When the Eighteenth World Health Assembly, meeting in Geneva in May 1965, decided to establish an International Agency for Research on Cancer, it brought into being an organization which fulfilled an appeal made by General Charles de Gaulle, the President of France, two years earlier. The Agency began its work in July 1966.

The governments of France, the Federal Republic of Germany, Italy, the United Kingdom and the United States agreed to become founding Participating States—each contributing US$ 150,000 a year towards the Agency. Very shortly afterwards, the Soviet Union joined, soon to be followed by Australia and the Netherlands. Between 1970 and 1982, Belgium, Japan, Sweden and Canada added their support to the Agency. The budget in 1985 was close to US$ 9 million.

During 1963-1965, whilst the Ministers of Foreign Affairs and of Health discussed the proposal for an international cancer research body, other discussions were taking place elsewhere. Mr Louis Pradel, the Mayor of Lyon, France, reacting quickly to the de Gaulle appeal, invited the future organization to make its headquarters in Lyon. He offered the French Government a building site and undertook to share in the cost of putting up a suitable headquarters.

In 1965, the International Agency for Research on Cancer was brought into being by the World Health Assembly, with a unique statutory position. The Agency was clearly under the aegis of WHO, but it was stipulated that it should never be a charge on the budget of WHO. Participating States of the Agency were to form their own Governing Council and pay separate annual contributions to the Agency. Whilst fulfilling the terms of its statutes, the Agency has also developed its own cancer research programmes. What its future activities might be were set out by the Advisory Scientific Committee, set up by Dr Marcelino Candau, then Director-General of WHO. This committee was the precursor of the Scientific Council established by the governing council to advise it, and the Agency’s director, on its future research programmes.

In 1966, the Agency’s first director, Dr John Higginson, was appointed and in May 1967, the staff nucleus moved from Geneva to Lyon. There for the next five years they developed their activities in the temporary accommodation put at their disposal by the municipal authorities, whilst the headquarters building was being constructed. In June 1972, the 14-storey tower block was ready for inauguration by French President Georges Pompidou, and soon after all the staff, by this time around 150, moved into their laboratories and offices.

It was decided that the Agency’s activities should be directed towards research into cancer causation, and the programme was developed with a two-pronged attack: epidemiological research on the one hand and experimental laboratory research on the other, but with the laboratory often providing essential support in the epidemiological field study.

At the same time every effort would be made to coordinate the Agency’s research with that going on in national laboratories, and to strengthen that coordination by collecting and disseminating information.

Descriptive epidemiology of cancer at the international level had just been given a boost by the publication of “Cancer Incidence in Five Continents”, a technical report of the International Union Against Cancer (UICC), and the UICC asked the Agency to take over full responsibility for its future production. The International Association of Cancer Registries, for which the Agency provides a secretariat, has now in turn been involved in continuing the series. This compilation of reliable cancer registry data is proving of great value in the development of ad hoc studies in analytical epidemiology.

The Agency assisted in developing the oncology section of the International Classification of Diseases which helps cancer registries to standardise their classification and coding.

While continuing to assist in the upgrading of cancer morbidity data, the Agency is expanding its collection of information from countries where population-based cancer registries have yet to be established, particularly from the developing countries. Such information is essential to local public health authorities in the forward planning of their health services and may also indicate opportunities for intervention for cancer prevention.

The Agency’s scientific staff have been involved in analytical epidemiological studies of several different cancers and in many parts of the world. Examples are the association between primary liver cancer and...
Aflatoxin contamination of food in Kenya; Burkitt's lymphoma and Epstein-Barr virus in Uganda; mesothelioma in Central Anatolia, Turkey; oesophageal cancer in France, Iran and China; and more recently the association between primary liver cancer and hepatitis B virus infection in the Gambia. Co-ordinated studies of cancers of the pancreas, bile duct and gall bladder involve research groups in Australia, Brazil, Canada, the Netherlands and Poland.

Glass fibre and rock-wool are increasingly used to replace the carcinogenic asbestos, and in Europe, a large cohort of men exposed to these man-made mineral fibres has been studied for adverse health effects and especially lung cancer incidence. In Colombia where the incidence of cervical cancer is very high and in Spain where it is low, a collaborative case-control study is being mounted to determine to what extent the ten-fold difference in risk is related to either male or female sexual behaviour, and to human papilloma virus.

Studies of the relation of dietary factors to cancer incidence are under way in Belgium, France, and Iceland, and are being planned in Sweden. And a large-scale international collaborative programme has been developed to evaluate the effect of mass screening programmes on cancer mortality, both for cancer of the cervix and of the breast. It is already clear that an efficiently run mass screening programme can drastically reduce mortality in both diseases. The study has also indicated how best to organize a screening campaign to achieve a maximum efficiency at minimum cost, a consideration of particular importance in developing countries.

In 1968, Dr Lorenzo Tomatis, who in 1982 was to become Director of the Agency, was appointed to develop a programme in chemical carcinogenesis. That programme took two major directions, which are still being followed. The first was the initiation of laboratory studies into the biology and mechanism of chemical carcinogenesis, and the second was the setting up of what has become one of the most important functions of the Agency—the evaluation of the carcinogenic risk of chemicals to humans.

IARC's research workers are contributing to the control and, eventually, to the prevention of human cancer.

Micro-analytical techniques have been developed in the Agency to determine the presence and concentration of carcinogenic substances in environmental samples, with particular attention to mycotoxins and nitrosamines. The development and standardisation of such analytical methods is coordinated between the Agency's laboratories and a number of national institutes.

The Agency has established an international network for the long-term carcinogenicity testing of chemicals, and has also developed methods for short-term mutagenicity tests, which are so necessary in screening the large number of chemicals that are being introduced into the environment.

Biological research at first concentrated on the role of viruses in human cancer, particularly in Burkitt's lymphoma, shown to be associated with high levels of Epstein-Barr virus infection, and in nasopharyngeal carcinoma. More recently interest has centred on chromosomal translocations in the genesis of the disease.

Among its many publications, the Agency has since 1971 issued a series of monographs on the evaluation of the carcinogenic risk of chemicals to humans. These monographs have now established a firm reputation both in scientific circles and in governmental regulatory agencies, and by 1985, thirty-seven volumes had dealt with the carcinogenic risks of more than 700 chemicals and industrial processes. Of these, nine industrial processes and 30 chemicals or mixed exposures were identified as causally associated with cancer in humans, and a further 17 were considered to be probably carcinogenic.

The educational activities of the Agency include a fellowships programme which gives priority to research training in cancer epidemiology and environmental carcinogenesis, and short specialist courses which are arranged in many different parts of the world.

"The Agency's activities have developed in many directions since 1966," says Dr Tomatis, Director of IARC, "and I would summarise them under four headings.

"First, there is the collection, critical analysis and dissemination of information. Secondly, analytical studies on etiology and prevention, including evaluation of mass screening programmes, and the development of intervention studies as models for large scale public health initiatives.

"Then, there are laboratory studies on the mechanisms of carcinogenesis and on the development of methods for detecting carcinogens, quantifying levels of exposure, and evaluating variability in the individual susceptibility to carcinogens. And finally, as an integral part of all these activities, the Agency continues its role in education and training.

"Overall, the main thrust must remain the search for etiological factors for human cancer, in order to contribute to the control and, eventually, the prevention of human cancer."