Manual of diagnostic ultrasound

During the last decades, use of ultrasonography became increasingly common in medical practice and hospitals around the world, and a large number of scientific publications reported the benefit and even the superiority of ultrasonography over commonly used X-ray techniques, resulting in significant changes in diagnostic imaging procedures.

With increasing use of ultrasonography in medical settings, the need for education and training became essential. WHO took up this challenge and in 1995 published its first training manual in ultrasonography. Soon, however, rapid developments and improvements in equipment and indications for the extension of medical ultrasonography into therapy indicated the need for a totally new ultrasonography manual.

The manual (consisting of two volumes) has been written by an international group of experts of the World Federation for Ultrasound in Medicine and Biology (WFUMB), well-known for their publications regarding the clinical use of ultrasound and with substantial experience in the teaching of ultrasonography in both developed and developing countries. The contributors (more than fifty for the two volumes) belong to five different continents, to guarantee that manual content represents all clinical, cultural and epidemiological contexts.

This new publication, which covers modern diagnostic and therapeutic ultrasonography extensively, will certainly benefit and inspire medical professionals in improving 'health for all' in both developed and emerging countries.
Manual of diagnostic ultrasound

Second edition
WHO Library Cataloguing-in-Publication Data

ISBN 978 92 4 154854 0 (NL.M classification: WN 208)

© World Health Organization 2013

All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: bookorders@who.int).

Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html).

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

The named editors alone are responsible for the views expressed in this publication.

Production editor: Melanie Lauckner
Design & layout: Sophie Guetanèh Aguettant and Cristina Ortiz

Printed in Slovenia
Contents

Acknowledgements v

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Safety of diagnostic ultrasound</td>
<td>Stan Barnett</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Obstetrics</td>
<td>Domenico Arduini, Leonardo Caforio, Anna Franca Cavaliere, Vincenzo D’Addario, Marco De Santis, Alessandra Di Giovanni, Lucia Masini, Maria Elena Pietrolucci, Paolo Rosati, Cristina Rossi</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>Gynaecology</td>
<td>Caterina Exacoustos, Paolletta Mirk, Stefania Speca, Antonia Carla Testa</td>
</tr>
<tr>
<td>4</td>
<td>191</td>
<td>Breast</td>
<td>Paolo Belli, Melania Costantini, Maurizio Romani</td>
</tr>
<tr>
<td>5</td>
<td>227</td>
<td>Paediatric ultrasound</td>
<td>Ibtissem Bellagha, Ferid Ben Chehida, Alain Couture, Hassen Gharbi, Azza Hammou, Wiem Douira Khomsi, Hela Louati, Corinne Veyrac</td>
</tr>
<tr>
<td>6</td>
<td>407</td>
<td>Musculoskeletal ultrasound</td>
<td>Giovanni G. Cerri, Maria Cristina Chammas, Renato A. Sernik</td>
</tr>
</tbody>
</table>

Recommended reading 467

Index 475
Acknowledgements

The Editors Elisabetta Buscarini, Harald Lutz and Paoletta Mirk wish to thank all members of the Board of the World Federation for Ultrasound in Medicine and Biology for their support and encouragement during preparation of this manual.

The Editors also express their gratitude to and appreciation of those listed below, who supported preparation of the manuscript by contributing as co-authors and by providing illustrations and competent advice.

Domenico Arduini: Department of Obstetrics and Gynecology, University of Roma Tor Vergata, Rome, Italy

Stan Barnett: Discipline of Biomedical Science, Faculty of Medicine, University of Sydney, Sydney, Australia

Ibtissem Bellagha: Department of Paediatric Radiology, Tunis Children’s Hospital, Tunis, Tunisia

Paolo Belli: Department of Radiological Sciences, Catholic University of the Sacred Heart, Rome, Italy

Leonardo Caforio: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy

Lucia Casarella: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy

Anna Franca Cavaliere: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy

Giovanni Cerri: School of Medicine, University of Sao Paulo, Sao Paulo, Brazil

Maria Cristina Chammas: School of Medicine, University of Sao Paulo, Sao Paulo, Brazil

Ferid Ben Chehida: Department of Radiology, Ibn Zohr Center, Tunis, Tunisia

Melania Costantini: Department of Radiological Sciences, Catholic University of the Sacred Heart, Rome, Italy

Alain Couture: Department of Paediatric Radiology, Arnaud de Villeneuve Hospital, Montpellier, France

Vincenzo D’Addario: Department of Obstetrics, Gynecology and Neonatology, University of Bari, Bari, Italy

Marco De Santis: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy

Josef Deuerling: Department of Internal Medicine, Klinikum Bayreuth, Bayreuth, Germany
Alessandra Di Giovanni: Department of Obstetrics and Gynecology, University of Roma Tor Vergata, Rome, Italy
Alessia Di Legge: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
Wiem Douira Khomsi: Department of Paediatric Radiology, Tunis Children’s Hospital, Tunis El Manar University, Tunis, Tunisia
Caterina Exacoustos: Department of Obstetrics and Gynecology, University of Roma Tor Vergata, Rome, Italy
Hassen A Gharbi: Department of Radiology, Ibn Zohr Center, Tunis, Tunisia
Azza Hammou: National Center for Radio Protection, Tunis, Tunisia
Hela Louati: Department of Paediatric Radiology, Tunis Children’s Hospital, Tunis, Tunisia
Lucia Masini: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
Maria Elena Pietrolucci: Department of Obstetrics and Gynecology, University of Roma Tor Vergata, Rome, Italy
Maurizio Romani: Department of Radiological Sciences, Catholic University of the Sacred Heart, Rome, Italy
Paolo Rosati: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
Cristina Rossi: Department of Obstetrics, Gynecology and Neonatology, University of Bari, Bari, Italy
Renato A. Sernik: Musculoskeletal Dept. Clinical Radiology, University of Sao Paulo, Sao Paulo, Brazil
Stefania Speca: Department of Radiological Sciences, Catholic University of the Sacred Heart, Rome, Italy
Antonia Carla Testa: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
Claudia Tomei: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
Corinne Veyrac: Department of Paediatric Radiology, Arnaud de Villeneuve Hospital, Montpellier, France
Daniela Visconti: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
Maria Paola Zannella: Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tendons</td>
<td>407</td>
</tr>
<tr>
<td>Ultrasound findings</td>
<td>410</td>
</tr>
<tr>
<td>Ligaments</td>
<td>446</td>
</tr>
<tr>
<td>Structural features</td>
<td>446</td>
</tr>
<tr>
<td>Lateral ligament complex of the ankle</td>
<td>447</td>
</tr>
<tr>
<td>Muscle</td>
<td>451</td>
</tr>
<tr>
<td>Muscle ruptures</td>
<td>451</td>
</tr>
<tr>
<td>Rupture complications</td>
<td>455</td>
</tr>
<tr>
<td>Other disorders</td>
<td>457</td>
</tr>
<tr>
<td>Baker cyst</td>
<td>457</td>
</tr>
<tr>
<td>Morton neuroma</td>
<td>459</td>
</tr>
<tr>
<td>Plantar fasciitis</td>
<td>460</td>
</tr>
<tr>
<td>Superficial fibromatosis</td>
<td>462</td>
</tr>
<tr>
<td>Compressive neuropathies: Carpal tunnel syndrome</td>
<td>462</td>
</tr>
</tbody>
</table>
Use of ultrasound for studying diseases of the musculoskeletal system is increasing because of improvements in the equipment, which permit visualization of small structures that were previously inaccessible. This chapter focuses on the main diseases involving myotendinous and ligamental structures of the upper and lower members.

Tendons are composed of collagen (30%), proteoglycans (68%) and elastin (2%). Collagen fibres, 85% of which consist of type I collagen, form the primary fascicles. These give rise to secondary fascicles, which are separated by a fine, loose net of connective tissue known as the endotendon, which brings together the small nerve endings, lymphatic vessels, venules and arterioles. The endotendon is connected to the tissue surrounding the tendon, known as the epitenon. Vascularization occurs through the musculo-tendinous junction, the periphery of the tendon and the enthesis (junction with the bone). The tendon is hypervascularized during its formation but is less vascularized when mature. This basic architecture is common to all tendons.

The external covering of tendons can be vascular or avascular. Vascular tendons are covered by a single layer of synovia and loose areolar tissue, known as the paratenon, which contains the vessels that perfuse the tendons. The paratenon, together with the epitenon, gives rise to the peritenon. Avascular tendons are surrounded by a synovial sheath composed of visceral and parietal leaflets connected by a mesotenon, through which vascular structures penetrate via the vincula. These tendons receive nutrients by diffusion of synovial fluid and through the vincula. Most of the tendons of the musculoskeletal system are vascular. Only the long head tendon of the brachial biceps and the flexor and extensor tendons located in the wrists, ankles, hands and feet are avascular.

Tendons are highly resistant, and healthy tendons do not rupture. In normal tendons, lesions occur either at sites of biomechanical differences between tissues (the myotendinous junction or adjacent to bone) or in hypovascularized regions, which are considered critical, such as the third distal of the calcaneus tendon and close to the insertions of the supraspinous and brachial biceps tendons. Mechanical and vascular factors are implicated in tendinopathies, which are expressed histopathologically by the presence of tendinosis, corresponding to mucoid degeneration of the tendon, often accompanied by neovascularization, necrosis and dystrophic calcifications.
Repetitive stress on a tendon causes two types of degenerative alteration. In eccentric contraction, tendinous fibres are stretched to 5–8% more than their length, and small ruptures start to appear inside the tendon. With increased temperature, relaxation transforms 5–10% of the generated energy into heat, raising the temperature inside the tendon up to 45 °C.

Ultrasound findings

Normal tendon and tendinopathy

The normal tendon tends to present a fibrillar, echo-rich aspect on ultrasound (Fig. 6.1). The factors that determine the echotexture include insertion of muscle fibres inside the tendon, the tendinous architecture, entheses, the type of equipment and the examiner’s experience.

The insertion of muscle fibres inside the tendon can be illustrated by the rotator cuff of the shoulder (Fig. 6.2).

In certain musculotendinous units, more than one muscle venter contributes to the structure of the tendon. The supraspinal tendon (supraspinatus) is composed of five layers, one represented by entwinement of its fibres with those of the infraspinatus tendon (Fig. 6.3).

At the entheses, the tendon changes its histology at the point of insertion into the bone and presents fibrocartilage, which is echo-poor on ultrasound (Fig. 6.4).
Fig. 6.2. (a), (b) Supraspinal muscle fascicles represented by echo-poor bands (arrows) attached inside the tendon, simulating a fracture

Fig. 6.3. Normal heterogeneity of the supraspinal tendon due to different spatial orientation of the layers of the tendon, generating a three-band aspect (stars)

Fig. 6.4. Fibrocartilaginous insertion of supraspinal tendon with an echo-poor aspect (calipers) adjacent to the osseous cortex
Equipment with transverse ultrasound beams significantly reduces the anisotropy generated by oblique arrival of the beam on the tendon surface, which forms echo-poor areas in the interior.

Alterations in tendinopathies start with a reduction in the echogenicity of the tendon (Fig. 6.5), sometimes accompanied by an increase in tendon thickness, secondary to the entry of water molecules into the triple-helix structure of the collagen between hydrogen bridges, which break up during tendinous degeneration. In chronic cases, calcifications can be seen as small, echo-rich foci, which is the main differential diagnoses from fibrosis and small partial ruptures.

During tendon degeneration, the process may remain stable or evolve to rupture, which can be partial or involve the entire thickness (transfixing).

Upper limbs

Shoulder

About 60% of alterations of the shoulder are due to lesions of the rotator cuff, which is the deepest muscle group of the shoulder joint, forming a single functional unit involving the humerus head, which contributes to the stability of the glenohumeral joint and the movements of the upper member. It is composed of the supraspinatus (arm abductor), subscapularis (internal rotator), infraspinatus and teres minor (external rotators) muscles. The tendons join 15 mm proximal to the insertions at the larger and smaller tubercles of the humerus and cannot be separated by dissection. The thickness of the tendons varies from 5 mm to 12 mm. The difference from the contralateral side considered to be normal is 2 mm, and variations above this limit should be considered pathological. The function of the synovial bursae in the periscapular area is to reduce the attrition between soft tissue and bone structures. The largest is the subacromial-subdeltoid bursa, located below the acromion and the deltoid muscle venter, starting at the coracoid process and finishing some 3 cm from the larger tubercle of the humerus.
The patient must cooperate during an ultrasound examination of the tendons of the rotator cuff, as external and internal rotation manoeuvres are necessary (Fig. 6.6, Fig. 6.7, Fig. 6.8, Fig. 6.9, Fig. 6.10). Both the infraspinatus and the teres minor tendon can be evaluated either by placing the hand on the contralateral shoulder or adopting the same position as for examination of the supraspinal tendon. The pathological processes involving the rotator cuff usually affect the supraspinal tendon, due to normal degeneration of the tendons, trauma, inflammatory arthritis or tendinosis due to excessive traction or impact syndrome.

Impact syndrome is the commonest cause of pain in the shoulder. It is defined as a group of signs and symptoms characterized by pain and progressive disabling caused by mechanical attrition of the elements of the coracoacromial arch with the structures of the subacromial soft tissues. Abduction (between 70° and 130°) associated with external rotation or anterior elevation with internal rotation of the arm are the commonest movements that cause secondary pain after subacromial impact.
Fig. 6.7. Subscapular tendon (arrow). (a), (c) Examination technique, with external rotation of the arm for better exposure of the tendon. Transversal (b) and longitudinal (d) scans. TS, subscapular tendon; PC, coracoid process; SB, bicipital sulcus; arrow, tendon of the long head of the brachial biceps; tme, smallest humerus tubercle.
Fig. 6.8. Supraspinal tendon. (a), (c) Examination technique, with internal rotation of the arm, extension and adduction for better exposure of the tendon. Longitudinal (b) and transversal (d) scans. TS, supraspinal tendon; PC, coracoid process; bolsa, bursa subacromial sac-subdeltoid; GPS, peribursal fat; TI, infraspinal tendon; ACR, acromion; cabeca umeral, humeral head.
Fig. 6.9. Infraspinatus tendon (arrow). (a), (b) Examination technique. (c) Ultrasonographic examination. IF, infraspinatus muscle; glen, glenoid; t infraesp, infraspinatus tendon

Fig. 6.10. Tendon (arrow) of the teres minor muscle (REM). Ultrasonography, showing more abrupt sharpening and less echogenicity than the infraspinatus tendon due to the presence of muscle fascicles among the tendon fibres
Partial ruptures

Partial ruptures may have two distinct ultrasonographic patterns (Fig. 6.11). Echo-poor or echo-free lesions due to discontinuity of the fibres initially present linearly with delaminating of the tendon, especially if the trauma mechanism is secondary to eccentric contraction of the rotator cuff tendons. More commonly, a mixed lesion is seen, with an echo-rich centre surrounded by an echo-poor halo indicating perilesional fluid. The echo-rich centre is due to retracted tendon fibres or to a new acoustic interface generated by the rupture. Although these patterns predominate, they are not the only ones.

Some lesions are characterized by linear, echo-rich images along the tendon fibres. The continuity of this echo-poor image can be identified with high-frequency transducers (Fig. 6.12).

Fig. 6.11. Commonest ultrasonographic aspects of partial lesions of the rotator cuff. (a) Echo-free lesion (arrows) delaminating the tendon. (b) Mixed-type fracture, with echo-rich and echo-free areas inside (arrow)

Fig. 6.12. Unusual partial rupture. Ultrasonograph showing that the echo-poor linear image is continuous with the echo-rich area (arrows)
Complete rupture

Complete, transfixing ruptures of the entire thickness of the tendon are diagnosed from direct and indirect signs.

The **direct (primary) signs** can be divided into two large groups: alteration of the tendinous outline, including the absence and focal tapering of the tendon, and alterations of the echo texture, comprising heterogeneous echogenicity and an echo-free intratendinous focus or split.

When the tendon is not visible, the deltoid muscle touches the head of the humerus (bald humeral head sign), and a small echogenic strip can be seen between the two structures, indicating either thickening of the synovial bursa or repairing tissue (fibrosis) on the tendon. In the absence of the supraspinatus tendon, the deltoid muscle can act without an antagonist, resulting in subluxation of the humeral head with reduction of the subacromial space (Fig. 6.13).

Fig. 6.13. Bald humeral head sign. Unidentified supraspinous tendon (arrow) with reduction of the subacromial space. ACR, acromion

In the absence or focal tapering of the tendon, the usual convexity of the tendon is altered. In more severe ruptures, herniations of the synovial bursa and of the deltoid muscle itself represent the defect (Fig. 6.14). In less severe ruptures, tapering may be seen, with rectification of the bursal surface, and it is difficult to determine whether it is a complete rupture (transfixing) or a partial lesion. In these situations, it is useful to check the percentage of tapering, which corresponds to the depth of the concavity formed by the outline of the subacromial-subdeltoid bursa: if it is greater than 50%, it is a complete lesion; if it is less than 50%, it is a partial lesion.

Discontinuity of the fibres without alteration of the tendon outline indicates a connection between the glenohumeral joint and the subacromial-subdeltoid bursa.

Heterogeneous tendon echogenicity is the source of most faulty diagnoses, as an increase may represent a small partial or complete rupture, calcification or fibrosis (Fig. 6.15). Sometimes, the echogenicity can be increased by associated findings, such as a posterior acoustic shadow in a calcification or the linear form of the larger
tubercle of the humerus in ruptures. Calcifications sometimes have a slightly echo-rich aspect, with no acoustic shadow, surrounded by an artefactual linear, echo-poor image, simulating rupture in transition with the tendon. In such cases, a simple radiographic examination will confirm the presence of calcification.

In acute lesions, echogenic blood may fill the area of the rupture, impeding any change to the tendon and thus a diagnosis. As the echo texture of the tendon is heterogeneous, the transducer should be compressed on the tendon. In ruptures associated with tendinopathy, the usual convexity of the tendon may be lost (Fig. 6.16). Another manoeuvre that can be used to remove doubt is returning the arm to the neutral position, causing relaxation of the subacromial-subdeltoid bursa and mobilization of the fluid inside the lesion.

Fig. 6.14. Absence of focus on the anterior portion of the supraspinal tendon (T) in both longitudinal (a) and transverse (b) views, accompanied by thickening of the subacromial-subdeltoid bursa (arrow). TSE, remnant of supraspinal tendon; TMA, largest humerus tubercle; TLCB, long head of brachial biceps tendon; ART AC, acromion-clavicle joint

Fig. 6.15. Change in tendon echogenicity, with a small, linear, echo-rich, intratendinous image (arrow) with no posterior acoustic shadow and an unspecified aspect
The indirect (secondary) signs include an irregular contour of the largest tubercle of the humerus. Most partial or complete ruptures of the tendon situated up to 1 cm from the insertion present some alteration on the bony surface of the largest tubercle. About 70% of partial lesions are accompanied by irregularity of the cortical bones, from small defects to bone fragments and exostosis. It may be caused by a posterosuperior impact or be secondary to traction of fixed tendinous fibres on the surface of the largest tubercle (Fig. 6.17).

Liquid is present in the acromion-clavicular joint (Geyser sign) only when the subacromial-subdeltoid bursa is connected to the acromion-clavicular joint. A periarticular cyst is formed, secondary to the passage of the glenohumeral to the acromion-clavicular joint through rupture of the rotator cuff.

Liquid in the glenohumeral joint is identified either from distension of synovial recesses of the joint or from the amount of fluid accumulated in the synovial sheath.
of the long head tendon of the brachial biceps. In general, the synovial recesses are posterior, easy to access and located anterior to the tendinous muscle of the infraspinatus. Liquid accumulation occurs when the distance between the glenoid posterior labrum and the infraspinatus tendon is \(\geq 2 \) mm. The synovial recesses may also be axillary, located below the inferior margin of the tendinous muscle of the teres minor (Fig. 6.18). External rotation during dynamic testing increases the sensitivity of the examination. They may also be approached through the axillary cavum; in this case, the diagnostic criteria are that the distance between the bone surface and the joint capsule must be \(\geq 3.5 \) mm and the difference between the two sides must be \(\geq 1 \) mm.

Liquid in the subacromial-subdeltoid bursa is suspected when the bursa presents a thickness \(\geq 1.5-2 \) mm. Although this phenomenon may also be seen in asymptomatic people, ultrasonographic detection of fluid in the bursa and the glenohumeral joint is highly specific for predicting rupture of the rotator cuff (Fig. 6.19).

Fig. 6.18. (a), (b) Glenohumeral articular haemorrhage (stars) below the inferior margin of the teres minor muscle (MRM) and anterior to the tendinous muscle transition of the infraspinatus (MIF). glen, glenoid

Fig. 6.19. Partial lesion of the supraspinatus tendon (arrow), containing fluid and distending the subacromial-subdeltoid bursa (stars)
The cartilage interface sign, also called the naked tuberosity sign, corresponds to linear hyperechogenicity below the lesion, representing the external outline of the hyaline cartilage that covers the humerus head. It is generated by posterior acoustic reinforcement due to the echoic rupture (Fig. 6.20).

Appropriate treatment should be based on an understanding of the type and dimensions of the tendinous rupture, the appearance of the glenohumeral joint on simple X-ray, the degree of muscle atrophy of the rotator cuff and the case history.

Fig. 6.20. Cartilage interface sign (arrow). (a) Longitudinal and (b) transverse scans of the supraspinal tendon (T), with two other signs: focal absence of the tendon (star) and irregular outline of larger tubercle of the humerus (umero); parietal thickening of the subacromial-subdeltoid bursa (bolsa SASD)

Elbow
The musculotendinous structures of the elbow are made up of four groups of muscles: posterior, anterior, lateral and medial.

The largest posterior muscle is the brachial triceps, formed by three heads that merge to form a single tendon inserted into the upper margin of the olecranon and the antibrachial fascia (Fig. 6.21). Conjunction of small enthesophytes is common, but rupture is rare. In the periolecranon area, three synovial bursae can be identified, one subcutaneous, one intratendinous and one between the elbow joint capsule and the brachial triceps tendon.
The anterior group comprises the brachial and brachial biceps muscles. The two heads of the biceps join to form a tendon 6–7 cm long covered by a paratenon, with insertion into the posterior face of the radius tuberosity (Fig. 6.22). A hypovascularized area is seen close to the insertion, and the presence of tendinopathy is common. Two synovial bursae are found in the area: the bicipitoradial, between the radius and the brachial biceps tendon, close to its insertion, and the interosseous, between the ulna and the brachial biceps tendon.

The lateral group comprises the common extensor tendon, originating in the lateral epicondyle of the humerus, formed by the carpi radialis brevis extensor, finger extensors, digiti minimi extensor and carpi ulnaris extensor tendons (Fig. 6.23). This group also includes the brachioradial and supinator muscles and tendons.

The medial group is composed of the pronator teres muscle and the common flexor tendon, formed by the musculotendinous units of the palmaris longus, digitorum superficialis flexor, carpi radialis flexor and carpi ulnaris flexor, fixed in the medial epicondyle (Fig. 6.24).

Lateral and medial epicondylitis are overuse syndromes characterized by pain and increased sensitivity of the epicondyles, generally related to tendinopathy. The common tendon of the forearm extensors is involved in 80% of cases, initially affecting the deep portion, corresponding to the carpi radialis brevis extensor (Fig. 6.5). In medial epicondylitis, ulnar neuropathy is associated in 60% of cases.
Fig. 6.22. Brachial biceps tendon (t, arrow). (a) Examination technique; transverse scan in the axial plane, from the forearm proximal to insertion in the radius tuberosity. (b) Tendon positioned along the brachial artery, a, gradually going deeper (c), posterior to the bifurcation of the brachial artery, a. (d) Ulnar artery beside the tendon. Longitudinal scan. (e) Examination technique. (f) Ultrasound scan. L, lateral area; M, medial area; tuber. radio, tuberosity.
The tendon groups of the wrist are flexors and extensors. The flexor tendons are located on the palmar face and comprise the digitorum flexor, carpi radialis flexor, carpi ulnaris flexor and pollicis longus flexor. The digitorum flexor tendons and the pollicis longus tendons pass through an osteofibrous tunnel—the carpal tunnel—bordered by the flexor retinaculum (anterior) and the carpus bones (posterior, lateral, medial). The other structures found inside the carpus, forming a kind of compartment, are fat, the median nerve and two synovial bursae: the radial, surrounding the long flexor tendon of the pollex, and the ulnar, involving the superficial and deep digital flexor tendons (Fig. 6.25).
The six synovial compartments of the extensors on the dorsal region of the wrist have individual synovial sheaths and are maintained in position by the retinaculum (dorsal carpal ligament; Fig. 6.26). The sheaths of the second, third and fourth compartments are connected; the presence of a small amount of fluid within them is normal, especially in the sheaths around the tendons of the second compartment.

The first compartment contains the abductor pollicis longus tendon and the pollicis brevis extensor in a single synovial sheath, situated on the lateral fascia of the wrist in contact with the radius stylohyoid process. It is the extensor compartment most frequently involved in stenosing tenosynovitis (De Quervain tenosynovitis; Fig. 6.27). This condition can be secondary to inflammatory arthritis, to acute or repetitive microtraumas due to gripping movements or to ulnar deviation of the wrist. It is more frequent in women and is bilateral in up to 30% of cases. Clinical examination reveals pain during palpation of the radial border of the wrist, and it may be difficult to differentiate from thumb carpometacarpal joint arthritis in the initial stages.
The second compartment contains the short and long radial extensor tendons of the carpus in the anatomical snuffbox. The long radial extensor tendon is situated at the base of the second metacarpal and the short tendon in the dorsal area of the third metacarpal.

The third compartment corresponds to the long extensor tendon of the pollex, medial to the tubercle of the radius (Lister tubercle). It borders the anatomical snuffbox medially, passing over the radial extensor tendons (posterior) and inserts into the dorsal region of the distal phalange at the base of the thumb.

The fourth compartment is composed of the common tendons of the digital extensors and the indicis extensor. The common extensor tendon is inserted in the medial and distal phalanges of the second to the fifth fingers. The end of the indicis extensor is located at the proximal phalange of the second finger.
The fifth compartment contains the extensor tendon of the fifth finger, seen posterior to the radioulnar joint, with insertion in the medial and distal phalanges of the fifth finger.

The sixth compartment corresponds to the carpi ulnaris extensor tendon, situated adjacent to the styloid process of the ulna and attached to the base of the fifth metacarpal. This is the second most common location of tenosynovitis, due to repetitive catching of an object. This wrist tendon is the most vulnerable to subluxation or luxation (Fig. 6.28).
Fingers
The tendinous anatomy of the fingers is different in the palmar and dorsal regions. A central tendon is inserted in the base of the medium phalanx on its dorsal face. Two tendinous bands meet near the base of the distal phalanx, medially and laterally to this tendon, forming the terminal tendon. Narrow strips of collagen, known as sagittal bands, link these structures to provide stability and allow harmonious extension. Because of this complex anatomy, the term ‘digital extensor apparatus’ is used rather than ‘extensor tendon of the finger’ (Fig. 6.29).

The flexor tendons are located in the palmar region of the hand and fingers. The superficial flexor tendon at the level of the proximal phalanx is anterior to the flexor digitorum profundus. In its distal course, it divides into two bands, with insertion in the medial phalanx posterior to the flexor digitorum profundus, which runs to the base of the distal phalanx (Fig. 6.30). In contrast to the extensor apparatus, the flexor tendons have a synovial sheath all along the phalanges.

In cases of tenosynovitis, there may be some parietal thickening, fluid or increased flow in the synovial sheath on colour Doppler (Fig. 6.31).
Fig. 6.29. (a–e) Digital extensor apparatus. TT, terminal tendon; tlub, lumbrical muscle tendon; bs, sagittal band; mtc, metacarpal bone; 1, tendon and interosseous muscle; 2, central tendon; 3, divisions of the central tendon; 4, collateral ligaments; 5, intermetacarpal transverse ligament.
Fig. 6.30. Flexor tendons. (a) Surgical view. (b)–(e) Sections at which transverse scans of the flexor tendons were made. (f) Longitudinal scan of the flexor tendons of the proximal, medial and distal phalanges. FS and continuous arrows, superficial flexor tendon; FP and stars, deep flexor tendon; dotted arrow, flexor tendons.
Lower limbs

Hip

The hip, like the shoulder, has a cuff made up of the musculotendinous units of the glutei minimus and medius, which are responsible for the internal rotation and abduction movements of the joint. The tendon of the gluteus minimus is situated in the anterior plane of the largest femoral trochanter, and the gluteus medius is in the lateral and posterosuperior planes, with intertwined fibres. There is a hypovascularized area, similar to that of the supraspinatus and infraspinatus tendons (Fig. 6.32).

Adjacent to the tendons, three synovial bursae are seen: the trochanteric bursa, the bursa of the subgluteus minimus and the bursa of the subgluteus medius. A bursa of the subgluteus maximus has been proposed.

A painful greater trochanter is a common condition. One of the main causes is tendinopathy of the glutei and trochanteric bursitis (Fig. 6.33, Fig. 6.34). These are not always readily diagnosed with ultrasound due to the oblique path of the tendons and patient characteristics, such as obesity.
Fig. 6.32. Tendons of the gluteus minima and media. (a) Insertions of the two tendons. (b) Examination technique. Longitudinal scans of the (c) gluteus minima tendon (arrow) and (d) the gluteus media tendon (arrow), with forms and echogenicity similar to that of the rotator cuff tendons of the shoulder. mi, insertion of gluteus minima tendon; me, insertion of gluteus media tendon.

Fig. 6.33. Tendinopathy of the glutei enhanced by thickening and hypoechogenicity (arrow). (a) Transverse and (b) longitudinal scans.
Ultrasound examination is useful in cases of hips with a snapping, characterized by pain associated with an audible or tangible snap during movement of the hip. The cause may be intra- or extra-articular. The extra-articular factors are friction of the fascia lata against the largest femoral trochanter (Fig. 6.35) or of the tendon of the iliopsoas against the iliopsectineal eminence.

Fig. 6.34. Bursitis involving the synovial bursa of the medium subgluteus, containing a moderate amount of fluid (star)

Ultrasound examination is useful in cases of hips with a snapping, characterized by pain associated with an audible or tangible snap during movement of the hip. The cause may be intra- or extra-articular. The extra-articular factors are friction of the fascia lata against the largest femoral trochanter (Fig. 6.35) or of the tendon of the iliopsoas against the iliopsectineal eminence.

Fig. 6.35. Snapping hip. Transverse scan of the largest femoral trochanter (troc), indicating thickening of the fascia lata (arrow) situated lateral to the hip on internal rotation (rot int); on external rotation (rot ext), the fascia lata is in anterior position (arrow), producing a snap.
The patellar tendon in the periarticular area of the knee is that most frequently injured. It is situated between the subcutaneous tissue and the pretilial bursa (deep infrapatellar bursa), posterior to the inferior half of the tendon. The acoustic shadow of the cortical bone is used to identify its insertion into the patella and into the tuberosity of the tibia. Posterior to the tendon is a pad of fat known as the infrapatellar or Hoffa pad, which is joined to the articular synovia. The normal tendon is formed of parallel, homogeneous fibres, visualized as alternate echo-poor and echo-rich bands (Fig. 6.36). The average tendon is 4 mm thick and 21 mm wide. Sedentary people have thinner, ribbon-shaped tendons. Its function is to transmit the strength of the femoral quadriceps muscle to the tuberosity of the tibia.

The term ‘jumper’s knee’ is used to describe a painful patellar tendon. The condition is common among athletes and young adults who practise sport regularly, secondary to excessive effort, especially in sports that require extension of the knee, such as running, basketball and football. Usually, the dominant side is affected. From the histopathological point of view, jumper’s knee is characterized by the presence of tendinosis, usually beginning at the proximal insertion of the tendon into the apex of the patella.

Ultrasound may show not only echographic alterations of the tendon (Fig. 6.37), but also oedema of the infrapatellar pad and, in severe cases, thickening and irregularity of the tendinous envelope.

An important differential diagnosis of jumper’s knee is Osgood-Schlatter disease, which consists of osteochondrosis or osteochondritis of the anterior tuberosity of the tibia. It is common in adolescent boys who practise sport frequently. Microtraumas due to functional activity of the tendon appear to be responsible for the lesion. Clinically, the complaint involves pain and local oedema. Simple X-ray is not sufficient in these cases, because it does not show the earliest alterations, which
are thickening and reduction of the echogenicity of the distal portion of the tendon, accompanied by oedema of the soft tissues around the anterior tuberosity of the tibia, sometimes associated with bone fragmentation (Fig. 6.38).

Fig. 6.37. Patellar tendon. Longitudinal scan, showing (a) proximal tendinopathy (arrow) and (b), (c) rupture

Fig. 6.38. (a) Osgood-Schlatter disease, with thickening of the insertion of the patellar tendon into the tibia, undefined, irregular contours (stars) and a small fragmented bone in the apophysis (arrow). (b) Normal contralateral side
The suprapatellar, prepatellar and pes anserinus tendon bursae are the main synovial bursae in the region. The suprapatellar bursa is used in research on joint effusion, which is in the joint cavity in about 90% of cases. Inflammatory processes are common in the synovial bursae situated anterior to the patella (Fig. 6.39) and adjacent to the pes anserinus tendons.

Fig. 6.39. Prepatellar bursitis. (a) Fluid (stars) and parietal thickening of the synovia. (b) Colour Doppler showing increased flow (arrows)

Ankle
About 20% of lesions in runners involve the calcaneal (Achilles) tendon. This tendon is formed by the junction of the tendons of the gastrocnemius and soleus muscles in the middle third of the leg, with insertion into the superior tuberosity of the calcaneus bone. The tendon is about 15 cm long and 3.5–6.9 mm thick, and is larger in men and in tall and elderly people. The tendinous envelope is a paratenon. A retrotibial fat pad (Kager fat pad) is found anterior to the tendon, which may be affected in inflammatory processes. Between the Kager fat pad, the superior tuberosity of the calcaneus bone and the calcaneus tendon, there is a synovial bursa (retrocalcaneal), measuring less than 2 mm in the anteroposterior position; its function is to protect the distal portion of the calcaneus tendon from constant friction against the calcaneus bone. Posterior to the calcaneus tendon is another, acquired synovial bursa, which is superficial (subcutaneous) and may be seen when distended with fluid.

On ultrasound examination, the calcaneus tendon has a crescent appearance in the transversal plane, with its anterior concave and posterior convex faces distally rectified. Longitudinally, it presents a fibrillar echogenic pattern, although it may be echo-poor closer to its insertion (Fig. 6.40).

Alterations to the tendon can be either acute or chronic or be associated with a background disease, such as diabetes mellitus, collagenosis, rheumatoid arthritis, gout or familial hypercholesterolaemia. Tendinous xanthoma is a diagnostic criterion of heterozygous familial hypercholesterolaemia, the calcaneus tendon being the most frequently affected. Ultrasound is useful for demonstrating the xanthomatous deposition, which
occurs as fusiform thickening of the tendon associated with echo-poor foci (Fig. 6.41). As the ultrasonographic signs usually precede clinical manifestation of the disease, ultrasound is the recommended method for diagnosing and monitoring this condition.

Fig. 6.40. Calcaneus tendon. (a) Examination technique. Ultrasound examination in the (b) longitudinal and (c) transverse planes

Fig. 6.41. Xanthoma of the calcaneus tendon: thickening associated with heterogeneous echo texture of the tendon due to xanthomatous deposition. (a) Transverse and (b) longitudinal scans
Other common conditions responsible for pain in the region are peritendinitis, paratendinitis and tendinopathies. The pathological processes involving the calcaneus tendon are usually situated in a hypovascularized region 2–6 cm proximal to insertion of the tendon into the calcaneus bone. In tendinopathies, the tendon is thickened, with altered echogenicity, which, in the subtlest cases, is seen as loss of the anterior concavity of the tendon in transversal (oblique) images (Fig. 6.42).

In Haglund deformity, the calcaneus tendon is altered close to its insertion, with hypertrophy of the posterosuperior tuberosity of the calcaneus, affecting the retrocalcaneal bursa and the calcaneus tendon. Consequently, there is retrocalcaneal bursitis and tendinopathy (Fig. 6.43). Insertion tendinopathy may also be due to chronic overload (overuse) in athletes, seen as regions of calcification or intratendinous ossification associated with insertional osteophytes.

Paratendinitis is an inflammation of the paratenon. The echographic outline is blurred, corresponding to thickening (Fig. 6.44), which may extend to the adjacent soft tissue (peritendinitis). Although described separately, these two processes may represent spectra of the same disease.

Unsatisfactory evolution of the pathological process leads to rupture. When partial ruptures affect the anterior surface of the tendon, their diagnosis is facilitated by the inward invagination of the Kager fat pad (Fig. 6.45). Intrasubstance ruptures, especially small ones, can, however, be confused with severe tendinosis, which is difficult to differentiate by imaging. The presence of peritendinitis may suggest partial rupture, as these conditions coexist in up to 68% of cases.

Local oedema and limitation of plantar flexion in complete tendon ruptures may lead to an erroneous clinical diagnosis in up to 25% of acute cases. Ultrasound diagnosis of a complete rupture may be difficult, especially when the paratenon is intact. In diagnostic doubt, it is advisable to conduct plantar and dorsal flexion manoeuvres,
Fig. 6.43. Haglund deformity. Tuberosity of the calcaneus ((a), arrow; (b), (c), stars) associated with tendinopathy of the calcaneus tendon, resulting in retrocalcaneal bursitis and subcutaneous bursitis ((d), stars; (e), arrow) on colour Doppler (longitudinal and transverse planes) and MRI (f)
which not only confirm a clinical hypothesis but contribute to therapeutic choices by verifying the proximity of the tendinous stumps (Fig. 6.46).

Another useful sign of complete lesions is the presence of posterior acoustic shadow on the retracted tendinous stumps (Fig. 6.47), secondary to the oblique acoustic bundle on their surfaces, which have an irregular outline. Use of hyperflow in colour Doppler in chronic cases is controversial. In some descriptions, neovascularization is correlated with failed scarring; others correlate it with pain symptoms that are not related to the prognosis.
Finger pulley systems

The flexor system of the second to fifth fingers is composed of five annular and three cruciform pulleys, corresponding to thickening of the synovial sheath of the flexor tendons. The odd annular pulleys are situated on the metacarpophalangeal (A1), proximal interphalangeal (A3) and distal interphalangeal (A5) joints, which are bound in the capsuloligamentous structures. The even pulleys are situated and inserted in the phalanges: A2 in the proximal two thirds of the proximal phalange and A4 in the middle portion of the middle phalange. The cruciform pulleys are interposed between the annular pulleys (Fig. 6.48).

The thumb is slightly different, with an annular pulley for each of the metacarpophalangeal (A1) and interphalangeal (A2) joints and one of variable position (Av) on the
proximal half of the proximal phalange. There is also an oblique pulley extending from the ulnar aspect of the proximal phalange to the radial aspect of the distal phalange (Fig. 6.48).

The main function of the pulleys is to maintain the flexor tendons in contact with the cortical bones of the phalanges and the metacarpophalangeal joints and interphalanges, transforming the movement of the flexor tendons during flexion of the fingers into rotation and torque at the level of the interphalangeal and metacarpophalangeal joints. The most important pulleys in terms of functionality are the annular ones, especially A2 and A4 for the second and fifth fingers and A2 for the thumb. The cruciform pulleys have a secondary role, allowing approach of the annular pulleys during flexion of the fingers while maintaining the effectiveness of the movement.

Lesions of the pulleys appear after vigorous flexion of the proximal interphalangeal joints at an angle wider than 90º, with extension of the distal metacarpophalangeal and interphalangeal joints, resulting in heavy mechanical overload on the A2 and A3 pulleys.

It is important to identify the type of lesion in order to guide treatment. In partial ruptures, the treatment is conservative; complete ruptures can be treated either conservatively or by surgery, depending on the patient’s age and level of activity and on the number of pulleys involved. Lack of treatment of this type of lesion can lead to osteoarthritis and contractures in flexion of the proximal interphalangeal joints. In acute trauma, with oedema and local pain, known as tenosynovitis, displacements of the proximal interphalangeal joints and ruptures of the pulleys are not easily differentiated by physical examination, and diagnosis is based on imaging methods.

The cruciform pulleys cannot be visualized by ultrasonography. All the annular pulleys can be identified with high-resolution linear transducers with a frequency of 17 MHz. At a frequency of 12 MHz, only the A2 and A4 pulleys can be identified (Fig. 6.49), as the dimensions of the pulley are directly proportional to the size of the hand.
Diagnosis of lesions of the pulleys is based on the presence of two indirect signs. The first is peritendinous fluid, and the second is an increase in the distance between the phalangeal cortical bone and the posterior surface of the flexor tendons. The normal distance is 1 mm; in complete ruptures and ruptures of more than one pulley, the space between the phalanx and the flexor tendons is as shown in Table 6.1. Measurements are made as shown in Fig. 6.50.

Table 6.1. Indirect signs of pulley lesions

<table>
<thead>
<tr>
<th>Pulley</th>
<th>Place of measurement</th>
<th>Partial lesion</th>
<th>Complete lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>15–20 mm distal to the base of the proximal phalange</td>
<td>1.0 mm < D < 3.0 mm</td>
<td>D > 3.0 mm</td>
</tr>
<tr>
<td>A4</td>
<td>Middle portion of the middle phalange</td>
<td>1.0 mm < D < 2.5 mm</td>
<td>D > 2.5 mm</td>
</tr>
</tbody>
</table>

D, distance between phalangeal cortical bone and posterior surface of flexor tendons

The A2 pulley is that most commonly ruptured (Fig. 6.51). When the distance is greater than 5.0 mm, the A3 pulley is also involved. The pulleys, especially the A1 pulley, can become thicker (Fig. 6.52), and the finger resembles a trigger because the flexor tendons move with difficulty in the osteofibrous tunnel.
Fig. 6.50. (a), (b) Points for measuring the distance of the cortical bone in relation to the flexor tendons (dotted lines) for diagnosis of A2 and A4 annular pulley lesions.

Fig. 6.51. Lesion of the A2 annular pulley. (a) Increased distance of the proximal phalangeal cortical bone in relation to the flexor tendons (arrow), which increases (0.4 cm) when the finger is flexed (b), (c).
Ligaments

Structural features

Ligaments are made up of thick connective tissue, consisting mostly of type I collagen. The collagen fibres form bundles or fascicles, which are wavy and have a less regular, more heterogeneous histological aspect than tendons on ultrasonography. The presence of synovia or adipose tissue in the fascicles contributes to the heterogeneity of some ligaments, such as the deltoid (Fig. 6.53) and anterior cruciate ligaments.

Ultrasound is used mainly to study extra-articular ligaments in the diagnosis of acute ruptures and to monitor treatment or chronic lesions that result in instability of the joint.

Fig. 6.52. Finger in trigger position: thickening of the A1 annular pulley ((a), calipers, arrow) and the thumb flexor tendons (T), seen (b) as an echo-poor halo in the tendons to the right.

Fig. 6.53. Heterogeneous echo texture (stars) of the deep portion of the deltoid ligament (posterior tibiotalar ligament) containing adipose tissue. LTTP, posterior tibiotalar ligament; TTP, posterior tibial tendon.
Lateral ligament complex of the ankle

The commonest lesions associated with sport are of the lateral ligament complex of the ankle (16–21%). These become chronic in more than 40% of cases if not appropriately treated. The lateral ligament complex of the ankle is made up of three ligaments: the calcaneofibular and the anterior and posterior talofibular.

The **anterior talofibular ligament** reinforces the articular capsule, presenting either horizontally or with a discreetly inferior inclination (0–20º) from the anterior border of the lateral malleolus to the lateral face of the talus body. A section parallel to the fibres shows a rectilinear trajectory and a uniform thickness of 2–3 mm, with a homogeneous or discreetly heterogeneous echo-rich texture. A transversal scan shows that the ligament is flat, with a concave–convex aspect composed of an upper, larger band and a lower one (Fig. 6.54). The upper band joins the fibular origin of the anterior tibiofibular ligament, while the lower one joins the fibular origin of the calcaneofibular ligament. In the neutral position, the fibres are relaxed and parallel to the long axis of the talus. Plantar flexion and inversion of the foot cause some stretching, generating tension in the fibres.

Fig. 6.54. Anterior talofibular ligament. (a) Examination technique. Ultrasound scan indicating the two sides of the ligament in the (b) transverse plane and its flat aspect in the (c) longitudinal plane. FTA, anterior talofibular.
The **calcaneofibular ligament** has a string-like aspect and runs in a coronal posteroinferior oblique plan, forming an angle of approximately 45° in relation to the fibular diaphysis, joining the lower aspect (but not the extremity) of the anterior margin of the lateral malleolus at a small tubercle situated on the lateral border of the calcaneus (Fig. 6.55).

Fig. 6.55. Calcaneofibular ligament. (a) Examination technique. Ultrasound scans in the (b) transverse and (c) longitudinal planes, showing the string-shaped ligament in close contact with the fibular tendons (T). Star, calcaneofibular ligament

The **posterior talofibular ligament** is difficult to examine by ultrasound. It looks like a bundle, with interposed bands of adipose tissue, and inserts into the internal concave margin of the distal malleolar fossa of the fibula and the lateral tubercle of the posterior process of the talus. The ligaments of the lateral complex are the most frequently injured in ankle sprains, usually due to plantar flexion and supination with inversion of the foot. If the force of the inversion is progressive, the lesions will occur in sequence, from the weakest to the most resistant ligament: the anterior talofibular (in 70% of cases); the calcaneofibular (20–25%), usually accompanied by a lesion of the anterior talofibular, making the hindfoot unstable; ligaments of the sinus tarsus; and the posterior talofibular ligament, which is injured only in ankle luxation.
A diagnosis is frequently made solely by clinical evaluation; however, the accuracy of diagnosis of an acute lesion is reduced in 50% of cases by pain and local oedema, and imaging methods are recommended. MRI has been reported to be more accurate than ultrasound for the diagnosis of ligament lesions; however, the studies were conducted before the advent of high-resolution transducers, and there has been no recent comparison of the performance of ultrasound and MRI with current ultrasound equipment.

Ligament lesions can be classified according to the time since the trauma (acute and chronic lesions) and the extent or severity of the rupture (partial or complete). Ultrasound diagnosis is based on direct and indirect signs. The nonspecific, indirect signs in calcaneofibular ruptures are oedema or subcutaneous bruises on the lateral face of the ankle; articular effusion in the anterolateral talofibular recess; lesions of the anterior talofibular ligament; and fluid in the synovial sheath of the fibular tendons.

The direct signs are intrinsic alterations in the form, thickness and echogenicity of the ligament. Some are typical of partial lesions and others of complete lesions; some lesions present both situations, differing only in severity. In partial lesions, thickening and hypoechogenicity are seen. In lesions that are partial or complete, depending on how severely the ligament is affected, tapering, discontinuity and elongation with waving (looseness) of the contours are observed. Complete lesions, such as an absent ligament, complete discontinuity (Fig. 6.56) and amputation of the ligament with frayed stumps, are poorly defined or resemble a nodule (pseudotumour).

These signs are due either to intense oedema and haemorrhage (in partial or complete acute lesions) or to repairing tissue (in subacute or subchronic lesions). About 50% of ruptures of the anterior talofibular ligament are accompanied by fracture or avulsion of a talus bone fragment, and about 45% involve the middle third of the ligament. In the coronal plane, an echo-poor focus can be seen adjacent to the apex of the lateral malleolus.

Fig. 6.56: Complete rupture (acute) of the anterior talofibular ligament (arrow) associated with fluid–debris (stars), with the remaining ligament stump adjacent to the fibula (dotted arrow)
Oedema of the soft tissue disappears during healing, which begins 7 days after a trauma. The ligament is always thickened; the first evidence of repair of a ligament, with visualization of echoes filling the discontinuities, appears about 5 weeks after a trauma. An echo-rich focus can be seen inside the scarred ligament, corresponding to calcifications, and bone irregularities are found adjacent to the insertions into the fibula and the talus as a consequence of bone avulsion.

If the scarring process does not take place appropriately, the lesion becomes chronic and may lead to instability, resulting in ligament inadequacy. Chronic lesions are characterized by lack of or significant tapering or stretching of the ligament and may be accompanied by small amounts of intra-articular fluid. In dynamic studies (drawing manoeuvre) of instability, the ligament is elongated (Fig. 6.57).

Fig. 6.57. Chronic lesion of the anterior talofibular ligament (FTA). (a) Drawing manoeuvre; ultrasonographic examination (b) before and (c) after the manoeuvre shows an elongated ligament and increased articular space, which is filled with fluid (stars).
Muscle

Muscle is the largest individual mass of corporal tissue, corresponding to 40–45% of a person’s weight. It is classified as elastic or nonelastic. Elastic muscle tissue is made up of muscle fibres joined into fascicles, which form the muscle. Nonelastic structures are made up of muscle surrounded by sheaths formed by connective tissues and muscle fasciae. The endomysium is an extensive network of capillaries and nerves involving all muscle fibres. Muscle fibres are bound into fascicles by perimysium, a fibroadipose septum made up of vessels, nerves and conjunctive and fat tissue. The epimysium, composed of dense conjunctive tissue, separates muscle venters and different muscles, such as the semimembranosus and the femoral biceps in the posterior thigh. The fascia is situated externally to the epimysium and contains a whole muscle.

Muscles may contain slow-twitch (type I) fibres rich in oxygen or fast-twitch (type II) fibres, with anaerobic metabolism. The proportion of each type of fibre inside the muscle venter is determined genetically, by type of physical training and by the location, form and function of the muscle. Posture muscles have linearly arranged fascicles, a prevalence of type I fibres and many mitochondria, allowing sustained low-energy contraction. The muscles in the superficial areas of the extremities, usually passing over more than one joint, have fibres with a pennate distribution and contain predominantly type II fibres. Muscles with these characteristics give more vigorous contractions and have a propensity to rupture.

Muscle contractions can be divided into isotonic and isometric. In isometric contractions, the length of the muscle fibre remains constant with changes in the applied load on the muscle. In isotonic contractions, the length of the muscle fibre changes, either shortening (concentric contraction) or lengthening (eccentric contraction). Usually, agonist muscles involved in a certain movement undergo concentric contraction due to the stability of the closest joint, which is determined by the eccentric contraction of the antagonist muscle, which is also responsible for slowing down the movement. This occurs, for instance, during a kick, when the stability of the knee joint is maintained by contraction of the ischiotibials, so that the femoral quadriceps can execute the movement.

Muscle ruptures

Muscle ruptures are secondary to direct or indirect trauma. Direct traumas, or contusions, involve compression of the muscle against a bone structure, so that the lesion is due to crushing. Indirect traumas are due to stretching of muscle fibres and can be generated by passive hyperextension of the fascicles, although they usually occur during eccentric contraction of the muscle.

Thus, both morphological and functional factors increase the risk for muscle lesion, the main ones being passing over more than one joint, eccentric contraction, predominance of type II fibres (quick contraction) and a superficial location at the extremities, mainly in the lower limbs. The site of the lesion depends on age and physical condition and is due to biomechanical particularities that determine weaker
areas. In the immature skeleton, lesions are usually found at the interface between tendon and bone, with a greater probability of fracture due to avulsion. In athletes and other young adults, lesions usually occur in the musculotendinous area, while in elderly people ruptures usually affect the tendon, resulting in tendinosis. When the lesion is of muscular origin, pain is restricted to the affected region, beginning immediately after the trauma. Sometimes, subcutaneous bruises can be seen 12–24 hours after a trauma. If the alteration occurs in a tendon, the symptoms are diffuse and irradiated.

The approach described below is indispensable for correct interpretation of ultrasound findings. The elastic elements appear as elongated, echo-poor structures surrounded by nonelastic elements, which are echo-rich. In nonelastic structures, the endomysium is not seen on ultrasound, thereby preventing visualization of each muscle fibre. The perimysium is observed in a longitudinal section as multiple, parallel, linear, echo-rich images, separating the fascicles. Their orientation varies with the architecture of the muscle under study. In transverse section, the perimysium is seen as multiple points or irregular lines of varied lengths. The epimysium is seen as parallel, echo-rich lines external to the widest axis of the muscle and indistinguishable from the fascia (Fig. 6.58).

In post-trauma evaluation, ultrasound can be used for diagnosis, to identify the muscle involved, to grade the rupture or to monitor the healing process and possible complications, thus helping to predict the length of rest. A system for grading muscle lesions by ultrasound is illustrated in Table 6.2. Its clinical usefulness and inter- and intra-observer differences are, however, not yet established. In practice, the most important information for the orthopaedist is whether there is significant rupture of the muscle fibres or bruises.

In stretching and in bruises with no significant rupture of the muscle fibres, the only finding is a poorly defined echo-rich area, sometimes associated with a discreet increase in the volume of the muscle venter (Fig. 6.59). In these situations, the case
history is important, as other conditions, such as denervation, myositis, late-onset muscle pain, compartmental syndrome, rhabdomyolysis and post-exercise condition, may present the same aspect.

The diagnosis must be made as soon as possible, because fluid (blood) may appear or accumulate after days or a few weeks. The earlier treatment is started, the less likely haematoma formation will be. Because the echogenicity may change in the post-exercise period, ultrasound evaluation should be conducted 2–48 h after the trauma. Examinations should be conducted during movement, at rest and during isometric contraction to help identify fibre discontinuity. Serial ultrasound examinations are used to monitor the evolution of grade II and III lesions (Fig. 6.60, Fig. 6.61), which are likely to have sequelae, especially if there is a large haematoma. Muscles have a high potential for regeneration, with cells originating in the endomysium; however, the process is slow, beginning 48 h after an acute event but taking from 3 weeks to 4 months to be completed. On ultrasound, regeneration is seen as slightly echo-rich tissue (Fig. 6.62) surrounding a haematoma, which is slowly reabsorbed. Fibroadipose septa gradually appear inside the tissue, taking the place of the rupture, so that the normal architecture of the muscle is restored.

Table 6.2. Ultrasound grading of muscle lesions

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Ultrasound findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stretching</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>Stretching associated with lesion involving < 5% of muscle fibres</td>
<td>Small, striated, echo-poor images 3–7 cm long and 2–10 mm in diameter</td>
</tr>
<tr>
<td>2</td>
<td>Partial rupture</td>
<td>Discontinuity of fibroadipose septa and of muscle fascicles, associated with haematoma</td>
</tr>
<tr>
<td>3</td>
<td>Complete rupture</td>
<td>Retraction of muscle venter with formation of a pseudo-mass, accompanied by haematoma. The epimysium may be torn.</td>
</tr>
</tbody>
</table>

Fig. 6.59. Poorly defined, echo-rich zone (arrow) in the long adductor of the anterior right thigh, compatible with oedema secondary to stretching (grade I lesion)
Fig. 6.60. (a), (b) Partial muscle rupture (grade II lesion, arrow), associated with a small bruise

Fig. 6.61. Complete rupture (grade III lesion, arrow) in the musculotendinous transition of the long adductor of the thigh, filled with heterogeneous material (bruise). Dotted arrow, remaining tendon

Fig. 6.62. Repairing tissue, characterized by discreetly echo-rich material (arrow), on the periphery of the subfascial partial lesion
Rupture complications

Acute

After severe ruptures or in patients with coagulation anomalies, haemorrhages may lead to compartmental syndrome.

Rhabdomyolysis may occur after serious trauma caused by crush, infection, hypoxia or drugs (e.g. cocaine) and secondary to metabolic alterations. It requires surgery. It is seen as an irregular, echo-poor area within the muscle, its volume being increased in areas of multiple necrosis.

A haematoma is rarely infected to such an extent that abscesses are formed that require surgical drainage.

Chronic

Most small lesions and intermuscular haematomas evolve without sequelae. Intramuscular lesions, larger lesions and recurrent lesions may lead to the appearance of fibrosis, cysts, myositis ossificans or hernia.

Fibrosis: In large ruptures, repair of the muscle involves two processes: regeneration of muscle fibres and formation of fibrosis. When the latter predominates, an irregular, focal, echo-rich or radiated area can be seen on ultrasound (Fig. 6.63), frequently adhering to the epimysium and sometimes resulting in focal retraction of the fascia. It remains unchanged during muscle contraction manoeuvres. The presence of fibrous scarring predisposes the muscle to recurrent ruptures.

Muscle cyst is a rare complication and is due to incomplete resorption of a haematoma (Fig. 6.64). It also favours new muscle rupture.

Myositis ossificans is usually the result of a lesion caused by direct trauma, with formation of an intramuscular haematoma, or by repeated microtraumas, mainly

Fig. 6.63. Ultrasonography of the femoral rectum muscle. (a) Longitudinal, (b) transverse plane. Fibrosis, characterized by an echo-rich zone (arrow) with partially clear edges, located inside the femoral rectum muscle venter and entering the vastus intermedius through a discontinuity of the muscle fascia (dotted arrow)
in athletes. The calcifications, which are initially lamellar, evolve to real heterotopic ossification, seen as linear, echo-rich images parallel to the adjacent cortical bone. Myositis ossificans is frequently situated inside the femoral quadriceps, particularly in the femoral rectum (Fig. 6.65).

Muscular hernia is a condition in which muscle tissue protrudes through a discontinuity or weakness of congenital or acquired fascia. The commonest causes are chronic compartmental syndrome, trauma and postoperative alterations. On ultrasound, the hernia is seen as a clearly defined nodular image in a mushroom form, its echogenicity depending on the stage of evolution. Initially, due to its proximity to fibroadipose septa, the nodule is echo-rich; afterwards, it becomes echo-poor (Fig. 6.66) due to the presence of oedema. A dynamic examination is essential, as the hernia may be fixed or intermittent, the latter being apparent only on isometric contraction of the muscle. Diagnostic sensitivity is also increased by conducting the
examination after exercise: a muscle hernia is more obvious during exercise, with increased local blood flow and the consequent increase in muscle volume (10–15%).

Other disorders

Baker cyst

Baker cyst, initially described by Adams in 1840 and by W. Morant Baker in 1877, is the commonest synovial cyst in the human body. The synovial bursa of the gastrocnemius and semimembranosus connects with the knee joint in 50% of normal adults, and degeneration and reduced elasticity of the joint capsule in older people might explain the high prevalence of articular problems. Baker cyst arises from lesions of the synovia or any intra-articular process that leads to fluid formation, resulting in distension of the gastrocnemius and semimembranosus bursa. This condition, which is extremely common in people with rheumatoid arthritis, is characterized by a cystic body with echo-free contents, located medially in the popliteal fossa,
between the tendon of the semimembranosus muscle and the medial head of the gastrocnemius. The bursa of these two muscles has four horns—two anterior (medial and lateral) and two posterior (medial and lateral)—which may be filled with fluid, either separately or together (Fig. 6.67, Fig. 6.68). Thus, although a Baker cyst is situated in the medial area of the popliteal fossa, it can vary slightly in location and form, sometimes with extension into the muscle planes and even into the vastus medialis, and gastrocnemius muscles.

Fig. 6.67. Bursa of the gastrocnemius and semimembranosus muscles, with the two anterior (a) and the two posterior (b) horns. CLG, lateral head of the gastrocnemius; CMG, medial head of the gastrocnemius; tsmm, semimembranosus muscle tendon

Fig. 6.68. Baker cyst, showing communication with the articular cavity (arrows); CMG, medial head of the gastrocnemius muscle
Parietal thickening, free bodies, septations and internal echoes are observed in cases of haemorrhage, infection or arthropathy caused by crystal deposits, sometimes with formation of a fluid–fluid level. The cysts may sometimes rupture, with acute pain, simulating deep-vein thrombosis. This can readily be diagnosed with ultrasound as loss of definition of the cyst wall, with fluid diffusing through the muscle and subcutaneous planes, associated with oedema of soft tissue (Fig. 6.69).

Fig. 6.69. Rupture of Baker cyst: heterogeneous content and septae due to undefined inferior wall, with perifascial free fluid (arrow)

Morton neuropathy
Morton neuropathy is a thickening of the interdigital nerve, usually in the third intercapitometatarsal space. Its cause is uncertain but is probably related to repetitive trauma or ischaemia resulting in neural imprisonment. It is prevalent in women aged 40–60 years and can be symptomatic or asymptomatic. When it is symptomatic, it leads to pain and paraesthesia, which worsens with walking. It is unilateral in 73–90% of cases.

On ultrasound examination, Morton neuroma is seen as an echo-poor nodule between the metatarsal heads, plantar to the transverse metatarsal ligament. Its diagnosis is confirmed when there is continuity with the interdigital nerve (Fig. 6.70), as other conditions, such as neurofibroma, schwannoma, angiolipoma or angioleiomyoma, may have a similar ultrasonographic aspect. Neuromas can be accompanied by intermetatarsal bursitis, which can also occur separately, characterized by increased fluid (>3 mm), compressibility in dynamic manoeuvres and a location superficial to the deep transverse metatarsal ligament.
Plantar fasciitis

Plantar fascia, or aponeurosis, originates in the posteromedial tuberosity of the calcaneus and has medial, central and lateral sections. The central section is the strongest and thickest (2–4 mm), with five bands in the middle part of the metatarsals. Inflammation or degeneration of the central section of the plantar fascia (fasciitis) is the commonest cause of pain in the plantar area of the calcaneus, corresponding to 7–9% of all lesions in runners. Other conditions can result in the same symptoms, including stress fractures of the calcaneus, tarsal tunnel syndrome, seronegative arthropathies and neuritis. Microruptures in the fascia are due to repetitive traction microtraumas, which lead to inflammation and angiofibroblastic proliferation, as observed in tendinosis. The predisposing factors include systemic diseases (rheumatoid arthritis, gout and spondyloarthritis), splayfoot, concave foot and ill-fitting shoes.
On ultrasound, the normal fascia presents a fibrillar aspect (Fig. 6.71), except in patients with discreet hypoechogenicity near the calcaneus due to an anisotropic effect. In fasciitis, there is some thickening (> 5 mm) and reduced echogenicity of the fascia, usually close to its insertion into the calcaneus, and some calcification (Fig. 6.72). Bilaterality is not uncommon. Ultrasound can, however, lead to false-negative results.

The commonest findings with MRI in suspected plantar fasciitis, in decreasing order of frequency, were perifascial oedema, oedema of the calcaneus medullary bone, signal alteration inside the fascia and thickening of the plantar fascia. Thus, if the fasciitis is slight, it is not seen by ultrasound; nor can bone oedema be seen by this technique.
Superficial fibromatosis
Superficial fibromatosis is due to proliferation of benign fibrous tissue, with aggressive biological behaviour. Palmar (Dupuytren contracture), plantar (Ledderhose disease) and penile (Peyronie disease) fibromatoses are part of a spectrum of the same disease, although they may occur separately.

In Ledderhose disease, there is some thickening, with a nodular aspect and reduced echogenicity, beginning in the area of the plantar cavum (Fig. 6.73). Isolated nodules must be differentiated from granulomas and from rheumatoid nodules.

The ultrasound aspect of Dupuytren contracture is similar to that of palmar fibromatosis, extending from the third to the fifth finger. It is prevalent in middle-aged or elderly men, alcoholics and patients with epilepsy who have taken phenobarbital for long periods. Patients report repeated microtrauma in the area. The nodules tend to converge over time, forming fibrous strings, with consequent retraction or palmar aponeurosis.

Compressive neuropathies: Carpal tunnel syndrome
Compression of the middle nerve inside the carpal tunnel is the most frequent peripheral compressive neuropathy and that most easily treated. The syndrome is characterized by paraesthesia or pain on the palmar face, from the first to the radial half of the fourth finger, associated with weakness and atrophy of the thenar musculature in the most advanced cases.

More than half a century elapsed between Paget’s description of its symptoms in 1854 and full understanding of the syndrome. The diversity of clinical aspects of compression of the middle nerve led to a certain confusion in characterization of this syndrome, which partly explains this relatively long period.
Usually, when peripheral nerves pass over a joint, they also pass over osteofibrous tunnels, with a risk for neural displacement during movement. As the tunnels are relatively inelastic, however, they are vulnerable to compressive neuropathy. The physiopathology of carpal tunnel syndrome has been the subject of much speculation. Nerve compression can be due to anatomical, intrinsic or mechanical factors.

The anatomical factors are related to conditions that determine a decrease in the dimensions of the carpal tunnel (acromegalia, wrist bone alterations and alterations of the distal radius) or an increase in the content of an osteofibrous tunnel (tumours, anomalous muscle venters, synovitis or haematomas). The intrinsic factors include neuropathy secondary to diabetes mellitus, alcoholism, amyloidosis, infections, gout or tenosynovitis and situations that alter the water balance, such as pregnancy, use of oral contraceptives, hypothyroidism or long periods of haemodialysis. The mechanical factors vary from repeated flexion and extension movements to excess weight on the extended carpal tunnel in patients who use a cane or a crutch.

The process starts with modification of the microcirculation, with a decrease in epineural capillary flow. As the pressure increases, epineural, endoneural and arteriolar capillary flow is reduced. This leads to endoneural oedema, associated with increased capillary permeability, resulting in macrophage migration. These inflammatory cells produce cytokines, which cause proliferation of the fibrous tissue, involving the neural sheath and the axon itself, culminating in axonal degeneration and demyelination.

If the causal factor is small and of short duration, the alterations are reversible; however, if the compression persists and becomes more intense, irreversible lesions can form, creating a vicious circle and resulting in persistent symptoms or symptoms generated by submaximum effort. The first symptoms are paraesthesia and hyperaesthesia, as the middle nerve is made up mainly (94%) of sensitive fibres. As the disease develops, motor fibres become involved, leading to weakness and atrophy of the thenar musculature.

Ultrasound criteria for diagnosis of carpal tunnel syndrome are a reduction in the echogenicity of the middle nerve due to oedema, accompanied by tapering in the distal carpal tunnel and an increase in its upstream area (Fig. 6.74).

These authors not only described qualitative alterations to the median nerve but also established quantitative criteria for the diagnosis of carpal tunnel syndrome. Hardening of the median nerve in the proximal carpal tunnel, at the level of either the distal radius or the pisiform bone, was evaluated by measuring the area of the nerve in transverse section. Tapering of the median nerve in the distal carpal tunnel in the hamate bone is measured in transverse section as the ratio between the largest and smallest axes of the median nerve (tapering ratio). Thin tapering corresponds to a ratio > 3. Cambering (incurvation, arching) of the retinaculum of the flexors is evaluated as the distance between the top of the flexor retinaculum and an imaginary line drawn between the trapeze and the hamate. Values > 4 mm are considered abnormal. The most useful criterion for a diagnosis of compressive neuropathy is an
Fig. 6.74. Thickened, echo-rich median nerves, with a reduced number of neural fascicles to the right, replaced by echo-rich tissue corresponding to adipose tissue and fibrosis.

Fig. 6.75. Measurement of the area of the median nerve (0.07 cm²) using (a) direct and (b) indirect methods. ESC, scaphoid; PIS, pisiform; CG, Guyon channel.

Fig. 6.76. Thickened median nerve (NM) inside a carpal tunnel (a) with a transverse section of 0.16 cm² (b).
increase in the cross-sectional area of the median nerve. Distal tapering of the nerve and incurvation of the retinaculum of the flexors showed poor reproducibility in subsequent studies.

The cross-sectional area of the median nerve can be measured either indirectly or directly. In the indirect method, the formula for the area of the ellipse \(\frac{\pi(D_1 \times D_2)}{4} \) is used, in which \(D_1 \) and \(D_2 \) represent the transverse and anteroposterior diameters of the median nerve (Fig. 6.75 a). In the direct method, the area is calculated by ultrasound, from a continuous trace around the nerve (Fig. 6.75 b). Regardless of the method used, the neural sheath must always be excluded from the measure.

The cut-off point of the cross-sectional area for differentiating between normal and thickened nerves has been the subject of controversy in the literature, suggestions varying from 9 to 15 mm². This wide variation is due to the use of different equipment, inclusion of people of both sexes in the same study, studies of people of different ages, different severity of disease and imprecise measurement area. Each unit should establish its own value on the basis of the population being studied. For women, we have adopted cross-sectional area cut-off points of 9 mm² measured by the indirect and 10 mm² measured by the direct method (Fig. 6.76).
Recommended reading

Safety of diagnostic ultrasound

Obstetrics

doi:10.1002/pd.2576 PMID:20572118

Gynaecology

Breast

• Hong AS et al. BI-RADS for sonography: positive and negative predictive values of sonographic features. AJR. American Journal of Roentgenology, 2005, 184:1260-1265. PMID:15788607

Paediatric ultrasound

Musculoskeletal system

- Nazarian LN. The top 10 reasons musculoskeletal sonography is an important complementary or alternative technique to MRI. *AJR. American Journal of Roentgenology*, 2008,190:1621-1626. doi:10.2214/AJR.07.3385 PMID:18492916

Notes
Pages numbers ending in f refer to figures
Pages numbers ending in t refer to tables

[A]

Abdomen (fetal)
abnormal shape 108
measurements in third trimester 44–45, 45f
second trimester assessment 40, 40f, 41f
subcutaneous tissue thickness 51

Abdominal aorta 311f, 397f, 399f

Abdominal cavity
formation in fetus 16
free air in (paediatric) 284, 285f

Abdominal circumference (fetal)
birth weight prediction 48
fetal weight estimation 48, 49t
increased, in ascites 108
intrauterine growth restriction
diagnosis 55, 84
multiple pregnancy 81, 84
second trimester 40, 40f
third trimester 44–45, 45f

Abdominal masses (paediatric) 279–281
adrenal haemorrhage causing 310, 310f
cystic 279–280, 280f
haematocolpos 325, 326f
non-cystic 281, 281f, 310
primary pelvic hydatid cyst 331, 332f

Abdominal pain (paediatric) 275–278, 394–395
acute, or chronic 395
adnexal torsion 326, 327f
appendicitis 276, 277f, 278f
cyclical 325
Henoch–Schönlein purpura 287, 287f
indications for ultrasound 394, 395
inflammatory disorders 286, 287f
intussusception 275–276, 276f
mesenteric lymphadenitis 278, 279f

Abdominal trauma (paediatric)
blunt 284, 285f
liver 240, 240f, 241f
pancreatic 267, 270, 270f, 271f
renal 313, 313f, 314f
splenic 263, 263f, 264f

Abortion (spontaneous) 23, 24f, 148
absent intrauterine sac 23
‘complete’ or ‘incomplete’ 23
conjoined twins 33
intrauterine sac with embryo without cardiac
activity 24f, 25
intrauterine sac without embryo/yolk sac
23–25, 25f
‘missed’ 23, 25
recurrent 23
threatened 22, 23
twin 24f

Abscess(es) 393–394
adrenal 310
amoebic liver 240
breast 205–206, 207f
cervical 353
hepatic 239, 239f, 240
lung 358–359
muscle rupture complication 455
pancreas 267
peri-appendiceal 278f, 328f
pyogenic liver 239, 239f
renal 303, 303f
subperiosteal 389f
Acardiac twin syndrome 88
Acetabular cartilage (paediatric) 384, 384f
Acetabular dysplasia 385
Achilles tendon see Calcaneus (Achilles) tendon
Achondrogenesis 117f
Acoustic inertial cavitation 5
Acoustic working frequency 5
Acrania 31, 32f
Acromelia 114
Acromion-clavicular joint, liquid in 420
Adenitis see Lymphadenitis
Adenoma
follicular (thyroid) 350, 350f
hepatic 239
lactating 214, 214f
nipple 214
parathyroid 351
tubular, of breast 214–215, 214f
Adenomyosis 154–155, 155f
Adhesions
acute pelvic inflammatory disease 185
dysfunctional uterine bleeding 152
Fallopian tube 177–178, 177f
Adnexal lesions 163–174
cysts 176–177, 176f, 177f
parovarian cysts 173–174
see also Fallopian tubes; Ovarian masses;
Ovarian tumours; Ovaries
Adnexal torsion 326, 327f
Adnexal tumours 169–175
Adolescents
bone and joint abnormalities 387
ectopic pregnancy 331
goitre 350
ovarian cysts 319–320, 319f
spleen size 255, 255f
testis (normal) 333
uterovaginal anomalies 325
see also Paediatric ultrasound
Adrenal glands (fetal) 110
Adrenal glands (paediatric) 309–311
abscess 310
age-related changes 309
congenital hyperplasia 309, 328, 342
cystic lesions 310
haemorrhage 310, 310f
neuroblastoma 310, 311f
normal sonographic appearance 309, 309f
tumours 311
Alagille syndrome 246, 248
Allantoic duct 15
Albarran-Rosenthal classification 31, 32f, 93, 94f
Alonso-Lej classification 249
Alpha angle 385
α-fetoprotein 234, 235
Amenorrhea, primary 325
Amino acids, fetal growth and 53
Amniocentesis, fetal loss, risk 83
Amniocentesis, fetal loss, risk 83
Amniotic cavity 14–15
Amniotic fluid 69–70
measurement methods 47
third trimester 47, 47f
volume
decline near term 47
multiple pregnancies 70
normal 42, 47f
reduced, fetal growth restriction
55–56, 61
volume assessment 42, 69
intrauterine growth restriction diagnosis
55–56
multiple pregnancies 70
single deepest pocket method 42, 47, 69
third trimester 47, 47f
two-diameter pocket method 70
see also Amniotic fluid index
Amniotic fluid index 42, 47, 69
measurement method 69–70
pitfalls in measurement 47
range/mean and distribution 69
use in preterm pregnancies 69
Amniotic fluid pocket, deepest, measurement 42, 47, 69
Amniotic membrane 15f
formation, gestational age 14
twin pregnancies 78, 80, 81
Amniotic sac 16
multiple pregnancies 78, 81
Amoebic liver abscess 240
Anamnestic gestational age see Menstrual age
Anatomical snuffbox 427
Anencephaly 31, 91, 91f
Aneuploidy
first-trimester screening 20–21
hydatidiform moles and 29
risk in multiple pregnancies 82
Angioma, splenic 261, 262f
Anisotropy 412, 442f
Ankle
injuries 447, 448
ligaments see Lateral ligament complex
(ankle)
soft tissue oedema 450
sprains 448
tendons 437–442
see also Calcaneus (Achilles) tendon
Anoxic–ischaemic encephalopathy 371, 371f
Antenatal diagnosis
congenital anomalies see Congenital
anomalies
twin–twin transfusion syndrome 86
urinary tract anomalies 312
Anterior talofibular ligament 447, 447f
chronic lesions 450, 450f
complete rupture 449, 449f
Aorta, abdominal 311f, 397f, 399f
Aorta (fetal) 100, 101f, 111f
coarctation 104f
overriding 105, 105f
second trimester assessment 41f
transposition of great vessels 105, 105f
Aortic stenosis 106
Aponeurosis (plantar fascia) 460, 461f
Appendicitis 276, 277f, 278f
Appendix
dilated 278f
fluid-filled 276, 277f
inflammation 276, 277f
normal 276, 277f
perforated 276
Arachnoid cyst 92f
Arterial ischaemic infarct (neonatal) 371
Arteriohepatic dysplasia (Alagille
syndrome) 246, 248
Arteriovenous malformation 390
Arthritis
juvenile rheumatoid 394
septic 389, 389f, 390f
Ascites
fetal 108, 109f
paediatric, in lymphoma 282f
Asphyxia, perinatal 371
Aspirin, intrauterine growth
restriction prevention 62
Asplenia 257
Athletes/sports
ankle injuries 447
insertion tendinopathy 439
knee injuries 435
muscle lesions 452, 456
Athyroidism 348
Atrial anomalies (fetal) 102, 102f
Atrioventricular canal, complete 102, 102f
Atrioventricular valve, single 102, 102f
Atrium, single 102, 102f
Atrium thickness (atrial width) of lateral
ventricles 35, 36f, 37, 93
Axillary lymph nodes 199, 199f
metastatic carcinoma 225–226, 226f
Axillary regions, ultrasound examination 194
[B]
Baker cyst 457–458, 458f
rupture 459, 459f
Bald humeral head sign 418, 418f
Banana sign 96, 98
Basal ganglion 362f, 365
Basedow disease 349
Beads-on-a-string sign 178, 180f, 184f, 185
Beckwith-Wiedemann syndrome 234
Benign mammary dysplasia 211, 212f
Biceps see Brachial biceps
Bile ducts (extrahepatic) see Biliary tree (extrahepatic)
Bile ducts (intrahepatic)
choledochal cysts 249, 250, 251f
hydatid disease 242, 242f, 243f, 244f
interlobular, paucity 248
normal sonographic features 231, 232, 233f
Bile plug 251, 251f
Biliary atresia 234, 246–248
anomalies associated 248
neonatal hepatitis syndrome vs 246, 247
types 246, 246f
Biliary cyst 244, 245f
Biliary sludge 251, 251f, 254f
Biliary tract
embryonal rhabdomyosarcoma 235, 235f
in hydatid disease 242
paediatric ultrasound see Liver and biliary tract
Biliary tree (extrahepatic)
calculi 252, 253f
choledochal cysts 249
deficient see Biliary atresia
embryonal rhabdomyosarcoma 235, 235f
hydatid disease 242, 244f
inspissated bile syndrome 251, 251f
normal 231, 232f
obstruction 251, 251f
Biloma, hepatic 240, 241f
Biometry, fetal see Fetus, biometric parameters
Biovular twins see Twin pregnancies, dizygotic
Biparietal diameter of head (fetus)
birth weight prediction 48
embryo/fetal size in first trimester 11–12
fetal weight estimation 48, 49t
intrauterine growth restriction diagnosis 55
measurement 11–12, 43, 44f
accuracy limitations 13
first trimester 11–12, 13f
second trimester 35–36, 36f, 90, 90f
third trimester 43, 44f
multiple pregnancy 81
Birth weight
multiple pregnancies 83
prediction 48, 49t
Bladder
fetal 68f
diameter in megacystis 32
dilatation 112–113, 114f
length 32
normal 110f
twin–twin transfusion syndrome 85f, 86
volume in monochorionic, diamniotic twins 85f
hyperdistension, avoidance 134
involvement in cervical carcinoma 160
paediatric
capacity 292
congenital diverticulum 306
distension 307
duplication 306
examination technique 289
in gonadal dysgenesis 330f
neoplasms 308
neurogenic 308
normal anatomy 292, 293f
rhabdomyosarcoma 308, 309f
stones 307–308, 308f
thickness 292
urachal abnormalities 306
wall thickening 306f, 307, 308f
transabdominal ultrasound preparation 10, 71, 72, 134
placenta praevia diagnosis 65
transvaginal ultrasound preparation 10, 135–136
Blake pouch cyst 94
'Blighted ovum' 23

Blood flow velocity
cerebral (neonatal) 363–364, 364f
Doppler, measurement 119–120, 119f, 121
waveform analysis 121–122, 122f
see also Doppler ultrasound
reversal, intrauterine growth restriction
57–58, 57f, 58f, 59f, 126

B-mode ultrasound scanning, safety 5

Bone
abnormalities (paediatric) 385–390
infections (paediatric) 388, 389f
mineralization 116, 118f
normal paediatric findings 384, 384f
ultrasound-induced heating 4–5

Borderline ventriculomegaly 93, 93f

Botryoid appearance 308, 324

Bowel (fetal) 106, 107f
obstruction 106
physiological herniation (normal) 32

Bowel (paediatric)
air in 396, 396f, 400, 401
haematoma 284, 285f
herniation 32, 34f, 108, 109f
infarction 276
intussusception 275–276
ischaemic disease 288, 288f
obstruction (neonatal) see Intestinal obstruction (neonatal)
trauma 284, 285f
see also Small bowel

Brachial artery 424f
Brachial biceps 423
long head, tendon of 409, 410, 410f, 414f
examination technique 413, 413f
fluid in synovial sheath 420–421

Brachial biceps tendon, examination/
normal findings 424f

Brachial triceps 422, 423f
Brachial triceps tendon 423f
Brachioradialis muscle 425f
galactocele 213, 214f
haematoma 207, 207f
hamartoma 213, 213f
intraductal papilloma 209, 210f
intraparenchymal lymph nodes 210, 211f
liponecrosis 215, 215f
in males 216, 216f
phylloides tumour 209, 209f
biopsy 193, 201
 complications/risks 201
preoperative needle localization 201
techniques 201
cancer/carcinoma see Breast carcinoma
Cooper ligaments see Cooper ligaments
cysts 202–204
calcifications 203
complex 203, 204f
intraductal 203, 205f
liponecrosis vs 215
sebaceous 203
simple 202–203, 203f
dense 195, 197f
ducts 195f, 198, 199f
epithelial cancers see Breast carcinoma
fatty 197f
lobes 195
lumps 193
lymph nodes in 199, 200f, 210, 211f
male, disease see Male breast disease
malignant lesions see Breast carcinoma
microlcalfications 218, 219, 220f
palpation 194–195
parenchyma 197, 197f
sclerosing adenosis 212, 212f
skin over 196, 196f
subcutaneous fat 196, 196f
tumours 218

carcinoma see Breast carcinoma
fibroepithelial (phylloides) 209, 209f
Paget disease of nipple 221
ultrasound
accuracy 199–200
biopsy guided by 193, 201
diagnostic algorithm 200
examination technique 194–195
indications 193, 218
lexicon 199–200, 200t
new techniques 201–202
normal findings 195–200, 196f
preparation 193–194

Breast carcinoma 217–226

central necrosis 203, 205f
ductal carcinoma in situ 218
fibroadenoma vs 208
incidence and risk factors 217–218
intraductal 203, 205f
local staging 225–226, 226f
lymph node involvement 225–226, 226f
recording ultrasound criteria 218
sonographic features 218–225

good prognosis carcinomas 222–224
in situ carcinoma 218
inflammatory cancer 223, 224f
invasive ductal carcinoma 219–219, 219f, 220f, 225
invasive lobular carcinoma 222, 222f
male carcinoma 225, 225f
medullar carcinoma 223, 223f
metastatic cancer 225
microcalcifications 218, 219, 220f
mucinous carcinoma 222, 222f
papillary invasive carcinoma 223
premalignant lesions 218
rare tumours 225
size of lesion 219
ultrasound role 218

Breast Imaging Reporting and Data System 199–200, 200t

Breathing movements

fetal, umbilical artery Doppler waveform 123
paediatric 360

Brenner tumours 172

Bruises 454f

subcutaneous 452

see also Contusions
Budd-Chiari syndrome 242, 252
Burkitt lymphoma
 abdominal mass 282f
 ovary involvement 331, 332f
Bursae
 ankle 437
 elbow 422, 423
 hip 432
 knee 437, 457, 458, 458f
 retrocalcaneal 437
 subacromial-subdeltoid 412
Bursitis
 intermetatarsal 459
 prepatellar 437f
 retrocalcaneal 439, 440f
 trochanteric 432, 434f

Caesarean delivery, cervical length and 75
Calcaneofibular ligament 448, 448f
Calcaneus
 plantar fasciitis and 460, 461, 461f
 tuberosity, Haglund deformity 439, 440f
Calcaneus (Achilles) tendon 437
 disorders/conditions affecting 437–439
 examination technique 438f
 normal dimensions/anatomy 437
 normal ultrasound findings 437, 438f
 paratendinitis 439, 441f
 rupture 439
 complete 439, 441, 442f
 partial 439, 441f
 tendinous stumps 441, 442f
 tendinopathy 439, 439f
 xanthoma 437, 438f
Calcaneus 363
Calcaneus gyrus 363
Calculi
 biliary tree (extrahepatic) 252, 253f
 lower urinary tract 307–308, 308f
 renal 298–299, 298f
Calvaria, abnormal shape 95f, 96
Calyceal diverticula 294, 294f
Candelabra sign 375, 376f
Capillary malformation 391
Cardiac activity (fetal)
 absent in abortion diagnosis 25
 first trimester 16
 recording 26
Cardiac afterload, intrauterine
 growth restriction 57
Cardiac anomalies (fetal) 100–106, 101f, 102f, 103f, 104f, 105f
 atrial 102, 102f
 detected with four-chamber view 102, 103f, 104f
 detection in first trimester 33
 number 102
 outflow tract 105–106, 105f, 106f
 screening 100
Cardiac chambers (fetal) 98f
 first trimester 18
 screening for anomalies 100
 second trimester 38, 38f, 39f
Cardiac output (fetal) 57, 125
 in severe hypoxaemia 126
Cardiac rate (fetal)
 first trimester 16, 26
 normal 26
 umbilical artery Doppler waveform 123
Carolii disease 250, 251f, 296
Carotid artery, normal 344
Carpal tunnel 425, 426f, 463
 dimension decrease, mechanism 463
Carpal tunnel syndrome 462–465
 causative factors 463
 ultrasound findings 463, 464f, 465
Carpi ulnaris extensor tendon 428, 429f
Cartilage interface sign 422, 422f
Cartilaginous epiphysis 384, 384f, 385f
Cauda equina 379f
Caudal regression syndrome 382
Caudate nucleus 362f
Cavum septum pellucidum 36, 37f, 44, 363, 363f
Cavum veli interpositi 363
Cavum vergae 363
Cellulitis 393
Central nervous system
 abnormalities in first trimester 31, 32f
 see also Brain; Spinal cord (paediatric)
Central renal sinus 290f, 291f
Cephalocele 92, 92f
Cerebellar vermis, hypoplastic 94
Cerebellum
 first trimester 18f
 small, Chiari II malformation 95f, 96, 98
 transverse diameter 35–36, 37, 37f
Cerebral anoxic–ischaemic lesions 369, 370f
Cerebral artery, anterior, normal
 haemodynamics 363–364, 364f
Cerebral artery, middle 125
 Doppler velocimetry 124, 125, 127
 fetal hypoxaemia prediction 124–125, 125t
 intrauterine growth restriction 58f
 ischaemic infarct 371, 372f
 pulsatility index 124, 125t
Cerebral blood flow, neonatal 363–364, 364f
Cerebral hemispheres, alobar
 holoprosencephaly 31
Cerebral palsy 76
Cerebral vasodilatation, fetal growth restriction 57, 124–125
Cerebroplacental ratio 125
Cerebrospinal fluid (CSF) 377
Cervical abscess 353
Cervical carcinoma 158–160, 159f, 160f, 161f
Cervical cerclage 72f, 74
 follow-up after 74–75, 75f
Cervical lymphadenitis 347, 348f
Cervical pregnancy 27f
Cervix 70–75, 137
 endometrial carcinoma invasion 156–157
 examination technique 71–73, 72f
 funnelling 73, 74f
 indications for ultrasound 70, 71
 length
 from 19–31 weeks 73, 74f
 after cervical cerclage 74–75
 children 315
 gestational age at delivery 75
 multiple pregnancy 82
 normal 73
 preterm birth prediction 73, 74, 82
 shortening for labour 73, 74f
 in multiple pregnancies 73, 82
 neonatal 315, 316f
 normal findings 72f, 73
 pathological findings 73–75
 cerclage, follow-up after 74–75, 75f
 labour induction success prediction 71, 75
 mode of delivery investigation 71, 75
 preterm birth and risk of 73–74, 74f
 preparation for ultrasound 71
Chest
 cystic mass 356, 356f
 hypoplastic 116, 117f, 118t
 paediatric ultrasound 354–360
 examination technique 354
 indications 354
 normal findings 354–355, 355f, 356f
 pathological findings 356–360
 preparation 354
 second trimester assessment 38, 38f, 39f, 98, 99f
 soft tissue abnormalities 356, 356f
Chest wall
 anomalies 356, 356f
 normal 354, 355f
 Chiari II malformations 95f, 96, 98, 380
 Chiari II syndrome 380
 Child abuse 270, 387
 Children, ultrasound see Paediatric ultrasound
 Chlamydia trachomatis 327
 Cholangiography 248, 250f
 Cholecystitis (paediatric) 252
 acute calculous 252, 253f
 complications 253
 Choledochal cyst (paediatric) 249–251
 anatomical types 249, 249f
 complications 251
 differential diagnosis 250–251
type I 249f, 250, 250f
types II-V 249f, 250
Choledocholithiasis 252, 253f
Cholelithiasis 252, 253f
Chorioangioma 66
Chorioncarcinoma 31, 161
Chorionic cavity 15
Chorionic membrane, twin pregnancies 19, 78, 80, 81
Chorionic plate 62
Chorionic villi 122
Chorionicity, determination 18–19, 77–78
Choroid plexus
 cysts 93, 94f
 lobular 363
 papilloma 376
Cirrhosis, in children 252
Cisterna magna 37
 anteroposterior diameter 36f
 enlarged (mega) 94, 95f
Cleft palate 94f
Clitoromegaly 329f
Cloacal abnormalities 307
Cloverleaf skull 116, 117f
Club foot 116, 116f, 385–386
Coarctation of aorta 104f
Coelomic cavity 14, 15f
Cogwheel sign 178, 179f, 183
Collecting system 297f, 313f
Colon
 intussusception 275
 microcolon see Microcolon
 see also Bowel; Intestinal obstruction
Colour Doppler 121, 126
 appendicitis 278f
 cervical lymphadenitis 347f
 chest 354
 cirrhosis of liver 252
 De Quervain tenosynovitis 428f
 endometrial carcinoma 157f
 endometrial polyps 150, 151f
 fibroids 152
 finger tendons 432f
 haemangioendothelioma 236
 intratesticular vascular anatomy 333, 335f
 invasive ductal carcinoma (breast) 221
 lymph nodes of neck 346f, 391
 muscle hernia 457f
 neonatal cranial examination
 ischaemic lesions 369
 normal findings 361
 severe haemodynamic distress 372, 372f, 373f
 polycystic ovary syndrome 145
 portal hypertension 259
 premature brain 364
 prepatellar bursitis 437f
 renal vein thrombosis 305
 splenic angioma 261
 splenic lymphangioma 263
 synovial diseases (paediatric) 387
 tubal patency evaluation 187
 twin reversed arterial perfusion sequence 88
 urinary tract examination 289
 uterus 136, 137f
 varicocele 338, 338f
Common bile duct 232f
 size, children/infants 231
Common carotid artery 348f
 normal 344, 344f
Common hepatic duct 231
 fibrosis 247f
Compartment syndrome 455
Compressive neuropathies 462–465
 diagnostic criteria 463, 465
 see also Carpal tunnel syndrome
Computed tomography (CT)
 calyceal diverticula 294f
 cystic mesenchymal hamartoma 238f
 duodenal haematoma 285f
 fatty hepatic infiltration 245f
 hepatoblastoma 234f
 horseshoe kidneys 294f
 mature ovarian teratoma 322f
 mesenteric cyst 280f
 multilocular cystic nephroma 302f
pancreatic fracture 271f
pancreatic pseudocyst 268, 269f
polysplenia 257f
renal fracture 313f
renal hydatid cyst 304f
splenic angioma 262f
Wilms tumour 300f, 301f
Concentric contraction, muscle 451
Congenital adrenal hyperplasia 309, 328, 342
Congenital anomalies
 antenatal diagnosis 89
 multiple pregnancy 82–83
cystic, neck 346, 347f
digestive tract 279
duodenal malrotation 398
 hydrocele 337, 337f
 liver 237
 lower urinary tract 306–307
 lymphatic vessels 279, 391
 pancreas 266–267
 spine 380–382, 381f, 382f
 splenic 261, 262
 upper urinary tract 293–297, 314
 uterine disorders 146–148
 see also Fetal malformations; specific organs
Congenital hip dislocation 385
Conjoined twins 33, 34f, 76, 88–89, 89f
 frequency 88
 point of union 88
Connatal cysts 363
Contrast enema, meconium ileus 402, 402f
Contusions
 hepatic 240, 240f, 241f
 spleen 263, 263f
 see also Bruises
Conus medullaris 379, 379f, 380f
 normal 379f, 380f
 tethered cord and 380
Cooper ligaments 195, 195f, 196f, 197
 invasive ductal carcinoma 220
Core-needle biopsy, breast 201

Corpus callosum
 agenesis and hypoplasia 373, 374f
 neonatal cranial ultrasound 362f
Corpus luteum 143, 143f, 168, 169f
 vascular ring 168, 169f
Cranial circumference, measurement, second trimester 35, 36, 36f
Cranial ultrasound
 congenital anomalies 380
 neonatal see Neonatal cranial ultrasound
 normal variants, premature infant 363
 see also Brain
Crohn disease (paediatric) 286, 286f
Crown–rump length 11–12
 gestational age relationship 17t
 increase in, rate 16
 measurement 11–12, 12f
 accuracy limitations 13
Cryptorchidism 336, 336f
Cyclopia 96, 96f
Cyst(s)
 arachnoid 92f
 Baker see Baker cyst
 biliary 244, 245f
 Blake pouch 94
 branchial cleft 346
 breast see Breast, cysts
 choledochal see Choledochal cyst
 choroid plexus 93, 94f
 connatal 363
 dermoid see Dermoid cyst
 duodenal duplication 280, 280f
 duplication 279–280, 280f
 endometriotic 170, 170f
 ependymal 379f
 epidermoid see Epidermoid cysts
 hydatid see Hydatid cyst
 mesenteric 279, 280f
 muscle 455, 456f
 Naboth 140
 omental 279
ovarian see Ovarian cysts
paraovarian 173–174, 176, 176f, 321
paratubal 176, 177, 177f
pelvic inclusion 174
periarticular 420
peritoneal inclusion 178, 180
placental 63, 63f
popliteal 392
renal see Renal cysts
retroperitoneal 353
sebaceous, breast 203
spermatic cord 337, 337f
splenic, epidermoid 261, 261f
subependymal 376f
theca lutein 29, 30f, 67
thyroglossal duct 346, 347f
thyroid gland 351
urachal 306, 307f

Cystadenoma
- mucous ovarian 321
- serous ovarian 321, 322f

Cystic adenomatoid malformation 98, 99f

Cystic duct 231

Cystic fibrosis 244f, 267
- meconium ileus 402
- meconium pseudocyst 405, 405f
- pancreas in 267

Cystic hygroma 31, 33f
- paediatric 346, 353, 353f, 391

Cystic lymphangiomas, cervical 353, 353f

Cystic masses, abdominal 279–280, 280f

Cystic mesenchymal hamartoma 237, 238f

Cystic teratoma 171–172

Cystic tumours, pancreatic 271–272, 272f

Cystitis 306f

Cystography 229

Cytomegalovirus (CMV), cerebral
- infection (neonatal) 375, 376f

Cytotrophoblast 122, 123

[D]

Dandy-Walker complex 94, 95f, 373

Dating of pregnancy see Gestational age

De Quervain tenosynovitis 426, 428f

Deltoid ligament 446, 446f

Deltoid muscle 418

Dermal sinus, dorsal 381

Dermatomyositis 394

Dermoid cyst 392
- neck 346
- ovarian 171–172, 172f
- girls 321, 322f

Desmoplastic reaction 219

Developmental dysplasia of hip 385

Diabetes, maternal 50, 51

Diaphragmatic hernia, fetus 99, 100f

Diarrhoea, bloody 286, 289, 304

Diastematomyelia 381, 381f

Dichorionic twins see Twin pregnancies, dichorionic

Digestive tract (fetal)
- malformations 106–108, 107f, 108f, 109f
- normal 106, 107f

Digestive tract (paediatric) 272–289
- abdominal masses see Abdominal masses
- abdominal pain see Abdominal pain (paediatric)
- blunt trauma to 284, 285f
- congenital anomalies 279
- duplication 279–280, 280f
- inflammatory disorders 286, 286f, 287f
- intramural bleeding 287, 287f
- ischaemic bowel disease 288, 288f
- neonatal, ultrasound 395
- non-inflammatory disorders 287–289, 287f, 288f
normal thickness 274
paediatric ultrasound
examination technique 273
indications 272
normal findings 273–274, 273f, 274f, 275f
pathological findings 275–289
preparation 272
perforation 285f
vomiting 282–284
wall, normal 273, 273f
Digital extensor apparatus 429, 430f
Dizygotic twin pregnancies see Twin pregnancies, dizygotic
Dolichocephaly 81
Doppler effect 119, 119f
Doppler frequency 119, 120
pulse repetition 120
Doppler shift data 120, 122
Doppler transducer 119, 119f, 120
Doppler ultrasound
aliasing effect 120–121
colour flow imaging see Colour Doppler
continuous wave 120
dometrial carcinoma 157f
flow waveform analysis 121–122, 122f
intrauterine growth restriction 56
magnitude of signal 120
modes 121–122
paediatric
adrenal neuroblastoma 311
appendicitis 276
liver and biliary tract 230
premature brain 364, 365
scrotum examination 333
power Doppler see Power Doppler
practice 120–121
principles 119–120, 119f
pulsed wave see Pulsed Doppler
spectral see Spectral Doppler
use in obstetrics 118–129
fetal hypoxaemia prediction (cerebral artery) 124–125, 125t
fetal hypoxaemia prediction (venous Doppler) 126–127, 127t
placental function assessment (umbilical artery) 122–124, 124t
recommendations for 127
reporting recommendations (by trimester) 128–129
venous 56, 126–127
Dorsal dermal sinus 381
Double decidual sac 13, 24
Double-bubble sign 106, 108f, 396, 396f
Douglas, pouch of
fluid 167, 175, 175f, 177f, 186
intussusception 276
Drawing manoeuvre 450, 450f
Ductus venosus 122, 126, 127
fetal hypoxaemia 57, 58, 59f, 126
normal flow waveform 59f
pulsatility index 61, 126–127, 127t
reversal of blood flow 57–58, 59f, 126
Duodenal atresia 106, 108f, 396
Duodenal bulb, dilated 396, 396f
Duodenal diaphragm 396, 397, 397f
Duodenal dilatation 397
Duodenal duplication, obstructive 396
Duodenal duplication cyst 280, 280f
Duodenal haematoma 285f
Duodenal obstruction (neonatal) 395–400
causes, frequency, features 396
intrinsic (atresia, stenosis) 395–397
malrotation complication 396, 398–400, 399f, 400f
Duodenal stenosis 396
Duodenojejunal flexure 398
Duplication cyst 279–280, 280f
Dupuytren contracture 462
Duret crests 195, 220

[E]

Ebstein anomaly 102, 103f
Eccentric contraction of muscle 451
Echinococcus granulosus 242

Echocardiography, fetal 33, 102

Ectopic pregnancy 26, 27f
- concomitant intrauterine pregnancy with 26
- diagnostic accuracy of ultrasound 27
- differential diagnosis 27
- direct and indirect signs 27
- in girls 331
- incidence and risk factors 26
- interstitial 27f
- pseudogestational sac 23–24, 27
- tubal 26, 28f

Elastography, breast 202

Elbow
- muscles 422, 423
- synovial bursae 422, 423
- tendons 422–423, 423f, 424f

Embryo 9
- first trimester 15–16
 - size measurement 11–12
- intrauterine sac without 23–24
- linear growth 12
- shape change 16

Embryo–fetal anomalies, first trimester 31–34

Embryogenesis 15–16, 18
- pancreas 266
- spine 379–380, 380f

Embryonal rhabdomyosarcoma of the biliary tree 233, 235f

Embryonal sarcoma, undifferentiated 235, 235f

Embryonic demise 23, 25, 25f, 27f, 29

Embryonic disc 15–16

Embryonic splitting 18–19

Encephalomeningocele 92

Encephalopathy, anoxic–ischaemic 371, 371f

End-diastolic flow
- intrauterine growth restriction 58, 58f, 124–125
- peak systolic velocity ratio 57, 58
- reduced/reverse 59f, 124, 126
- intrauterine growth restriction 57, 57f, 58, 58f, 124–125

End-diastolic velocity, middle cerebral artery Doppler waveform 124–125
- chronic hypoxia effect 124
- factors affecting 123, 125
- velocity, umbilical artery Doppler waveform 123, 124
- absent, perinatal mortality 126
- reduced 124

Endocervical canal 174f
- widening 73

Endometrial carcinoma 156–158, 157f, 158f
- differential diagnosis 158
- recurrences 161, 162f

Endometrial disease, benign 148–152

Endometrial hyperplasia 149–150, 149f

Endometrial polyps 150, 150f, 151f

Endometrial–myometrial junction 140, 148, 150, 154, 155f
- in endometrial carcinoma 156, 157f

Endometriotic cysts 170, 170f

Endometritis 148, 149f

Endometrium 139, 140
- adhesions (synechiae) 152
- atrophic 140
- cystic atrophy 151
- factors affecting appearance 148
- increased thickness in disease 148
- hyperplasia 149–150, 149f
- neoplasms 156
- postmenopausal state 140, 156
- stroma, in myometrium 154–155, 155f
- stromal proliferation 149–150, 149f
- tamoxifen effect 150, 151–152
- thickness changes in menstrual cycle 140, 140t, 141f, 315
- in tuberculosis 148
- tumours 156–158

Endomysium 451, 452

Endotendon 409

Entamoeba histolytica 242

Enterocolitis, necrotizing 288, 288f

Entheses 410, 411f
Enuresis 314
Ependymal cyst 379f
Epicondylitis 423
Epidermoid cysts 392
spleenic 261, 261f
Epididymal head, normal 333, 334f
Epiddymis (paediatric)
malignant tumours 340
normal 333, 334f
Epimysium 451, 452, 452f
Epiphysis (paediatric)
fracture-separation (neonatal) 387, 388f
normal 384, 384f
Escherichia coli 239, 289, 302
Exomphalos 32
Extensor tendons
fingers 429, 430f
forearm 425f
wrist see Wrist
External os 72f, 174f
Extra-axial fluid 374, 374f
Extrahepatic ducts see Biliary tree (extrahepatic)

Fallopian tubes 174–189
adhesions 177–178, 177f
anatomical segments 174f
carcinoma 186
convoluted, retort-shaped 183, 183f, 184f
diseases 178–189
inflammatory see Tubal inflammatory disease
distal (ampulla) extremity 174, 174f, 175, 175f, 176f, 177f
ectopic pregnancy 26, 28f
hyperechoic septa 178
hysterosalpingo-contrast sonography 186–189
incomplete septum 178, 179f, 183, 183f
inflammation see Tubal inflammatory disease
infundibular section 174, 174f, 175, 175f, 177f
interstitial part 174–175, 174f, 175f
isthmic part 174, 174f, 175
normal 174–176
occlusion 183, 186, 189f
patency 186, 189f
evaluation see Hysterosalpingo-contrast sonography (HyCoSy)
salpingitis with incomplete septa 178, 179f, 183, 183f
spasm 187
tortuous 189f
wall structure/thickness, inflammatory disease 178, 182, 183
Fallot’s tetralogy 105, 105f, 106f
Familial polyposis coli 234
Fasting 230, 272
Fatty deposits, pancreas 267
Fatty liver 245, 245f
Fecaliths 276, 277f
Female pseudohermaphrodism 328, 329f
Femoral head, paediatric abnormalities 385, 386f
Femoral rectum muscle 455f
myositis ossificans 456, 456f
Femur
abnormal shape and hypoplastic 116, 116f
normal 115f
Femur length (fetal)
fetal weight estimation 48, 49f
intrauterine growth restriction diagnosis 55
measurement
second trimester 41, 42f
third trimester 45, 45f, 46, 46f
variability 46
Fetal malformations 89–118
detection, first trimester 18
gastrointestinal tract 106–108, 107f, 108f, 109f
head 90–96, 91f, 92f, 93f, 94f, 95f, 96f
heart 100–106, 101f, 102f, 103f, 104f, 105f, 106f
Fetus in fetu 89
Fetus papyraceus 89
Fibroadenoma 207–208, 208f
differential diagnosis 208
Fibroadipose septa 451, 453
Fibrocartilage 410, 411f
Fibrocystic changes, breast 211–212, 212f
Fibrocystic mastopathy 211, 212f
Fibroids (uterine) 152–154
calciﬁed 151f, 152
changes in size, factors affecting 152
intramural 153, 154f
pedunculated 153
submucosal 153, 153f, 154f
subserosal 12f, 153
Fibrolipoadenoma 213, 213f
Fibroma, ovarian 172
Fibromatosis 392
superﬁcial 462, 462f
Fibromatosis colli 351, 352f, 391–392
Fibrosis, muscle rupture complication 455, 455f
Fibrothecoma 172
Filum terminale 379–380, 379f, 380f
thickened, tight syndrome 381, 382f
Fine-needle aspiration, breast 201
Finger(s), tendons 429, 430f, 431f, 432f
extensor apparatus 429, 430f
ﬂexor 429, 431f, 442, 443f, 444
see also Finger pulley systems
tenosynovitis 429, 432f
Finger pulley systems 442–446, 443f
annular pulleys 442, 443, 443f, 444f
A1, thickening 444, 446f
A2, rupture 444, 445f
cruciform pulleys 442, 443, 443f
distance from tendon to cortical bone 444, 444f, 445f
functions 443
indirect signs of lesions 444, 444f
lesions 443, 444, 445f
Flexor retinaculum 425, 426f, 463
 Flexor tendons
fingers see Finger(s), tendons
hands 429, 431f
wrist 425
Fluid, drinking before transabdominal ultrasound 10, 71, 134
Focal nodular hyperplasia 237, 238f
Fontanelle, anterior, examination technique 361, 361f
access diﬃculties 365
normal anatomy 362f
Fontanelle, mastoid 361
Fontanelle, posterior 361, 365
Foot, fetal 115f
Forearm extensors, common tendon examination, normal ﬁndings 425f
tendinopathy 412f, 423
Forearm ﬂexors, common tendon, examination, normal ﬁndings 425f
Foreign body
chronic, inﬂammation 392
soft-tissue 392, 393f
vaginal 324
Fourier spectrum analyser 121
Fractures, occult, in children 387
Frontal bossing 116, 117f
Frontal horns 363f
atrial width 37
bull’s horn conﬁguration 374f
fused 93
Frontal–occipital diameter (fetus)
second trimester 36f
third trimester 44, 44f
Fungal microabscesses, liver 240

[G]

Galactoceole 213, 214f
Galen vein, aneurysm 373
Gall bladder
fetal 106, 107f
paediatric
biliary sludge in 251, 251f, 254f
calciﬁc in 252, 253f
distension (hydrops) 253, 254f
inflammation 252
neonatal hepatitis syndrome 247
normal 231, 232f
small, in biliary atresia 247, 247f
Gall stones 252, 253f
Gastrocnemius muscle, bursa 457, 458f
Gastrointestinal tract see Digestive tract
Gastro-oesophageal reflux 284, 284f
Gastrochisis 32, 34f, 108, 109f
Genitalia, ambiguous 309, 328, 329f, 330f
Genitography 328, 329f, 330f
Germ cell tumours
ovarian see Ovarian tumours
testicular 340, 341t
Germinal matrix haemorrhage 367
subependymal 364
Gestational age
accuracy, crown–rump length measurement 12
calculation, gestational sac diameter 11
at delivery, cervical length and 75
estimation by ultrasound
anamnestic (menstrual) discrepancy 35, 55
crown–rump length relationship 17t
first trimester 9, 11, 12, 14t
guidelines/landmarks 14t
second trimester 35
importance, fetal growth restriction diagnosis 55
umbilical artery Doppler waveform 123
Gestational sac 13, 14f, 24f
absent 23
diameter, measurement 11, 12f
ectopic pregnancy and 26
embryo in, but cardiac activity absent 25
empty 23–25, 25f
gestational age at visualization 13, 23
multiple pregnancies 81
normal growth rate 24
normal vs abnormal 24
spontaneous expulsion 25f
tubal 28f
without embryo or yolk sac 23–24
Gestational trophoblastic disease 29–31, 66–67
see also Hydatidiform mole (molar pregnancy)
Geyser sign 420
Gharbi's classification, hydatid cysts 242, 242f, 243f, 244f, 279, 303
Glenohumeral joint
complete rotator cuff rupture 418
haemorrhage 420, 421f
liquid in 420–421, 421f
Glucose, fetal growth and 53
Gluteus medius tendon 432, 433f
tendinopathy 432, 433f
Gluteus minimus tendon 432, 433f
tendinopathy 432, 433f
Goitre 350
Gonadal dysgenesis 325, 330f
mixed 331
Granuloma, lipophagic 215
Granulosa-cell tumours 172–173
Graves' disease 349
Greater trochanter, painful 432, 433f
Gynaecological ultrasound 133–189
adnexal lesions see Adnexal lesions
artefacts 134
choice of technique 133
Fallopian tubes 174–189
see also Fallopian tubes
normal findings 137–144
ovaries 141–144
uterus 137–141
see also Ovaries; Uterus
pelvic structures 135f, 136f
preparation and techniques 134–137
transabdominal 134–135
transvaginal 133–134, 135–137
uses/indications 133, 163
uterine disorders see Uterus, disorders
Gynaecomastia 216, 216f
dendritic 216, 217f
glandular 216
nodular 216, 216f
Haemangioendothelioma 236–237, 237f
neck 352

Haemangioma 390
capillary 352, 390
cavernous 237
cutaneous 236
liver, in children 237
parotid 352, 352f
placental 66

Haemangiomatosus 146, 323, 323f, 325, 326f

Haematological malignancies
hepatosplenomegaly 264
spleen 260
see also Leukaemia; Lymphoma

Haematoma(s)
bowel 284, 285f
breast 207, 207f
intermuscular 455
intrahepatic 240, 241f
intramural (bowel) 284, 285f
intrauterine 22–23, 22f
perirenal 313f
placental 64
renal parenchymal 313f
renal subcapsular 313f
soft-tissue 392
splenic parenchymal 263, 263f
sternocleidomastoid muscle (fibromatosis
c coli) 351, 352f, 391–392
testicular 341

Haematometra 323

Haematometrocolpos 323, 325

Haemodynamic changes
after intrauterine twin death 87
intrauterine growth restriction 56–58, 57f,
58f, 59f

Haemodynamic distress, severe
(neonates) 372, 372f, 373f

Haemodynamics, neonatal cranial ultrasound 363–364, 364f

Haemoglobinopathy 260

Haemolymphangioma 263
Haemolytic uraemic syndrome 289, 304, 305f

Haemorrhage
adrenal 310, 310f
germinial matrix 364, 367
glenohumeral joint 420, 421f
intraventricular see Intraventricular
haemorrhage
muscle rupture complication 455
premature brain, follow-up 365, 366f
retroplacental 64
subchorionic 22, 22f

Haemosiderin, endometriotic 170, 170f

Haglund deformity 439, 440f

Hamartoma
breast 213, 213f
cystic mesenchymal 237, 238f

Hand
fetal 18f, 115f
second trimester assessment 41, 42f
see also Finger(s), tendons

Harmonic imaging, breast 201–202

Hashimoto disease 349, 349f

Head (embryo) 16, 18f

Head (fetal)
abnormal shape 116
anencephaly 31
biparietal diameter see Biparietal diameter
of head
circumference see Head circumference
first trimester 18f
malformations 90–96, 91f, 92f, 93f, 94f, 95f,
96f
normal 90f
second trimester assessment 35–36, 90
third trimester measurements 43–44, 44f
variability 46

Head circumference (fetal)
fetal weight estimation 48, 49f
intrauterine growth restriction diagnosis 55
measurement
second trimester 35–36, 90f
third trimester 44, 44f
Heart (fetal)
 four-chamber view 100, 101f
 anomalies detected by 102, 103f, 104f
 left outflow 38, 39f, 100, 101f
 malformations see Cardiac anomalies
 outflow tract anomalies 105–106, 105f, 106f
 right outflow 38, 39f, 100, 101f
 three-vessel view 100, 101f
Heart beat, first trimester 16
Heart chambers see Cardiac chambers
Heart rate see Cardiac rate
Heat generation by ultrasound 4–5
Henoch–Schönlein purpura 287, 287f, 342
Hepatic contusions 240, 240f, 241f
Hepatic disorders see under Liver
Hepatic vein (paediatric) 232, 233f
 thrombosis 233–234
Hepatitis 246
 chronic 246
 neonatal see Neonatal hepatitis syndrome
Hepatoblastoma 234, 234f
Hepatocellular carcinoma 234
Hepatomegaly 264
Hepatosplenomegaly 264
Hermaphroditism 328
 true 329–330
Hernia
 hiatus 360
 inguinal scrotal 336
 muscle 456–457, 457f
Heterotopic pregnancies 26
Hilus sign 345, 346f, 391
Hip
 anatomy 432
 bursae 432
 irritable 386
 normal (paediatric) 386f
 septic dislocation 389, 390f
 snapping 434, 434f
 subluxation 385, 386f
Hodgkin lymphoma 260f, 353
 hepatosplenomegaly 264
 Hoffa pad 435, 435f
Hologrosencephaly 31, 32f, 93
 alobar 31, 32f, 93, 94f
 lobar 93
 semilobar 93
Human chorionic gonadotropin (hCG)
 absent intrauterine sac 22
 chorioncarcinoma 31
 ectopic pregnancy diagnosis 26
 spontaneous abortion diagnosis 23
Humerus
 largest tubercle 419f
 irregular outline 420, 420f
 measurement, third trimester 45, 46f
Hyaline membrane disease 366f
HyCoSy see Hysterosalpingo-contrast sonography (HyCoSy)
Hydatid cyst(s) 279
 abdominal masses due to 279
 liver 242, 242f, 243f, 244f, 279
 neck 353
 primary pelvic 331, 332f
 pulmonary 358, 359f
 spleen 262, 262f
 urinary tract 303, 304f
Hydatid disease 242, 262, 303
Hydatid of Morgagni 333
 torsion 340
Hydatidiiform mole (molar pregnancy) 29, 66, 67f
 benign 29, 66
 coexisting fetus with 67
 complete 29, 30f
 differential diagnosis 67
 invasive 31
 partial 29, 30f, 67
 sonographic features 29, 30f, 66–67, 67f
Hydramnios 69, 70
Hydranencephaly 31
Hydrocephalus/hydrocephaly
 first trimester 31, 32f
 macrocephaly due to 91, 92f
 neonates 376
Hydrocoele 337, 337f
 complex 339
Hydrocolpos 323
Hydrometrocolpos 146, 147f, 323
Hydromyelia 381, 382, 382f
Hydronephrosis 112, 113, 113f, 296
evolution, grading system 297
vesico-ureteral reflux causing 296, 298f
Hydropneumothorax 358
Hydrops, fetal 20f, 33f, 108
twin–twin transfusion syndrome and 86
Hydrops, of gall bladder (paediatric) 253, 254f
Hydrosactosalpinx 27
Hydrosalpinx 28f, 179f, 180f, 183, 184f, 185
chronic 184f
Hyperaesthesia, carpal tunnel syndrome 463
Hyperbilirubinaemia, conjugated 246
Hypercholesterolaemia, familial 437
Hyperhydration 134
Hyperperistalsis 401, 401f
Hypertension 314
intracranial 365, 366f
maternal 53
renal origin 314
Hyperthyroidism 350
Hypertrophic pyloric stenosis 283, 283f
Hypogastriac arteries 110f, 134
Hypomineralization of bone 116, 118f
Hypoperistalsis 403
Hypoplastic left heart syndrome 102, 104f
Hypospadias 329f
Hypotelorism 96, 96f
Hypothermia, neonatal 61
Hypothyroidism, infants 348, 348f
Hypoxaemia (fetal)
prediction from middle cerebral artery
124–125, 125t
prediction with venous Doppler 126–127
umbilical venous blood redistribution 126
Hypoxia
fetal 55
neonatal 371, 371f
Hysterosalpingo-contrast sonography
(HyCoSy) 186–189
advantages 188–189
air and saline 186, 187, 188
contrast media 187, 188, 189
criteria for tubal patency 187–188
method 187, 188
results 189f
safety and advantages 188
Hysterosalpingography 186

[I]
Ileocaecal junction 398
Ileocecal obstruction 106, 108f
Ileum, terminal
Crohn disease 286, 286f
obstruction 402–403, 402f
Ileus 276
Imbalanced fetus–fetus transfusion see
Twin–twin transfusion syndrome
Impact syndrome 413
Implantation, intrauterine blood association 22
Infant(s)
gastro-oesophageal reflux 284, 284f
vomiting 282–284
see also Neonates; Paediatric ultrasound
Infantile polycystic kidney 295–296
Infections/infectious diseases (paediatric)
bone/joints 388, 389f, 390f
cerebral, in neonates 375, 375f, 376f
kidneys 302–303, 302f, 303f
neck 353
soft-tissue 393–394, 394f
spinal cord 383
spine 383
spleen 259
urinary tract 302–303, 302f, 303f, 312
Inferior vena cava (fetal) 57, 126
Inferior vena cava (paediatric) 233f
interruption, polysplenia with 257, 257f
Wilms tumour extension 300f
Infertility, female 186, 188
Inflammatory bowel disorders 286, 286f, 287f
Inflammatory disease, tubal see
Tubal inflammatory disease
Informed consent, breast biopsy 201
Infraspinatus tendon 412, 421f
 examination technique 413, 416f
 normal ultrasound findings 416f
Inguinal canal
 delayed obliteration 336
 normal 335
 undescended testes in 336, 336f
Inguinal scrotal hernia 336
Insipissated bile syndrome 251, 251f
Insulinoma 271
Interamniotic septum, thickness 78
Inter-decidual sign 13
Intervertebral defect 102, 103f, 105
Intestinal obstruction (fetal) 106
Intestinal obstruction (neonatal) 395–403
 complications 404–405, 405f
 duodenal see Duodenal obstruction
 malrotation complication 396, 398–400, 399f, 400f
 small bowel 400–403
Intestinal volvulus 398, 399f
Intracranial hypertension 365, 366f
Intraductal papilloma, breast 209, 210f
Intrahepatic vessels/ducts 232, 233f
Intraperitoneal fluid, ectopic pregnancy 27, 28f
Intrauterine blood, first trimester 22–23
Intrauterine death 58
 see also Fetus, death
Intrauterine fetal growth see Fetus, growth and development
Intrauterine fetal growth restriction 47, 53–62
 biometry (ultrasound) 55–56, 56f
 brain-sparing effect 57, 58f, 124–125
 causes 53–54, 54t
definitions 54, 55
 diagnosis 54–55, 55–56, 56f, 61
 future prospects and prevention 62
 haemodynamic modifications 56–58, 57f, 58f, 59f
 incidence 54
 management and delivery planning 59–60
 monitoring strategy 59, 60–61
 multiple pregnancies 83–84
 outcome/prognosis 56, 58, 61
 perinatal and long-term sequelae 61
 symmetric vs asymmetric 54–55, 56f
twin pregnancies 81
Intrauterine fluid collections 22, 152
Intrauterine haematoma 22–23, 22f
Intrauterine sac 23–24, 24f
 see also Gestational sac
Intraventricular haemorrhage
 (paediatric) 364, 365, 366f, 367
 grading 367, 368f
 long-term follow-up 367, 368f
 premature infants 364
Intussusception 275–276, 276f, 287
Ischaemic bowel disease 288, 288f
Ischaemic lesions, neonatal brain see Neonatal cranial ultrasound
Ischaemic–haemorrhagic periventricular infarct 364–365
Ischiopagus 88
Islet-cell tumours 271
Isometric contraction, muscle 451
Isotonic contraction, muscle 451

Jaundice 235, 246, 249
Jejunal obstruction 106, 108f
Jejunoileal atresia 401
Joints (paediatric)
 abnormalities 385–390
 infections 389, 389f, 390f
 normal findings 384
Jugular veins
 normal 344
 thrombosis 353
 see also Internal jugular veins
Jumper’s knee 435
Juvenile dermatomyositis 394
Juvenile rheumatoid arthritis 394

[K]
Kager fat pad 437, 438f, 439, 441f

Kidney(s) (fetal)
 absent 110, 111f
 dysplastic 113, 114f
 ectopic 110
 examination 110
 normal, third trimester 46f, 110, 110f
 polycystic disease 110, 112f
 second trimester 40, 41f, 110
 unilateral multicystic disease 112, 112f
 volume, third trimester 46, 46f

Kidney(s) (paediatric)
 abscesses 303, 303f
 absent (unilateral) 293
 anatomical variants 291, 291f
 calculi 298–299, 298f, 299f
 calyceal diverticula 294, 294f
 calyces 291f
 hydronephrosis evolution and development 297
 central sinus 290, 290f, 291f
 congenital anomalies, screening 314
 cortex 231f, 291, 291f
 neonates 289–290, 290f
 crossed-fused ectopia 293
 cysts see Renal cysts
 duplex 293
 duplication 293
 dysplastic 295, 295f
 ectopic 293
 examination 289
 fetal lobulation persistence 291, 291f
 haematoma 313f
 horseshoe 293, 294f
 hydatid cyst 303, 304f
 infectious/parasitic diseases 302–303, 302f, 303f
 lymphoma 299, 301f
 macrocysts 296
 medullary pyramids 290, 290f, 291
 stones 299, 299f
 multicystic dysplastic 295, 295f
 parenchyma 290, 290f, 303
 parenchymal haematoma 313f
 polycystic disease 295–296, 296f
 scarring 291, 303
 size, children 291–292, 292f
 small 294
 trauma 313, 313f, 314f
 tumours 299, 300f, 301f, 302f
 ultrasound examination see under Urinary tract
 see also entries beginning renal

Knee 435–437, 435f, 436f
 bursae 437, 437f, 458, 458f
 stability 451
Krukenberg tumour 173, 173f

[L]
Labial fusion 329f
Labour induction, prediction of success 71, 75

Laceration(s)
 liver 240, 241f
 pancreas 270, 270f
 spleen 263, 264f
Ladd band 396, 397, 398
Lambda sign 19, 78
Lap-and-dye test 186, 188
Large bowel see Bowel
Lateral epicondylitis 423
Lateral ligament complex (ankle) 447–450, 447f, 448f
 chronic lesions 450, 450f
 direct signs 449
 injuries 448
 lesion classification 449
Lateral ventricles, atrial width 35, 36f, 37, 93
Ledderhose disease 462, 462f
Left internal jugular vein 344, 344f
Left ventricular dilatation 102, 104f
Legg-Calve-Perthes disease 387
Leiomyosarcoma 161
Lemon sign 95f, 96, 98
Leukaemia
 hepatosplenomegaly 264
 metastases, of epididymis 340
 splenomegaly 260
Leukomalacia, periventricular 367, 369f
Ligament(s) 446–450
 normal paediatric findings 384
 structural features 446
Limb buds 16
Limbs (fetal)
 abnormal contractions 118
 hypoplasia 114
 malformations 114, 115f, 116, 116f
 normal 115f
 second trimester assessment 41, 42f
 third trimester measurements 45–46, 45f, 46f
 see also Lower limbs
Limp, in child 386–387
Lipoblastoma 392
Lipoma 392
 spinal 381
Lipomyelocoele 381
Lipomyelomeningocele 381
Liponecrosis 215, 215f
Lipophagic granuloma 215
Lister tubercle 427
Liver (paediatric)
 abscess 239–240
 amoebic 240
 pyogenic 239, 239f
 adenoma 239
 cirrhosis 252
 congenital anomalies 237
 contusions 240, 240f, 241f
 fatty infiltration (steatosis) 245, 245f
 focal nodular hyperplasia 237, 238f
 fractures 240
 haematomas 240, 241f
 hydatid cyst 242, 242f, 243f, 244f, 279
 rupture 242
 lacerations 240, 241f
 measurement 230, 231f
 normal dimensions 230
 non-neoplastic diseases 239–253
 parenchyma
 destruction, cirrhosis 252
 normal 230
 trauma 240, 240f, 241f
 tumours 233–239
 benign 236–239
 metastases 236, 236f
 primary malignant 233–235
 Liver (fetal), size, third trimester 44
 Liver and biliary tract, paediatric ultrasound 229–253
 examination technique 230
 indications 229–230
 normal findings 230–232, 231f, 232f, 233f, 290f, 291f
 pathological findings 233–253
 preparation 230
 see also specific diseases under ‘liver’
Long bones
 fetal malformation 114, 115f, 116, 116f
 see also Femur
Low birth weight 48
Lower limbs
 micromelia 114, 115f
 normal, second trimester 115f
 tendons 432–442
Lung (fetal) 98f
 cystic adenomatoid malformation 98, 99f
 hypoplasia 99, 116
 malformations 98–99, 98f, 99f, 100f
 second trimester assessment 38, 38f
Lung (paediatric)
 abscesses 358–359
 atelectasia 258f
consolidation 358, 359f
hydatid cyst 358, 359f
parenchymal diseases 358–360
tumours 359–360

Lymph nodes (paediatric)
axillary 199, 199f
metastatic carcinoma 225–226, 226f
cervical (neck) 391
inflammation 347, 347f
malignant tumours 353
normal 345, 346f
tuberculosity 347, 348f
intramammary 199, 200f
intraparenchymal, of breast 210, 211f
jugular 347
malignant, appearance 391
mediastinal 359–360
mesenteric 278, 279f
enlarged 281, 281f
para-aortic 281
para-iliac 281
submandibular 347
tuberculosity 347, 348f

Lymphadenitis
cervical 347, 348f
mesenteric 275, 278, 279f

Lymphadenopathy 391
mesenteric 281, 281f

Lymphangioma(s) 391
abdominal masses 279
cervical cystic 353, 353f
cystic (soft-tissue) 391
splenic 262–263
thoracic 356, 356f

Lymphatic vessels, congenital malformations 279, 391

Lymphoma
Burkitt see Burkitt lymphoma
hepatosplenomegaly 264
Hodgkin see Hodgkin lymphoma
non-cystic abdominal masses 281
ovary involvement 331, 332f
renal 299, 301f
splenomegaly 260, 260f
testicular 340–341
see also Non-Hodgkin lymphoma

[M]

Macrocephaly 91, 92f

Macrosomia, fetal 50–51

Magnetic resonance imaging (MRI)
calcaneus tendon rupture 441f
cerebral malformations (neonates) 373
choledochal cyst 250f
embryonal rhabdomyosarcoma of biliary tree 235f
endometrial carcinoma 156–157, 158
lateral ligament complex of ankle, injuries 449
osteomyelitis 388
plantar fasciitis 461
premature brain examination 367, 368
primary pelvic hydatid cyst 332f

Male breast disease 216, 216f
carcinoma 225, 225f

Male pseudohermaphroditism 329–330, 330f

Mammography 193, 218

Mastitis
acute 205–206, 206f
uncomplicated 205, 206f

Mastopathy, fibrocystic 211, 212f

Maternal age 82

Maternal floor infarct 64

Maternal nutrition 53

Mayer-Rokitansky-Küster-Hauser syndrome 146, 325

Mechanical index 5

Meckel-Gruber syndrome 110

Meconium 402
failure to pass 402, 403

Meconium ileus 402–403, 402f, 403f

Meconium peritonitis 404, 405, 405f

Meconium pseudocyst 405, 405f

Medial epicondylitis 423
Median nerve
 compression see Carpal tunnel syndrome hardening 463
 measurement methods 463, 464f, 465
 tapering 463, 465
 thickened 463, 464f, 465
Median nerve compression see Carpal tunnel syndrome hardening 463
Mediastinum, diseases 358–360
masses 359–360
Medullar carcinoma, breast 223, 223f
Medullar is conus see Conus medullaris
Mega cisterna magna 94, 95f
Megacyst 32, 34f
Megacystis-microcolon-intestinal hypoperistalsis syndrome 403, 404f
Megaureter 112, 296
 primary 306, 306f
Melanoma, malignant, metastatic breast lesions 225
Meningitis, neonates 375, 375f
Meningo-encephalocele 31
Meningoencephalocele 31
Menopause/postmenopausal state
 bleeding (postmenopausal) 156
 endometrial thickness 140, 156
 fibroid size and 152
 ovarian follicles and 144, 144f
 ovarian volume 141
 uterine measurements 138
Menstrual age
 crown–rump length measurements and 11–12
 prediction from abdominal circumference 45, 45f
 prediction from biparietal diameter 43–44
 prediction from femur length 46
 prediction from head circumference 44
 ultrasound gestational age discrepancy 35, 55
Menstrual cycle
 congenital anomalies of uterus and 146, 147
 endometrial thickness changes 140, 140t, 141f, 315
 ovarian structural changes 142, 142f, 143
Mesenchymal hamartoma, cystic 237, 238f
Mesenteric cyst 279, 280f
Mesenteric fat 286f
Mesenteric lymphadenitis (adenitis) 275, 278, 279f
Mesenteric lymphadenopathy 281, 281f
 calcifications 281f
Mesenteric vessels
 malrotation of midgut 398, 399, 399f
 normal 397f
Mesomelia 114
Mesotendon 409
Metabolic diseases, hepatosplenomegaly 264
Metaphysis, paediatric 384f, 385f
Microabscess
 fungal, in liver 240
 splenic 260f
Microbubbles 5
Microcephaly 91, 91f
Microcolon 397, 401f, 404f, 405f
 megacystis-microcolon-intestinal hypoperi-
stalsis syndrome 403, 404f
Microlithiasis, testicular 342–343, 342f
Micromelia 114, 115f, 118t
Microphthalmia, unilateral 96, 96f
Midgut herniation 16, 17f
Miscarriage, spontaneous, frequency 21
 fetal loss risk 84
 intrauterine growth restriction 84
 monitoring frequency 82
 stuck twin 84
Monochorionic diamniotic twins see Twin pregnancies, monoamniotic
Monochorionic monoamniotic twins 18, 78, 79f, 80, 85f
Monochorionic pregnancy 18, 19, 33, 76, 78
 complications 84–87
 fetal loss risk 84
 intrauterine growth restriction 84
 monitoring frequency 82
 stuck twin 84
Molar pregnancy see Hydatidiform mole (molar pregnancy)
Monoamniotic twins see Twin pregnancies, monoamniotic
Monochorionic diamniotic twins 18, 78, 79f, 80, 85f
Monochorionic monoamniotic twins 18, 78, 87, 88
Monochorionic pregnancy 18, 19, 33, 76, 78
 complications 84–87
 fetal loss risk 84
 intrauterine growth restriction 84
 monitoring frequency 82
 stuck twin 84
twin death, and outcome for surviving twin
87–88

twin reversed arterial perfusion sequence 88

twin–twin transfusion syndrome 84

Monozygotic twins see Twin pregnancies, monozygotic

Morton neuroma 459, 460f

Mucinous carcinoma, breast 222, 222f

Müllerian agenesis/hypoplasia 325

Müllerian duct 176

anomalies 146, 325

Multicystic dysplastic kidneys 295, 295f

Multicystic kidney disease (fetal) 112, 112f

Multilocular cystic nephroma 299, 302f

Multiple pregnancies 76–89

amniotic fluid volume 70
cervical length 73
diagnosis 76–77
fetal and maternal risks 76
fetal growth and weight 81
first trimester 78, 79f, 80, 80f, 81

aims of/indications for ultrasound 76, 77
incidence 76
indications for ultrasound 76–77
monitoring frequency 82
normal findings 77–81
pathological findings 82–89
congenital anomalies 82–83
fetal growth differences 83, 84
intrauterine growth restriction 83–84
intrauterine twin death 86, 87–88
monochorionicity complications 84–87
twin reversed arterial perfusion sequence 88
preparation for ultrasound 77
second trimester 81

aims of ultrasound 77
see also Twin pregnancies
Murphy sign 253

Muscle 451–457
contractions 451
cyst 455, 456f

ggrading of lesions 452, 453, 453t

hermia 456–457, 457f

normal architecture 451, 452f

regeneration 453, 454f

ruptures 451–455

acute complications 455

chronic complications 455–457

complete 453t, 454f

partial 453t, 454f

ultrasound findings 452

stretching injury 452, 453f, 453t

structure and composition 451, 452f

trauma 451, 452, 453

post-trauma evaluation 452

types 451

Musculoskeletal system 409–465

disorders 457–465

foreign bodies 392, 393f

paediatric ultrasound 383–394

bones and joints 385–390

examination technique 383–384

indications 383

infections 388, 389f

normal findings 384, 384f, 385f

pathological findings 385–394

soft-tissues see Soft-tissue abnormalities (paediatric)

trauma 387

see also Ligament(s); Muscle; Tendon(s)

Musculo-tendinous junction 409, 454f

Musculo-tendinous units 410, 411

Myelocele 380

Myelomeningocele 380

Myomas see Fibroids (uterine)

Myometrium 139–140

benign disease 152–155

adenomyosis 154–155, 155f

fibroids see Fibroids

invasion, endometrial carcinoma 156

involvement in cervical carcinoma 160

placental villi invading 66

Myositis ossificans 455–456, 456f
Naboth cysts 140
Naked tuberosity sign 422, 422f
Nasal bone (fetal)
absent 20, 21
examination 21
normal 20f
visualization, gestational age 21
Neck (paediatric) 343–353
congenital cystic malformations 346, 347f
infectious and parasitic diseases 353
lymph nodes
abnormal 347, 391
normal 345, 346f
lymphadenitis 347, 348f
midline cyst 346, 347f
muscles, normal 345
normal anatomy 343, 344f
paediatric ultrasound
examination technique 343
indications 343
normal findings 343–346, 344f, 345f, 346f
pathological findings 346–353
trauma 351, 352f
tumours 352–353
benign 352–353, 352f, 353f
malignant 353
see also specific anatomical structures
Necrotizing enterocolitis 288, 288f
Neisseria gonorrhoeae 327
Neonatal cranial ultrasound 360–376
arterial blood flow 363–364, 364f
arterial/venous structures 361
examination technique 360–361
indications and preparation 360
normal findings 361–364
anatomical structures 361, 362f
haemodynamics 363–364, 364f
normal variants 363, 363f
pathological findings 364–376
brain tumours 376
cerebral malformations 373, 374f
extra-axial fluid 374, 374f
infections 375, 375f, 376f
ischaemic lesions 369–372, 370f, 371f
premature brain see Brain, premature
Neonatal hepatitis syndrome 246, 248
biliary atresia vs 246, 247
Neonates
adrenal glands (normal) 309, 309f
adrenal haemorrhage 310, 310f
anoxic–ischaemic encephalopathy 371, 371f
arterial ischaemic infarct 371, 371f
bone and joint abnormalities 385–386, 386f,
387, 387f
enlarged thyroid gland 350
fibromatosis colli 351, 352f
gonadal dysgenesis 330f
hypothyroidism 348, 348f
intestinal malrotation 396, 398–400, 399f,
400f
intestinal obstruction see Intestinal obstruc-
tion (neonatal)
ischaemic lesions 369–372, 370f, 371f
kidney, normal 289–290, 290f
necrotizing enterocolitis 288, 288f
neurological distress 372, 373f
ovaries 317, 318f
pancreas, normal 265
renal vein thrombosis 304
severe haemodynamic distress 372,
372f, 373f
superior sagittal sinus thrombosis 371, 372f
teratoma of neck 353
testicular torsion 339, 339f
thyroid diseases 348f
uterine masses 323
uterus 315, 316f
vomiting 396, 398
Nephroblastoma (Wilms tumour) 299, 300f, 301f
Nephroblastomatosis, focal 301f
Nephrocalcinosis 298–299, 299f
Nephrogenic rests 301f
Nephroma, multilocular cystic 299, 302f
Neural tube defects, screening 96, 98
Neuroblastoma
 adrenal 310–311, 311f
 liver metastases 236, 236f
 medial 310, 311f
Neurofibroma 392
Neuroma, Morton 459, 460f
Nipple 195f, 198, 199f
 adenoma 214
 bleeding, male breast carcinoma 225, 225f
 normal anatomy 195, 195f, 198, 199f
 Paget disease 221
Non-Hodgkin lymphoma
 abdominal mass 282f
 cervical lymph nodes 353
 metastases, of epididymis 340
 ovary involvement 331
 see also Lymphoma
Nonthermal biological effects 5
Nuchal translucency thickness 20
 abnormal/increased 20, 20f
 cardiac defects and 33
 trisomy 21 33f
 measurement 20, 20f
 method 21
 upper limit 20
 normal 20f
 twin pregnancies 83

[O]

Obstetrics scanning 9–129
 Doppler, use see Doppler
 first trimester 9–34
 abortion see Abortion (spontaneous)
 aneuploidy screening 20–21
 conditions diagnosed by 9–10
 definition 9
 ectopic pregnancy see Ectopic pregnancy
 embryo–fetal anomalies 31–34
 end-points 11–13
 examination technique 10–13
 gestational trophoblastic disease see
 Gestational trophoblastic disease
 indications and purposes 9–10
 intrauterine blood 22–23
 normal findings 13–19
 pathological findings 21–34
 preparation 10, 77
 reporting recommendations 128
 twin pregnancies 18–19, 77
 heating induced by 4
 second trimester 35–43
 amniotic fluid volume 42
 fetal morphology see under Fetus
 gestational age estimation 35
 indications 35
 placenta 42, 43f
 reporting recommendations 128–129
 third trimester 43–53
 amniotic fluid 47, 47f
 fetal biometry see Fetus, biometric parameters
 fetal weight estimation 48, 49t
 indications 51–53
 macrosomia 50–51
 placenta accreta 52–53, 52f
 placenta praevia 51–52
 reporting recommendations 129
 Occipital cephalocele 32f
 Oedema, ankle 450
 Oesophagus
 abdominal
 bubbling fluid in 284, 284f
 normal 273, 274f
 atresia 106, 107f
 cervical, normal 273, 274f, 344f
 dilated (proximal) 107f
 Oligohydramnios 42, 56, 69
 bilateral renal agenesis 110, 111f
 definition, amniotic fluid volume 69, 70
 monochorionic, diamniotic twins 84, 85f
 multiple pregnancies 70
 Omental cyst 279
 Omphalocele 32, 34f, 108, 109f
Omphalomesenteric duct 14
Omphalopagus 88
Orbits, measurement (fetal) 36, 37, 37f, 90
Orchiepididymitis 340
Osgood-Schlatter disease 387, 435, 436f
Ossification centre 385, 385f
Osteogenesis imperfecta 116, 118f
Osteomyelitis (paediatric) 388, 389f
acute haematogenous 388
Ovarian carcinoma 171
Ovarian cystadenomas, serous and mucous 321, 322f
Ovarian cysts 163f, 169–170
contents 166, 166f
endometriotic 170, 170f
functional 319–320, 319f
adnexal torsion associated 327f
haemorrhagic 320, 320f
neonates/children/adolescents 319–320, 319f
septa 164, 165f
solid papillary projections 164, 165f
types 163, 164t
unilocular 164t, 169
Ovarian fibromas 172
Ovarian follicles 142, 168
central precocious puberty 324f
cysts, autonomous 324
dominant 142, 142f, 143
menopause and 144, 144f
microcystic, in children 317, 318f
microfollicles 145f
multifollicular ovaries 142, 142f, 145
neonatal 317, 318f
polycystic ovary syndrome 144
Ovarian masses 164
acoustic shadows 166, 167f
benign/malignant rules for prediction 167, 168t
children/adolescents 319–323
benign neoplasms 321, 322f
cysts 319–321, 320f, 321f
malignant neoplasms 323
classification 163–168
cystic contents 166, 166f
functional lesions 168
malignant see Ovarian tumours
morphology 163, 164t, 167
physiological structures vs 168
septum/septa 164, 165f
solid papillary projections 164, 165f
specific diagnosis 168
vascularization 167
see also Ovarian cysts; Ovarian tumours
Ovarian parenchyma 169
Ovarian teratoma, mature 321, 322f
Ovarian tumours
benign, in children 321, 322f
borderline 170
mucinous 170, 171f
serous 170, 171f
carcinoma 171
germinal 171–172, 323
benign 171–172
malignant 172
malignant
children 323
prediction, rules for 167, 168t
risk factors 167
metastatic 173
stromal 172–173
tubal inflammatory disease vs 185–186
Ovaries
in acute salpingitis 180, 181f, 182
in congenital adrenal hyperplasia 328
cortex 142, 144
development 146
dysfunction 144–145
epithelium 169
benign neoformations 169–170
borderline transformations 170–171
invasive carcinomas 171
germinal cells 169
herniation 331, 331f
landmarks for transabdominal ultrasound 134
lymphoma involving 331, 332f
medulla 142
micropolycystic 145f
multifollicular 142, 142f, 145
normal ultrasound findings 141–144, 168, 169f
anatomy 141
changes in menstrual cycle 142, 142f, 143
children 317, 318f, 319f
measurements 141, 163f
structural features 142–144
pelvic inflammatory disease involving 180, 181f, 182
polycystic 144–145, 321, 321f
size 317
stroma 169
stromal volume 145
torsion 326, 327f
transabdominal ultrasound 134, 135f, 137
transvaginal ultrasound 135f
volume 141
neonatal/children 317, 318f
polycystic ovary syndrome 145
at puberty 317, 319f
Ovulation 142, 143, 183
Oxygen, fetal growth and 53
fetal growth restriction and 53, 57, 124–125, 126

Paediatric ultrasound 229–405
chest 354–360
digestive tract 272–314
liver and biliary tract 229–253
musculoskeletal system 383–394
neck 343–353
neonatal cranial see Neonatal cranial ultrasound
pancreas 264–272
pelvis 314–331
scrotum 333–343
spine 377–383
spleen 254–264
urinary tract and retroperitoneum 289–314
see also individual anatomical structures
Paget disease of nipple 221
Palmar fibromatosis 462
Pampiniform plexus, dilatation of veins 338, 338f
Pancreas (paediatric) 264–272
abscess 267
anatomical compartments 265, 266f
calcifications 245f
choledochal cyst and 249
congenital short 267
congenital/developmental anomalies 266–267
cystic fibrosis 267
development 266
dimensions 265
enlarged, acute pancreatitis 267, 267f
fracture 271f
laceration 270, 270f
lipomatosis 267
paediatric ultrasound 264–272
examination technique 265
indications 264
normal findings 265, 265f, 266f
pathological findings 266–272
preparation 264
parenchyma 265, 270f
atrophic 270f
trauma 267, 269f, 270, 271f
tumours 271–272
cystic 271–272, 272f
endocrine 271
exocrine 271
Pancreas anular 267
Pancreas divisum 267
Pancreatic duct
dilatation 270f, 285f
paediatric, normal 265, 266f
Pancreatic pseudocyst 267, 268f, 271f
Pancreatitis
acute 267–268
causes 267, 270
complications 267
chronic 269, 270f
hereditary 269
Pancreatoblastoma 271
Papilloma, intraductal (breast) 209, 210f
Paraesthesia, carpal tunnel syndrome 462, 463
Paraovarian cysts 173–174, 176, 176f
children 321
Parasitic infections
abdominal masses 279
neck 353
urinary tract 302–303, 302f, 303f
see also Hydatid cyst(s)
Paratendinitis 439
calcaneus 439, 441f
Paratenon 409, 437
inflammation 439
Paratesticular rhabdomyosarcoma 340
Parathyroid glands
adenoma 351
hyperplastic 351
normal 345
Paratubal cysts 176, 177, 177f
Parotid glands
haemangioma 352, 352f
normal 346
Parotiditis 351
Patellar tendon 435, 435f, 436f
Pectoral muscle 195f, 198
Pelvic abscess 180
Pelvic fluid 177, 177f
Pelvic hydatid cyst, primary 331, 332f
Pelvic inflammatory disease
in girls 327–328, 328f
see also Tubal inflammatory disease
Pelvic masses 331, 331f, 332f
Pelvic ultrasound, polycystic ovary
syndrome 144–145
Pelvis (paediatric ultrasound) 314–331
examination technique 315
indications 314–315
normal findings 315–318, 316f, 317f, 318f, 319f
pathological findings 319–331
adnexal torsion 326, 327f
intersex states 328–331, 329f, 330f
ovarian masses see Ovarian masses
pelvic inflammatory disease 327–328, 328f
pelvic masses 331, 331f, 332f
prepubertal bleeding 324
puberty disorders 324–326
uterine masses 323
preparation 315
Pelvi-ureteric junction syndrome 296, 297f
Pepper syndrome 311
Per-appendiceal abscess 278f, 328f
Pericolonic fat 287f
Perimyssium 451, 452, 452f
Peripancreatic fat 267
Peripancreatic fluid 270, 271f
Peripheral vascular resistance, intrauterine
growth restriction 57, 124
Perirenal fluid collection 313, 314f
Peritendinitis 439
Peritendinous fluid 444
Peritoneal carcinomatosis 186
Peritoneal inclusion cyst 178, 180
Peritoneal pseudocysts 174
Peritoneal tuberculosis 281f
Peritonitis, meconium 404, 405, 405f
Periventricular hyperechogenicity
363, 364–365, 366, 369f
Periventricular infarct, ischaemic–
haemorrhagic 364–365
Periventricular leukomalacia 367, 369f
Peyronie disease 462
pH test 284
Phaeochromocytoma 314
Phleboliths 391f
Phyllodes tumour 209, 209f
Placenta 62–67
abnormalities 51–53, 62–63
adherence to uterus (placenta accreta)
52–53, 52f, 65–66, 66f
assessment, second trimester 42, 43f
calcifications 63
preparation 315
changes during pregnancy 62
 first trimester 15
 second trimester 42, 43f
 third trimester 51
chorioallantoic 122
cystic degeneration 30f
cysts 63, 63f
development 123
defetal growth restriction due to 53, 55
focal lesions 63
functional assessment, by Doppler 122–124
growth rate 53
haematomas 64
hydropic degeneration 29
infarction 62, 64
lacunae 52, 52f, 62
localization 35, 35f
location, internal cervical os, distance 52, 56, 70, 71f
low-lying 51–52, 70
mono-/dichorionic 76
size, thickness and volume 62
spontaneous expulsion (first trimester) 25f
tumours 66–67
umbilical cord insertion 68
vascular abnormalities 64
vascular resistance 123, 124, 126
villi 123
Placenta accreta 52–53, 52f, 65–66, 66f
Placenta bilobata 62, 63f
Placenta bipartita 62, 63f
Placenta circummarginata 62–63
Placenta circumvallata 62, 63
Placenta increta 65–66
Placenta percreta 65–66
Placenta praevia 51–52, 64–65, 65f, 70, 71f
diagnosis 65
low-lying 51, 65
total, partial, marginal 64
Placenta succenturiata 62
Placental abruption 64
Placental edge, internal cervical os, distance 52, 56, 65, 70, 71f
Placental insufficiency 47, 56, 122
classification 124
detection by Doppler ultrasound 122
haemodynamic changes, phases 57–58, 126–127
see also End-diastolic flow
Placental pseudomole 29
Plantar fascia 460, 461f
microruptures 460
normal 461, 461f
Plantar fasciitis 460–461, 461f
Plantar fibromatosis 462, 462f
Plasmodium falciparum 259
Pleura, normal 354
normal findings, breast ultrasound 195f, 196f, 198
Pleural effusion 258f
fetal 99, 99f
paediatric 357, 357f, 358f
complicated 358f
simple 357, 357f
Pneumatosis intestinalis 288, 288f
Pneumoblastoma 359
Pneumococcus meningitis 375, 375f
Pneumonia 358–359
Pneumothorax 358
Polychorionic pregnancy 18
Polycystic kidney disease
 autosomal dominant 296
 autosomal recessive 295–296
 fetal 110, 112f
 neonates and children 295–296, 296f
Polycystic ovary syndrome 144–145
 children 321, 321f
Polyhydramnios 42
gastrointestinal anomalies associated 106
monochorionic, diamniotic twins 84, 85f, 86f
twin pregnancies 81
Polyps, endometrial 150, 150f, 151f
Polysplenia 257, 257f, 258f
Popliteal cyst 392
Porta hepatitis, cystic mass in region of 249
Portal hypertension 259
Portal vein (fetal)
second trimester 40, 40f
third trimester 44
Portal vein (paediatric) 232, 232f, 233f
biliary atresia 247, 247f
diameter 232, 233f
gas 288, 288f
thrombosis 233–234
velocity, in biliary atresia 248
Portal vein (fetal) second trimester 40, 40f
third trimester 44
Portal vein (paediatric) 232, 232f, 233f
biliary atresia 247, 247f
diameter 232, 233f
gas 288, 288f
thrombosis 233–234
velocity, in biliary atresia 248

Positioning of patient
breast ultrasound 193–194
child, examination
chest 354
liver and biliary tract 230
neck 343
pelvic 315
spinal 377
urinary tract 265
gynaecological ultrasound 136
obstetric ultrasound 10
Posterior fossa, neonatal, examination 360, 361
Posterior talofibular ligament 448
Postmenopausal bleeding 156
Postmenopausal women see Menopause/postmenopausal state
Power Doppler 121
fibroids 154f
tubal patency evaluation 187
Precocious pseudopuberty 324
Precocious puberty 324
Pre-eclampsia 29
Pregnancy
dating see Gestational age
fetal and maternal risks 76
molar see Hydatidiform mole (molar pregnancy)
multiple see Multiple pregnancies
outcome, intrauterine haematoma 22–23
screening in see Obstetrics scanning
Premature infants, brain see Brain, premature
Prepatellar bursitis 437f
Prepubertal bleeding 324
Preterm birth
cervical changes 73–74, 74f
cervical length as predictor 73, 82
prediction after cervical cerclage 74–75
Preterm birth weight 48
Preterm infants, brain see Brain, premature
Preterm labour 48, 70
risk, cervical evaluation indication 70, 71
Probes see Transducers
Proteus meningitis 375, 375f
Prune belly syndrome 307
Pseudoaneurysms
hepatic 240
pancreatic 267
Pseudocyst
meconium 405, 405f
pancreatic 267, 268f, 271f
peritoneal 174
Pseudogestational sac 23–24, 27, 28f, 148
Pseudogynaecomastia 216
Pseudohermaphroditism
female 328, 329f
male 329–330, 330f
Psychological effects of routine ultrasound 51
Puberty, disorders 324–326
precocious 324
Pulmonary artery (fetal) 100, 101f
dilatation 105, 106, 106f
transposition of great vessels 105, 105f
Pulmonary atresia 106
Pulmonary consolidation 358, 359f
Pulmonary sequestration (fetal) 98
Pulsatility index (PI) 121–122
ductus venosus 126–127, 127t
middle cerebral artery 124, 125t
umbilical arteries 124, 124t
Pulsed Doppler 120, 121
corpus luteum 143f
disadvantage (aliasing) 120–121
gynaecological examination 137f
parotid haemangioma 352, 352f
premature brain, examination 365, 366f
umbilical artery waveforms 123
Pulsed spectral Doppler ultrasound, heating induced by 4–5

Pyelonephritis
 acute bacterial 302, 302f
 chronic 303, 304f

Pygopagus 88

Pyloric canal 283

Pyloric muscle 283

Pyloric stenosis, hypertrophic 283, 283f

Pylorus, normal 274, 275f

Pyometra 148

Pyosalpinx 183, 327

[Q]

Quadruplet pregnancy 19f

Quervain subacute thyroiditis 349

[R]

Racial effects, dizygotic twins 76

Rectum, normal 275f

Regional enteritis 286, 286f

Renal abscesses 303, 303f

Renal agenesis
 bilateral 110, 111f, 293
 unilateral 110, 111f, 293

Renal arteries 111f
 infarction 305
 resistive index 292

Renal calculi 298–299, 298f

Renal calyces 291f, 297

Renal cortex see Kidney(s) (paediatric)

Renal cysts 295f, 296f
 polycystic disease 295, 296, 296f
 simple 294

Renal duplication 293

Renal dysplasia 113, 114f

Renal fracture 313, 313f

Renal lymphoma 299, 301f

Renal pelvis (fetal) 110, 110f, 113f

Renal pelvis (paediatric) 292, 292f
 calculus 298f
 dilatation 296, 297f
 dimensions 292, 292f
 ureteropelvic junction obstruction 297f

Renal pyramids 290, 290f, 291
 calculi 299, 299f

Renal trauma 313, 313f, 314f

Renal tumours 299, 300f, 301f, 302f

Renal vein thrombosis 304–305, 305f
 in Wilms tumour 299

Renal vessels, second trimester assessment 41f

Repetitive stress 410

Reporting recommendations, obstetrical ultrasound 128–129

Resistance/resistive index (RI) 121–122
 anterior cerebral artery 363–364, 364f, 365
 renal arteries 292

Retinaculum 426, 427f
 flexor 425, 426f

Retroareolar ducts, papilloma 210f

Retrocalcanal bursitis 439, 440f

Retromammary fat 198

Retropharyngeal cysts 353

Retroplacental haematoma 64

Rhabdomyolysis 455

Rhabdomyosarcoma 393
 bladder 308, 309f
 embryonal, biliary tree 235, 235f
 paratesticular 340
 vaginal 324

Rhizomelia 114, 118t

Ribs 195f, 198, 198f
 calcification in cartilaginous element 198, 198f
 fractures 357
 normal 354, 355f
Right internal jugular vein 344, 344f
Right ventricle double outlet 105
hypertrophy 102, 104f
Rokitansky nucleus 171–172
Rotator cuff 410, 411f, 412–422
 complete rupture 418–422, 418f
 blood release 419
 direct (primary) signs 418–419
 heterogeneous echogenicity 418–419, 419f
 indirect (secondary) signs 420–422, 420f, 421f
examination technique 413, 413f, 414f, 415f
muscles involved 412
partial ruptures 417, 417f, 420
treatment 422

[S]

Safety of ultrasound 4–6
Sagittal bands 429, 430f
Saline, hysterosalpingo-contrast sonography 186, 187
Salivary gland diseases 351
Salpingitis, acute 179f, 181f
ovary involvement 181f
Santorini duct 266
Sarcoma embryonal, undifferentiated 235, 235f
uterine 161
Schistosomiasis 303
Sclerosing adenosis 212, 212f
Screening ultrasound breast 202
 see also Three-dimensional ultrasound
Scrotum (paediatric ultrasound) 333–343
anatomy 333
examination technique 333
indications 333
normal findings 333–335, 334f, 335f
pathological findings 336–343
 acute scrotum 339–340, 339f, 340f
 hydrocele 337, 337f, 339
 inguinal scrotal hemia 336
 scrotal masses 340–341, 341f
 trauma 341–342, 342f
 varicocele 338, 338f
 see also Testes
 skin thickening 339, 340
Sebaceous cysts, breast 203
Semimembranosus muscle, bursa 457, 458f
Septic arthritis 389, 389f, 390f
Sertoli-Leydig tumours 172–173
Sexual development, secondary
 absent 325
 early 324
Shoulder, impact syndrome 413
Shoulder tendons 412–422
 see also Rotator cuff
Siamese twins 88
Sickle-cell disease 253f, 257, 258
Situs inversus 257f
Skeletal dysplasia 116, 118
Skeletal system, fetal malformations 114–118, 115f, 116f, 117f, 118f
Skin
 breast 196, 196f
 invasive ductal carcinoma 220, 221f
 thickening, of scrotum 339, 340
Skull (fetal)
 abnormal shape 116, 117f
 defects, first trimester 31
 ossification 18
Slater-Harris type 1 injury 387
Slipped femoral capital epiphysis 387
Small bowel
 atresia 400, 401, 401f, 404
gastrochisis (fetal) 32, 34f
meconium ileus and 402–403, 402f, 403f
megacystis-microcolon-intestinal hypoperistalsis syndrome 403, 404f
obstruction 400–403
stenosis 401
 see also entries beginning duodenal
Small-for-gestational age fetus 48, 54, 59
 see also Intrauterine fetal growth restriction
Snapping hip 434, 434f
Soft-tissue abnormalities (paediatric) 390–394
- benign nonvascular lesions 391–392
- infections 393–394, 394f
- inflammatory disorders 394
- malignant tumours 393
- vascular lesions 390–391, 391f
Sonohysterography 148, 186
- endometrial adhesions 152
- endometrial polyps 150
- tamoxifen effect on endometrium 151
Spatial compound imaging, breast 202
Spectral Doppler 121
- multiple pregnancies and fetal weight discordance 83
- pulsed, heating induced by 4–5
Spermatocord 333
- cysts 337, 337f
- normal 335f
Spina bifida 96, 97f, 98
- lipomyelocoele and 381
Spinal canal, hemicords 381, 381f
Spinal cord (paediatric)
- at birth and development 379–380
- diameter 377–378
- indications for ultrasound 377
- normal findings 377–378, 378f
- pulsatile motion 377, 378
- tethered 380
Spinal dysraphism 377, 380
- occult 381
Spine (fetal) 116
- malformations 96–98, 97f
- normal 97f
- second trimester assessment 38, 38f
Spine (paediatric)
- congenital malformations 380–382, 381f, 382f
- infection 383
- lipoma 381
- neoplasms 383
- paediatric ultrasound 377–383
- examination technique 377
- indications 377
- normal findings 377–380, 378f, 379f, 380f
- pathological findings 380–383, 381f, 382f
- trauma 383
Spiral arteries 123
Spleen (children/infant) 254–264
- accessory 256–257, 256f
- angiomata 261, 262f
- anomalies of form, number, position 256–258, 256f, 257f, 258f
- anomalies of size 258–260, 258f, 259f
- atrophy 257, 258, 258f
- bacterial sepsis 260
- calcifications 260f, 261
- congenital anomalies 261, 262
- contusion 263, 263f
- ectopic 257
- epidermoid cysts 261, 261f
- focal lesions 260–263
- fungal sepsis 260
- haematological malignancies 260
- hydatid cyst 262, 262f
- infarction 258, 258f
- laceration 263, 264f
- lobulation 256, 256f
- lymphangioma 262–263
- mobile 257
- paediatric ultrasound 254–264
- examination 254
- indications 254
- normal findings 255, 255f
- pathological findings 256–264
- parasitic infections 259
- parenchyma 256, 260f
- parenchymal haematoma 263, 263f
- polysplenia 257, 257f, 258f
- size (normal) 255, 255f
Tendinopathies 409, 412, 412f
- calcaneus (Achilles) tendon 439, 439f
- gluteus medius/minimum tendons 432, 433f
- patellar tendon 436f
- supraspinal tendon rupture 419, 420f

Tendinosis 410, 452

Tendinous xanthoma 437, 438f

Tendon(s)
- avascular 409
- biomechanics and function 409
calcifications 412
composition 409
degeneration 410, 412
eccentric contraction 410
increased thickness 412
lower limbs 432–442
normal ultrasound findings 410–412, 410f, 411f
children/infants 384
repetitive stress 410
rupture 410, 452
rotator cuff see Rotator cuff
temperature 410
thickness, rotator cuff 412
upper limbs 412–431
vascular 409
vascularization 409

Tenosynovitis
- De Quervain 426, 428f
- fingers and hand 429, 432f
- wrist 426, 428, 429f

Teratoma
- benign testicular 341f
- brain 92f
cystic (ovarian) 171–172
mature ovarian, in girls 321, 322f
neck 346, 353

Teres minor, tendon 412, 416f
Teres minor muscle 421f

Testes
- anomalies of descent 336
- benign teratoma 341f
descent 336
fracture 341, 342f
haematoma 341
infarction 339
involvement in systemic disease 342–343
lymphoma 340–341
microlithiasis 342–343, 342f
paediatric ultrasound
age-related changes 333
height, weight and length 335
normal 333, 334f
vascular anatomy 333, 335f
torsion 339, 339f
chronic 339, 340f
extravaginal, in neonate 339, 339f
trauma 341–342, 342f
tumours 340–341, 341f
classification 341t
germ cell 341t
non-germ cell 341t
undescended 336, 336f
male pseudohermaphrodism 329, 330f
see also Scrotum (paediatric ultrasound)

Testicular appendages 333
Testicular mediastinum 333
normal 334f
Tetralogy of Fallot 105, 105f, 106f
Tetraploidy 29
Thanatophoric dysplasia 116, 117f
Theca lutein cysts 29, 30f, 67
Thoracopagus 88
Three-dimensional ultrasound
- breast 202
- fetal macrosomia prediction 51
- uterine anomalies 147

Thrombosis
- hepatic vein 233–234
- jugular veins 353
- renal veins 299, 304–305, 305f
- superior sagittal sinus 371, 372f

Thumb, pulley system 442–443
Thymus
 hypertrophy 359
 normal 354–355, 355f
Thyroglossal duct cysts 346, 347f
Thyroid agenesis 348, 348f
Thyroid gland (paediatric) 274f
 age-related size changes 345
 autoimmune disease 349
 benign, halo feature of 350, 350f
 cysts 351
 diseases 348–351
 enlargement (goitre) 350
 focal diseases 350–351
 follicular adenoma 350, 350f
 nodules 351
 normal 344f, 345, 345f
 teratomas in/close 353
 thyroiditis 349, 349f
 tumours (malignant) 351
Thyroiditis (paediatric) 349, 349f
 acute purulent 349
 chronic lymphatic (Hashimoto’s) 349, 349f
Tibia, tuberosity 435
Tibial osteochondrosis 387, 435
Todani classification 249f, 250
Torticollis 352f
Trachea, normal 344f, 345
Tracheo-oesophageal fistula 106
Transabdominal ultrasound
 first trimester 10
 biparietal diameter 13, 13f
 crown–rump length 11
 ectopic pregnancy 27f, 28f
 fetal abnormalities 34f
 gestational sac diameter 11, 13
 hydatidiform moles 30f
 multiple pregnancies 77
 nuchal translucency measurement 20–21
 spontaneous abortion 24, 25f
 twin pregnancy 19f
 yolk sac 14
 gynaecological 133, 134, 135f
cervical carcinoma 159, 160, 160f
cervix, after cervical cerclage 75, 75f
cervix examination 71–72
endometrial carcinoma 157f
fibroids 153f
procedure 134
recurrent neoplasms 161, 162f
see also Ovaries; Uterus
pelvic structures 135f
preparation
 gynaecological studies 134, 135
 obstetrical examination 10, 71
 probes, technical characteristics 10
 technique and position for 10, 11f
 71–72, 134
 third trimester
 placenta praevia 65
 placental position 52
Transcerebellar scanning, second
 trimester 37, 37f, 90f
Transducers
 breast ultrasound 194
 Doppler 119, 119f, 120
 finger pulley system 443
 high-frequency, neonatal cranial ultrasound 360
 musculoskeletal examination (paediatric) 384
 neonatal cranial ultrasound 360
 obstetric screening
 transabdominal 10, 11f
 transvaginal 10, 11f
 scrotum examination 333
 spinal examination 377
 sterilization/cleaning 136
 transabdominal ultrasound 10, 134
 transperineal ultrasound 72
 transvaginal ultrasound 10, 72, 136
Translabial (transperineal) ultrasound,
 technique 71, 72
Transorbital scanning, second trimester 37, 37f, 90f
Transperineal ultrasound, technique 71, 72
Transposition of great vessels 105, 105f
Transrectal ultrasound, gynaecological 134
cervical carcinoma 159, 159f, 160
recurrent neoplasms 161, 162f
Transthalamatic scanning, second trimester 36, 36f, 90f
Transvaginal ultrasound
cervical examination 71, 72–73, 72f
after cervical cerclage 74–75, 75f
cervical carcinoma 159, 159f, 160
recommendations 72–73
first trimester 10
abdominal development 17f
biparietal diameter 13, 13f
crown–rump length 11, 12f
ectopic pregnancy 27f, 28f
fetal abnormalities 34f
gestational sac 14f, 24, 26
gestational sac diameter 11, 12f, 13
head, brain and fingers 18f
hydatidiform moles 30f
multiple pregnancies 77
pregnancy dating 14t
spontaneous abortion 23, 24f
twin pregnancy 19, 19f
umbilical cord and placenta 15, 16f
yolk sac visualization 13–14, 14f
gynaecological 133–134, 135–137, 135f
cervical see above
diapedemial carcinoma 158f
diapedemal polyps 150, 150f, 151f
fibroids 152, 153f, 154f
limitations 137
ovarian masses 163
pelvic inflammatory disease 178
polycystic ovary syndrome 145
procedure 135–137
tubal patency assessment 186, 188
see also Ovaries; Uterus
pelvic structures 136f
preparation 10, 71, 135
probes, technical characteristics 10

Transventricular scanning, second trimester 37, 90f
Trauma
abdominal see Abdominal trauma
(paediatric)
acute pancreatitis due to 267
bowel 284, 285f
finger pulleys 443
liver 240, 240f, 241f
muscle 451, 452, 453
musculoskeletal (children) 387
neck 351, 352f
pancreas 267, 269f, 270, 271f
renal 313, 313f, 314f
scrotal 341–342, 342f
spinal 383
spleen 263, 263f, 264f
Triangular cord sign 247
Tricuspid atresia 102
Tricuspid valve dysplasia 102, 103f
Trigger finger 444, 446f
Triplet pregnancy 19f
Triploidy 29, 67
Trisomy, screening 82–83
Trisomy 13, anomalies associated 31, 93
Trisomy 18, anomalies associated 31, 32, 93
Trisomy 21
cystic hygroma 31, 33f
duodenal atresia/stenosis 396
first trimester, absent nasal bone 21
Trochanteric bursitis 432, 434f
Tubal inflammatory disease 148, 178–186
acute 180, 183, 185
ultrasound image correlation 182
chronic 185
ultrasound image correlation 182
cul-de-sac fluid 182, 183
fluid presence 180
natural course 183–184
ovarian involvement 180
ovarian lesions vs 185–186
sonographic markers 178, 179f, 180, 180f
see also Fallopian tubes

Tubal ring 27, 28f

Tuberculosis

genital 148
peritoneal 281f
splenic microabscesses 260f

Tuberculous lymph nodes 347, 348f

Tubo-ovarian abscess 180, 182, 182f
in girls 327
pathogenesis 183–185
tubo-ovarian complex vs 182–183

Tubo-ovarian complex 180, 181f, 182
tubo-ovarian abscess vs 182–183

Tunica albuginea 339f
normal 334f

Turner syndrome 31, 325, 325f

Twin pregnancies 19f
abortion 24f
acardiac syndrome 88
birth weight 83, 84
genital anomalies 82–83
conjoined twins see Conjoined twins
death of twin 86, 87–88
risk to surviving twin 87
diagnosis, timing 76, 77
dichorionic 19, 19f, 76, 77, 78
first trimester 78
growth and weight discordance 83
management after twin death 87
dichorionic, diamniotic 18, 19, 78, 79f
dizygotic (nonidentical) 18, 67, 76, 78, 80
anomaly risk 82
examination by ultrasound
aims 77
first trimester 18–19, 76, 77
second trimester 77
third trimester 77
growth discordance 83, 84
incidence 76
intrauterine growth restriction 83–84
molar transformation and 67
monitoring frequency 82
monoamniotic 78, 80f
conjoined twins 33, 34f
mortality 87
monochorionic see Monochorionic pregnancy
monochorionic diamniotic 18, 78, 79f, 80, 85f
monochorionic monoamniotic 18, 78, 87, 88
monozygotic (identical) 18, 76, 78, 80
aneuploidy risk 82
conjoined 88
partial hydatidiform mole vs 29
polyhydramnios 81
twin reversed arterial perfusion sequence 88
types 18–19, 76
first trimester determination 78
weight (birth) discordance 83, 84
see also Multiple pregnancies

Twin reversed arterial perfusion sequence 88

Twin–twin transfusion syndrome 81, 82, 84, 85f
antenatal diagnosis 86
death of twin 86, 86f, 87
features and outcome 84, 85f, 86
management 86–87

[U]

Ulcerative colitis 286, 287f

Ulnar artery 424f

Ulnar extensor tendon, of carpus 429f

Ultrasound
adverse effects 4, 5
entertainment/social scanning 4
equipment
neonatal cranial examination 360
tendon examination 412
examination techniques 10–13, 71–72, 134–137
Achilles tendon 438f
brachial biceps long head tendon 413, 413f
brachial biceps tendon 424f
brachial triceps 423f
breast ultrasound 194–195
chest (paediatric) 354
digestive tract (paediatric) 273
forearm tendons 425f
hip tendons 433f
infraspinatus tendon 413, 416f
lateral ligament complex of ankle 447f, 448f
liver and biliary tract (paediatric) 230
Morton neuroma 460f
musculoskeletal (paediatric) 383–384
neck (paediatric) 343
neonatal cranial examination 360–361
pancreatic (paediatric) 265
pelvic (paediatric) 315
plantar fascia 461f
scrotum (paediatric) 333
spinal (paediatric) 377
spleen (paediatric) 254
subscapular tendon 413, 414f
supraspinatus tendon 413, 415f
wrist extensors 427f
see also Transabdominal ultrasound;
Transvaginal ultrasound
flow, images see Doppler ultrasound
frequency
breast ultrasound 194
Doppler signal magnitude 120
gynaecological see Gynaecological ultrasound
heat generation 4–5
mechanical index 5
misdiagnosis risk 4
nonthermal biological effects 5
output display 5, 6
preparation
breast examination 193–194
chest examination (paediatric) 354
digestive tract (paediatric) 272

liver/biliary tract examination
(paediatric) 230
pancreatic ultrasound (paediatric) 264
pelvic examination (paediatric) 315
in pregnancy see Obstetrics scanning
urinary tract examination (paediatric) 289
uterus/ovary studies 134–137
requirements, for safety 5
safety 4–6

Umbilical arteries 67, 68f, 123
Doppler velocimetry 122–124, 127
Doppler waveforms and factors affecting
123, 127
high-risk pregnancy 124
pulsatility index 124, 124t
resistance 56–57, 57f
single artery, abnormality 68
twin reversed arterial perfusion sequence 88

Umbilical cord 15, 67–68
abnormalities 68
blood vessels 67, 68f
diameter 67
first trimester 15, 67
insertion into placenta 68
length 67–68
second trimester 43f
twisting 87
velamentous insertion 68f

Umbilical vein 67, 107f, 126
blood redistribution to ductus venosus
57, 126
pulsations 58, 126
third trimester 44
twin reversed arterial perfusion sequence 88

Umbilical-placental vascular resistance 123
Uniparental disomy 29

Upper limb
normal, second trimester 115f
second trimester assessment 41, 42f
tendons 412–431
Urachal abnormalities 306
Urachal cyst 306, 307f
Ureter (fetal), dilated 112, 113f
Ureter (paediatric)
 dilatation 306, 306f
 ectopic 306
 enlarged 296
 intravesical segment, cystic dilatation 306
 stones 298, 298f
Ureteroceole 306
 bilateral 307
Ureteropelvic junction obstruction 296, 297f
 fetal 297f
Ureteropelvic stenosis 112
Ureteroplacental arteries 123
Ureterovaginal anomalies 325
Urethra
 abnormalities (paediatric) 307
 dilatation (fetal) 113, 114f
 normal (paediatric) 292
 stones 307–308
Urethral atresia 112
Urethral valves 112, 113, 114f
 posterior 307, 308f
Urinary tract (fetal)
 malformations 110–113, 110f, 111f, 112f, 113f, 114f
 ureteropelvic junction obstruction 297f
 morphology, second trimester 40, 41f
 obstruction 112, 113f
Urinary tract (paediatric)
 anomalies detected antenatally, confirmation 312
 dilatation, hydatid disease 303
 hydatid disease 303
 infections, imaging protocol 312
 lower, anomalies 306–309
 paediatric ultrasound 289–314
 examination technique 289
 features to be established 312
 indications 289
 normal findings 289–292, 290f, 291f, 292f
 pathological findings 293–314
 preparation 289
 upper, anomalies 293–305
 calculi and nephrocalcinosis 298–299, 298f, 299f
 congenital anomalies 293–297
 congenital anomaly screening 314
 infectious/parasitic diseases 302–303, 302f, 303f
 tumours 299, 300f, 301f
 vascular diseases 304–305, 305f
Urine, perinephric collection 313, 314f
Urolithiasis 298f
Uterine arteries, pulsatility, polycystic ovary syndrome 145
Uterine bleeding, ultrasound examination 133
Uterine cervix see Cervix
Uteroplacental insufficiency 56, 57
Uterovaginal canal 146, 147
Uterus 133–140
 absence, ambiguous genitalia 328
 adenomyosis 154–155, 155f
 agenesis/hypoplasia 146
 age-related changes 315
 air pockets 148, 149f
 antverted 138, 139f
 bicornuate 146, 330f, 331
 congenital abnormalities 146–148
 in congenital adrenal hyperplasia 328
 congenital obstructive malformations 152
 corpus 137, 315
 development 146
 diameters 138, 138t
 dimensions in children 138, 138t, 315
 disorders 146–158
 benign endometrial disease 148–152, 149f, 150f, 151f
benign myometrial disease 152–155, 153f, 154f, 155f
congenital abnormalities 146–148
neoplasms 156–161, 157f, 158f, 159f, 160f, 161f, 162f
recurrent neoplasms 161, 162f
empty, ectopic pregnancy 27
enlarged 157f
fluid collection 22, 146, 152
fundus 138, 315
leiomyomas see Fibroids (uterine)
masses (infants/children) 323
neoplasms 156–158
normal ultrasound findings 137–141
anatomy 137–138
in children 315, 316f, 317f
endometrium 139, 140, 140t, 141f
measurements 138, 138t
myometrium 139–140
neonatal 315, 316f
structural features 139–140
orientation, bladder state and 138
in precocious puberty 324, 324f
prepubertal
normal 315, 316f, 317f
Turner syndrome 325f
at puberty 315, 317f
retroflexed 139f
retroversion 134, 151f
septate 146, 147f
transabdominal ultrasound 134
transvaginal ultrasound 133, 135, 136
unicornuate 146

Uterus didelphys 146

VAGINAL bleeding
atypical, in endometrial carcinoma 156
endometrial polyps causing 150
first trimester 21–22, 29
placenta praevia 51
prepubertal 324
threatened abortion 23

Vaginal rhabdomyosarcoma 324
Valsalva manoeuvre 338, 338f
Varicocoele 338, 338f
Vascular diseases, urinary tract 304–305, 305f
Vascular lesions, musculoskeletal (paediatric) 390–391
Vascular malformations, paediatric 390
Vasoplegia, arterial 371, 371f
Velamentous insertion, umbilical cord 68f
Vena cava
inferior see Inferior vena cava
superior (fetal) 100, 101f
Venous Doppler 126–127
intrauterine growth restriction 56
Venous malformation 390–391, 391f
Ventricles (brain)
normal, neonatal anatomy 361, 362f
size (fetal) 93, 93f
Ventricular disproportion 102
Ventricular septal defect 102, 102f
Ventriculomegaly 31, 93, 93f, 366
Ventriculus terminalis 379, 379f
Vertebral arch 378f
Vertebral bodies, normal findings 378, 378f
Vertebral column, second trimester assessment 38, 38f
Vesico-ureteral junction, reflux 296, 298f
Vesico-ureteral obstruction 112, 113f
Vesico-ureteral reflux 306
Vesico-ureteric reflux 296, 298f
Vincla 409
Vitelline duct 14, 15, 15f
Volvulus 398, 399f, 400f
Vomiting 282–284
 green, in neonate 398
 neonates 396, 398
 small bowel atresia 401
 projectile 283
Von Hippel-Lindau disease 272

[W]

Wandering spleen 257
WFUMB (World Federation for Ultrasound in Medicine and Biology) 3, 4, 5
Wharton jelly 15, 68
White matter injury, premature brain, follow-up 367
Wilms tumour (nephroblastoma) 299, 300f, 301f
Wirsung duct 266
Wolffian ducts 176
Wood splinter foreign body 392, 393f
World Health Organization (WHO) 3
Wrist 425–428
 anatomy 425
 extensor tendons 426, 427f
 synovial compartments 426–428
 flexor tendons 425
 tendons 425–428
 tenosynovitis 426, 428, 429f

[X]

Xanthoma 437, 438f

[Y]

Yolk sac 12f, 13–14, 14f, 15f
 bright, in abortion 24f
 development 122
 diameter 14
 failure to detect in gestational sac 24
 intrauterine sac without 23–24
 twin pregnancies 19

[Z]

Zygosity 19, 76, 78
 anomalies and 82
 determination 18–19