What is vector control?

History

At the end of the nineteenth century, researchers discovered that certain species of insect were responsible for the transmission of some serious diseases to humans. Since effective vaccines or drugs were not available for these diseases, the only means of prevention was to destroy these insects, also known as ‘vectors’, to prevent the diseases from spreading.

The discovery of DDT in 1940 was a major breakthrough in vector control. The insecticide was effective, cheap and remained active over a period of many months. Between the 1950s and the 1970s, household spraying of DDT made it possible to eliminate malaria (and other vector-borne diseases) from whole regions, or to bring them under effective control. However, in Africa, where malaria is very widespread and its vectors numerous and active, its eradication proved impossible. At present, 90% of the world’s fatal cases of malaria are in Africa.

The main vectors and the diseases they transmit

<table>
<thead>
<tr>
<th>Vector</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosquitoes</td>
<td>Malaria, lymphatic filariasis, Japanese encephalitis, some haemorrhagic fevers (yellow fever, dengue, dengue haemorrhagic fever) and viral fevers (West Nile).</td>
</tr>
<tr>
<td>Tsetse flies</td>
<td>Sleeping sickness.</td>
</tr>
<tr>
<td>Triatomine bugs</td>
<td>Chagas disease.</td>
</tr>
<tr>
<td>Phlebotomine sandflies (small hairy flies)</td>
<td>Leishmaniasis.</td>
</tr>
<tr>
<td>Simulium (small black flies, that bite along riverbanks)</td>
<td>River blindness or onchocerciasis (filariasis).</td>
</tr>
<tr>
<td>Fleas</td>
<td>Plague, murine typhus.</td>
</tr>
<tr>
<td>Body lice</td>
<td>Typhus fever, louse-borne relapsing fever.</td>
</tr>
<tr>
<td>Ticks</td>
<td>Tick-borne relapsing fever, tick-borne rickettsial fever, Lyme disease.</td>
</tr>
<tr>
<td>Mites</td>
<td>Scrub typhus, scabies.</td>
</tr>
<tr>
<td>Intermediate hosts and possible vectors of disease:</td>
<td></td>
</tr>
<tr>
<td>Houseflies, cockroaches</td>
<td>Intestinal, skin and eye infections.</td>
</tr>
<tr>
<td>Gastropods (freshwater snails)</td>
<td>Schistosomiasis, liver-fluke disease.</td>
</tr>
<tr>
<td>Cyclops (crustaceans)</td>
<td>Guinea-worm disease.</td>
</tr>
</tbody>
</table>

What are the aims of vector control?

The purpose of vector control is to limit contact between humans and vectors, and to reduce vector populations or their life expectancy so that they are unable to transmit disease.

Vector control today

Vector control rarely relies on a single intervention. Whenever possible, environmental, biological and chemical (use of insecticides) control measures complement each other in what is known as integrated vector management.

In order to effectively control vectors, it is necessary to precisely identify them, to be familiar with their biology, their behaviour towards humans and their exact role in disease transmission. Only thus is it possible to undertake control measures and to intervene effectively.

Why is vector control of importance for public health?

Vector-borne diseases cause death and disability. They are also an obstacle to social and economic development (lost working hours, abandonment of fertile land, high cost of treating disease).

What strategies are currently used in vector control?

Nowadays, we can call on tools and measures that are suited to vector control. Chagas disease control programmes in South America, and onchocerciasis control programmes in West Africa have demonstrated that wise use of insecticides and of existing methods of application produce excellent results at an affordable cost. However, this type of control measure requires trained staff and specialized control services, and both of these are unfortunately lacking in many of the most affected countries.

WHO favours vector-control measures which can be implemented by individuals and communities themselves in order to protect them against vector-borne diseases, provided that the measures have been proved to be efficacious. In most cases, the techniques are simple and cheap, and if properly used they present no danger either to the user or to the environment.

Vector control tools and measures

1. **Insecticides** play an essential role in vector control. Highly effective insecticides, of low or non-existent toxicity for humans, and which, being biodegradable, do not build up in the environment (e.g. pyrethroids) are now available.
They may be used, as appropriate, against adult insects or larvae, and in particular mosquito larvae, which live in water. Insecticides may be applied:

- by aerial, wall or domestic spraying;
- in water.

They need to be applied selectively, where they will have the greatest effect, which cannot be achieved by any other means.

2. Personal protection against bites can be achieved by applying repellents to the skin, by wearing appropriate protective clothing, if possible treated with repellents, or by use of insecticide dispensers and of mosquito nets and other material preferably treated with long-duration insecticides.

Mosquito nets, when treated with certain insecticides, provide effective treatment against mosquito bites. In Africa, their systematic use in communities would make it possible to reduce cases of malaria by 50-60%, and infant mortality by 20-25%.

Treated mosquito nets which remain effective even after several washes are now available. These long-lasting nets will gradually replace the other types of treated nets. Increasing use is also made of treated textiles, particularly against household mites and ticks. Travellers treated textiles, particularly against mosquito bites can be achieved by applying repellents to the skin, by wearing appropriate protective clothing, if possible treated with repellents, or by use of insecticide dispensers and of mosquito nets and other material preferably treated with long-duration insecticides.

3. Environmental measures are intended to limit the proliferation of vectors by modifying or destroying their breeding sites through simple measures. One good example is the elimination of stagnant polluted water in urban settings. However, such measures first require a careful study of the vectors, and must be well suited to local conditions.

4. Biological control relies on the use of living organisms, or of products derived from them, to destroy the vectors. Depending on the circumstances, these may be parasites, bacteria, or predators (mosquitoes, crustaceans or fish).

What are the obstacles to vector control?

In the most affected countries, the absence of control services with trained staff and proper logistic support is a major obstacle to vector control.

Numerous vectors are developing resistance to insecticides. This complicates control, because of the need to come up with substitute products, which is a challenging task. As far as possible, an effort is made to prevent the development of resistance by avoiding inappropriate use of insecticides.

Further information from:
Parasitic Diseases and Vector Control (PVC)
Department of Control, Prevention, and Eradication (CPE)
Communicable Diseases Cluster (CDS)
WHO, 1211 Geneva 27, Switzerland
E-mail: infowho.int
Spokesperson’s Office (SPO)
External Cooperation and Partnerships (ECP)
Tel: (+41) 22 791 2535
Fax: (+41) 22 791 4858
E-mail: henrym@who.int

© World Health Organization, 2001
This document is not a formal publication of the World Health Organization (WHO), and all rights are reserved by the Organization. The document may, however, be freely revised, abstracted, reproduced or translated, in part or in whole, but not for sale or for use in conjunction with commercial purposes.

PROGRESS MADE SO FAR

Over the past decade, the measures described above have been widely used in vector control. Modern techniques, such as long-lasting insecticide treatment of textile fibres, real-time use of satellite images and of geographical information systems allow control measures to be better organized and targeted.

It is now possible in the laboratory to produce genetically-modified vectors which have lost their capacity to transmit disease. However, their use in the field raises numerous issues which have not yet been resolved.

FLASH TIPS

Did you know that...

- onchocerciasis control in West Africa has largely relied on a natural bacterium, Bacillus thuringiensis israelensis; when spread in rivers, it destroys the vector’s larvae without affecting the other aquatic organisms or natural equilibria?
- Chagas disease has been brought under control in several South American countries thanks to a single household spraying of insecticide?
- for some diseases such as malaria or certain haemorrhagic fevers, a single bite from an infected mosquito may suffice to cause death? Protect yourself, and above all do so systematically.
- mosquitoes and other vectors have never been shown to transmit HIV?
- insecticide resistance is an evolving phenomenon? It is passed on from one generation to the next.
- malaria mosquito vectors frequently travel in aircraft and may transmit the disease during flight or at the arrival airport, if the aircraft is not properly disinfested?
- malaria was rife throughout Europe until the beginning of the twentieth century, including in northern countries such as Finland and Norway?