-of-pocket health expenditure questions combining "survey" with terms such as “out-of-pocket” “health expenditures”, and “measurement error”. Because of an apparent
scarcity we searched for more literature through reference-tracking. Different types of validation studies were included: individual level record check studies\(^1\) that compare survey-data with other sources such as a hospital registers; studies that compare aggregate outcomes of a survey with other sources and studies that compare the outcomes of a single survey but with varying survey characteristics. Book chapters and additional reports were included too. Where relevant, results from studies on health care utilization and other types of consumption were included.

Existing surveys

The second part of the study was to review the survey instruments that have been used in different type of household surveys which collect information on household expenditure including health expenditure. The review includes 90 surveys from 64 mostly low-income and middle-income countries from 1990 to present. Surveys on living standards and household consumption and spending were included such as Living Standard Measurement Surveys (LSMS), Income and Expenditure Surveys (IES), and Household Budget Surveys (HBS). The questionnaires were collected from the International Household Survey Network (IHSN - www.ihsn.org). For each country we included different types of surveys if documentation about them was available in English or French (for example a questionnaire). When the dataset provided examples from multiple years for a specific country-survey type combination, the latest year was taken.

Furthermore, the characteristics of surveys from developed countries were studied, in particular the Household Budget Surveys in European countries. The European Statistical Office coordinates these HBS surveys and strives for comparability in the results. Data was collected from 24 European countries using HBS methodology, including recall period, number of breakdown items, method of data collection, question wording, and classification system of health care sectors (Table 1).

In summary, the final set consisted of 114 country-survey type combinations, including 49 LSMS-type surveys, 35 HBS surveys and 30 other surveys (e.g. income and expenditure surveys).

\(^1\) Four types of record-check studies can be distinguished: retrospective, prospective & full/ideal design.
Results

Recall period

Table 2 shows the variation in recall periods across the surveys in our dataset by type of health service. Almost 50% of the surveys used a 12-month recall period for hospitalization expenditures, and a 1-month recall period for expenditures on physician services and medication. Accordingly 50% of the surveys chose another recall period in the range of two weeks to 14 months. The results for hospital expenditures did not differ by section, i.e. whether the questions were in the health section of the survey or in the expenditure section of the survey. The results for physician visits and medicines did vary by section. In health sections 65% - 70% of the surveys used a one month recall, while the expenditure sections showed more mixed results.

<table>
<thead>
<tr>
<th></th>
<th>Hospitalization</th>
<th>Physician visits</th>
<th>Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>%</td>
<td>Frequency</td>
</tr>
<tr>
<td>1 month</td>
<td>30</td>
<td>36%</td>
<td>53</td>
</tr>
<tr>
<td>3 months</td>
<td>9</td>
<td>11%</td>
<td>9</td>
</tr>
<tr>
<td>12 months</td>
<td>38</td>
<td>46%</td>
<td>27</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>7%</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>100%</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 Recall period by type of health service

Several studies compared self-reported health spending from different recall periods (Neter and Waksberg 1964; Yaffe et al. 1978; Lu et al. 2009; Xu et al. 2009). Neter and Waksberg (1964) used surveys with different recall periods, and bounded and unbounded interviews to estimate the impact of memory loss and telescoping (misdating events) by the respondent. A bounded interview consists of at least two interviews. In the follow-up interview the interviewer explicitly mentions the results of the first interview and asks for the expenditures since then. They found that a one-month recall period provided higher outcomes, in terms of expenditures, compared to a three-month recall period. This difference was greater for smaller expenditures. In addition the bounded interview produced lower estimates compared to the unbounded interview.
Yaffe et al. (1978) compared self-reported health spending and utilization between a survey with one-month recall and a survey with two-month recall. They found no difference in mean utilization and expenditures between the two surveys. The authors argued that they found no difference because both surveys used extensive support and summary feedback.

More recently Lu et al. (2009) examined the difference between one month recall and twelve month recall for self-reported hospital expenditures using the World Health Survey. A one-month recall period produced higher average out-of-pocket spending compared to a twelve-month recall period, in 38 out of the 40 countries included in the study. The ratio of the estimates from the short recall period and the long recall period differed by a factor of 10 across countries.

Examining measurement error in utilization specific studies can also be useful for better understanding expenditure related errors. For example, it is logical to assume that there may be linkages between recollections of utilization and the expenditure related to this use. Indeed, others have compared surveys with medical records (individual-level data) and studied the difference in relation to the date of events. The US National Center for Health Statistics (NCHS) studied hospital care utilization in several studies (NCHS) and found that on average 10% of the admissions in hospital records had not been reported by respondents (NCHS 1965(3)). Hospitalizations further in the past and shorter (possibly less salient) hospital stays were left unreported more often. Similar findings have been found in other studies (NCHS 1965(2), NCHS 1977). One of these showed that the reporting accuracy of hospitalizations decreased significantly after eight months. In contrast to Neter and Waksberg, the authors did not find evidence for telescoping.

Haffner et al. (1987) studied a small sample of depressive patients and found that errors in defining the month of the event increased as the time between the event and the interview became longer. The authors questioned the validity of self-reported outpatient care use with a recall period longer than six months. Clark et al. (1996) examined the difference between a survey, (six months recall period), outpatient mental health center records and hospital records. They found that the accuracy of recall was associated with the length of the hospitalization and elapsed time between the interview and date of the event. The reporting rate was twice as high when the interview was conducted within ten weeks after the event.
The NCHS (1996) studied self-reported ambulatory care utilization in the weeks before the interview using the National Health Interview Survey. They also included cases that were reported in the household survey but not in the medical records. Survey respondents reported 77% of all visits in medical records in the first week before the interview, and 63% in the second week. At the same time respondents reported visits that were not included in the medical records. It was estimated that 25% - 50% of this difference was caused by forward telescoping, i.e. reporting visits that actually occurred before the reference period of the survey.

The impact of the recall period has also been studied for other types of consumption. Scott (1990) described the results of fifteen studies of which most showed lower reporting rates in surveys with longer recall periods (up to 50%). Some of them found that the reporting of less-frequently purchased items was affected more by measurement error. Using a small-scale bounded survey in Ghana they showed a decrease in reported expenditure for a longer recall (up to 14 days). The error was largest for the more frequently purchased goods. Deaton and Grosh (2000) reviewed a number of validation studies which showed that estimated food expenditures were similar using two different recall periods (two weeks / 'expenditure since last-visit' and a four-weeks / 'usual monthly expenditures') while differences were greater for less-frequent non-food expenditures.

Clarke et al. (2008) demonstrated the trade-off with regard to the recall period: shorter recall periods decrease the amount of information provided by the survey. Although a shorter recall period may generate more valid information at the individual level (less memory loss), aggregate estimates and distributions of both expenditure and utilization data may become less accurate due to irregular high or low expenditures. The recall period should be matched with the frequency of health services utilization over time in order to get reliable estimates of the expenditure distribution. This frequency may differ across populations and health systems.

Number of items

The majority of the surveys in our dataset included multiple health expenditure items, such as hospital care, outpatient care, and medication. These items need to be aggregated in order to estimate total out-of-pocket health spending. Figure 1 shows that among the questionnaires in our dataset the number of items ranged between 1 and 25, except for two outliers.
Some studies have shown the potential effect of different numbers of breakdown items on out-of-pocket health spending estimates. Lu et al. (2009) showed that total out-of-pocket health expenditure was influenced by the level of disaggregation, as for 90% of the countries in their study a single-item question (total health spending) generated significantly lower aggregate expenditures than the sum of eight disaggregated questions. The difference between the single-item and eight-item measure varied between -75% and +40% across countries. Xu et al. (2009) compared aggregated and reported total expenditures for health care and total consumption. Again in most countries the reported total was lower than the aggregated total, although differences were smaller for total consumption.

This aggregation issue has also been studied for other areas of consumption. Winter (2004) explored estimates of expenditure on nondurable goods using different levels of aggregation. He found that self-reported expenditure was 15% lower in a one-shot question compared to the sum of 35 items. The one-shot question yielded higher estimates in the low-expenditure group.
Deaton and Grosh (2000) reviewed a number of studies on different types of consumption and showed that more breakdown items usually raised estimates of total expenditure, in a range of 10% - 67% (for details: Reagan et al. 1954; Bhattacharya et al. 1963; Joliffe and Scott 1995; Steele 1998; Deaton and Grosh 2000). Some suggested that the level of aggregation of items had no large effect for food expenditures, yet this has not been replicated in all studies.

Question structure and phrasing

We found substantial variation in terms of the structure and wording of questions across the surveys in our dataset. Around 40% of the surveys included health expenditure questions in a health section. In that case expenditure questions are preceded by questions on illness and health care use which may help respondents to remember health expenditures. In the other 60% of the surveys out-of-pocket health expenditures were surrounded by questions on other services and goods.

Marquis et al. (1976) showed that this can make a difference. They analyzed expenditure questions with and without preceding questions on health or health care use, i.e. indirect and direct health spending questions. In contrast to the direct method, the indirect method produced total (gross) health expenditures similar to estimates based on administrative data sources. However estimates of out-of-pocket health expenditure were higher than non-survey estimates both in the direct and indirect method.

The NCHS (1974) performed an experiment in which the effect of different interviewing techniques was tested. For example the effect of reinforcement was tested, i.e. each time the respondent reported a disease or a health care visit the interviewer responded positively. It was shown that reinforcement generated a decrease in disagreement between self-report and physician reports for the low-educated. Yet for higher-educated respondents the results were opposite.

We found several differences in question phrasing across existing surveys. Various surveys did not explicitly ask to report *out-of-pocket* payments and to exclude (partly) reimbursed payments. Furthermore the names and classifications of health care services also varied across surveys and countries. Health expenditures were classified by location (hospital, home),
health care provider (hospital, physician), or by type of service (overnight stay, treatment,lab-
test). The European HBS surveys all used the COICOP classification of health care services
(main groups: hospital, outpatient, medical products). In some cases the terminology was
rather vague, with categories as ‘health and care’, ‘modern medicine and health services’,
‘treatments’, ‘diagnosing and treating illness’, ‘chronic disease care’. Furthermore, some
surveys asked respondents to include the cost of transportation and/or gifts to doctors
(informal payments) while others did not. In several LSMS-surveys the question on health
expenditures only referred to the first or last visit to a physician (mostly in a Health section).
In addition, the wording of the question on health spending differed from for example “what
did you usually pay” to “what did you pay in the last month”.

Data collection mode

Data collection mode figures were available for the European HBS surveys and showed that
most surveys had used diaries and/or face-to-face interviewing. A small number used other
methods, such as telephone, postal survey, or computer assisted personal interviewing
(CAPI). The exact data collection mode was unknown for most other surveys.

Several validation studies compared the results of diaries with face-to-face interviews.
Silberstein (1991) used the US Consumer Expenditure Diary Survey and demonstrated that
about a quarter of the diaries were filled out at the moment of pickup and were consequently
based on recall. These diaries also produced lower expenditure estimates compared to face-to-
face interviews. Furthermore, the results showed a decrease in reporting during the week and
lower mean expenditure in the second week of the diary compared to the first week.

Deaton and Grosh (2000) reported results from a couple of data collection mode studies. Two
experiments in Latvia and Armenia reported higher expenditure estimates in a diary compared
to a survey (of a third to 50%). One study found systematic differences for food-expenditures
only. Another study in the Ukraine on the other hand found food expenditures to be 10
percent lower in the diary compared to the interview. Outcomes varied by type of food
expenditure. Problematically in the latter study, there was a difference in recall period
between the diary and the survey.
Battistin et al. (2003) found mean non-durable expenditure to be 20-25% higher in a 20-day diary compared to a one-month recall question in an Italian sample. At the same time mean food expenditures were around 10% lower in the diary. The variance was higher in the diary for both types of consumption. Battistin (2002) had found contrasting results using an interview and diary from the US. The retrospective interview generated higher estimates across all age cohorts for nondurable expenditures. Similar to the Italian study, the variance and inequality of expenditures was greater in the diary.

Ahmed et al. (2006) compared a diary and face-to-face survey on food expenditure in a Canadian sample. The two-week diary generated consistently lower estimates of food expenditure than the four week retrospective interview (transforming both into monthly estimates). In addition there was more variability in the results of the diary. In particular, around 10% of the diary-sample had zero expenditure.

Comparisons of other data collection methods were performed by NCHS (1965(2)) and Yaffe et al. (1978). The NCHS compared the results of self-administered interviews and face-to-face interviews with hospital records, but found no difference in the quality of reporting between the two types of interviewing. Yaffe et al. compared provider records with an in-person interview and a self-administrated interview. In one of the two regions in-person interviewing generated (5-10%) higher expenditure while in another region no differences were found. Gieseman (1987) found that total food expenditure was underestimated to a similar extent in an interview and a diary, yet the subgroups food at home and food away from home showed opposite patterns. Marquis et al. (1976) found a face-to-face interview to provide similar total health expenditures as validation data while a self-administered direct approach (without questions on health episodes or providers used before the expenditure question) generated higher total expenditures. It was unclear whether this difference was caused by the collection mode or the type of question. Out-of-pocket health expenditures were overestimated in both collection modes.

It has been argued that the decline in diary outcomes over time is an indication of loss of motivation (Silberstein 1991; Silberstein and Scott 2004). Studies have shown lower diary outcomes already in the second or following weeks of a diary, although these did not include health care questions (Silberstein 1991; Silberstein and Scott 2004). In some studies it was found that respondents fill-out the diary on the last day on the basis of recall. Similar
motivation effects may be present when long or panel (repeated) interviews are being conducted. Turner (1961) and Silberstein (1991) reported on the effect of repeated measurements and argued that loss of interest during repeated measurement results in underreporting over time. Again no studies on health care items were found. Cohen and Carlson (1994) demonstrated that the quality of health expenditure reporting was higher among respondents with a smaller household size and less interview time.

Other factors

Apart from the survey design, the respondent characteristics may also be associated with measurement errors. This is of particular importance for studies that estimate a relationship between OOP payments and respondent characteristics such as age or income, see for example Hernan (2009) and Shahar (2009). However, results on how respondent characteristics may affect expenditure data are not consistent with regard to age, sex, education level and income level (NCHS 1977; Andersen et al. 1976; Cohen and Carlson 1994; NCHS 1996). For example, Andersen et al. (1976) reported a relationship between measurement error in hospital expenditures and age and income; Cohen and Carlson (1994) reported a relationship between measurement error in health expenditures and age and disease status; and the NCHS found measurement errors not to be associated with age and education, yet only with gender. The only consistent finding is that ‘proxy respondents’ report less accurately than respondents who answer for themselves (Simmons and Bryant 1962; NCHS 1977; NCHS 1996; Kasprzyk 2005). Cohen and Carlson (1994) found that higher levels of agreement were associated with the percentage of expenditures paid by the family, lower self-reported interview burden, smaller expenditures and shorter length of stay (at least for hospitalizations).

Furthermore, it has been found that respondents round and heap their answers, particularly in consumption and expenditure questionnaires (e.g. Battistin et al. 2003; Pudney 2007; Winter 2004). Pudney (2007) found that response patterns of those who rounded answers showed much more volatility over time compared to respondents that did not use rounding methods.

Some studies compared the outcomes of a survey with other sources without focusing on a particular questionnaire characteristics as those discussed above. Simmons and Bryant (1962) compared a survey with hospital records and found that around 10% of the recorded hospital
stays were not reported by respondents. At the same time 2% of the self-reported visits could not be traced in hospital records.

Andersen et al. (1976) found that within their sample 50% of the respondents reported higher health expenditures while 50% reported lower expenditures, compared to the validation data. The NCHS (1996) showed a similar finding: in 17-35% of the cases the survey produced lower results while in 20-40% of the cases self-reported utilization was higher.

In some cases total aggregate health expenditures were comparable with validation data (Marquis et al. 1976; Branch 1987). At the same time the results differed by the type of health service. Surveys provided comparable/slightly lower (Yaffe et al. 1978) and higher (Marquis et al. 1976) estimates for dental care and higher estimates for hospital care (Cohen and Carlson) compared to validation data. Lower (Yaffe et al. 1978; Cohen and Carlson 1994) and higher (Marquis et al. 1976) estimates were found for medicines and physician visits. Aggregate out-of-pocket health spending was similar for dental care expenditures, and higher for outpatient services in surveys (20% - 30%) (Marquis et al. 1976). Differences between regions were found too: total out-of-pocket health spending was higher in the survey for one region, but lower in another region. In one region out-of-pocket expenditures were substantially overestimated for dental care, inpatient hospital care and emergency care, while expenditures on other services were underestimated.

We also compared health (expenditure) surveys with other surveys for Armenia, Jordan, Georgia and Turkey. The difference in out-of-pocket expenditure as a percentage of total consumption between survey types ranged between 3 and 15 percentage point.

Discussion

There is persistent interest in the impact of out-of-pocket financing on the affordability and equity of health systems. In order to better understand this impact, valid measurements and comparisons are needed. While the reliability and comparability of household survey data depends on many factors during the full course in conducting the survey, this review focuses

on certain design features which were found to have an impact on the quality of survey expenditure data.

One of the great challenges is that the validity of expenditure data from household surveys is difficult to judge. This review could not find enough validation studies to conclude on the best survey instrument. Few validation studies exist, particularly on out-of-pocket health expenditures. The published validation studies have their limitations, e.g. regarding sample sizes, potentially limited comparability of different data sources (regarding definitions and populations covered), or generalizability. Validation studies require special design and extra effort in data collection. More validation studies should be encouraged in order to identify better survey design and data collection methods to improve data quality. However, there are some practical suggestions from this review.

In terms of recall period the results indicated a preference for longer recall periods in hospital spending and for shorter recall periods in outpatient and medication spending (50% of the surveys used these recall periods). Some validation studies showed that the probability of misreporting (possibly due to forgetting) increases when the time between interview and event increases. But the choice of recall period cannot be made in isolation and needs to correspond with the choice of survey technique, the outcome of interest, and any policy relevant time frame. More frequent and smaller expenditure items are better captured in a shorter recall period while infrequent larger expenditure items are better captured in a longer recall period. Additionally the more salient events may be better remembered. The trade-off between accuracy and information loss is important in this respect (Clarke et al. 2008).

Different numbers of items may cause differences in the estimation of total expenditure. Is one question on total health expenditures better or worse than a set of questions on hospital care, medicines, and outpatient care (or other classifications)? We found a large variation in the number of sub-questions in existing surveys. In general, more detailed items yields higher aggregate expenditure estimates but there is no conclusion on the optimal number of breakdown items. The number of breakdown items is usually decided based on the purpose of the survey. For example, a health focused survey may contain more than 10 items of health expenditure if the purpose is to know how much households pay for different services in different facilities; while in a general purpose survey, health expenditure may only be presented as one or two questions. Attention needs to be drawn when calculating household
budget shares, such as health, food and education. For example, if a survey contains 10 questions on health expenditure and only two on all other expenditure, OOP budget share can be expected to be much higher compared to a survey with 10 health items and 100 other expenditure items.

The argument for more questions is that they have a prompting effect (less memory loss), may suffer less from interpretation error (disaggregated questions more precisely describe the type of health care) and also enable more detailed analyses. On the other hand, an increase in the number of items must be balanced with the size of the overall questionnaire. Respondents may lose interest or motivation with longer questionnaires. Other factors seem important too. Longer hospital stays and greater health expenditures were in some (but not all) cases better reported. This may reflect that more salient events are better reported.

With regard to the data collection mode, the most common practice is to combine diary and interview in the same survey. These modes may generate different results, but findings were not consistent. Diaries did show a larger variance in expenditures. In order to avoid fatiguing the interviewees, diaries should not be longer than a couple of weeks (two to four weeks has been suggested). Therefore, diaries are more suitable for small purchases (due to their frequency), whereas interviews should be used to capture less frequent or salient expenses. In addition several aids may be applied to prevent measurement errors on beforehand. For example, the bounded recall method has been proposed as a solution to the problem of telescoping or misdating of events (Neter and Waksberg 1964). Bounded recall involves at least two repeated interviews where the second interview explicitly asks for expenditures since the last interview.

The variation in survey design poses a great challenge for comparison over time and across surveys. The variability across surveys in terms of e.g. classification, question wording/terminology and recall periods probably reflects the lack of evidence on health spending questions and indicates that more standardization would be useful. The latter would improve comparisons across surveys and countries. However, in a given country changes in methods may hamper the comparability over time and cannot be introduced at the expense of specific national requirements. Health systems may differ in a way that justifies differences in terms of classification or terminology (for example including a question on traditional healers). Therefore the evidence in itself needs to be more robust in order to convince
countries to change their surveys. Future research could address the following issues, among other things, to improve the understanding of response errors. To what extent does the interpretation of health care terminology and wording vary across populations? Does health insurance coverage affect the accuracy of self-reported health spending, as has been hypothesized (Marquis et al. 1976)? Is measurement error in self-reported health spending more prominent in certain (sub)populations such as the lower-educated (this would affect comparisons across such population groups)? Moreover it would be valuable to find studies that compare different designs, such as two recall periods, and additionally compare these with validation data.

In the end more robust evidence will make the consistency-argument less relevant as consistently biased estimates are not very useful, especially when the bias changes over time. A practical way would be only to make minor changes in subsequent surveys making it possible to monitor the impact of each adjustment.

Better evidence will also facilitate the correction for measurement error. Econometric techniques are available to perform adjustments e.g. using the relationship between the accurately measured data, the survey data and a set of conditioning variables (see for example Bound et al. 2001; Browning et al. 2002; Battistin et al. 2003; Tarozzi 2007). Again this requires validation studies. Whether these strategies improve estimates depends on the validity of e.g. model assumptions, model fit, the accuracy of the validation data, and the similarity of the samples in the survey and the validation data.

Acknowledgements

We would like to thank Peter-Paul Borg from Eurostat for distributing our questionnaire among experts in European Statistical Offices.
<table>
<thead>
<tr>
<th>Country</th>
<th>Latest</th>
<th>Freq</th>
<th>Collection mode</th>
<th>Sample Size</th>
<th>RR¹</th>
<th>Dropout²</th>
<th>Used for oop?</th>
<th>Class. System³</th>
<th># items</th>
<th>Ref. period inpatient⁴</th>
<th>Ref. period outpatient</th>
<th>Ref. period medicines</th>
<th>Ref. period other</th>
<th>Prompt⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUT</td>
<td>2004</td>
<td>5</td>
<td>diary & face-to-face</td>
<td>8400</td>
<td>42</td>
<td>NA</td>
<td>No</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>(½), 12</td>
<td>(½), 12</td>
<td>(½)</td>
<td>Yes</td>
</tr>
<tr>
<td>BEL</td>
<td>2009</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>36000</td>
<td>12</td>
<td>NA</td>
<td>No</td>
<td>1</td>
<td>7</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>Yes</td>
</tr>
<tr>
<td>BGR</td>
<td>2008</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>3000</td>
<td>-</td>
<td>1</td>
<td>DK</td>
<td>1</td>
<td>9</td>
<td>(12)</td>
<td>(12)</td>
<td>(12)</td>
<td>(12)</td>
<td>Yes</td>
</tr>
<tr>
<td>CYP</td>
<td>2003</td>
<td>5</td>
<td>diary & face-to-face</td>
<td>2990</td>
<td>89</td>
<td>NA</td>
<td>Yes</td>
<td>1</td>
<td>41</td>
<td>12</td>
<td>1,12</td>
<td>(½), 1,12</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>CZE</td>
<td>2008</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>2839</td>
<td>-</td>
<td>NA</td>
<td>DK</td>
<td>1</td>
<td>9</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>No</td>
</tr>
<tr>
<td>DNK</td>
<td>2006</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>2000</td>
<td>3</td>
<td>No</td>
<td>1</td>
<td>15</td>
<td>(½), 12</td>
<td>(½), 12</td>
<td>(½), 12</td>
<td>(½), 12</td>
<td>(½)</td>
<td>Yes</td>
</tr>
<tr>
<td>ESP</td>
<td>2007</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>24700</td>
<td>87</td>
<td>1 & 3</td>
<td>Yes</td>
<td>1</td>
<td>9</td>
<td>(½), 2,5</td>
<td>(½), 2,5</td>
<td>(½)</td>
<td>(½), 2,5</td>
<td>Yes</td>
</tr>
<tr>
<td>EST</td>
<td>2007</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>7130</td>
<td>48</td>
<td>3</td>
<td>Yes</td>
<td>1</td>
<td>23</td>
<td>(¼)</td>
<td>(¼)</td>
<td>(¼)</td>
<td>(¼)</td>
<td>Yes</td>
</tr>
<tr>
<td>FIN</td>
<td>2006</td>
<td>5</td>
<td>diary & face-to-face</td>
<td>4007</td>
<td>53</td>
<td>3</td>
<td>Yes</td>
<td>1</td>
<td>52</td>
<td>12</td>
<td>3</td>
<td>(½)</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>GER</td>
<td>2008</td>
<td>1</td>
<td>face-to-face</td>
<td>3500</td>
<td>60</td>
<td>1</td>
<td>Yes</td>
<td>1</td>
<td>14</td>
<td>12</td>
<td>6</td>
<td>(½), 12</td>
<td>3, 12</td>
<td>Yes</td>
</tr>
<tr>
<td>HUN</td>
<td>2009</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>9000</td>
<td>53</td>
<td>2</td>
<td>Yes</td>
<td>1</td>
<td>7</td>
<td>(1), 12</td>
<td>(1), 12</td>
<td>(1), 12</td>
<td>(1), 12</td>
<td>Yes</td>
</tr>
<tr>
<td>ITA</td>
<td>2009</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>28000</td>
<td>85</td>
<td>NA</td>
<td>Yes</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>(¼), 1</td>
<td>(¼), 1</td>
<td>Yes</td>
</tr>
<tr>
<td>LVA</td>
<td>2008</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>4002</td>
<td>41</td>
<td>3</td>
<td>Yes</td>
<td>1</td>
<td>-</td>
<td>(½), 12</td>
<td>(½), 12</td>
<td>(½), 12</td>
<td>(½), 12</td>
<td>Yes</td>
</tr>
<tr>
<td>LUX</td>
<td>2006</td>
<td>1</td>
<td>diary & face-to-face</td>
<td>3202</td>
<td>25</td>
<td>NA</td>
<td>No</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>No</td>
</tr>
<tr>
<td>Country</td>
<td>Year</td>
<td>Method</td>
<td>Sample Size</td>
<td>Phone</td>
<td>Face-to-Face</td>
<td>Diary</td>
<td>Yes</td>
<td>No</td>
<td>Response Rate</td>
<td>How are drop-outs being dealt with</td>
<td>Class. System</td>
<td>Ref. period</td>
<td>Prompt?</td>
<td>Country level notes</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>MKD</td>
<td>2008</td>
<td>diary</td>
<td>5040</td>
<td>85</td>
<td>3</td>
<td>No</td>
<td>1</td>
<td>7</td>
<td>(½)</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLD</td>
<td>2009</td>
<td>diary, telephone & face-to-face</td>
<td>20232</td>
<td>26</td>
<td>4</td>
<td>Yes</td>
<td>3</td>
<td>-</td>
<td>(½), 12</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>2008</td>
<td>diary & face-to-face</td>
<td>2166</td>
<td>55</td>
<td>3</td>
<td>Yes</td>
<td>1</td>
<td>9</td>
<td>(½)</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POL</td>
<td>2008</td>
<td>diary & face-to-face</td>
<td>37358</td>
<td>53</td>
<td>1</td>
<td>Yes</td>
<td>1</td>
<td>11</td>
<td>(½)</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRT</td>
<td>2006</td>
<td>diary & CAPI*</td>
<td>16700</td>
<td>62</td>
<td>NA</td>
<td>Yes</td>
<td>1</td>
<td>9</td>
<td>12</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVK</td>
<td>2008</td>
<td>diary & face-to-face</td>
<td>4718</td>
<td>75</td>
<td>3</td>
<td>No</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVN</td>
<td>2008</td>
<td>diary & CAPI*</td>
<td>5528</td>
<td>70</td>
<td>NA</td>
<td>Yes</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWE</td>
<td>2008</td>
<td>diary & telephone</td>
<td>4000</td>
<td>53</td>
<td>2</td>
<td>No</td>
<td>1</td>
<td>-</td>
<td>(½)</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>2007</td>
<td>diary & face-to-face</td>
<td>11484</td>
<td>53</td>
<td>NA</td>
<td>DK</td>
<td>1</td>
<td>10</td>
<td>(½), 12</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 RR = Response Rate
2 How are drop-outs being dealt with: 1) Replacement, 2) Imputation, 3) Reweighting, 4) No action
3 Class. System = Classification system for health expenditures: 1) COICOP, 2) System of Health Accounts, 3) Other
4 Ref. period = reference period in the survey in # months. The recall period of the interview is shown in terms of months. The time span of the diary is included between brackets, in terms of weeks.
5 Prompt? = Do the surveys explicitly prompt for out-of-pocket expenditures (excluding reimbursement)?
*CAPI = Computer Assisted Personal Interview

Country level notes: German survey does not differentiate between inpatient and outpatient care. Dutch diary for out-of-pocket expenditures has two modules, one for larger expenditures for the larger sample (20232) and one for all expenditures for the smaller sample (3819). The smaller sample consists of two separate samples with response rates of 22.9% and 66.5%.
References

Lanjouw JO, Lanjouw P. How to compare apples and oranges: poverty measurement based on different definitions of consumption. Review of Income and Wealth 2001:47(1);25-42.

National Center for Health Statistics (NCHS). Health Interview Responses Compared with Medical Records. Washington: Public Health Service; 1965(1).

APPENDIX

Appendix Table 1. Studies quantifying measurement error in (health) expenditure / consumption surveys

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Comparison</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simmons (1962)</td>
<td>USA</td>
<td>-survey vs. hospital records -visits</td>
<td>Around 10% of the hospital stays found in records were not reported in the survey. 2% of the visits reported in the survey were not found in hospital records.</td>
</tr>
<tr>
<td>NCHS (1963)</td>
<td>USA</td>
<td>-survey vs. physician records -visits</td>
<td>A comparison between a survey with two-week recall and provider records (four weeks), showed no sign of forward telescoping.</td>
</tr>
<tr>
<td>NCHS (1965(1))</td>
<td>USA</td>
<td>-survey vs. physician reports & hospital records -visits</td>
<td>In a survey among people in a Health Insurance Plan respondents reported 97% of provider-recorded hospitalizations within eight months before the interview, whereas 50% of the hospitalizations around a year before the survey were reported.</td>
</tr>
<tr>
<td>NCHS (1965(2))</td>
<td>USA</td>
<td>-3 surveys vs. hospital records -visits</td>
<td>In three surveys with one year recall, between 6% and 14% of the hospitalizations found in hospital records were not reported in the survey. Furthermore short-stays, less recent stays and nonsurgical stays were left unreported more often. A more intensive interview technique (e.g. probing, extra feedback) improved the agreement between survey and hospital records. There was substantially more mismatching among proxy-respondents. Self-administered interviews and face-to-face interviews gave similar results. Respondents had problems with the term "hospitalization" and with the term "patient" (in some cases these terms were associated with severe illness).</td>
</tr>
<tr>
<td>NCHS (1965(3))</td>
<td>USA</td>
<td>-survey vs. hospital records -visits</td>
<td>10% of the hospitalizations found in hospital records were not reported in the survey. This proportion was higher for shorter and less recent stays, particularly for stays more than 6 months ago. Less socially accepted diseases/episodes (according to a rating scheme devised by the authors) recorded in records are more often not reported. Proxy-respondents did not report visits found in hospital records twice as often as respondents who answered for themselves.</td>
</tr>
<tr>
<td>NCHS (1974)</td>
<td>USA</td>
<td>-survey vs. physician report -chronic conditions</td>
<td>Positive reinforcement by the interviewer improved the agreement between survey outcomes and physician reports only among low-educated respondents. Only for high-educated, longer questions (without extra clarification) resulted in higher agreement between the two sources.</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Methodology</td>
<td>Findings</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Marquis (1976)</td>
<td>USA</td>
<td>-3 surveys vs. estimates published by Social Security Administration</td>
<td>In two surveys with one year recall per person out-of-pocket expenditure for outpatient services was 20%-30% higher than non-survey aggregate estimates. There was no difference for dental care. The authors argued that misreporting was more likely for partly reimbursed services. In a separate survey estimated per person dental care expenditure was higher than provider records (only providers mentioned by respondents included). Two surveys (one-year recall) used an approach with probing questions on illness or providers visited. These surveys found total expenditures on outpatient and dental care similar to non-survey estimates. The survey without probing generated higher estimates of (gross and out-of-pocket) expenditure compared to the non-survey estimates.</td>
</tr>
<tr>
<td>Andersen (1976)</td>
<td>USA</td>
<td>-survey vs. physician/hospital & third-party payer records</td>
<td>On average, the survey (one year recall) and non-survey records provided similar mean hospital expenditures per admission, for admissions reported in both sources. In 40% of the cases the survey produced higher estimates, yet results were the other way around for another 40%.</td>
</tr>
<tr>
<td>Yaffe (1978)</td>
<td>USA</td>
<td>-survey vs. provider records</td>
<td>The survey produced lower outcomes (visits and expenditure) with smallest differences for dental care and hospital care. Additionally there was a (small?) difference between the reporting of visits and expenditure. Estimates of out-of-pocket expenditure on dental care and hospital care were higher in the survey in one region, yet lower for other services and the other region. A one month and two month recall period showed similar outcomes. In-person interviewing may result in more provider-recorded cases being reported by households compared to telephone interviewing (5-10%). This was found in one of the two areas where the survey was conducted.</td>
</tr>
<tr>
<td>Branch (1987)</td>
<td>USA</td>
<td>-survey vs. national accounts</td>
<td>In both sources out-of-pocket expenditure was calculated as the residual of total health payments and reimbursements. Survey estimates were on average lower (15%-20%) than national accounts. This difference varied by type of service, but was constant over time. Differences may be attributed to methods, but also to differences in concepts and classifications.</td>
</tr>
<tr>
<td>Haffner (1987)</td>
<td>GER</td>
<td>-survey vs. physician records</td>
<td>The survey (six month recall) and physician records provided similar outcomes, for a small group of patients found in provider records. Around 50% of the patients reported too few contacts and around 40% reported too many contacts. The correct month was assigned for 90% of recent contacts and 65% for contacts 6 months ago.</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Country</td>
<td>Expenditure Type</td>
<td>Findings</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Cohen (1994)</td>
<td>USA</td>
<td>survey vs. provider records - expenditure</td>
<td>For cases found in both the survey and provider records there was only a small difference in mean inpatient expenditure between both sources. The mean absolute difference (on household level) was more substantial. Differences were larger for longer length of stay and higher expenditure. More survey burden (in terms of family size and interview administration time) resulted in more provider-recorded cases left unreported by households.</td>
</tr>
<tr>
<td>NCHS (1996)</td>
<td>USA</td>
<td>survey vs. physician record - visits</td>
<td>23% of the physician visits reported in a survey among HMO-members (two-week recall) were not found in physician records. At the same time around 23% of the recorded visits were not reported in the survey. There was more non-reporting of physician-recorded visits in the earlier week. Backward and forward telescoping may partly explain the findings (maximum 50% of higher reporting in surveys). There was a greater difference between survey outcomes and physician records among proxy respondents.</td>
</tr>
<tr>
<td>Clark (1996)</td>
<td>USA</td>
<td>survey vs. hospital & mental health center records - visits</td>
<td>Number of hospital admissions was slightly higher in the patient-survey (six months recall) compared to the provider records. Greater probability of agreement between survey and other sources for longer and more recent admissions (< 10 weeks).</td>
</tr>
<tr>
<td>Lu (2009)</td>
<td>Multiple</td>
<td>survey - expenditure</td>
<td>For 95% of the countries in a single survey, a twelve-month recall generated lower out-of-pocket hospital expenditure than a one-month recall. This inconsistency differed by a factor of 10 across countries. In 90% of the countries the sum of eight disaggregated items gave higher expenditure than a single question on total out-of-pocket expenditure.</td>
</tr>
<tr>
<td>Xu (2009)</td>
<td>Multiple</td>
<td>survey - expenditure</td>
<td>In a single survey more breakdown items resulted in higher aggregated out-of-pocket expenditure for most countries. The health survey generated higher out-of-pocket spending than general expenditure surveys.</td>
</tr>
<tr>
<td>Reagan (1954)</td>
<td>USA</td>
<td>survey - expenditure</td>
<td>The sum of 15 aggregate items was 10% lower than the sum of 200 more disaggregated items, in an experiment on total household consumption among farm operators.</td>
</tr>
<tr>
<td>Bhattacharya (1963)</td>
<td>IND</td>
<td>survey - expenditure</td>
<td>In a small-scale experiment it was found that consumption estimates using broad groups/items were only slightly lower than detailed questionnaires. A single question produced 25%-30% lower estimates.</td>
</tr>
<tr>
<td>Neter (1964)</td>
<td>USA</td>
<td>survey - jobs & expenditure</td>
<td>The survey with longer recall period (three months vs one month) found a (relatively) lower number of small jobs and expenditure, yet there was no difference for large expenditures. Substantial (net) telescoping of repairs expenditure was for surveys with unbounded recall.</td>
</tr>
</tbody>
</table>

Other types of consumption

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Country</th>
<th>Expenditure Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Country</td>
<td>Methodology</td>
<td>Findings</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Gieseman</td>
<td>USA</td>
<td>-survey & diary vs. national accounts -expenditure</td>
<td>Aggregate expenditure on food, housing and transportation were lower in the interview (three month recall) and diary (2 weeks) than national accounts. The difference between these sources remained constant over time. Smaller differences for frequently billed goods.</td>
</tr>
<tr>
<td>Scott</td>
<td>GHA</td>
<td>-survey -expenditure</td>
<td>Lengthening the recall period (up to two weeks) reduced average food expenditure. A recall period of one year raised higher mean daily expenditures than the short periods, however. At the same time an indirect question with one year recall, based on frequency of spending by month and usual costs per purchase produced, did not show this pattern.</td>
</tr>
<tr>
<td>Silberstein</td>
<td>USA</td>
<td>-survey -expenditure</td>
<td>A survey using unbounded one month recall probably suffered from forward telescoping. Furthermore, within a bounded recall period of three months, reported expenditures on clothing and 'other items and services' were on average higher for the most recent month.</td>
</tr>
<tr>
<td>World Bank1</td>
<td>IDN</td>
<td>-survey -expenditure</td>
<td>More disaggregation (218 vs 15 items) generated similar results for food expenditure, yet for non-food items (102 vs 8) more disaggregation generated 15% higher expenditure.</td>
</tr>
<tr>
<td>Joliffe</td>
<td>SLV</td>
<td>-survey -expenditure</td>
<td>More disaggregation (72 vs 18 items) generated 27% higher food expenditure and for non-food items (25 vs 6) more disaggregation generated 40% more expenditure</td>
</tr>
<tr>
<td>Silberstein</td>
<td>USA</td>
<td>-survey vs. diary -expenditure</td>
<td>Mean expenditure was lower in week two compared to week one. Mean expenditure decreased when diaries were completed on the basis of recall, although this differed across population groups and types of expenditure (i.e. an opposite effect was found for food expenses under 45 years).</td>
</tr>
<tr>
<td>Steele</td>
<td>ECU</td>
<td>-survey -expenditure</td>
<td>Total food expenditure was 67% higher in the longer module compared to the shorter module (122 items vs. 72 items).</td>
</tr>
<tr>
<td>Lanjouw</td>
<td>ECU</td>
<td>-survey -expenditure</td>
<td>A long module with 97 items (food and non-food) generated higher expenditures than the short one (24 items) across all income groups.</td>
</tr>
<tr>
<td>Browning</td>
<td>CAN & ITA</td>
<td>-survey -expenditure</td>
<td>A one-shot question on total expenditure gave lower expenditure estimates than the sum of disaggregate items in two different countries (and different surveys). There was less non-response among respondents who were the head of the household.</td>
</tr>
<tr>
<td>Battistin</td>
<td>USA</td>
<td>-survey vs. diary -expenditure</td>
<td>One-month nondurable expenditure was higher in the interview (one month recall) than the (two-week) diary across all age cohorts. Variation (inequality) of expenditures was greater in the diary which was explained by a shorter reference period.</td>
</tr>
</tbody>
</table>
| Battistin
 diary
 -expenditure | Mean food expenditure was 10% higher in the interview (one month recall) compared to the diary (20 days) whereas mean non-durable expenditure was 20%-25% lower in the interview. Problems of heaping and rounding found in the interview data. |
|---|
| Winter
(2004) | NLD | -survey
 -expenditure | Mean non-durable expenditure in a survey (1 month recall) was 15% higher when the sum of 35 items was taken compared to a one-shot question. Although for part of the population the results were opposite. |
| Ahmed
 diary
 -expenditure | Estimates on food expenditure were higher in the survey compared to the diary. Respondents systematically rounded expenditures, which made valid calculations of inequalities problematic. In the diary, the second week gave lower estimates than the first week. In addition, the diary generated a substantial amount of zero-value observations resulting in greater variation. |

1 Reported in Deaton and Grosh (2000)