Guideline:

Intermittent iron and folic acid supplementation in non-anaemic pregnant women
Guideline: Intermittent iron and folic acid supplementation in non-anaemic pregnant women.

ISBN 978 92 4 150201 6 (NLM classification: WD 160)

© World Health Organization 2012

All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: bookorders@who.int).

Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html).

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

Design and layout: Alberto March

Suggested citation

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Financial support</td>
<td>iv</td>
</tr>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Scope and purpose</td>
<td>2</td>
</tr>
<tr>
<td>Background</td>
<td>2</td>
</tr>
<tr>
<td>Summary of evidence</td>
<td>3</td>
</tr>
<tr>
<td>Recommendation</td>
<td>4</td>
</tr>
<tr>
<td>Remarks</td>
<td>5</td>
</tr>
<tr>
<td>Implications for future research</td>
<td>6</td>
</tr>
<tr>
<td>Dissemination, adaptation and implementation</td>
<td>7</td>
</tr>
<tr>
<td>Dissemination</td>
<td></td>
</tr>
<tr>
<td>Adaptation and implementation</td>
<td></td>
</tr>
<tr>
<td>Monitoring and evaluation of guideline implementation</td>
<td></td>
</tr>
<tr>
<td>Guideline development process</td>
<td>8</td>
</tr>
<tr>
<td>Advisory groups</td>
<td></td>
</tr>
<tr>
<td>Scope of the guideline, evidence appraisal and decision-making</td>
<td></td>
</tr>
<tr>
<td>Management of conflicts of interest</td>
<td>10</td>
</tr>
<tr>
<td>Plans for updating the guideline</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>Annex 1</td>
<td>14</td>
</tr>
<tr>
<td>Annex 2</td>
<td>16</td>
</tr>
<tr>
<td>Annex 3</td>
<td>17</td>
</tr>
<tr>
<td>Annex 4</td>
<td>18</td>
</tr>
<tr>
<td>Annex 5</td>
<td>22</td>
</tr>
<tr>
<td>Annex 6</td>
<td>25</td>
</tr>
</tbody>
</table>

Annex 1 GRADE “Summary of findings” tables

Annex 2 Summary of the considerations by the Nutrition Guidance Expert Advisory Group for determining the strength of the recommendation

Annex 3 WHO Steering Committee for Nutrition Guidelines Development

Annex 4 Nutrition Guidance Expert Advisory Group – Micronutrients WHO Secretariat and external resource experts

Annex 5 External Experts and Stakeholders Panel – Micronutrients

Annex 6 Questions in Population, Intervention, Control, Outcomes (PICO) format
Acknowledgements

This guideline was coordinated by Dr Luz Maria De-Regil under the supervision of Dr Juan Pablo Peña-Rosas, with technical input from Dr Metin Gulmezoglu, Dr Jose Martines, Dr Matthews Mathai and Dr Lisa Rogers. Thanks are due to Dr Regina Kulier and the staff at the Guidelines Review Committee Secretariat for their support throughout the process. Thanks are also due to Dr Davina Ghersi for her technical advice and assistance in the preparation of the technical consultations for this guideline and Mr Issa T. Matta and Mrs Chantal Streijffert Garon from the World Health Organization (WHO) Office of the Legal Counsel for their support in the management of conflicts of interest procedures. Ms Grace Rob and Mrs Paule Pillard from the Micronutrients Unit, Department of Nutrition for Health and Development, provided logistic support.

WHO gratefully acknowledges the technical input of the members of the WHO Nutrition Steering Committee and the Nutrition Guidance Expert Advisory Group, especially the chairs of the meetings, Dr Janet King, Dr Rebecca Stoltzfus and Dr Rafael Flores-Ayala. WHO is also grateful to the Cochrane Pregnancy and Childbirth Group staff for their support during the development of the systematic review used to inform this guideline.

Financial support

WHO thanks the Government of Luxembourg for providing financial support for this work.
Intermittent iron and folic acid supplementation in non-anaemic pregnant women

Summary

It is estimated that 41.8% of pregnant women worldwide are anaemic. At least half of this anaemia burden is assumed to be due to iron deficiency. Member States have requested guidance from the World Health Organization (WHO) on the effectiveness and safety of different schemes of iron and folic acid supplementation in pregnant women as a public health measure to improve pregnancy outcomes in support of their efforts to achieve the Millennium Development Goals.

WHO developed the present evidence-informed recommendations using the procedures outlined in the WHO handbook for guideline development. The steps in this process included: (i) identification of priority questions and outcomes; (ii) retrieval of the evidence; (iii) assessment and synthesis of the evidence; (iv) formulation of recommendations, including research priorities; and (v) planning for dissemination, implementation, impact evaluation and updating of the guideline. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was followed to prepare evidence profiles related to preselected topics, based on up-to-date systematic reviews.

The guideline advisory group for nutrition interventions, the Nutrition Guidance Expert Advisory Group, comprises content experts, methodologists, representatives of potential stakeholders and consumers. These experts participated in several WHO technical consultations concerning this guideline, held in Geneva, Switzerland, and Amman, Jordan, in 2010 and 2011. Members of the External Experts and Stakeholders Panel were identified through a public call for comments, and this panel was involved throughout the guideline development process. Guideline advisory group members voted on the strength of the recommendation, taking into consideration: (i) desirable and undesirable effects of this intervention; (ii) the quality of the available evidence; (iii) values and preferences related to the interventions in different settings; and (iv) the cost of options available to health-care workers in different settings. All the members of the guideline advisory group completed a Declaration of Interests Form before each meeting.

Intermittent iron and folic acid supplementation is recommended in non-anaemic pregnant women to prevent development of anaemia and to improve gestational outcomes (strong recommendation). The quality of the evidence for low birth weight, birth weight, premature birth, maternal anaemia at term, iron deficiency anaemia at term, and side-effects was very low.

1 This publication is a WHO guideline. A WHO guideline is any document, whatever its title, containing WHO recommendations about health interventions, whether they be clinical, public health or policy interventions. A recommendation provides information about what policy-makers, health-care providers or patients should do. It implies a choice between different interventions that have an impact on health and that have ramifications for the use of resources. All publications containing WHO recommendations are approved by the WHO Guidelines Review Committee.
This guideline provides global, evidence-informed recommendations on intermittent iron and folic acid supplementation as a public health intervention for the purpose of improving pregnancy outcomes and reducing maternal anaemia in pregnancy.

The guideline will help Member States and their partners in their efforts to make informed decisions on the appropriate nutrition actions to achieve the Millennium Development Goals, in particular, reduction of child mortality (MDG 4) and improvement in maternal health (MDG 5). The guideline is intended for a wide audience including policy-makers, their expert advisers and technical and programme staff at organizations involved in the design, implementation and scaling-up of nutrition actions for public health.

This document presents the key recommendation and a summary of the supporting evidence. Further details of the evidence base are provided in Annex 1 and other documents listed in the references.

Background

It is estimated that 41.8% of pregnant women worldwide are anaemic (1). At least half of this anaemia burden is assumed to be due to iron deficiency (2), with the rest due to other conditions such as folate, vitamin B₁₂ or vitamin A deficiencies, chronic inflammation, parasitic infections and inherited disorders. A pregnant woman is considered to be anaemic if her haemoglobin concentration during the first and third trimester of gestation is lower than 110 g/l, at sea level; in the second trimester of pregnancy, the haemoglobin concentration usually decreases by approximately 5 g/l (3). When anaemia is accompanied by an indication of iron deficiency (e.g. low ferritin levels), it is referred to as iron deficiency anaemia (2).

Low haemoglobin concentrations indicative of moderate or severe anaemia during pregnancy have been associated with an increased risk of premature delivery, maternal and child mortality, and infectious diseases (4). Growth and development may also be affected (2), both in utero and in the long term (5). Conversely, haemoglobin concentrations greater than 130 g/l at sea level may also be associated with negative pregnancy outcomes such as premature delivery and low birth weight (6, 7).

Interventions aimed at preventing iron deficiency and iron deficiency anaemia in pregnancy include iron supplementation, fortification of staple foods with iron, health and nutrition education, control of parasitic infections, and improvement in sanitation (8). Delayed umbilical cord clamping is also effective in preventing iron deficiency among infants and young children (9). During pregnancy, there is an increase in maternal iron requirements to support both maternal and fetal needs, and most women require additional iron intake to ensure sufficient iron stores at conception as well as during pregnancy to prevent iron deficiency (10). The use of daily iron and folic acid supplements throughout pregnancy has been the standard approach to cover this gap and in turn prevent and treat iron deficiency anaemia. Despite its proven efficacy, the use of daily iron supplementation has been limited in programme settings, possibly due to a lack of compliance because of common side-effects (e.g. nausea, constipation, dark stools or metallic taste), concerns about the safety of this intervention among women with an adequate iron intake, and variable availability of the supplements at community level (11).
Intermittent use of oral iron supplements (i.e. once, twice or three times a week on non-consecutive days) has been proposed as an effective alternative to daily iron supplementation for prevention of anaemia in women of reproductive age, including those who are pregnant (12,13). The rationale behind this intervention has traditionally been that intestinal cells turn over every 5–6 days and have limited iron absorptive capacity. Thus intermittent provision of iron would expose only the new intestinal epithelial cells to this nutrient, which, in theory, should improve its absorption (14). This mechanism has recently been questioned. Intermittent supplementation also reduces oxidative stress and the other side-effects of daily supplementation (15, 16) and may minimize blockage of absorption of other minerals due to the high iron levels in the gut lumen and in the intestinal epithelial cells. Experience has shown that intermittent regimens may be more accepted by women, with increased adherence to supplementation programmes (17).

Summary of evidence

An existing Cochrane systematic review (18) assessing the benefits and harms of iron supplementation alone or in combination with folic acid or other vitamins and minerals in pregnant women on neonatal and pregnancy outcomes was updated for this guideline. The updated review (19) compared the intermittent use of iron supplements alone, or in combination with folic acid or other micronutrients, with no intervention or placebo, and with the same supplements given on a daily basis to pregnant women living in a variety of settings, including malaria-endemic areas.

The infant outcomes ranked as critical for decision-making by the Nutrition Guidance Expert Advisory Group members were low birth weight, weight at birth, prematurity, perinatal death and congenital anomalies including neural tube defects. The maternal outcomes considered critical were anaemia, iron deficiency and iron deficiency anaemia at term, as well as the presence of any side-effects, clinical malaria and infections during pregnancy. The potential effects of baseline anaemia prevalence, gestational age at the start of supplementation, malaria setting and the weekly dose of iron were also evaluated.

The review included 21 trials, but only 18 trials (with 4072 women) contributed data to the review. The trials were carried out in the past two decades in countries across the globe (Argentina, Bangladesh, China, Guatemala, India, Indonesia, Iran, Malawi, Mexico, Pakistan, South Korea and Thailand). Most of the trials included both anaemic and non-anaemic women. All the studies were conducted in countries with some degree of malaria risk (20), however it was not clear from the reports whether malaria prevention and control programmes were in place at the time when these studies were conducted or whether concomitant malaria interventions were made available to the study participants.

None of the studies included in the review compared the effects of intermittent iron supplementation with the effects of no iron supplementation. This likely is because the studies involving intermittent supplementation were carried out in countries whose legislatures require all pregnant women to be given iron supplements.
For the comparison between daily and intermittent regimens, the methodological quality of the trials included in the analysis was mixed, with most studies reporting high losses to follow-up. The total weekly iron dose in the arm that received intermittent supplements ranged from 80 mg to 200 mg of elemental iron as ferrous sulfate or ferrous fumarate per week, whereas the folic acid dose ranged from 400 μg (0.4 mg) to 3500 μg (3.5 mg) per week.

There was no detectable difference between women taking iron supplements intermittently (alone or in combination with other micronutrients) and those receiving daily supplements with regard to maternal anaemia at term (average relative risk (RR) 1.22, 95% confidence interval (CI) 0.84–1.80, four studies), the risk of having a low birth weight (RR 0.96, 95% CI 0.61–1.52, seven studies) or a preterm (RR 1.82, 95% CI 0.75–4.40, four studies) baby and infant birth weight (mean difference –8.62 g; 95% CI 52.76 to 35.52 g, eight studies). There were no maternal deaths (six studies) or women with severe anaemia (six studies).

Fewer side-effects were reported in women receiving intermittent rather than daily iron and folic acid supplements (RR 0.56; 95% CI 0.37–0.84, 11 studies). High haemoglobin concentrations (more than 130 g/l) during the second and third trimester of pregnancy were also less frequent among women using supplements intermittently (RR 0.48; 95% CI 0.35–0.67, 13 studies).

The intervention seems to be equally effective among populations with different prevalences of anaemia, and in settings described as malaria endemic, and regardless of whether the supplementation was initiated earlier or later than 20 weeks of gestation or whether the dose of elemental iron per week was lower or higher than 120 mg.

The quality of the evidence for low birth weight, birth weight, premature birth, maternal anaemia at term, iron deficiency at term, and side-effects was very low (Annex 1).

Recommendation

Intermittent use of iron and folic acid supplements by non-anaemic pregnant women is recommended to prevent anaemia and improve gestational outcomes (*strong recommendation*). A suggested scheme for intermittent iron and folic acid supplementation in non-anaemic pregnant women is presented in Table 1.

1. A strong recommendation is one for which the guideline development group is confident that the desirable effects of adherence outweigh the undesirable effects. The recommendation can be either in favour of or against an intervention. Implications of a strong recommendation for patients are that most people in their situation would want the recommended course of action and only a small proportion would not. Implications for clinicians are that most patients should receive the recommended course of action, and that adherence to this recommendation is a reasonable measure of good-quality care. With regard to policy-makers, a strong recommendation means that it can be adapted as a policy in most situations.

2. Considerations of the guideline advisory group for determining the strength of the recommendation are summarized in Annex 2.
Table 1
Suggested scheme for intermittent iron and folic acid supplementation in non-anaemic pregnant women

| Supplement composition | Iron: 120 mg of elemental irona
	Folic acid: 2800 μg (2.8 mg)
Frequency	One supplement once a week
Duration	Throughout pregnancy. Iron and folic acid supplementation should begin as early as possible
Target group	Non-anaemicb pregnant adolescents and adult women
Settings	Countries where prevalence of anaemia among pregnant women is lower than 20%.

a 120 mg of elemental iron equals 600 mg of ferrous sulfate heptahydrate, 360 mg of ferrous fumarate or 1000 mg of ferrous gluconate.

b Haemoglobin concentrations should be measured prior to the start of supplementation to confirm non-anaemic status (3).

Remarks

- If a woman is diagnosed with anaemia at any time during pregnancy, she should be given daily iron and folic acid supplements throughout pregnancy as per current guidance (21).

- The implementation of this recommendation may require a strong health system to facilitate confirmation of non-anaemic status prior to the start of supplementation and to monitor anaemia status throughout pregnancy.

- As there is limited evidence for the effective dose of folic acid in intermittent supplementation, the recommendation for the folic acid dosage is based on the rationale of providing seven times the recommended daily supplemental dose during pregnancy. Folic acid requirements are increased in pregnancy because of the rapidly dividing cells in the fetus and increased urinary losses. As the neural tube closes by day 28 of pregnancy, by when pregnancy may not have been detected, folic acid supplementation after the first month of pregnancy may not prevent neural tube defects. However, it will contribute to other aspects of maternal and fetal health.

- In malaria-endemic areas, iron and folic acid supplementation programmes should be implemented in conjunction with measures to prevent, diagnose and treat malaria during pregnancy (20, 22-23).
Implications for future research

Discussion with the guideline advisory group members and stakeholders highlighted the limited evidence available in some areas, meriting further research on intermittent iron and folic acid supplementation in non-anaemic pregnant women, particularly in the following areas:

- the most effective and safe weekly dose of folic acid to improve folate status and improve pregnancy outcomes;
- effects of other vitamins and minerals on haematological, nutritional and other health outcomes as well as the best formulation to provide multiple micronutrients on a weekly basis;
- mechanisms through which intermittently delivered iron is absorbed and regulated by the intestinal cells;
- potential use of slow-release formulations in terms of efficacy, cost and side-effects, in comparison with standard iron and folic acid tablets.

- An iron supplementation programme may form part of an integrated programme of antenatal and neonatal care (24, 25) that promotes adequate gestational weight gain, screening of all women for anaemia at antenatal and postpartum visits, use of complementary measures to control and prevent anaemia (e.g. hookworm control), and a referral system to manage cases of severe anaemia.

- The implementation of a behaviour change communication strategy to communicate the benefits of the intervention and management of side-effects, along with provision of high-quality products with appropriate packaging, is vital to improving the acceptability of and adherence to recommended supplementation schemes. The strategy can also serve to promote the use of dietary diversity and intake of food combinations that improve iron absorption.

- Oral supplements are available as capsules or tablets (soluble, tablets, dissolvable and modified-release tablets) (26). Establishment of a quality assurance process is important to guarantee that supplements are manufactured, packaged and stored in a controlled and uncontaminated environment (27).

- The selection of the most appropriate delivery platform should be context-specific, with the aim of reaching the most vulnerable populations and ensuring a timely and continuous supply of supplements.
Dissemination

The current guidelines will be disseminated through electronic media such as slide presentations, CD-ROMs and the World Wide Web, either through the World Health Organization (WHO) Micronutrients and United Nations Standing Committee on Nutrition (SCN) mailing lists, the WHO nutrition web site, or the WHO e-Library of Evidence for Nutrition Actions (eLENA). This library aims to compile and display WHO guidelines related to nutrition, along with complementary documents such as systematic reviews and other evidence that informed the guidelines, biological and behavioural rationales, and additional resources produced by Member States and global partners. The guideline will also be disseminated through a broad network of international partners, including WHO country and regional offices, ministries of health, WHO collaborating centres, universities, other United Nations agencies and nongovernmental organizations. It will also be published in the WHO Reproductive Health Library.

Adaptation and implementation

As this is a global guideline, it should be adapted to the context of each Member State. Prior to implementation, an intermittent iron supplementation programme should have well-defined objectives that take into account available resources, existing policies, suitable delivery platforms and suppliers, communication channels, and potential stakeholders. Ideally, iron and folic acid supplementation should be implemented as part of an integrated programme for antenatal and neonatal care. The implementation in this guideline may require a strong health system to facilitate the diagnosis of anaemia prior to starting supplementation and to monitor anaemia status throughout pregnancy.

To ensure that WHO global guidelines and other evidence-informed recommendations for micronutrient interventions are better implemented in low- and middle-income countries, the Department of Nutrition for Health and Development works with the WHO Evidence-Informed Policy Network (EVIPNet) programme. EVIPNet promotes partnerships at country level between policy-makers, researchers and civil society to facilitate policy development and implementation through use of the best available evidence.

Monitoring and evaluation of guideline implementation

A plan for monitoring and evaluation with appropriate indicators is encouraged at all stages. The impact of this guideline can be evaluated within countries (i.e. monitoring and evaluation of the programmes implemented at scale) and across countries (i.e. the adoption and adaptation of the guidelines globally). The WHO Department of Nutrition for Health and Development, jointly with the Centers for Disease Control and Prevention (CDC) International Micronutrient Malnutrition Prevention and Control (IMMPaCt) programme, and with input from international partners, developed a generic logic model for micronutrient interventions in public health to depict the plausible relationships between inputs and expected MDGs by applying the micronutrient programme evaluation theory (28). Member States can adjust the model and use it in combination with appropriate indicators, for designing, implementing, monitoring and evaluating the successful scaling-up of nutrition actions.
This guideline was developed in accordance with WHO evidence-informed guideline development procedures, as outlined in the *WHO handbook for guideline development* (29).

Advisory groups

The WHO Steering Committee for Nutrition Guidelines Development, led by the Department of Nutrition for Health and Development, was established in 2009 with representatives from all WHO departments with an interest in the provision of scientific nutrition advice, including Child and Adolescent Health and Development, Reproductive Health and Research, and the Global Malaria Programme. The Steering Committee guided the development of this guideline and provided overall supervision of the guideline development process (Annex 3). Two additional groups were formed: an advisory guideline group and an External Experts and Stakeholders Panel.

The Nutrition Guidance Expert Advisory Group, was also established in 2009 (Annex 4). There were four subgroups: (i) Micronutrients, (ii) Diet and Health, (iii) Nutrition in Life course and Undernutrition, and (iv) Monitoring and Evaluation. Its role is to advise WHO on the choice of important outcomes for decision-making and in the interpretation of the evidence. The group includes experts from various *WHO expert advisory panels* and those identified through open calls for specialists, taking into consideration a balanced gender mix, multiple disciplinary areas of expertise and representation from all WHO regions. Efforts were made to include content experts, methodologists, representatives of potential stakeholders (such as managers and other health professionals involved in the health-care process) and consumers. Representatives of commercial organizations may not be members of a WHO guideline group.

The External Experts and Stakeholders Panel was consulted on the scope of the guideline, the questions addressed and the choice of important outcomes for decision-making, as well as with regard to review of the completed draft guidelines (Annex 5). This was done through the WHO Micronutrients and SCN mailing lists that together include over 5500 subscribers, and through the *WHO nutrition web site*.
Scope of the guideline, evidence appraisal and decision-making

An initial set of questions (and the components of the questions) to be addressed in the guideline was the critical starting point for formulating the recommendation. The questions were drafted by technical staff from the Micronutrients Unit, Department of Nutrition for Health and Development, based on policy and programme guidance needs of Member States and their partners. The population, intervention, control, outcomes (PICO) format was used (Annex 6). The questions were discussed and reviewed by the Steering Committee and feedback was received from 48 stakeholders.

The first nutrition guideline advisory group meeting was held on 22–26 February 2010 in Geneva, Switzerland, to finalize the scope of the questions and rank the critical outcomes and populations of interest. The nutrition guideline advisory group – Micronutrients Subgroup discussed the relevance of the questions and modified them as needed. The guideline group members scored the relative importance of each outcome from 1 to 9 (where 7–9 indicated that the outcome was critical for a decision, 4–6 indicated that it was important and 1–3 indicated that it was not important). The final key questions on iron and folic acid supplementation in pregnant women, along with the outcomes that were identified as critical and important for decision-making, are listed in PICO format in Annex 6.

WHO staff, in collaboration with researchers from other institutions, summarized and appraised the evidence, using the Cochrane methodology for randomized controlled trials\(^1\). For identifying unpublished studies or studies still in progress, a standard procedure was followed to contact more than 10 international organizations working on micronutrient interventions. In addition, the International Clinical Trials Registry Platform (ICTRP), hosted at WHO, was systematically searched for any trials still in progress. No language restrictions were applied in the search. Evidence summaries were prepared according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the overall quality of the evidence (30). GRADE considers: the study design; the limitations of the studies in terms of their conduct and analysis; the consistency of the results across the available studies; the directness (or applicability and external validity) of the evidence with respect to the populations, interventions and settings where the proposed intervention may be used; and the precision of the summary estimate of the effect.

Both the systematic review and the GRADE evidence profiles for each of the critical outcomes were used for drafting this guideline. The draft recommendation was reviewed by the WHO Nutrition Guidance Steering Committee and the nutrition guideline advisory group at a second consultation, held on 15–18

\(^{1}\) As part of the Cochrane pre-publication editorial process, reviews are commented on by external peers (an editor and two referees external to the editorial team) and the group’s statistical adviser (http://www.cochrane.org/cochrane-reviews). The Cochrane handbook for systematic reviews of interventions describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of health-care interventions.
November 2010 in Amman, Jordan, and at the third consultation, held on 14–16 March in Geneva, Switzerland, where the guideline advisory group also voted on the strength of the recommendation, taking into account: (i) desirable and undesirable effects of this intervention; (ii) the quality of the available evidence; (iii) values and preferences related to the intervention in different settings; and (iv) the cost of options available to health-care workers in different settings (Annex 2). Consensus was defined as agreement by simple majority of guideline group members. WHO staff present at the meeting as well as other external technical experts involved in the collection and grading of the evidence were not allowed to vote. One member voted against the use of intermittent iron and folic acid supplements as an alternative to daily supplementation in non-anaemic pregnant women.

A public call for comments on the final draft guidelines was then released. Interested stakeholders became members of the External Experts and Stakeholders Panel but were only allowed to comment on the draft guideline after submitting a signed Declaration of Interests Form. Feedback was received from 15 stakeholders. WHO staff then finalized the guideline and submitted it for clearance by WHO before publication.

Management of conflicts of interest

According to the rules in the WHO Basic documents (31), all experts participating in WHO meetings must declare any interest relevant to the meeting prior to their participation. The conflicts of interest statements for all guideline group members were reviewed by the responsible technical officer and the relevant departments before finalization of the group composition and invitation to attend a guideline group meeting. All guideline group members and participants of the guideline development meetings submitted a Declaration of Interests Form along with their curriculum vitae before each meeting. In addition, they verbally declared potential conflicts of interest at the beginning of each meeting. The procedures for management of conflicts of interests strictly followed WHO Guidelines for declaration of interests (WHO experts) (32). The potential conflicts of interest declared by the members of the guideline group are summarized below.

- Dr Héctor Bourges Rodriguez declared being chair of the executive board of the Danone Institute in Mexico (DIM), a non-profit organization promoting research and dissemination of scientific knowledge in nutrition, and receiving funds as chair honorarium from DIM. Some of the activities of the DIM may generally relate to nutrition and are funded by Danone Mexico, a food producer.

- Dr Norm Campbell at the first meeting declared owning stock in Viterra, a wheat pool for farmers that neither manufactures products nor undertakes activities related to this guideline. In 2011, Dr Campbell declared no longer owning stocks in this company. He serves as a Pan American Health Organization (PAHO) consultant and has been an adviser to Health Canada and Blood Pressure Canada, both of which are government agencies.
• Dr Emorn Wasantwisut declared serving as a technical/scientific adviser to the International Life Sciences Institute (ILSI)/South East Asia’s Food and Nutrients in Health and Disease Cluster and as a reviewer of technical documents and speaker for Mead Johnson Nutritionals. Her research unit received funds for research support from Sight and Life and the International Atomic Energy Agency (IAEA) for the use of stable isotopes to define interactions of vitamin A and iron.

• Dr Beverley Biggs declared that the University of Melbourne received funding from the National Health and Medical Research Council (NHMRC) and Australian Research Council (ARC) for research on intermittent iron and folic acid supplementation in pregnancy, conducted in collaboration with the Research and Training Center for Community Development (RTCCD), the Key Centre for Women’s Health and the Murdoch Childrens Research Institute.

This guideline will be reviewed in 2015. If new information is available at that time, a guideline review group will be convened to evaluate the new evidence and revise the recommendation if needed. The Department of Nutrition for Health and Development at the WHO headquarters in Geneva, along with its internal partners, will be responsible for coordinating the guideline update following formal WHO handbook for guideline development procedures. WHO welcomes suggestions regarding additional questions for evaluation in the guideline when it is due for review.
References

Annex 1 GRADE “Summary of findings” tables

Any intermittent oral iron supplementation versus any daily iron supplementation for women during pregnancy–infant outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Quality of the evidence (GRADE)*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low birth weight (less than 2500 g)</td>
<td>RR 0.96 (0.61–1.52)</td>
<td>1111 (7 studies)</td>
<td>⊕⊕⊕⊕ very low ¹</td>
<td></td>
</tr>
<tr>
<td>Birthweight (g)</td>
<td>MD–8.62 (-52.76 to 35.52)</td>
<td>10 608 (8 studies)</td>
<td>⊕⊕⊕⊕ very low ²</td>
<td></td>
</tr>
<tr>
<td>Premature birth (less than 37 weeks of gestation)</td>
<td>RR 1.82 (0.75–4.40)</td>
<td>382 (4 studies)</td>
<td>⊕⊕⊕⊕ very low ³</td>
<td></td>
</tr>
<tr>
<td>Neonatal death (death within first 28 days of life)</td>
<td>Not estimable</td>
<td>0 (0 studies)</td>
<td>See comment</td>
<td>No studies reported data for this outcome</td>
</tr>
<tr>
<td>Congenital anomalies (including neural tube defects)</td>
<td>Not estimable</td>
<td>0 (0 studies)</td>
<td>See comment</td>
<td>No studies reported data for this outcome</td>
</tr>
</tbody>
</table>

CI, confidence interval; RR, risk ratio

* GRADE Working Group grades of evidence:

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Low quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Six of the studies contributing data had high levels of attrition, none had blinding and five had high or unclear risk of bias for allocation concealment. Proportion of events was low and there was some imprecision in the estimate. The results were consistent and statistical heterogeneity was nil (I² = 0%).

² Seven of the studies contributing data had high levels of attrition, none had blinding and five had high or unclear risk of bias for allocation concealment. 95% confidence intervals were wide for this outcome, although the results were consistent and statistical heterogeneity was nil (I² = 0%).

³ Three of the included studies had high attrition, lacked blinding and had unclear or high risk of bias for allocation concealment. Proportion of events was low. The results were consistent and statistical heterogeneity was nil (I² = 0%).

For details of studies included in the review, see reference (19).
Any Intermittent oral iron supplementation versus any daily iron supplementation for women during pregnancy–maternal outcomes

Patient or population: women during pregnancy
Settings: community settings
Intervention: intermittent supplementation with iron alone or plus any other micronutrients
Comparison: any intermittent oral iron supplementation versus any daily iron supplementation

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Quality of the evidence (GRADE)*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaemia at term (haemoglobin lower than 110 g/l at 37 weeks' gestation or more)</td>
<td>RR 1.22 (0.84–1.80)</td>
<td>676 (4 studies)</td>
<td>ΘΘΘΘ very low†</td>
<td>No studies reported data for this outcome</td>
</tr>
<tr>
<td>Iron deficiency at term (as defined by the trialists, based on any indicator of iron status at 37 weeks' gestation or more)</td>
<td>Not estimable</td>
<td>0 (1 study)</td>
<td>See comment</td>
<td>No studies reported data for this outcome</td>
</tr>
<tr>
<td>Iron deficiency anaemia at term (as defined by the trialists)</td>
<td>RR 0.71 (0.08–6.63)</td>
<td>156 (1 study)</td>
<td>ΘΘΘΘ very low†</td>
<td></td>
</tr>
<tr>
<td>Maternal death</td>
<td>Not estimable</td>
<td>0 (1 study)</td>
<td>See comment</td>
<td>No studies reported data for this outcome</td>
</tr>
<tr>
<td>Side-effects (any reported throughout the intervention period)</td>
<td>RR 0.56 (0.37–0.84)</td>
<td>1777 (11 studies)</td>
<td>ΘΘΘΘ very low†</td>
<td></td>
</tr>
<tr>
<td>Severe anaemia at any time during second and third trimester (haemoglobin lower than 70g/l)</td>
<td>Not estimable</td>
<td>1240 (6 studies)</td>
<td>See comment</td>
<td>While this outcome was reported in six studies there were no events</td>
</tr>
<tr>
<td>Maternal clinical malaria</td>
<td>Not estimable</td>
<td>0 (1 study)</td>
<td>See comment</td>
<td>This outcome was not reported in any of the included studies</td>
</tr>
<tr>
<td>Maternal infection during pregnancy</td>
<td>Not estimable</td>
<td>0 (0 studies)</td>
<td>See comment</td>
<td>This outcome was not reported in any of the included studies</td>
</tr>
</tbody>
</table>

CI, confidence interval; RR, risk ratio
* GRADE Working Group grades of evidence:
High quality: Further research is very unlikely to change our confidence in the estimate of effect.
Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
Very low quality: We are very uncertain about the estimate.
† Half of the studies contributing data had high risk of bias for attrition, one had unclear allocation concealment. 95% confidence intervals were wide for all of these studies. The results were consistent and statistical heterogeneity was nil (I² = 10%).
‡ The single study contributing data had unclear methods to generate the random sequences and no blinding. 95% confidence intervals were wide.
§ Several studies were at high or unclear risk of allocation and attrition. The size and direction of treatment effect varied in these studies and heterogeneity was high (I² = 87%).

For details of studies included in the review, see reference (19).
Annex 2
Summary of the considerations by the Nutrition Guidance Expert Advisory Group for determining the strength of the recommendation

Quality of evidence:
- The quality of the evidence was low and may be insufficient to support the use of intermittent supplementation in settings where daily iron and folic acid supplementation is standard practice

Values and preferences:
- This may be a solution in areas with low prevalence of anaemia in pregnant women in whom daily programmes have failed to deliver
- Intermittent iron and folic acid supplementation is likely to achieve higher coverage than daily supplementation. However, it requires screening for anaemia status of pregnant women, which is not common in most communities

Trade-off between benefits and harm:
- Non-anaemic pregnant women can still be iron deficient; therefore intermittent iron supplementation may result in iron deficiency later on during pregnancy. If this intervention is combined with weekly iron supplementation in menstruating women, it may be more successful in preventing anaemia
- Benefits outweigh harms but it is an area where more research is needed

Costs and feasibility:
- Intermittent supplementation with iron and folic acid during pregnancy is presumably cheaper than daily supplementation and feasible in populations with low rates of iron deficiency or where daily iron supplementation is not available
Annex 3

WHO Steering Committee for Nutrition Guidelines Development

Dr Ala Alwan
Acting Director
Department of Chronic Diseases and Health Promotion
Noncommunicable Diseases and Mental Health (NMH) Cluster

Dr Francesco Branca
Director
Department of Nutrition for Health and Development
Noncommunicable Diseases and Mental Health (NMH) Cluster

Dr Ruediger Krech
Director
Department of Ethics, Equity, Trade and Human Rights
Information, Evidence and Research (IER) Cluster

Dr Knut Lonnroth
Medical Officer
The Stop TB Strategy
HIV/AIDS, TB and Neglected Tropical Diseases (HTM) Cluster

Dr Daniel Eduardo Lopez Acuna
Director
Department of Strategy, Policy and Resource Management
Health Action in Crises (HAC) Cluster

Dr Elizabeth Mason
Director
Department of Child and Adolescent Health and Development
Family and Community Health (FCH) Cluster

Dr Michael Mbizvo
Director
Department of Reproductive Health and Research
Family and Community Health (FCH) Cluster

Dr Jean-Marie Okwo-Bele
Director
Department of Immunization, Vaccines and Biologicals
Family and Community Health (FCH) Cluster

Dr Gottfried Otto Hirnschall
Director
Department of HIV/AIDS
HIV/AIDS, TB and Neglected Tropical Diseases (HTM) Cluster

Dr Tikki Pangestu
Director
Department of Research Policy and Cooperation
Information, Evidence and Research (IER) Cluster

Dr Isabelle Romieu
Director
Dietary Exposure Assessment Group, Nutrition and Metabolism Section
International Agency for Research on Cancer (IARC)
Lyons, France

Dr Sergio Spinaci
Associate Director
Global Malaria Programme
HIV/AIDS, TB and Neglected Tropical Diseases (HTM) Cluster

Dr Willem Van Lerberghe
Director
Department of Health Policy, Development and Services
Health Systems and Services (HSS) Cluster

Dr Maged Younes
Director
Department of Food Safety, Zoonoses and Foodborne Diseases
Health Security and Environment (HSE) Cluster

Dr Nevio Zagaria
Acting Director
Department of Emergency Response and Recovery Operations
Health Action in Crises (HAC) Cluster
Annex 4

Nutrition Guidance Expert Advisory Group – Micronutrients, WHO Secretariat and external resource experts

A. Nutrition Guidance Expert Advisory Group – Micronutrients
(Note: the areas of expertise of each guideline group member are given in italics)

Ms Deena Alasfoor
Ministry of Health
Muscat, Oman
Health programme management, food legislations, surveillance in primary health care

Dr Beverley-Ann Biggs
International and Immigrant Health Group
Department of Medicine
University of Melbourne
Parkville, Australia
Micronutrients supplementation, clinical infectious diseases

Dr Héctor Bourges Rodríguez
Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubiran
Mexico City, Mexico
Nutritional biochemistry and metabolism research, food programmes, policy, and regulations

Dr Norm Campbell
Departments of Medicine
Community Health Sciences and Physiology and Pharmacology
University of Calgary
Calgary, Canada
Physiology and pharmacology, hypertension prevention and control

Dr Rafael Flores-Ayala
Centers for Disease Control and Prevention (CDC)
Atlanta, United States of America
Nutrition and human capital formation, nutrition and growth, impact of micronutrient interventions

Professor Malik Goonewardene
Department of Obstetrics and Gynaecology
University of Ruhuna
Galle, Sri Lanka
Obstetrics and gynaecology, clinical practice

Dr Junsheng Huo
National Institute for Nutrition and Food Safety
Chinese Center for Disease Control and Prevention
Beijing, China
Food fortification, food science and technology, standards and legislation

Dr Janet C. King
Children’s Hospital Oakland Research Institute
Oakland, United States of America
Micronutrients, maternal and child nutrition, dietary requirements

Dr Marzia Lazzerini
Department of Paediatrics and
Unit of Research on Health Services and International Health
Institute for Maternal and Child Health IRCCS Burlo Garofolo
Trieste, Italy
Paediatrics, malnutrition, infectious diseases

Professor Malcolm E. Molyneux
College of Medicine – University of Malawi
Blantyre, Malawi
Malaria, international tropical diseases research and practice

Engineer Wisam Qarqash
Jordan Health Communication Partnership
Johns Hopkins University
Bloomberg School of Public Health
Amman, Jordan
Design, implementation and evaluation of health communications and programmes

Dr Daniel Raiten
Office of Prevention Research and International Programs
National Institutes of Health (NIH)
Bethesda, United States of America
Malaria, maternal and child health, human development research
Dr Mahdi Ramsan Mohamed
Research Triangle Institute (RTI) International
Dar es Salaam, the United Republic of Tanzania
Malaria control and prevention, neglected tropical diseases

Dr Meera Shekar
Health Nutrition Population
Human Development Network (HDNHE)
The World Bank
Washington, DC, United States of America
Costing of interventions in public health nutrition, programme implementation

Dr Rebecca Joyce Stoltzfus
Division of Nutritional Sciences
Cornell University
Ithaca, United States of America
International nutrition and public health, iron and vitamin A nutrition, programme research

Ms Carol Tom
Central and Southern African Health Community (ECSA)
Arusha, the United Republic of Tanzania
Food fortification technical regulations and standards, policy harmonization

Dr David Tovey
The Cochrane Library
Cochrane Editorial Unit
London, England
Systematic reviews, health communications, evidence for primary health care

Mrs Vilma Qahoush Tyler
UNICEF Regional Office for Central and Eastern Europe and Commonwealth of Independent States (CEE/CIS)
Geneva, Switzerland
Food fortification, public health programmes

Dr Gunn Elisabeth Vist
Department of Preventive and International Health
Norwegian Knowledge Centre for the Health Services
Oslo, Norway
Systematic review methods and evidence assessment using GRADE methodology

Dr Emorn Wasantwisut
Mahidol University
Nakhon Pathom, Thailand
International nutrition, micronutrient biochemistry and metabolism

Mr Joseph Ashong
Intern (rapporteur)
Micronutrients Unit
Department of Nutrition for Health and Development

Dr Maria del Carmen Casanovas
Technical Officer
Nutrition in the Life Course Unit
Department of Nutrition for Health and Development

Dr Bernadette Daelsmans
Medical Officer
Newborn and Child Health and Development Unit
Department of Child and Adolescent Health and Development

Dr Luz Maria De-Regil
Epidemiologist
Micronutrients Unit
Department of Nutrition for Health and Development

Dr Chris Duncombe
Medical Officer
Anti-retroviral Treatment and HIV Care Unit
Department of HIV/AIDS

Dr Olivier Fontaine
Medical Officer
Newborn and Child Health and Development Unit
Department of Child and Adolescent Health and Development
Dr Davina Ghersi
Team Leader
International Clinical Trials Registry Platform
Department of Research Policy and Cooperation

Dr Ahmet Metin Gulmezoglu
Medical Officer
Technical Cooperation with Countries for Sexual and Reproductive Health
Department of Reproductive Health and Research

Dr Regina Kulier
Scientist
Guideline Review Committee Secretariat
Department of Research Policy and Cooperation

Dr José Martines
Coordinator
Newborn and Child Health and Development Unit
Department of Child and Adolescent Health and Development

Dr Matthews Mathai
Medical Officer
Department of Making Pregnancy Safer

Dr Mario Merialdi
Coordinator
Improving Maternal and Perinatal Health Unit
Department of Reproductive Health and Research

Dr Sant-Rayn Pasricha
Intern (rapporteur)
Micronutrients Unit
Department of Nutrition for Health and Development

Dr Juan Pablo Peña-Rosas
Coordinator
Micronutrients Unit
Department of Nutrition for Health and Development

Dr Aafje Rietveld
Medical Officer
Global Malaria Programme

Dr Lisa Rogers
Technical Officer
Micronutrients Unit
Department of Nutrition for Health and Development

Mr Anand Sivasankara Kurup
Technical Officer
Social Determinants of Health Unit
Department of Ethics, Equity, Trade and Human Rights Information

Dr Joao Paulo Souza
Medical Officer
Technical Cooperation with Countries for Sexual and Reproductive Health
Department of Reproductive Health and Research

Dr Severin Von Xylander
Medical Officer
Department of Making Pregnancy Safer

Dr Godfrey Xuereb
Technical Officer
Surveillance and Population-based Prevention Unit
Department of Chronic Diseases and Health Promotion

Dr Abel Dushimimana
Medical Officer
Nutrition
WHO Regional Office for Africa
Brazzaville, Congo

Dr Chessa Lutter
Regional Adviser
Child and Adolescent Health
WHO Regional Office for the Americas/Pan American Health Organization
Washington, DC, United States of America

C. WHO regional offices
D. External resource experts

Dr Andreas Bluethner
BASF SE
Limburgerhof, Germany

Dr Denise Coitinho Delmuè
United Nations System Standing Committee on Nutrition (SCN)
Geneva, Switzerland

Professor Richard Hurrell
Laboratory of Human Nutrition
Swiss Federal Institute of Technology
Zurich, Switzerland

Dr Guansheng Ma
National Institute for Nutrition and Food Safety
Chinese Center for Disease Control and Prevention
Beijing, China

Dr Regina Moench-Pfanner
Global Alliance for Improved Nutrition (GAIN)
Geneva, Switzerland

Ms Sorrel Namaste
Office of Prevention Research and International Programs
National Institutes of Health (NIH)
Bethesda, United States of America

Dr Ayoub Al-Jawaldeh
Regional Adviser
Nutrition
WHO Regional Office for the Eastern Mediterranean
Cairo, Egypt

Dr Tommaso Cavalli-Sforza
Regional Adviser
Nutrition
WHO Regional Office for the Western Pacific
Manila, Philippines

Dr Lynnette Neufeld
Micronutrient Initiative
Ottawa, Canada

Dr Juliana Ojukwu
Department of Paediatrics
Ebonyi State University
Abakaliki, Nigeria

Dr Mical Paul
Infectious Diseases Unit
Rabin Medical Center
Belinson Hospital and Sackler Faculty of Medicine
Tel Aviv University
Petah-Tikva, Israel

Mr Arnold Timmer
United Nations Children’s Fund (UNICEF)
New York, United States of America

Dr Stanley Zlotkin
Division of Gastroenterology, Hepatology and Nutrition
The Hospital for Sick Children
Toronto, Canada
External Experts and Stakeholders Panel – Micronutrients

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Ahmadwali Aminee</td>
<td>Micronutrient Initiative</td>
<td>Kabul, Afghanistan</td>
</tr>
<tr>
<td>Dr Mohamd Ayoya</td>
<td>United Nations Children’s Fund (UNICEF)</td>
<td>Port Au-Prince, Haiti</td>
</tr>
<tr>
<td>Dr Salme Bahanpour</td>
<td>Shiraz University of Medical Sciences</td>
<td>Shiraz, Iran (Islamic Republic of)</td>
</tr>
<tr>
<td>Mr Eduard Baladia</td>
<td>Spanish Association of Dieticians and Nutritionists</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Dr Levan Baramidze</td>
<td>Ministry of Labour Health and Social Affairs</td>
<td>Tbilisi, Georgia</td>
</tr>
<tr>
<td>Mr Julio Pedro Basulto Marset</td>
<td>Spanish Association of Dieticians and Nutritionists</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Dr Christine Stabell Benn</td>
<td>Bandim Health Project Statens Serum Institut</td>
<td>Copenhagen, Denmark</td>
</tr>
<tr>
<td>Dr Jacques Berger</td>
<td>Institut de Recherche pour le Développement</td>
<td>Montpellier, France</td>
</tr>
<tr>
<td>Dr R.J. Berry</td>
<td>Centers for Disease Control and Prevention (CDC)</td>
<td>Atlanta, United States of America</td>
</tr>
<tr>
<td>Ms E.N. (Nienke) Blok</td>
<td>Ministry of Health, Welfare and Sport</td>
<td>The Hague, the Netherlands</td>
</tr>
<tr>
<td>Ms Lucie Bohac</td>
<td>Iodine Network</td>
<td>Ottawa, Canada</td>
</tr>
<tr>
<td>Dr Erick Boy-Gallego</td>
<td>HarvestPlus</td>
<td>Ottawa, Canada</td>
</tr>
<tr>
<td>Dr Mario Bracco</td>
<td>Albert Einstein Social Responsibility Israeli Institute</td>
<td>São Paulo, Brazil</td>
</tr>
<tr>
<td>Dr Gerard N. Burrow</td>
<td>International Council of Iodine Deficiency Disorders</td>
<td>Ottawa, Canada</td>
</tr>
<tr>
<td>Dr Christine Clewes</td>
<td>Global Alliance for Improved Nutrition</td>
<td>Geneva, Switzerland</td>
</tr>
<tr>
<td>Dr Bruce Cogill</td>
<td>Global Alliance for Improved Nutrition</td>
<td>Geneva, Switzerland</td>
</tr>
<tr>
<td>Mr Hector Cori</td>
<td>DSM</td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td>Dr Maria Claret Costa Monteiro Hadler</td>
<td>Federal University of Goiás</td>
<td>Goiânia, Brazil</td>
</tr>
<tr>
<td>Professor Ian Darnton-Hill</td>
<td>University of Sydney</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Professor Kathryn Dewey</td>
<td>University of California</td>
<td>Davis, United States of America</td>
</tr>
<tr>
<td>Professor Michael Dibley</td>
<td>Sydney School of Public Health</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Dr Marjoleine Dijkhuizen</td>
<td>University of Copenhagen</td>
<td>Copenhagen, Denmark</td>
</tr>
<tr>
<td>Ms Tatyana El-Kour</td>
<td>World Health Organization</td>
<td>Amman, Jordan</td>
</tr>
<tr>
<td>Dr Suzanne Filteau</td>
<td>London School of Hygiene and Tropical Medicine</td>
<td>London, England</td>
</tr>
<tr>
<td>Dr Rodolfo F. Florentino</td>
<td>Nutrition Foundation of the Philippines</td>
<td>Manila, Philippines</td>
</tr>
</tbody>
</table>
Dr Sirimavo Nair
University of Baroda
Vadodara, India

Dr Ruth Oniango
African Journal of Food, Agriculture, Nutrition and Development (AJFAND)
Nairobi, Kenya

Dr Saskia Osendarp
Science Leader Child Nutrition
Unilever R&D
Vlaardingen, the Netherlands

Dr Jee Hyun Rah
DSM-WFP Partnership
DSM – Sight and Life
Basel, Switzerland

Mr Sherali Rahmatulloev
Ministry of Health
Dushanbe, Tajikistan

Ms Anna Roesler
Menzies School of Health Research/Compass Women’s and Children’s Knowledge Hub for Health
Chiang Mai, Thailand

Professor Irwin Rosenberg
Tufts University
Boston, United States of America

Professor Amal Mamoud Saeid Taha
Faculty of Medicine
University of Khartoum
Khartoum, Sudan

Dr Isabella Sagoe-Moses
Ghana Health Service
Accra, Ghana

Dr Dia Sanou
Department of Applied Human Nutrition
Mount Saint Vincent University
Halifax, Canada

Dr Rameshwar Sarma
St James School of Medicine
Bonaire, the Netherlands Antilles

Dr Andrew Seal
University College London
Centre for International Health and Development
London, England

Dr Magdy Shehata
World Food Programme
Cairo, Egypt

Mr Georg Steiger
DSM Nutritional Products
DSM Life Science Products International
Basel, Switzerland

Professor Barbara Stoecker
Oklahoma State University
Oklahoma City, United States of America

Dr Ismael Teta
Micronutrient Initiative
Ottawa, Canada

Dr Ulla Uusitalo
University of South Florida
Tampa, United States of America

Dr Hans Verhagen
Centre for Nutrition and Health
National Institute for Public Health and the Environment (RIVM)
Bilthoven, the Netherlands

Dr Hans Verhoef
Wageningen University
Wageningen, the Netherlands

Dr Sheila Vir Chander
Public Health Nutrition Development Centre
New Delhi, India

Dr Annie Wesley
Micronutrient Initiative
Ottawa, Canada

Dr Frank Wieringa
Institut de Recherche pour le Développement
Montpellier, France

Ms Caroline Wilkinson
United Nations High Commission for Refugees
Geneva, Switzerland

Dr Pascale Yunis
American University of Beirut Medical Center
Beirut, Lebanon

Dr Lingxia Zeng
Xi’an JiaoTong University College of Medicine
Xi’an, China
Annex 6

Effects and safety of iron and folic acid supplementation in pregnant women

a. Could iron and folic acid supplements given to pregnant women improve maternal and infant health outcomes?

b. If so, at what dose, frequency and duration for the intervention, and in which settings?

Questions in Population, Intervention, Control, Outcomes (PICO) format

Population: Non-anaemic pregnant women

Subpopulation: Critical

- By malaria-endemic versus non-malaria-endemic area (no transmission or elimination achieved, susceptibility to epidemic malaria, year-round transmission with marked seasonal fluctuations, year-round transmission with consideration of *Plasmodium falciparum* and/or *Plasmodium vivax*).
- By use of concurrent malarial measures, in particular, intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP).
- By human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) status: HIV positive versus HIV negative.
- By individual’s status of iron deficiency: iron deficiency versus non-iron deficiency.
- By individual’s status of anaemia: anaemic versus non-anaemic.
- By anaemia status of population: 20% or less versus 20–40% versus more than 40%.

Intervention: Iron plus folic acid supplementation

Subgroup analysis: Critical

- By frequency: daily versus once weekly versus twice weekly versus other.
- By duration: 3 months or less versus more than 3 months.
- By nutrient: iron versus iron plus folic acid versus iron plus other micronutrients.
- By iron content.
- By folic acid content.

Control: No iron supplementation.

Placebo.

Same supplement without iron or folic acid on a daily basis.

Outcomes: Maternal

Critical

- Severe anaemia.
- Maternal mortality.
- Anaemia at term.
- Haemoglobin concentrations.
- Iron deficiency anaemia at term.
- Iron deficiency at term.
- Morbidity from malaria – incidence and severity (parasitaemia with or without symptoms).
- Adverse effects.
Neonate/infant
Critical
- Neural tube defects
- Iron deficiency anaemia at birth
- Low birth weight: less than 2500 g
- Birth weight
- Iron deficiency at term
- Length at birth
- Anaemia at birth
- Preterm birth: less than 37 weeks’ gestation
- Neonatal mortality: within 28 weeks after birth

Setting: All settings