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Preface

This module is part of the WHO series The Immunological Basis for Immunization, 
which was initially developed in 1993 as a set of eight modules, comprising one module 
on general immunology and seven modules each devoted to one of the vaccines 
recommended for the Expanded Programme on Immunization, i.e. vaccines against 
diphtheria, measles, pertussis, polio, tetanus, tuberculosis and yellow fever. Since then, 
this series has been updated and extended to include other vaccines of international 
importance. 

The main purpose of the modules is to provide national immunization managers and 
vaccination professionals with an overview of the scientific basis of vaccination against 
a range of important infectious diseases. The modules developed since 1993 continue 
to be vaccine-specific, reflecting the biological differences in immune responses to the 
individual pathogens and the differing strategies employed to create the best possible 
level of protection that can be provided by vaccination. The modules also serve as a 
record of the immunological basis for the WHO recommendations on vaccine use, 
published in the WHO vaccine position papers.*

*	 See: http://www.who.int/immunization/documents/positionpapers_intro/en/index.html, 
accessed 10 August 2017.

http://www.who.int/immunization/documents/positionpapers_intro/en/index.html
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Bordetella pertussis is a strictly human pathogen with multiple biological activities.  
The bacteria are transmitted by droplets and the infectious dose is small in 
immunologically naïve patients. Pertussis infection begins with the attachment of  
B. pertussis to the ciliated epithelium of the respiratory tract; the subsequent 
manifestations are thought to be the result of the interplay between various virulence 
factors (toxins and adhesins) of the organism (Table 1). Irrespective of high vaccination 
coverage in infants and toddlers, B. pertussis circulates in all countries; reinfections are 
common and occur throughout a person’s lifetime. 

The genomes of the three classical Bordetella species – B. pertussis, B. parapertussis 
and B. bronchiseptica – as well as of some other Bordetella spp. have been sequenced 
and are publicly available (Parkhill et al., 2003; Sebaihia et al., 2006; Bouchez & Guiso, 
2013; Harvill et al., 2014; Gross et al., 2008). B. pertussis and B. parapertussis appear 
to have emerged relatively recently from a common B. bronchiseptica-like ancestor 
(Diavatopoulos et al., 2005). Changes in virulence factor expression in Bordetella spp. 
have also been studied at the genomic level (Linz et al., 2016).

Large parts of the genome of B. pertussis and B. parapertussis were inactivated or lost 
during adaptation to the human host a result of an expansion of insertion sequence 
elements. Compared to other human pathogens, isolates of B. pertussis show only 
small genomic heterogeneity, suggesting a more recent development as a human  
pathogen, but the population structure of B. pertussis is constantly evolving  
(Bart et al., 2014, Linz et al., 2016).

1. Pertussis 
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The structure and in vitro function of many B. pertussis virulence factors are quite  
well understood and this has led to the development of acellular pertussis (aP) vaccines. 
For a review of the biology of B. pertussis, see Melvin et al., 2014. 

2.1	 Regulation of antigen production

The virulence factors are controlled by a complex virulence expression system (BvgAS). 
BvgA is a DNA-binding response regulator, and BvgS is a 135-kDa transmembrane 
sensor kinase. The virulence factors under the regulation of the BvgAS system may be 
functionally characterized as adhesins and autotransporters (filamentous haemagglutinin, 
fimbriae, pertactin and tracheal colonization factor), toxins (pertussis toxin, adenylate 
cyclase toxin, dermonecrotic toxin, tracheal cytotoxin and lipopolysaccharide),  
and other antigens. Decades ago, it was observed that B. pertussis can display different 
“phases” (referred to as phases I, II, III and IV) in response to the environment.  
Thus, B. pertussis, like other Bordetella spp, is capable of responding to the  
environment by switching from the X mode (all virulence factors expressed) to the I 
mode, in which some virulence factors are suppressed, and theoretically also to the 
C mode, in which almost no virulence factors are expressed. The C mode has been 
demonstrated as a starvation survival mode in B. bronchiseptica. For a summary see 
Melvin et al. (2014).

2.2	 Pertussis toxin 

The best-known toxin of B. pertussis is pertussis toxin (PT), which has several  
biological activities and is secreted by a type IV secretion system. PT, like other bacterial 
toxins, is a typical AB toxin consisting of two main subunits – an enzymatically active 
A (S1) subunit and a B (S2−S5) oligomer which binds to receptors on target cells.  
The B oligomer has no enzymatic activity but is required for efficient binding  
of the toxin to cells and allows the S1 enzymatic subunit to reach the site of action 
within the target cell. S1 is an ADP-ribosyltransferase which ribosylates G proteins 
(Pittman, 1979; Burns, 1988; Kerr & Matthews, 2000). PT can be inactivated 
chemically or genetically but still retains its immunogenicity (Edwards et al., 1995).  
Other biological activities of PT include histamine sensitization, induction of 
lymphocytosis, insulin secretion and modification of immune responses. PT is produced 
only by B. pertussis although the genome of other Bordetella spp. such as B. parapertussis 
and B. bronchiseptica contain a nonfunctional ptx locus. Thus, PT is the only antigen 
specific for B. pertussis. 

2. Antigens of Bordetella 
pertussis 
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Sequencing of the ptx locus in circulating and historic strains has shown that  
PT displays some degree of polymorphism with different ptx genes (ptx1, ptx2 etc.). 
Some polymorphism is also observed in the promoter of the PT-operon (ptxP),  
which could modify the expression of the toxin (Mooi et al., 2009). Current isolates 
worldwide mainly are of the ptxP3 type (Bart et al., 2014). Antibodies to PT are induced 
by infection and vaccination and are used for diagnostic serology. PT is critical to the 
action of B. pertussis and is a component of all aP vaccines.

2.3	 Adenylate cyclase toxin

B. pertussis adenylate cyclase toxin (ACT), a haemolysin with enzymatic activity,  
is secreted in high concentration into the extracytoplasmatic space via a type I secretion 
system. It is produced by both B. pertussis and B. parapertussis, and belongs to the family 
of bacterial activated repeats-in-toxin (RTX) toxins. ACT is activated by calmodulin.  
By close contact between the bacteria and the host cells, ACT enters the cells and 
inhibits the microbicidal and cytotoxic function of neutrophils, monocytes and natural 
killer cells. ACT probably contributes to clinical pertussis through impairment of  
host defenses or through a direct effect on the respiratory mucosa (Hewlett et al., 2006; 
Sebo et al., 2014). ACT is produced during pertussis infection in humans, but antibody 
to ACT has not been consistently shown after infection or after vaccination with 
whole-cell pertussis vaccines (Farfel et al., 1990; Cherry et al., 2004). It is a conserved 
toxin and isolates of B. pertussis or B. parapertussis without ACT production have not 
been found. 

Inactivated ACT toxin is not a component of aP vaccines.

2.4	 Lipopolysaccharide

Like other gram-negative bacteria, B. pertussis organisms produce a lipopolysaccharide 
endotoxin (LPS). By contrast with other Bordetella spp., however, the B. pertussis 
LPS lacks a long O-antigenic chain, and is also called lipooligosaccharide (LOS).  
In contrast, B. parapertussis LPS has a long O antigen which plays an important role 
in the virulence of the bacterium (Zhang et al., 2009). LOS is probably responsible for 
some of the adverse reactions in children following whole-cell pertussis immunization, 
and has antigenic (although not protective) and adjuvant properties. The amount of 
LOS in wP vaccines has been shown to be largely associated with the frequency of 
fever after vaccination (Baraff et al., 1989). LOS was also recognized as one of the 
agglutinogens, formerly called AGG1.

LPS induces antibodies after infection and vaccination with wP vaccines.

B. pertussis LOS is not a declared component of aP vaccines. 

2.5	 Dermonecrotic toxin, heat-labile toxin 

Dermonecrotic toxin (DNT), one of the first virulence factors of B. pertussis to be 
discovered, induces dermal necrosis in mice when injected intradermally. It also induces 
necrosis of various other cell types in vitro. This heat-labile toxin (HLT) is a 160 kDa 
protein, the structure of which is compatible with an A-B model of bacterial toxins. 
However, in a mouse model, variants of B. pertussis lacking DNT are no less virulent 
than the parental strain. It is not secreted. DNT is not contained in aP vaccines. 
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2.6	 Tracheal cytotoxin 

Tracheal cytotoxin (TCT) is a fragment of bacterial peptidoglycan that causes loss of 
ciliated cells and reduction of cilial activity in vitro, possibly related to an increase 
in nitric oxide and/or IL-1ά. The structure of TCT resembles that of the biological 
response modifier muramyl dipeptide (Flak & Goldman, 1999). Due to its molecular 
size, it does not induce antibodies, but is recognized by peptidoglycan-binding-proteins 
(PGRP) (Swaminathan et al., 2006). 

TCT is not contained in aP vaccines.

2.7	 Filamentous haemagglutinin 

Filamentous haemagglutinin (FHA) is a large hairpin-shaped (molecular-weight  
220 kDa) surface-associated and secreted protein. FHA has no enzymatic activity but 
plays a major role in the initial colonization of B. pertussis by mediating the adhesion of 
B. pertussis to the ciliated epithelium of the upper respiratory tract. FHA belongs to the 
“two-partner secretion” systems of bacterial excreted proteins, in which a transporter 
protein, subtilisin-like serine-protease/lipoprotein (SphB1), is responsible for the 
recognition and transport of FHA. FHA is produced by B. pertussis, B. parapertussis 
and B. bronchiseptica, and it cross-reacts with structures from other bacteria  
(Scheller & Cotter, 2015). Genomic studies of the fha genes have shown almost no 
heterogeneity among different clinical isolates (Mooi & Greef, 2007).

FHA induces antibodies after infection and vaccination.

FHA is contained in most aP vaccines.

2.8	 Pertactin 

Pertactin (PRN), an autotransporter, is a 68−70 kDa surface protein that mediates 
eukaryotic cell-binding by its Arg-Gly-Asp (RGD) motif, and is also produced by 
classical Bordetella spp. 

The prn genes are among the most polymorphic in the B. pertussis genome,  
and various prn types (prn1–prn11) have been identified (Mooi & Greef, 2007). Changes in  
prn types were suspected to contribute to the reduced vaccine effectiveness of the 
Dutch whole-cell vaccines (Mooi et al., 2001). However, studies in France showed a 
similar duration of protection induced by whole-cell pertussis or acellular pertussis 
vaccines when circulating isolates produced different PRNs (PRN2 or 3) than the 
vaccine strain (PRN1) (Guiso et al., 2007; Guiso et al., 2008) During the last decade, 
pertactin-deficient isolates of B. pertussis and of B. parapertussis have been found 
in France and many other countries (Bouchez et al., 2009; Hegerle & Guiso, 2014).  
In a murine respiratory model, these isolates interfered with the efficacy of the 
aP vaccines (Hegerle et al., 2014; Safarchi et al., 2015). A cohort study in humans 
showed a better fitness of PRN-deficient isolates in vaccinated versus non-vaccinated 
subjects (Martin et al., 2015) whereas, in a case-control study, no difference in vaccine 
effectiveness was seen (Breakwell et al., 2016). Given the broad differences in circulation 
of PRN-deficient isolates, the overall relevance of these variants remains to be elucidated.

PRN induces antibodies after infection and vaccination.

PRN is an antigen in many aP vaccines. Low amounts of PRN, sufficient to induce 
immune responses, are present in some two-component (PT and FHA) aP vaccines 
thought not to contain PRN (Edwards & Decker, 2013).
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2.9	 Fimbriae

Fimbriae (FIM) types 2 and 3 also represent serotype-specific agglutinogens (AGG) 
and are important surface components involved in colonizing the respiratory mucosa 
(Scheller & Cotter, 2015). FIM2 and FIM3 contained in whole-cell pertussis vaccines 
are believed to contribute to protective efficacy, and the WHO requirements for  
pertussis vaccine licensure require the presence of such AGG to be demonstrated 
(WHO, 1990). Most manufacturers use several strains of B. pertussis in the production  
of whole-cell pertussis vaccines to ensure that both types of fimbriae are present 
(Kudelski et al., 1978), although some manufacturers base their production on only 
one strain (Huovila et al., 1982).

Isolates of B. pertussis can display FIM2, FIM3 or both on their surface. It has long 
been observed that the FIM type of circulating isolates could change over time  
(Mooi et al., 2007). Although the fim genes are rather preserved, polymorphisms have 
been found among FIM antigens, and one structure, FIMD, is common to all fimbriae. 

FIM induce the synthesis of antibodies, such as agglutinins after infection and 
vaccination. FIM2 and FIM3 are antigens in some aP vaccines. FIM antigens may be 
present in minute amounts in antigen preparations of aP vaccines that are thought not 
to contain FIM (Edwards & Decker, 2013).

2.10	 Animal models of Bordetella pertussis infection 

Our understanding of the role of specific components of B. pertussis in the pathogenesis 
of, and immunity to, the disease is impaired by the limited availability of suitable animal 
models that are equivalent to clinical pertussis in humans. However, the emergence of 
the baboon model can be helpful in elucidating various aspects of transmission. 

Rodent models: the murine model has been used for several decades because of the 
availability of murine reagents, knock-out mice and their reasonable cost. Mice are 
infected either systemically (intravenous, intraperitoneal) or by the respiratory tract. 
Some aspects of human disease can be reproduced; however, mice do not cough  
and do not transmit. Nevertheless, most virulence factors of Bordetella spp, as well 
as the immune responses, were characterized using the murine model. Furthermore, 
the potency tests of wP and aP vaccines are made using intracerebral murine  
models. Another advantage of mice is that they are not infected by B. bronchiseptica 
(Mills & Gerdts, 2014)

Swine models: the swine model can reproduce many parameters of human disease, 
including transmission. The model was also useful in generating data concerning 
maternal immunization (Mills & Gerdts, 2014). 

Baboon model: the baboon seems to reproduce the human disease and transmission 
quite effectively (Warfel et al., 2012). In this model, aP vaccination provided  
protection against disease symptoms but not against colonization or transmission 
(Warfel et al., 2013). However, it was also shown that baboons may be infected by  
B. bronchiseptica (Nguyen et al., 2016), which may impair the interpretation of data. 
Thus, this model requires extremely careful handling.
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The pertussis working group of the WHO Strategic Advisory Group of Experts (SAGE) 
on Immunization has produced a background paper that highlights many aspects of 
pertussis surveillance and vaccine use (WHO, 2014a).

3.1	 Whole-cell pertussis vaccines 

Whole-cell pertussis (wP) vaccines contain various amounts of whole nonviable bacterial 
cells. All antigens and virulence factors described above – such as PT, ACT, LOS, FHA, 
PRN and FIM – can be components of wP vaccines.

wP vaccines are produced in many countries, and WHO has established quality 
requirements for production and lot release (WHO, 1990). wP vaccines are produced 
by growing bacteria in standardized liquid synthetic media. The bacteria are then  
killed chemically or by heating, adjusted to a certain density (i.e. number of cells),  
mostly adsorbed to aluminium salts, and a preservative is added. The production process 
and the composition of strains may vary from producer to producer. The potency of 
wP vaccines is usually controlled by an intracerebral mouse challenge test developed 
in the 1940s (Kendrick et al., 1947). Although this test has been used for a long time, 
it is not clear what type of murine immune response it measures. 

Considerable variation has been found in the amount of FHA and PT in different  
wP vaccines. Measured as antigen, FHA ranges between 0 and 1.6 µg per dose,  
and total biologically- active PT has been reported to be in the range of 0.02 to 0.68 µg 
per dose (Ashworth et al., 1983). The amount of FIM2 in Wellcome wP vaccine was 
estimated to be 4.7 µg per single dose (Ashworth et al., 1983). 

The amount of LOS in wP vaccines ranges from 0.9 to 2.8 µg per mL, and most has 
been found to exist as free, not cell-bound toxin. The release of LOS from cells during 
storage of vaccine is quite rapid; in the first few weeks 35−50% of the LOS is released, 
and after 5−6 months 60−80% of LOS is released (Ibsen et al., 1988). 

Although the production process of wP vaccines appears to be simple and standardized, 
significant differences have been observed in the immunogenicity and efficacy of  
wP vaccines from different producers (Bellalou & Relyveld, 1984). wP vaccines were 
included as a comparator in the trials on aP vaccines during the 1990s. The studies used 
different designs, and so the estimates of efficacy for the wP groups cannot be compared 
directly. A German wP vaccine showed vaccine efficacy estimates (VE) of 98% and  
96% in two studies, while one American vaccine had a VE of 83% in another study done 
in Germany. A French-made vaccine had a VE estimate of 96% in a study in Senegal. 
By contrast, an American wP vaccine that had passed the potency tests was found to 
be only 36% efficacious in Italy and only 48% in Sweden after three primary doses. 

3. Pertussis vaccines
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Similar effectiveness estimates were reported from other countries by using surveillance 
data. In the Netherlands, data from 1997 on the local vaccine against bacteriologically 
proven pertussis suggested an effectiveness of 51% (de Melker et al., 2000a). In a  
case-control study in Canada in children aged 4 years and over, vaccine effectiveness 
against laboratory-confirmed pertussis was only 57% (Bentsi-Enchil et al., 1997). 
Although aP vaccines have replaced wP vaccines in many industrialized countries, 
the majority of infants worldwide are primed with wP vaccines, and estimates for 
effectiveness of these products in lower- and middle-income countries (LMIC) are 
lacking. 

wP vaccines are not licensed for routine use in adolescents and adults. 

3.2	 Acellular pertussis vaccines

Recognition of the roles of PT, FHA, PRN and AGG/FIM in the pathogenesis of,  
and immunity against, pertussis, together with concerns about frequent local side-effects, 
as well as public anxiety about the safety of wP vaccines, prompted the development 
of aP vaccines. All aP vaccines are associated with significantly fewer and less serious 
side-effects, and thus the replacement of the wP vaccines was mainly driven by the 
safety profile of these vaccines. The other important advantage of the aP vaccines is 
the reproducible production process with its use of purified antigens and the removal 
of LPS and other parts of the bacterial cell wall during the purification of soluble 
antigenic material.

The first aP vaccines were prepared through a co-purification process; they contained 
a substantial predominance of FHA over PT (30−40 µg of FHA and about 5 µg of PT 
per dose), and a small amount of AGG (about 1 µg per dose) (Aoyama et al., 1989). 
These aP vaccines were studied in Japan and in Europe (Aoyama et al., 1989; Mortimer 
et al., 1990; Kimura & Kuno-Saki, 1990; Tomoda et al., 1991; Stehr et al., 1998).  
The second type of aP vaccines purified the antigens separately and combined with equal 
amounts of FHA and PT (usually 12.5 to 24 µg per dose). They were initially licensed 
and used in Japan for children over 2 years of age on the basis of immunogenicity data 
without an efficacy study. 

In order to evaluate multiple new aP vaccine candidates, a multicentre aP trial was 
conducted to assess the safety and immunogenicity of 13 candidate aP vaccines and 
two wP vaccines (Decker & Edwards, 1995). Taking into account the results of this 
immunogenicity study, an array of field studies was performed in subsequent years 
(Table 2) (Edwards & Decker, 2013). Although the efficacy trials differed significantly 
in vaccination times, design, case definition and technical aspects such as culture and 
serology, an attempt was made to put the results of all the studies into a synopsis 
(Edwards & Decker, 2013; Zhang et al., 2014). Unfortunately, all the trials failed 
to identify reliable serological correlates for clinical protection of the individual  
(see below).

As a result of these studies, aP vaccines were licensed in most countries for primary 
immunization and for booster immunization. Most licensed aP vaccines contain 
between one and four or five separately-purified antigens (PT, FHA, PRN, FIM2/3). 
Long-term surveillance of the effectiveness of the aP vaccines was initiated in Sweden, 
starting after the completion of efficacy trials there. Although the vaccines used in 
different parts of Sweden differed, the overall reduction of cases in all vaccinated 
cohorts was maintained (https://www.folkhalsomyndigheten.se/contentassets/
dbd8cd9e157c47189d72dd8ad9f6c94b/pertussis-eighteen-year-report-16109.pdf). 

https://www.folkhalsomyndigheten.se/contentassets/dbd8cd9e157c47189d72dd8ad9f6c94b/pertussis-eighteen-year-report-16109.pdf
https://www.folkhalsomyndigheten.se/contentassets/dbd8cd9e157c47189d72dd8ad9f6c94b/pertussis-eighteen-year-report-16109.pdf
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Compared to wP vaccines, aP vaccines are associated with a significantly reduced 
frequency of systemic reactions (fever, vomiting, fretfulness, anorexia) and local 
reactions (swelling, redness, warmth, tenderness). Various efficacy trials in the 1990s 
and the subsequent post-marketing surveillance, as well as national surveillance 
systems such as the Vaccine Adverse Event Reporting System (VAERS) in the USA,  
have produced a large amount of data on the reduced reactogenicity of aP vaccines. 
Various reviews have summarized the side-effects of aP vaccines in infants  
(Zhou et al., 2003). Of particular concern was the observation of entire limb swelling 
after vaccination, which was not painful and did not interfere with overall health but 
which troubled parents. A systematic review (Rennels, 2003) showed that this type of 
side-effect was not typical for aP vaccines, but that all paediatric vaccines produced limb 
swelling in varying frequency. However, this reaction was seen more frequently with aP 
vaccines than with wP vaccines. One study gave a fifth dose of aP vaccine to recipients 
that had experienced limb swelling after the fourth dose, and only 20% experienced 
a recurrence of limb swelling (Rennels et al., 2008). Some cohorts of aP vaccine study 
participants have now received up to six doses of aP vaccine, and the frequency of limb 
swelling was not reported to increase after the sixth dose (Zepp et al., 2006).

Due to their safety profile, aP vaccines also offer the possibility of vaccinating older 
children, adolescents and adults. Further developments focus on aP vaccines with 
reduced antigen content (i.e. 50% or less of the infant formulation) to further decrease 
unwanted side- effects. These vaccines have also undergone extensive studies relating 
to their immunogenicity and side-effects. One of the reduced-dose aP vaccines was 
tested for efficacy in a trial among adolescents and adults in the USA and was found 
to have a point estimate of efficacy of 92% (95% CI: 32–99%) (Le at al., 2004).  
In another study in adolescents in the United Kingdom, both reduced-dose vaccines, 
in combination with tetanus and diphtheria toxoid or polio vaccine (Tdap and  
Tdap-IPV, respectively), were immunogenic and safe (Southern et al., 2005).  
The effectiveness of giving combined Tdap-vaccines was shown in Australia and,  
with a point estimate of 85%, it was similar to the efficacy trial mentioned above  
(Rank et al., 2009). When Tdap was recommended for adolescents, it was observed 
that the frequency of post-vaccination syncope was slightly higher in female vaccinees 
(CDC, 2008).

3.3	 Combination vaccines

The term “monovalent” is used to indicate that the vaccine contains only pertussis 
antigens, and “monocomponent” is used to indicate that the vaccine contains only one 
single pertussis antigen. 

wP vaccines have, for a long time, been combined with tetanus and diphtheria toxoid 
in the diphtheria–tetanus whole-cell pertussis (DTwP) vaccine. However, monovalent 
wP vaccines are still available in a few countries. Most aP vaccines are combined with 
other antigens in combination vaccines, and no monovalent aP vaccine is available in the 
Americas or the European Union (EU). A licensed monovalent aP vaccine for booster 
immunizations is available in Thailand.



11

Apart from problems in the production of combination vaccines, other concerns  
arise from possible interferences between antigens as, for instance, it has been  
shown that the geometric mean titres of antibodies against H. influenzae type b 
polysaccharide are significantly lower in vaccinees who received combination vaccines. 
Secondly, combination vaccines have generated regulatory concerns because their 
safety and effectiveness may be more difficult to monitor and regulate than with 
single component vaccines (Decker, Edwards & Bogaerts, 2013). Immunological 
theory suggests that the simultaneous exposure of the immune system to multiple 
conjugate antigens (such as Hib, Streptococcus pneumoniae and Neisseria meningitidis),  
could result in either enhanced or suppressed immune responses. Suppression is assumed 
to occur when a specific carrier for a polysaccharide is given more than once, and this 
phenomenon is called carrier-induced epitopic suppression (Findlow & Borrow, 2016).

Combination vaccines are licensed in the assumption that combining their antigens 
does not interfere with their safety, immunogenicity and effectiveness. This is chiefly 
monitored not by efficacy studies but by non-inferiority studies that compare the 
immunogenicity of separately-administered licensed vaccines with the same antigens 
when administered in a combination vaccine. One example illustrates possible 
problems: DTaP-Hib-combination vaccines were introduced in the United Kingdom 
when another combination with wP was not available. The United Kingdom used 
a 2-, 3- and 4-month schedule for primary immunization without a booster in 
the second year of life. Surveillance showed that invasive Hib disease increased,  
especially in the recipients of the DTaP-Hib combination. However, when a booster 
dose was introduced, invasive Hib disease fell rapidly to low levels, as was the 
experience of countries, such as Germany that used a booster in the second year of life  
(Public Health England, 2017; Kalies et al., 2004). These and other experiences suggest 
that sufficient post-marketing surveillance will be necessary if vaccination plans are 
changed from separately-administered to combination vaccines.

Safety of combination vaccines has, so far, been reassuring, as no combination  
vaccine has produced side-effects that were not observed with any of its components. 
Overall, combination vaccines tend to have slightly more local side-effects when 
compared with separate injections of their antigens. However, the reduction in  
the number of injections, especially in infants, is regarded as a significant advantage 
for these products. Furthermore, it was observed that the use of combination  
vaccines improved the timeliness of vaccination in both American and German infants 
(Kalies et al., 2006; Happe at al., 2009). 

Overall, combination vaccines, especially for primary immunization of infants,  
have been very successful, with a good safety profile, and are used in most parts of the 
world (i.e. van Wijhe et al., 2016).

3.4	 Combination vaccines with whole-cell pertussis components 

The amount of pertussis antigens is low compared with the levels of protein in the 
tetanus and diphtheria toxoids in a dose of DTwP vaccine. A dose of DTwP vaccine 
normally contains 20 Lf of diphtheria toxoid and 10 Lf or more of tetanus toxoid.  
These amounts of toxoid provide 80 µg of diphtheria antigen and 40 µg of tetanus 
antigen per vaccine dose.
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wP vaccines, together with tetanus and diphtheria toxoids, were the “building blocks” 
for all other infant combination vaccines. DTwP vaccines have been combined with  
H. influenzae type b polysaccharide, with HBs-antigen, with inactivated polio vaccines 
(IPV) and, experimentally, with Neisseria meningitidis type C vaccine. Many of  
these combination products are used for primary immunization of infants  
(Decker, Edwards & Bogaerts, 2008). Most immune responses to the different 
antigens were similar when antigens were injected either separately or as a 
combination. Antibodies to the polyribosyl-ribitol-phosphate (PRP) of Hib, however,  
were reproducibly lower when the antigen was given in a combination vaccine.  
These differences may be clinically irrelevant, or relevant, depending on the 
immunization scheme.

3.5	 Combination vaccines with acellular pertussis vaccine

aP vaccines were initially combined with only tetanus and diphtheria toxoids.  
However, as in the case of wP vaccines, aP vaccines have also been combined with 
H. influenzae type b polysaccharide, with HBs-antigen, with IPV vaccines and, 
experimentally, with N. meningitis type C vaccine. Many of these combination 
products, with antigens from five or six different microorganisms, are used for primary 
immunization of infants. For a more detailed discussion on the immunogenicity of aP 
combination vaccines, see Decker, Edwards & Bogaerts, 2013.

Apart from combination vaccines for primary immunization, reduced dose  
combination vaccines have been developed for booster immunization, particularly 
in adolescents and adults. These booster vaccines contain about one third of the  
antigen content of those products for primary immunization; they are combined with 
a reduced dose of diphtheria toxoid to form Tdap products. For certain purposes,  
the Tdap vaccines are combined with IPV or other antigens. 

Although the efficacy study of an aP vaccine for adults and adolescents was done  
with a non-combined vaccine (Le at al., 2004), all immunogenicity data and an 
effectiveness study of reduced-dose combination vaccines with pertussis components 
(Rank et al., 2009) suggest that they are as effective as the separate products. 
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Although wP vaccines have been used successfully for decades, there are no reliable 
correlates of protective immunity to pertussis. Furthermore, although many of the 
serological techniques have proved useful as diagnostic procedures, it is unclear whether 
any of them, or a combination of which, is a measure of protection from pertussis in 
the individual (Table 3). 

Table 3: Methods for detection of antibodies to B. pertussis antigen

Method Quantification Antigens Isotypes Reported  
unit Standardized Commercially 

available

ELISA Yes PT, FHA, PRN, FIM IgG, IgA IU/mL Yes           Yes

Flow cytometry Yes PT, FHA, PRN IgG, IgA IU/mL Yes Yes

CHO-cell assay Semiquantitative PT IgG Titres No No

Agglutination Semiquantitative Whole cells IgM (IgG) Titres Partly No

Note: CHO = Chinese hamster ovary.

Another crucial point is the standardization of detection methods to make results 
comparable. These standardizations would include methodology, purity of antigens 
and reference materials, which so far have been achieved only for enzyme-linked 
immunosorbent assay (ELISA) methodology (Giammanaco et al., 2008; Tondella et al., 
2009). A WHO reference preparation for human pertussis serology has been developed 
and is available from the National Institute for Biological Standards & Control (NIBSC) 
(Xing et al., 2009) in the United Kingdom. All methods used for measuring the immune 
response to B. pertussis antigens are also being used as tools to diagnose the disease, 
and commercially distributed tests are available.

4. Measuring the immune 
response to Bordetella pertussis 

antigens
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4.1	 Bacterial agglutination test 

The bacterial agglutination (BA) test, the first method developed to measure pertussis 
antibodies, employs a simple technique for measuring mainly IgM-antibodies 
induced by the fimbriae, PRN and LPS of B. pertussis. Early studies by Miller et al. 
(1943) and Sako (1947) suggested some correlation of agglutinins with immunity;  
vaccinated children with high agglutinin titres were protected from household exposure 
to pertussis. Studies have neither confirmed nor refuted this observation. Agglutinins 
are not regularly produced after infection. After vaccination with wP vaccines, however, 
agglutinins are often produced, although vaccinees without agglutinating antibody have 
been shown to be protected from disease. For example, the first “acellular” vaccine 
(based on sonically disintegrated B. pertussis cells called Pillemer antigen) was shown 
to provide strong protection in children although it had a weak capacity to stimulate 
production of agglutinins in mice and children (MRC, 1959).

The BA test suffers from low sensitivity and has not been standardized. The agglutinin 
titres strongly depend on the bacterial strain used (Wilkins et al., 1971; Blumberg et al., 
1992). BA antibodies correlate best with antibodies to FIM determined by the ELISA 
test. There is a better correlation between the results of these tests when the BA titre 
is above 1:320 than at lower BA titres. 

4.2	 Enzyme-linked immunosorbent assay 

The enzyme-linked immunosorbent assay (ELISA) uses purified protein antigens of  
B. pertussis (such as FHA, PT, PRN or FIM2/3) to measure serum immunoglobulin  
IgG and IgA responses following disease or vaccination (Granstrom et al., 1982; 
Ashworth et al., 1983; Burstyn et al., 1983; Mertsola et al., 1983; Baraff et al., 1984; 
Granstrom et al., 1988; Stroffolini et al., 1989; Thomas et al., 1989b; Zackrisson et al., 
1990; Lynn et al., 1996). In addition, ELISAs have also been used to measure antibodies 
in saliva (Litt et al., 2006). The ELISA test is sensitive, specific, relatively cheap,  
and requires only a small amount of serum. The accuracy of the test depends on the 
purity of the antigens involved, and proof of the purity in commercial tests may be 
obtained from the manufacturers. With mixed preparations (whole bacteria, sonicate 
or extract of bacteria), it is not possible to identify the specific antigens to which the 
antibody response is directed (Thomas et al., 1989a). 

The use of ELISA to quantify anti-pertussis toxin (PT) antibody levels can be  
performed with paired (acute and convalescent phase) or single serum samples  
(Guiso et al., 2011). Paired sample serology is a standardized method of diagnosing 
pertussis, being the most sensitive and specific. However, the need to collect two samples 
and to wait several weeks for the result makes it impractical for routine diagnosis.  
For this reason, single-sample serology has been developed and IgG-anti-PT serological 
cut-off values have been determined in a number of laboratories; this technique has been 
shown to provide good sensitivity and specificity in determining cases in adolescents 
and adults (Table 4) (Marchant et al., 1994; Wirsing von König et al., 1999 and 2002; 
de Melker et al., 2000; Baughman et al., 2004; Prince et al., 2006). 
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All studies that gave recommendations on the use of serology in pertussis diagnosis 
were performed in populations vaccinated with DTwP vaccines. Diphtheria–tetanus–
acellular pertussis (DTaP) vaccines are now being used in many countries. DTaP vaccines  
induce immune responses different from those of DTwP, resulting in higher titres 
of antibody (Greco et al., 1996; Olin et al., 1997). Antibody responses to specific 
antigens may result in higher titres in DTaP vaccines compared with DTwP vaccines 
and may last for some years (Greco et al., 1996; Olin et al., 1997; Guiso et al., 2007;  
Riffelmann et al., 2009). For this reason, recommendations regarding serological  
cut-offs for single-sample serology may need to be monitored for their sensitivity and 
specificity when the vaccination schedule is changed. 

Recommendations on what to do and what not to do in pertussis serology have been 
compiled by the European Union reference laboratories and are publicly available 
(Guiso et al., 2011).

4.3	 Immunoblot assays

Immunoblot techniques for measuring antibodies to B. pertussis were developed in the 
late 1980s (Thomas et al., 1989a). Since then, these assays have been used in pertussis 
diagnosis (Redd et al., 1988; Guiso et al., 1993) but have limitations. Immunoblots 
cannot readily quantify the amount of antibodies. In most assays, purified pertussis 
antigens are used since they may be used more easily in an ELISA format; no typical 
pattern of immunoblot reactivity has been evaluated when a whole-cell lysate is used 
for this technique. Because of their lack of quantified results, immunoblot assays are not 
recommended by the European Union reference laboratories (Guiso et al., 2011) and, 
in comparison with ELISA, their performance was poor (Kennerknecht et al., 2011).

4.4	 Other tests for measuring antibodies 

Flow cytometry-based serological tests using multicoloured beads have been applied to 
pertussis serology, offering the advantage of measuring various antibody specificities in a 
single test. These tests were found to correlate well with standardized ELISA procedures 
(Pickering et al., 2002; Prince et al., 2006; Reder et al., 2008; van Gageldonk et al., 2008).

The in vitro neutralization test for antibodies to PT is conducted using microtitre 
cultures of Chinese hamster ovary (CHO) cells. PT induces a distinct cytopathogenic 
effect that results in the clustering of CHO cells in the microplate culture. Only a 
small amount of PT (about 1 ng) is needed to produce the clustering of CHO cells.  
The addition of sera to the microcultures allows the measurement of in vitro 
neutralization of the toxin (Gillenius et al., 1985; Granstrom et al., 1985).  
The neutralization test (NT) is laborious, requires tissue-culture facilities and involves 
subjective readings. Although the titres of NT tests correlate well with the results 
of IgG-anti-PT ELISA (Dalby et al., 2010), the NT is significantly less sensitive  
for the diagnosis of pertussis than measuring the IgG response to PT by ELISA. 
Furthermore, not all patients develop measurable neutralizing antibodies after clinical 
and culture-confirmed whooping cough (Granstrom et al., 1988). 

Other serological methods, such as indirect haemagglutination, immunofluorescence, 
bactericidal reaction, immunodiffusion and complement fixation have also been used, 
but overall these have not gained wide acceptance and are not recommended by the 
European Union reference laboratories (Guiso et al., 2011).
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4.5	 Tests for cell-mediated immunity

As antibody-testing does not predict protective immunity reliably, many studies have 
focused on measuring cell-mediated immunity to antigens of B. pertussis using various 
methods (Ryan et al., 1997; Fedele et al., 2015). 

Lymphocyte proliferation assays have been used primarily to measure cell-mediated 
immunity to pertussis. Mononuclear cells are cultured with various pertussis antigens 
and with polyclonal stimulants as controls. The proliferation of the cells is measured 
by the ingestion of radiolabeled nucleotides into the cells. Results are given as fold 
increases when compared with the control without stimulants.

Various tests using cytokine secretion, either by directly measuring the cytokines in 
the culture supernatant, intracellular cytokine secretion (ICS), or by counting the 
cytokine producing cells by enzyme-linked immunospot assay (ELISPOT), have been 
described. These assays have also been used for testing immunity to B. pertussis antigens  
(He et al., 1998; Tran Minh et al., 1999; Higgs et al., 2012; Rieber et al., 2008). 

Other assays measuring cell-mediated immunity (CMI), such as tetramer assays 
and polychromatic flow cytometry, have also been applied to study the response to  
B. pertussis antigens in humans (Han et al., 2015; 

The findings of the different assays are difficult to compare, not only because various 
biological activities are measured but also because the assays are not very well 
standardized and can be influenced by, among other parameters, the age and stability 
of the cells, the method by which the cells are purified and stored, the anticoagulant, 
the storage of the cells, the type and source of antigen used and other factors.

As measured by most methods, CMI seems to be long-lived but it has not been found 
to be a reliable correlate of protection against reinfection (Brummelman et al., 2015; 
Fedele et al., 2015; van Twillert et al., 2015). 
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The natural course of pertussis disease is influenced by the age-specific proportion of 
susceptible and resistant persons in the community (Galazka, 1992). It is also important 
to bear in mind that neither infection nor vaccination confers long-lasting immunity 
to subsequent infection or disease. 

Although no specific level of antibody against antigens of B. pertussis has been 
convincingly shown to confer protection against the disease, the prevalence of these 
antibodies at different ages can be used as an index of the exposure to pertussis antigens. 
A number of sero-epidemiological studies (Barkoff, 2015) have shown convincingly 
that antibodies to B. pertussis antigens can be detected in the population irrespective 
of the local immunization schedule, indicating that the circulation of B. pertussis in 
populations is maintained regardless of current vaccination programmes (see below: 
Serosurveys for B. pertussis antibodies).

5.1	 Development of antibodies after primary infection

The development of pertussis antibodies following disease has been studied by 
various authors (Aleksandrowicz & Pstragowska, 1980; Nagel & Poot-Scholtens, 
1983; Granstrom et al., 1988; Trollfors et al., 1999; Ward et al., 2006, Watanabe et al., 
2006). There is a significant rise of IgG and IgA antibodies to PT, FHA and other 
antigens (Nagel & Poot-Scholtens, 1983; Granstrom et al., 1988). In infants, six to  
seven weeks are needed for the serum IgA antibody to reach a high level  
(Nagel & Poot-Scholtens, 1983). As outlined above, PT is the only antigen specific to  
B. pertussis, and antibodies to FHA (Vincent et al., 2000) may be produced, resulting from 
different stimulation by non-pertussis antigens. However, antibodies to PT are produced 
only in about 80–85% of patients after natural infection (Zackrisson et al., 1989 and 1990;  
Thomas et al., 1989a and 1989b). 

5.2	 Immune responses after non-primary stimulation

All populations are continuously exposed to B. pertussis antigens to some extent 
and they maintain a certain level of antibodies to PT and other B. pertussis antigens. 
Reinfections with B. pertussis are characterized by a very rapid increase in antibodies, 
making diagnosis more difficult because titre increases may not be seen between 
acute and convalescent serum samples (Simondon et al., 1998). Consequently,  
titre decreases of more than 50% have been used to define recent contact with the bacteria  
(Trollfors et al., 1999). This makes the establishment of cut-offs for IgG-anti-PT in 
serum samples with recent contact to B. pertussis antigens somewhat problematic.  
Some proposed cut-offs are shown in Table 4.

5. Immune responses  
after exposure to  

Bordetella pertussis
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5.3	 Transplacental passage of antibodies

Newborns acquire antibodies passively from their mothers. IgG antibodies against 
FHA, PT, PRN, FIM2 and FIM3 have been detected in cord serum, or in serum 
from healthy children before their first DwPT immunization, which represents 
transplacentally-acquired maternal IgG (Granstrom et al., 1982; Baraff et al., 1984; Celko 
et al., 1984; Thomas et al., 1989b; Van Savage et al., 1990; Plans et al., 2008; Heininger et 
al., 2009). The infant’s pertussis IgG antibody level against PT and FHA is comparable 
to the corresponding maternal level (Van Savage et al., 1990; Healy et al., 2004;  
Heininger et al., 2009). One study reported that 5% of infants had IgA-anti-PT  
(Thomas et al., 1989b), although other studies have not substantiated this. No IgM 
antibodies to pertussis antigens were detected in cord blood (Baraff et al., 1984). 
However, pertussis agglutinins have been found in cord serum in varying concentrations, 
and a correlation between high cord blood antibody levels and protection of the infant 
has been noted (Izurieta et al., 1996). Passively-acquired maternal antibodies fall to a 
nadir after several months (Baraff et al., 1984; Van Savage et al., 1990) with a half-life 
of anti-PT, anti-FHA and agglutinin antibodies estimated to be 36, 40 and 55 days 
respectively (Van Savage et al., 1990).

Although there is placental passage of pertussis antibodies, most infants do not seem to 
be protected against clinical disease during the first months of life. The susceptibility 
of young infants to life-threatening pertussis has been well documented, with a high 
incidence of pertussis in the first six months of life. Consequently, attempts have been 
made to protect newborns against pertussis through maternal immunization. In earlier 
studies, pregnant women were immunized with six doses of unadsorbed wP vaccine, 
with a total dose of 150 million pertussis organisms. Most of the newborns showed 
agglutinin and mouse protective antibody titres equal to or greater than those of their 
mothers (Cohen & Scadron, 1943). In most of the early studies with unadsorbed 
vaccine, the total dosage in terms of volume and numbers of organisms was large by 
today’s standards. Maternal vaccination with TdaP vaccines during pregnancy has been 
documented as an effective and safe means of protecting young infants from pertussis 
(Amirthalingam et al., 2014).

Anti-pertussis antibodies have been found in samples of human milk in Nigeria and the 
USA, but IgG serum antibody levels were higher than breast-milk levels. On the other 
hand, the mean IgA antibody levels to pertussis (as well as to H. influenzae type b, 
Streptococcus pneumoniae and N. meningitidis) were higher in breast-milk than in either 
maternal or infant sera (Kassim et al., 1989). Colostrum samples contained pertussis 
antibodies – i.e. agglutinins, anti-PT or anti-FHA – as did samples of human breast-
milk (Takahashi et al., 2002). Colostrum containing anti-PT antibodies or agglutinins 
was shown to protect suckling mice from aerosol challenge with B. pertussis, whereas 
colostrum lacking these antibodies but containing anti-FHA gave little protection (Oda 
et al., 1985). In infants, breast-milk pertussis antibodies had no significant influence on 
enhancing infant immunity to pertussis (Pandolfi et al., 2017).
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5.4	 Antibody decay after natural infection

Studies from Germany (Heininger et al., 2004), Japan (Tomoda et al., 1991),  
Netherlands (de Melker et al., 2000; Versteegh et al., 2005) and the USA  
(Hodder et al., 2000), measuring IgG-anti-PT after infection with B. pertussis in 
populations with high vaccine coverage, have shown that pertussis antibodies 
quickly increased to peak levels of more than 100 IU/mL, but with great individual  
variation. Subsequently, antibody levels decreased rapidly, so that after five years 
all subjects had levels of IgG-anti-PT <10 IU/mL. A mathematical model used for 
the Netherlands data predicted that, depending on the age of the patient, most of 
the patients would be below the usual cut-off level of 100 IU/mL after one year.  
Thus, in serosurveys, a ≥100 IU/mL cut-off is chiefly used for very recent contacts 
while levels between >40 and <100 IU/mL may be regarded as non-recent contacts 
with B. pertussis antigen 

5.5	 Duration of protection after natural infection 

Few studies have attempted to determine the duration of protection after  
B. pertussis infection. Symptomatic reinfections are common in adolescents and 
adults and have also been found in children (Broutin et al., 2004). It is therefore  
difficult to distinguish between the duration of immunity induced by primary 
infection and the immunity induced by symptomatic or asymptomatic reinfections.  
While Gordon & Hood (1951) assumed a near lifelong protection, a cohort study 
in Germany (Wirsing von Koenig et al., 1995) assumed a protection of 15 years,  
modelling studies assumed a duration of 7–10 years (Miller & Gay, 1997), and a 
case series from the Netherlands assumed a protection of between 3 and 12 years  
(Versteegh et al., 2002). Case reports have been published of symptomatic reinfections 
as early as 3.5 years after a previous infection (Versteegh et al., 2002). 
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6.1	 Type of immunity induced by whole-cell and acellular vaccines

wP vaccination induces a broad immune response against many bacterial antigens 
since they are composed of killed entire bacteria. aP vaccines are composed of between  
one and five purified detoxified antigens and consequently induce immunity against  
only a few bacterial proteins involved in the virulence of the bacterium. Thus,  
the vaccine-induced immunity is different, with bacterial virulence factors becoming 
the major target after immunization with aP vaccines. Given these differences in 
immune responses, the replacement of wP vaccines by aP vaccines was accompanied 
by surveillance of disease to evaluate the consequences of this replacement on herd 
immunity, and also by surveillance of the bacterial population.

Various clinical case definitions of pertussis based on clinical symptoms and  
laboratory confirmation have been proposed for vaccine studies and for surveillance 
purposes (Table 5). The sensitivity and specificity of these clinical case definitions have 
been evaluated (Blackwelder et al., 1991; Patriarca et al., 1998; Ghanaie et al., 2010; 
Cherry et al., 2012). 

6. Immune responses to 
vaccination 
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6.2	 Response to whole-cell pertussis vaccine 

Vaccination results in an increase in the ELISA antibody titres to a variety of  
antigens of B. pertussis organisms. Children vaccinated with wP pertussis  
vaccines may show increasing levels of antibodies against FHA, PT, AGG-FIM,  
LPS and outer membrane protein, depending on the wP vaccine and the immunization 
schedule (Ashworth et al., 1983; Baraff et al., 1984; Barkin et al., 1984; Halsey & Galazka, 
1985; Wilkins et al., 1987; Blumberg et al., 1991; Grimprel et al., 1996). 

The extent of the response was proportional to the number of doses administered. 
Elevated levels of antibodies to outer membrane protein (OMP) and LOS were  
also found in sera of unvaccinated children, presumably directed against cross-reacting 
non-pertussis antigens (Ashworth et al., 1983). Antibody responses to vaccination given 
immediately after birth have also been reported (Provenzano et al., 1965).

In most studies, more than 70% of children responded to three doses of DTwP vaccine 
with an agglutinin titre of 1:80 or more. However, wP pertussis vaccines from different 
manufacturers differ considerably in their immunogenicity. The mean agglutinin  
titre after three doses of DTwP vaccine ranged between 1:1826 (Barkin et al., 1984)  
and 1:87 (Blumberg et al., 1991). In a study in France, three doses of DTwP polio  
vaccine (adsorbed on calcium phosphate) failed to stimulate an agglutinin level of 
1:10 in 25% of children, and the mean titre (1:23) was low (Relyveld et al., 1991).  
A clinical trial conducted at two different academic centres in the USA showed that 
two commercially available wP vaccines consistently differed in their ability to induce 
antibody to PT. Infants receiving the Lederle vaccine produced a 46-fold increase in 
antibody to pertussis toxin, when compared to only a 2.4-fold increase in PT antibody 
in infants receiving the Connaught vaccine. The FHA and FIM responses to the two 
wP vaccines were comparable (Edwards et al., 1991b). Antibodies to PT as measured 
by CHO-cell assay also increased following immunization. Three doses of the wP 
vaccine caused a moderate response in neutralizing antibody titres (Blennow et al., 
1988;, Blumberg et al., 1991). 

As outlined above, wP vaccines with similar production processes differ in their 
antigenic dose, and so differences in immunogenicity of different wP vaccines are not 
surprising.

Levels of antibody against PT, FHA, OMPs, AGG-FiIM and neutralizing antitoxins 
decline considerably during the first year after completion of a primary series  
(Barkin et al., 1984; Blennow & Grandstrom, 1989a; Blumberg et al., 1991;  
Edwards et al., 1991b; Relyveld et al., 1991).

Serological studies provide strong evidence for the booster effect of the fourth  
dose of DTwP vaccine administered at the end of the second year of life, since 
antibodies against PT, FHA, and agglutinins increase significantly after the booster dose  
(Chen et al., 1957; Barkin et al., 1984; Pichichero et al., 1987; Edwards et al.,  
1991a; Relyveld et al., 1991), but the levels of antibody still differ considerably  
(Barkin et al., 1984; Relyveld et al., 1991).
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6.3	 Antibody decay after immunization with whole-cell vaccines 

Few studies have addressed the antibody decay after vaccination with wP vaccines 
(Grimprel et al., 1996). Overall, the relatively low levels of antibodies induced by  
wP vaccines decline rapidly below detection levels 1−2 years after vaccination  
(Blennow & Granström, 1990).

6.4	 Effectiveness of whole-cell pertussis vaccine in infants and toddlers

The efficacy and effectiveness of wP vaccines has been shown repeatedly in vaccine trials 
(MRC) and in the field. As noted, it must always be kept in mind that wP vaccines are 
produced by similar methods but may differ significantly in their immunogenicity and 
their effectiveness. As also mentioned, significant differences in efficacy were observed 
in vaccine studies in the 1990s between wP vaccines that had all been cleared by the 
regulatory agencies using the usual tests for vaccine potency (mouse intracerebral 
protection) (Edwards & Decker, 2013). Given the array of clinical presentations of 
pertussis, assessing the effectiveness of wP vaccines is difficult and the pitfalls of using 
immunization registry data to determine vaccine effectiveness have been highlighted 
(Mahon et al., 2008) 

In many countries, such as France, the effectiveness of wP vaccines appeared to 
remain unchanged at a high level for more than 30 years (Baron et al., 1998). Similarly,  
in Australia the effectiveness of the locally produced wP vaccine was estimated to 
be 0.91 (Torvaldsen et al., 2003). In an outbreak in the USA, the effectiveness of wP 
vaccine was estimated to be 0.76 (Kenyon et al., 1996). In Poland, it was observed that,  
for reasons unknown, the effectiveness decreased between 1996 and 2001 from 0.973 to 
0.735 (Zielinski et al., 2004). In the Netherlands, the Health Council presented data on 
the reduced effectiveness of the locally-produced wP vaccine and instead recommended 
the use of aP vaccines (Visser, 2004).

In Austria, the effectiveness of a three-dose course of wP vaccine for the prevention 
of pertussis hospitalization was estimated to be 0.79 when compared to 0.92 after 
a three-dose course of aP vaccines (Rendi-Wagner et al., 2006). A similar decrease 
in hospitalization after changing from wP to aP vaccines was observed in Canada  
(Bettinger et al., 2007). In contrast, a study in rural Senegal reported that wP vaccines 
were more effective (0.67) than a two-component aP vaccine (0.32) (Preziosi & Halloran, 
2003).

6.5	 Effectiveness of incomplete primary series of whole-cell pertussis 
vaccine

No formal efficacy studies have addressed the effect of an incomplete primary 
vaccination series or of single doses. Estimates of the effectiveness of incomplete 
primary series result from surveillance data; some of these estimates, with their relative 
endpoints, are given in Table 6.
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Table 6: Estimated effectiveness (VE) after different doses of pertussis vaccine

Year /type of study Vaccine Dose End-point VE% Country Reference

1990 /surveillance wP 1 Pertussis 44 USA Onorato et al., 1992

4 " 80

2004 /case-control Mostly aP 1 Pertussis (CDC) 51 USA Bisgard et al., 2005

2 " 80

3 " 93

1996 ff /surveillance Mostly aP 1 Hospitalization 68 Germany Juretzko et al., 2002

2 " 92

3 " 99

1990 ff /surveillance wP 1 Hospitalization 36 Denmark Hviid, 2009

2 " 66

3 " 87

200 #- /surveillance wp 1 Pertussis 62 UK Campbell et al., 2012

2 " 85

3 " 95

2012 ff /surveillance ap 1 Hospitalization 55 AUS Quinn et al., 2014

2 " 83

3 " 85

1990 ff /surveillance wp/ap 1 Death 71 US Tiwari et al., 2015

1 Hospitalization 31

6.6	 Effectiveness of whole-cell vaccine in adolescents and adults

Few studies have been performed to evaluate the immunogenicity and safety of  
wP vaccines in adolescents and adults because pertussis was not perceived as a relevant 
problem in these age groups, and the reactogenicity of wP vaccines was thought  
to be too high for routine use in older children, adolescents and adults. Nevertheless, 
between 1933 and 1975, a number of immunogenicity studies, although no efficacy 
studies, were performed in adults and in pregnant women (Keitel, 1999). 

6.7	 Immune responses to acellular pertussis vaccines 

Due to the use of purified antigens in aP pertussis vaccines, the PT response to primary 
and booster immunization with aP pertussis vaccine is usually more pronounced  
than the response after immunization with wP vaccine (Pichichero et al., 1987; 
Anderson et al., 1987; Morgan et al., 1990; Van Savage et al., 1990; Edwards et al., 1995). 
Compared with wP vaccine, significantly higher anti-PT and anti-FHA responses 
have been reported with aP vaccines containing these antigens (Edwards & Decker, 
2013). Differences have also been found between responses to aP and wP vaccines 
in infants with various pre-immunization levels of IgG ELISA antibody to PT.  
The response to aP vaccine was independent of the pre-immunization antibody titre, 



The Immunological basis for immunization series - Module 4: Pertussis Vaccines 28

while the response to wP vaccine was strongly dependent on the pre-immunization titre.  
It is not known whether the better response to aP vaccine among those with  
higher anti-PT titres was due to greater immunogenicity of PT in the aP product, 
the absence of some component of the wP vaccine, or some other as yet unidentified 
factors (Van Savage et al., 1990). IgG-anti-PT levels do not differ between natural 
infection or vaccination (Giammanco et al., 2003). In respect to isotypes and subtypes 
of antibodies, aP was reported to induce relatively more IgG4 to vaccine antigens than 
wP did (Hendricks et al., 2011). IgE responses occur in relevant proportions after 
natural infection, after wP vaccination and after aP vaccination (Hedenskog et al., 1989),  
and these responses to aP vaccines have gained renewed attention (Holt et al., 2016).

The diphtheria and tetanus responses in children receiving aP-pertussis and wP-
pertussis component DPT vaccines were similar in some studies (Pichichero et al., 1987;  
Anderson et al., 1987; Edwards et al., 1991a) and lower in the National Institutes of 
Health (NIH) trial (Edwards et al., 1995). The efficacy studies in Europe and Africa 
showed no relevant differences in the diphtheria and tetanus response between the 
DTwP and DTaP recipients (Edwards & Decker, 2013).

As in the case of infection and wP vaccination, aP vaccines not only induce antibodies 
against the vaccine antigens but also B and T cell responses. However, the cellular 
response induced by priming with aP is, to a greater or lesser extent, skewed towards a 
Th2 response, whereas infection and wP vaccination result in a response that is skewed, 
more or less, towards Th1 (Mascart et al., 2003; Dirix et al., 2009; Higgs et al., 2012; 
Edwards & Berbers, 2014). Additionally, aP and wP vaccinations differ in inducing 
Th17 cells (Fedele et al., 2015). Cellular immune responses also wane with time.  
Studies reviewed by van Twillert et al. (2015) indicated that both peak and maintenance 
of CMI could be influenced by vaccination type or infection history, as well as by 
age. Furthermore, pertussis-specific memory B- and T-cell responses may follow  
different dynamics and vaccine types differ in the induction of B-memory cells  
(van Twillert et al., 2015). It has been suggested that aP vaccines containing genetically 
modified PT, as opposed to chemically inactivated PT, may alleviate some of these 
differences in immune responses between aP and wP vaccines (Seubert et al., 2014). 

6.8	 Antibody decay after immunization with acellular vaccines 

In the case of primary immunization, the aP vaccine trial in Italy and Sweden 
also produced data about antibody decay in the study populations. Giuliano et al. 
(1998) showed that 15 months after immunization with three doses of aP vaccines,  
antibodies to PT, FHA and PRN had mostly fallen below the level of detection, 
irrespective of sustained vaccine efficacy (Salmaso et al., 2001).

With regard to booster immunizations, Tdap boosters result in rapid responses to 
pertussis antigens in adults (Kirkland et al., 2009). The APERT study (Le et al., 
2004) suggested that these antibodies to PT will be above the level of detection for 
about five years. Other studies into the decay of antibodies after booster vaccination 
in adolescents and adults assume that, after a steep decline in the first year after  
vaccination, antibodies decline gradually and may be detectable for longer than five 
years after aP administration. In this study, after one month, a geometric mean titre 
(GMT) of 38 EU/mL of IgG-anti-PT was found, and after one year the mean IgG-
anti-PT levels had decreased to 8 EU/mL. McIntyre et al. (2004) found a peak GMT of  
83 EU/mL IgG-anti-PT that decreased to 30 EU/mL after one year. Edelman et al.  



29

(2004 and 2007), using the same vaccine in adolescents, found a peak GMT of IgG-anti-
PT of 116 EU/mL four weeks after vaccination, decreasing to 16 EU/mL after three 
years and to 8 EU/mL five years after vaccination. Riffelmann et al. (2009) vaccinated 
health-care workers and found a higher peak value, with a rapid decline in antibody 
over the first year after vaccination and a slower decrease in the three consecutive years. 
Modelling the decay of antibodies after vaccination suggested Tdap booster doses every 
10 years would be necessary (Bailleux et al., 2008).

Despite more than 20 years of clinical experience, our basic understanding about 
aP vaccines is still incomplete. The current positions in this ongoing discussion are 
summarized by Burtin et al. (2017), Diavatopoulos & Edwards (2017) and Eberhardt 
& Siegrist (2017). 

6.9	 Effectiveness of acellular vaccines in infants and toddlers

After the successful introduction of acellular vaccines in Japan (Aoyama et al., 1988), 
a number of large vaccine efficacy studies with aP vaccines were performed in Africa 
and Europe. Although these studies used different designs, were performed in 
different populations, and employed different vaccines, they all used the WHO case  
definition for pertussis and therefore the results of the studies have been repeatedly 
compared and summarized (Edwards & Decker, 2013; Zhang et al., 2014). An example 
of the various estimates of efficacy is given in Table 2. Meanwhile, effectiveness  
estimates are available as a result of the broad use of aP vaccines (Elliott et al., 2004; 
Edwards & Decker, 2013; Zhang et al., 2014). Although the isolates of B. pertussis have 
undergone some changes in their genomic makeup and in the expression of virulence 
factors such as PRN when compared to the Tohama reference strain – as used for the 
production of some aP vaccines (He et al., 2003; Hallander et al., 2007) – no significant 
changes in the effectiveness of aP vaccines after the primary series have been observed 
over time. However, some studies in high income countries indicated waning in older 
children, but additional studies in different regions are needed (Burdin et al., 2017). 

6.10	 Effectiveness of incomplete primary series of acellular vaccines

As expected, no formal efficacy study has addressed the effect of an incomplete 
primary vaccination or of single doses. However, during the aP vaccine efficacy studies,  
some estimates of the effectiveness of incomplete series were performed.  
During prolonged enhanced surveillance in Sweden following the efficacy trials there, 
the rates of pertussis were 225 per 100 000 in unvaccinated infants aged 0–2 months, 
212 per 100 000 after one dose in infants aged 3–4 months, 31 per 100 000 after  
two doses in infants aged 5–11 months and 19 per 100 000 after three doses  
(Gustaffson et al., 2005). A hospital-based survey in Germany estimated that 
even one dose of vaccine was 68% effective in reducing hospitalization in infants  
(Juretzko et al., 2002). A case-control study in the USA (Bisgard et al., 2005) found 
that the effectiveness of one dose of acellular vaccine was approximately 50%.  
Results of the studies are summarized in Table 6.
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6.11	 Effectiveness of acellular vaccines in adolescents and adults

During the last two decades, many reports have shown an increase of pertussis in 
adolescents and adults (Wirsing von König et al., 2002; Halperin, 2007). This may reflect 
a shift in the age distribution of pertussis since the disease is effectively controlled by 
vaccine among children. On the other hand, several authors have expressed concern 
that pertussis immunity may be only partial among adults (Fine & Clarkson, 1987).  
The decreased immunity among adults may be related to the reduced circulation of 
pertussis organisms in well-vaccinated populations, with subsequent less frequent 
exposure to B. pertussis and less natural boosting. The increase in cases among 
adolescents and adults may also be due to a higher awareness of the disease in adolescence 
and adulthood, or may be the effect of more sensitive laboratory methods (i.e. serology 
or PCR) to detect the infection (Cagney et al., 2008). It may, however, also be a function 
of a different community immunity. 

Consequently, the importance of late booster doses of aP vaccines for maintaining 
immunity against pertussis in older children or adolescents has been discussed 
intensively and many countries have now recommended booster doses in  
adolescents and adults. A vaccine efficacy study conducted in the USA obtained a 
point estimate of vaccine efficacy in adolescents and adults of 0.92 (Ward et al., 2005).  
Another effectiveness study of an adolescent booster dose conducted in Australia had a 
point estimate of 0.78 (Rank et al., 2009). Given the intensive circulation of the bacteria, 
even one dose of an aP vaccine given to adolescents without a history of pertussis disease 
or vaccination induced an immune response in nearly all vaccinees (Knuf et al., 2006).

Many countries in the European Union, as well as Australia, Canada and the USA, 
recommend a preschool and/or adolescent booster. The USA and many other countries 
have also introduced a booster for the adult population using a Tdap combination 
vaccine (CDC, 2006; ECDC, 2017; Lee & Choi, 2017). Nevertheless, it should be noted 
that in all countries the vaccine coverage in adults in the general population or even 
among health-care workers is still very low (Lee & Choi, 2017).

6.12	 Effectiveness of maternal immunization to prevent infant pertussis 

Maternal vaccination with pertussis-containing vaccines for preventing infant diseases 
has been advocated for some time (Edwards, 2003; Mooi & Greef, 2007). Its effectiveness 
was studied in the United Kingdom, and it was shown by different methods that 
immunization with a Tdap vaccine in a whole-cell primed cohort of pregnant women 
was over 90% effective in reducing infant pertussis (Amirthalingam et al., 2014;  
Dabrera et al., 2015). Subsequent surveillance showed that, by maintaining a high 
coverage rate, the effects on infant pertussis remained unchanged (Amirthalingam et 
al., 2016). These effects were then also observed in other countries (Vizotti et al., 2016). 

6.13	 Correlates of protection for pertussis vaccines 

No serological correlate for protection after vaccination with wP vaccines has been 
established, although the MRC trial already suggested a correlation between high 
agglutinin titres and protection (Table 7).
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Table 7: Suggested correlates of protection after  
vaccination with wP or aP vaccines

Antibody type Study type Vaccine 
type Correlation Reference

Agglutinins (anti-FIM) Vaccine trial wP High titres protect Medical Research Council, 1959

Agglutinins (anti-FIM) Household contact wp (?) High titres protect Deen et al., 1995

Anti-PRN Household contact wp (?) High titres protect Deen et al., 1995

Anti-PRN Vaccine trial aP High titres protect Storsaeter et al., 1998

Anti-PRN Vaccine trial aP High titres protect Cherry et al., 1998

Anti-PT Household contact aP Low titres make 
susceptible Storsaeter et al., 2003

Anti-PT Household study aP High titres protect Taranger et al., 2000

Anti-FIM Household contact aP High titres protect Storsaeter et al., 1998

Anti-FHA Cohort study wP High titres protect He et al., 1996a

Various studies have attempted to find a serological correlate of protection after 
vaccination with aP vaccines (Table 7). For instance, using data derived from the 
Swedish NIH-sponsored trial (Storsaeter et al., 1998), it was shown that subjects 
with detectable IgG-anti-PT but with non-detectable anti-PRN and anti-FIM had an 
assumed vaccine efficacy of 46%. Those with anti-PT and anti-FIM had an estimated 
efficacy of 72%, those with anti-PT and anti-PRN had an assumed vaccine efficacy 
of 75%, and those with all three antibodies had an assumed vaccine efficacy of 85%. 
A German study (Cherry et al., 1998) used thresholds for antibodies and found that 
subjects with anti-PRN titres were best protected, that high anti-PT contributed 
to protection, but that anti-FHA and anti-FIM did not correlate with protection.  
In a Finnish study, IgG-anti-FHA at elevated levels correlated best with protection  
(He et al., 1994). Following the cohort of the Swedish vaccine study, it was assumed that 
low or undetectable levels of IgG-anti-PT would be the best predictor of susceptibility 
to reinfection (Storsaeter et al., 2003). The Gothenburg study, using a PT-only vaccine 
(Taranger et al., 2000) showed that the induction of anti-PT induced good protection. 

No correlate of protection for cell-mediated immunity against the different pertussis 
antigens has been observed so far. Overall, it seems most probable that no single correlate 
of protection exists and that antibodies to many antigens in differing amounts, probably 
in conjunction with cell-mediated immunity, confer protection against symptomatic 
reinfection (Plotkin, 2013).

6.14	 Interchangeability of pertussis vaccines

Few studies have addressed the interchangeability of aP or wP pertussis vaccines 
from different manufacturers during primary vaccination. However, it seems clearly 
advisable not to interchange wP or aP vaccines from different manufacturers during 
the primary series. 
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Tripedia® (Sanofi) and Infanrix® (GSK) were interchanged in one study  
(Greenberg et al., 2002) and no differences in immunogenicity were observed.  
Similar results were found in Canada, when Pentacel® (Sanofi) and Infanrix® 
(GSK) were interchanged during primary immunization (Halperin et al., 2006).  
Another study interchanging Acelimune® (Wyeth) and Tripedia® (Sanofi) again 
produced non-significant differences in immunogenicity (Wirsing von König et al., 
2000). The Canadian Immunization Guide stated that, for primary immunization, 
a vaccine from the same manufacturer should be used whenever possible.  
For the 18-month booster, and for the preschool booster, experts agreed that  
aP containing combination vaccines can be interchanged without loss in immunogenicity 
(NACI, 2005; Canadian Immunization Guide, 2006).

6.15	 Serosurveys for Bordetella pertussis antibodies

The prevalence of pertussis antibody in various age groups in the general  
population depends on the status of pertussis immunization, the extent of exposure to 
circulating B. pertussis organisms, and the methods used to measure them. As antibodies 
to PT are specific to B. pertussis, only these antibodies can be used in serosurveys as an 
estimate of the circulation of B. pertussis.

Serological studies in Germany (Wirsing von König et al., 1999), in the  
Netherlands (De Melker et al., 2000) and in the USA (Marchant et al., 1994;  
Yih et al., 2000; Baughman et al., 2004) evaluated age-specific cut-offs for single-sample 
serological assays. From these studies it emerged that, in adolescents and adults,  
IgG-anti-PT antibodies from >100–125 EU/mL (= IU/mL) could be used as an indicator 
of recent pertussis exposure (Table 4). It was also observed that, in most patients,  
the IgG-anti-PT levels declined rapidly with time (Versteegh et al., 2005;  
Mertens et al., 2007). In countries such as Sweden, where vaccination against pertussis 
was stopped in 1979 and pertussis disease incidence was high for more than decade  
before the introduction of acellular vaccines, the prevalence of antibodies in children 
below 5 years of age increased with age (Zackrisson et al., 1990). Antibody titres 
increased in older teenagers, so that 90% of young adults had measurable antibody titres 
(Granstrom et al., 1982). This agrees with the results of studies in the prevaccination era, 
which showed that a high proportion of children had experienced pertussis infection by 
the age of 10 years (Fine & Clarkson, 1987). In Palermo, Italy, where the coverage rate 
with DTwP vaccine was very low, the results of a seroepidemiological study suggest 
a high exposure of children to B. pertussis, resulting in increasing seroprevalence of  
IgG-anti-PT antibodies with age. The overall prevalence of these antibodies determined 
by the ELISA test was 56%; it increased from 24% in 1−3-year-old children to 67% 
in 11−12-year-old children (Stroffolini et al., 1989). 

Astonishingly, in vaccinating countries such as the USA, results of seroepidemiological 
studies showed similar results in older children, adolescents and adults  
(Cattaneo et al., 1996; Cherry et al., 1995). Another study in the USA using serum 
samples from a national nutrition survey found that antibodies to PT indicated that  
B. pertussis was circulating widely in the population (Baughman et al., 2004). The USA 
study also indicated that different cohorts of the population could be distinguished, 
and it was assumed that an IgG-anti-PT level of more that ~100 EU/mL would reflect 
recent contact with the bacteria. Across Europe, other serosurveys were performed that 
resulted in similar findings, as in the European Sero-Epidemiology Network (ESEN) 
study (Pebody et al., 2005). 
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In New Zealand, when measured after vaccination with wP vaccines, the percentage 
of recipients with ELISA IgG antibody against pertussis toxin also increased with 
age, from 16% in 5-year-olds to 63% in the 40−49-year age group. The percentage of 
individuals with antibody dropped to 45% in the to 65-year age group (Lau, 1989). 
In other countries, similar assumptions concerning the circulation of B. pertussis were 
derived from serosurveys (Maixnerova et al., 1979; Stroffolini et al., 1991; Park et al., 
2005; Higa et al., 2008; Yildirim et al., 2008). 

Because of their relative simplicity, serosurveys have been conducted in many countries 
as a primary tool for pertussis surveillance (Guiso & Wirsing von Koenig, 2016),  
and their use in tracking pertussis has been documented (Quinn et al., 2010;  
Barkoff et al., 2015).

6.16	 Duration of protection after vaccination with whole-cell vaccines 

Many studies have provided strong evidence that wP pertussis vaccines are effective 
in protecting against typical pertussis, either by preventing its occurrence altogether 
or by markedly reducing its severity (Griffiths, 1988; Wendelboe et al., 2005).  
However, the duration of immunity following pertussis vaccination is still an open 
question and may also depend on the intervals used during primary vaccination 
(Silfverdal et al., 2007). Usually the primary series consists of three doses of  
DTwP vaccine given during the first year of life. In the WHO African and South-
East Asia Regions, most countries use the immunization schedule recommended by 
the Expanded Programme on Immunization (EPI), which calls for three doses of  
DTwP vaccine at 6, 10 and 14 weeks; however, some countries use a 3-, 4- and 5-month 
schedule (WHO, 2017). In the Region of the Americas, countries generally follow  
the schedule of 2, 4, and 6 months of age in the primary series, as used in the USA 
(WHO, 2017).

It is noteworthy that for 14−18% of countries in WHO’s Americas, European, 
Eastern Mediterranean and Western Pacific Regions, the third dose of DTwP vaccine 
is recommended at a late age, generally after six months of age, so this may reflect 
a two-dose primary immunization with a booster. Various immunization schedules  
used by countries in the European Region are available on the ECDC website  
(ECDC, 2017). The WHO website contains information about schedules and coverage 
rates worldwide (WHO, 2017).

Epidemiological observations suggest that the efficacy of pertussis vaccine is high  
only for a limited period and falls gradually with time after immunization. In the  
United Kingdom, the vaccine efficacy fell from 100% in the first year following  
three doses of DTwP vaccine to 46% in the seventh year (Jenkinson, 1988). In another 
outbreak study in the USA it was estimated that protection lasted about 12 years after 
wP vaccination. In Sweden, the efficacy of three doses of unadsorbed wP pertussis 
vaccine declined from 89% in 6–11-month-old children to 76% in children at the end 
of the second year of life (Blennow et al., 1988). Other cohort and case-control studies 
suggest continuous decrease in vaccine efficacy with time (Fine & Clarkson, 1987). 
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About one third of countries in the Americas and Western Pacific Regions give a  
fifth dose of DTwP vaccine (“second booster”). The need for a fifth dose of  
DTwP vaccine and its importance in controlling pertussis in other regions remains to 
be proven. Serologically, this additional dose of DTwP vaccine seems to exert a clear 
booster effect (Edwards et al., 1991a; Morgan et al., 1990). 

6.17	 Duration of protection after vaccination with acellular vaccines 

After completion of the aP vaccine studies in the 1990s, their long-time effectiveness 
was closely monitored. Studies in Italy (Salmaso et al., 2001), Sweden (Tinberg et al., 
1999) and Germany (Lugauer et al., 2002) estimated that efficacy remained almost 
unchanged until six years of age. Gustafsson et al. (2005) showed that protection 
began to wane in 7–8-year-olds. Some studies, however, seem to indicate a shorter  
duration of sustained protection. During pertussis outbreaks in the USA, a yearly 42% 
increase of pertussis risk was described in 4−12-year-olds after receiving five doses  
(Klein et al., 2012), and a case-control study assumed a sustained effectiveness of  
four years (Misegades et al., 2012). Similar data were found when mainly PRN-negative 
isolates were prevalent (Breakwell et al., 2016). Using the test-negative approach, 
studies in Germany (Riffelmann et al., 2014) and Canada (Schwartz et al., 2016)  
also indicated a continuous decrease in effectiveness 3−4 years after vaccination,  
whereas in a New Zealand study effectiveness was sustained for at least four 
years (Radke et al., 2017). The studies used different methods (cohort study,  
surveillance, case-control, test-negatives) and had very different clinical endpoints 
(i.e. WHO case definition, PCR-positive patient), so direct comparison of the results 
is difficult. 

It must be kept in mind that aP is not the only vaccine component and that,  
in addition to the effectiveness of the vaccines, implementation issues concerning  
vaccine coverage play an important role. 
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Whereas aP vaccines have been used for the past two decades mainly in industrialized 
countries, most infants worldwide are still immunized primarily with wP vaccines. 
Surveillance indicates that wP and aP vaccines both protect newborns and  
toddlers effectively against severe disease. Cellular immune responses differ after 
priming with either wP or aP vaccines, and the duration of protection seems to be 
somewhat shorter with aP vaccines than with efficacious wP vaccines. However,  
the effectiveness of the wP vaccines that are currently used in most countries is 
not known. Consequently, WHO emphasizes that “there is a need for improved 
epidemiological data. Surveillance of the disease in infants is crucial and an  
etiology should be sought on any infant that dies. More solid laboratory data are needed” 
(WHO, 2017a). Laboratory methods should focus on enhanced specific diagnosis,  
for which a WHO manual is available (WHO, 2014) 

In the medium term, effectiveness estimates should be established for currently used 
wP vaccines and the search for biomarkers that correlate with protection should be 
intensified. These are necessary to estimate more effectively the duration of protection 
induced by infection and vaccination. The first step is to standardize all techniques 
measuring avidity of antibodies, neutralizing antibodies or cell immunity.

In the longer term, the development of new vaccines (new adjuvants, additional antigens, 
different antigen preparations, other delivery methods) inducing a more effective 
immune response with longer duration of protection can be envisaged. In order to 
evaluate these vaccines, a broad consensus among scientists, regulators and vaccine 
producers will be required together with the standardization of technical aspects and 
animal models. 

7. Conclusions and  
perspectives 
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Bordetella pertussis produces an array of virulence factors that act together to 
induce the clinical symptoms of pertussis or whooping cough. The human immune  
response to antigens of B. pertussis can be measured by ELISA, by bacterial agglutination, 
and by various other tests, including those measuring cell-mediated immunity.  
Different pertussis vaccines are available and licensed; they consist either of  
whole bacterial cells (whole-cell = wP vaccines) or of purified virulence factors 
(acellular = aP vaccines). Both types of vaccines have been shown to be effective,  
but aP vaccines show fewer local and systemic side-effects, and their production process 
is more reproducible. Both wP and aP antigens are mostly combined with tetanus and 
diphtheria toxoid, and also additionally with other antigens such as Hib, hepatitis B 
or polio. Maternal immunization can protect newborns and young infants who bear 
the brunt pertussis mortality. Neither infection nor vaccination induces a life-long 
immunity. Reinfections are frequent and B. pertussis circulates cyclically all over the 
world. Surveillance data on pertussis are lacking for many parts of the world though 
they can be estimated by serosurveys and other methods.

8. Summary
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