Interventions for the Control of Non-typhoidal Salmonella spp. in Beef and Pork

MEETING REPORT AND SYSTEMATIC REVIEW
For further information on the joint FAO/WHO activities on microbiological risk assessment and related areas, please contact

Office of Food Safety
Agriculture and Consumer Protection Department
Food and Agriculture Organization of the United Nations
Viale delle Terme di Caracalla
00153 Rome, Italy

Email: jemra@fao.org
Website: www.fao.org/food/food-safety-quality

Or

Department of Food Safety and Zoonoses
World Health Organization
20 Avenue Appia
1211 Geneva 27, Switzerland

Email: jemra@who.int
Website: www.who.int/foodsafety

Cover design
Food and Agriculture Organization of the United Nations and World Health Organization

Cover picture
© Dennis Kunkel Microscopy, Inc
Interventions for the Control of Non-typhoidal Salmonella spp. in Beef and Pork

MEETING REPORT AND SYSTEMATIC REVIEW
The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or of the World Health Organization (WHO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these are or have been endorsed or recommended by FAO or WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by FAO and WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall FAO and WHO be liable for damages arising from its use.

The views expressed herein are those of the authors and do not necessarily represent those of FAO or WHO.

WHO Library Cataloguing-in-Publication Data:
Interventions for the control of non-typhoidal Salmonella spp. in beef and pork: meeting report and systematic review

(Microbiological risk assessment series, 30)

ISBN 978 92 4 156524 0 (WHO) (NLM classification: WC 268)
ISBN 978-92-5-109049-7 (FAO)
ISSN 1726-5274
© FAO and WHO, 2016

Recommended citation:

FAO and WHO encourage the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, provided that appropriate acknowledgement of FAO and WHO as the source and copyright holder is given and that FAO and WHO’s endorsement of users’ views, products or services is not implied in any way.

All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to copyright@fao.org.

FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through publications-sales@fao.org.
Contents

Acknowledgements vi
Contributors vii
Declarations of Interest x
Abbreviations used in this report xi
Executive Summary xii

1 Background and Rationale 1

2 Expert Meeting 4
 2.1 Scope and Objectives 4
 2.2 Approach 5

3 *Salmonella*-specific interventions in the context of meat hygiene 8
 3.1 Risk management considerations 8
 3.2 Differences in the nature of beef and pork production 10

4 Beef chain intervention assessment, from primary production to processing 13
 4.1 Primary production (Steps 1 and 2) 13
 4.2 Processing (Steps 3–19) 16
 4.3 Carcass dressing and bunging (Steps 8–14) 19
 4.4 Pre-chill carcass interventions (between Step 8 and Step 16) 20
 4.5 Chilling (Step 16) 22
 4.6 Post-chilling interventions (between Steps 16 and 17) 23
 4.7 Post-fabrication interventions (between Steps 17 and 19; Step 9) 23

5 Pork-chain intervention assessment, from primary production to processing 25
 5.1 Primary production (Steps 1 and 2) 25
 5.2 Processing (Steps 3–21) 30
 5.3 Scalding and singeing (Steps 7 and 10) 32
Annex 2: Steps in the beef and pork food chains as outlined in the CCFH Draft Guidelines 271
Acknowledgements

The Food and Agriculture Organization of the United Nations and the World Health Organization would like to express their appreciation to all those who contributed to the preparation of this document through the provision of their time, expertise and other relevant information both before, during and after the meeting. Special appreciation is extended to Dr Ian Young and Dr Barbara Wilhelm for leading the Systematic Review of the Efficacy of Interventions to Control *Salmonella* in Beef and Pork. The FAO/WHO JEMRA secretariat would also like to express their appreciation to the Codex working group on Non-typhoidal *Salmonella* spp. in beef and pork and in particular the lead countries of that working group for their availability to address queries and provide support in the design and implementation of the review and the expert meeting. Appreciation is also extended to all those who responded to the call for data that was issued by FAO and WHO and provided information that was not readily available in the peer reviewed literature. All contributors are listed on the following pages.

FAO and WHO would also like to acknowledge the financial resources provided by the United States of America to support this work.

Final editing for language was by Thorgeir Lawrence and layout by Joanne Morgante.
Contributors

EXPERTS

Lis Alban, Chief Scientist, Food Safety and Veterinary Issues, Risk Assessment Group, Danish Agriculture and Food Council, Århus, Denmark.

Declan Bolton, Principal Research Officer, Teagasc, Food Research Centre, Dublin, Ireland.

Sava Buncic, Professor, Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Serbia.

Todd R. Callaway, Research Microbiologist, Food and Feed Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, College Station, USA.

Marisa Ribeiro de Itapema Cardoso, Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Porto Alegre, Brazil.

Jan Dahl, Danish Agriculture and Food Council, Copenhagen, Denmark.

James S. Dickson, Professor, Department of Animal Science, Inter-Departmental Program in Microbiology, Iowa State University, USA.

Glen Edmunds, Senior Scientist, Residues and Microbiological Policy, Exports Division, Australian Government Department of Agriculture, Brisbane, Australia.

Moses Gathura Gichia, Deputy Director, Directorate of Veterinary Services, Kangemi, Nairobi, Kenya.

Renata Ivanek-Miojevic, Associate Professor of Epidemiology, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, USA.

Ian Jenson, Manager, Market Access Science and Technology, Meat & Livestock Australia, Sydney, Australia.

Andreas Kiermeier, Director, Statistical Process Improvement Consulting and Training Pty Ltd, Australia.

Tareq Osaili, Associate Professor of Food Safety, Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan.

Blaise Ouattara, Chief, Risk Prioritization, Food Safety, Canadian Food Inspection Agency, Ottawa, Canada.
Héctor Argüello Rodríguez, Research Officer, Food Safety Department, Teagasc, Food Research Centre, Dublin, Ireland.

Javier Sanchez, Associate Professor of Epidemiology, Health Management Department, Atlantic Veterinary College, University of Prince Edward Island, Canada.

Hajime Toyofuku, Professor, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.

RESOURCES PERSONS

Terrance M. Arthur, Microbiologist, United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, USA.

Annamaria Bruno, Senior Food Standards Officer, FAO/WHO Food Standards Programme, Rome, Italy.

Verna Carolissen-Mackay, Food Standards Officer, FAO/WHO Food Standards Programme, Rome, Italy.

Jose Emilio Esteban, Chair of Codex Committee on Food Hygiene, USDA, Food Safety Inspection Service, Athens, USA.

Neal J. Golden, Senior Risk Analyst, USDA, Food Safety and Inspection Service, Office of Public Health Science, Risk Assessment and Analytics Division, Washington, USA.

Gudrun Sandø, Special Veterinary Advisor, Ministry of Environment and Food, The Danish Veterinary and Food Administration, Glostrup, Denmark.

Takako Yano, Food Standards Officer, FAO/WHO Food Standards Programme, Rome, Italy.

JEMRA SECRETARIAT

Sarah Cahill, Food Safety Officer, Food Safety and Quality Unit, Agriculture and Consumer Protection Department, FAO, Rome, Italy.

Patricia Desmarchelier, Director, Food Safety Principles, Pullenvale, Queensland, Australia.

Rei Nakagawa, Technical Officer, Department of Food Safety and Zoonoses, WHO, Geneva, Switzerland.

Andrijana Rajić, Food Safety Officer, Food Safety and Quality Unit, Agriculture and Consumer Protection Department, FAO, Rome, Italy.
Barbara Wilhelm, Ontario Veterinary College, University of Guelph, Guelph, Canada.

Ian Young, Food Safety Expert, Food Safety and Quality Unit, Agriculture and Consumer Protection Department, FAO, Rome, Italy.
Declarations of Interest

All participants completed a Declaration of Interests form in advance of the meeting. Six of the experts declared an interest in the topics under consideration:

- Lis Alban and Jan Dahl are employees of the Danish Agriculture and Food Council, which represents the meat industry.
- Todd R. Callaway performs scientific research in live cattle which is financially supported by the National Cattlemen’s Beef Association.
- James Dickson performs consultancy work with the meat industry and conducts scientific research which is financially supported by the United States National Pork Board.
- Ian Jenson is an employee of Meat and Livestock Australia, which represents the meat industry.
- Andreas Kiermeier performs consultancy work for Australian Pork Limited, which represents the meat industry.

Upon detailed review of these declarations, it was considered that the activities of Lis Alban, Jan Dahl, James Dickson, Ian Jenson, and Andreas Kiermeier represent potential conflicts of interest. However, it was also considered that these experts provide a unique and very practical expertise on meat processing and the application of interventions in a range of real world settings. Therefore, these experts were invited to the meeting but did not participate in the final adoption of the conclusions and recommendations of the meeting. The activities of Todd Callaway were also considered to represent a potential conflict of interest in the evaluation of farm-level interventions. However, similarly his expertise was considered necessary for the meeting discussions and therefore, he was invited but did not participate in the final adoption of the conclusions and recommendations of the meeting that related to farm-level interventions.

All of the declarations, together with any updates, were made known and available to all the participants at the beginning of the meeting. All the experts participated in their individual capacity and not as representatives of their country, government or organization.
Abbreviations used in this report

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>assumed control risk</td>
</tr>
<tr>
<td>ADG</td>
<td>average daily gain</td>
</tr>
<tr>
<td>APC</td>
<td>aerobic plate count</td>
</tr>
<tr>
<td>CAC</td>
<td>Codex Alimentarius Commission</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CCFH</td>
<td>Codex Committee on Food Hygiene</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-Forming Unit(s)</td>
</tr>
<tr>
<td>DTLN</td>
<td>deep tissue lymph node</td>
</tr>
<tr>
<td>ECP</td>
<td>experimental chlorate preparation</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FC</td>
<td>feed conversion</td>
</tr>
<tr>
<td>GFP</td>
<td>Good Farming Practice</td>
</tr>
<tr>
<td>GHP</td>
<td>Good Hygiene Practice</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grades of Recommendation, Assessment, Development and Evaluation</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard Analysis Critical Control Point</td>
</tr>
<tr>
<td>MA</td>
<td>meta-analysis average [estimate from random-effects model]</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organisation for Animal Health</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PFU</td>
<td>plaque-forming unit</td>
</tr>
<tr>
<td>PWMS</td>
<td>post-weaning multi-systemic wasting syndrome</td>
</tr>
<tr>
<td>pWG</td>
<td>Physical Working Group</td>
</tr>
<tr>
<td>QMRA</td>
<td>quantitative microbial risk assessment</td>
</tr>
<tr>
<td>RR</td>
<td>risk ratio</td>
</tr>
<tr>
<td>RSR</td>
<td>Rapid Systematic Review</td>
</tr>
<tr>
<td>SC</td>
<td>Summary Card</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Executive Summary

Non-typhoidal Salmonella spp. (hereafter simply referred to as Salmonella) are estimated to cause 93.8 million cases of acute gastroenteritis and 155,000 deaths globally each year, approximately 85% of which are estimated to be foodborne. As a result, Salmonella have a significant public health and economic impact on society. Pork products are among the top food-borne sources of Salmonella globally. While beef products are a less significant source of salmonellosis in many countries, they have been implicated in several large outbreaks in recent years. Contamination of beef and pork with Salmonella can also have a negative impact on the agri-food and trade sectors due to costly recalls of products and by limiting market access.

The 45th Session of the Codex Committee on Food Hygiene (CCFH) agreed to develop “Guidelines for the Control of Non-typhoidal Salmonella spp. in Beef and Pork Meat”. To facilitate this work, CCFH (November 2014) requested FAO and WHO to provide scientific advice on this matter, by conducting a systematic literature review of the publicly available scientific literature to ensure that any relevant measures for the control of Salmonella in beef and pork are identified, and by convening an expert meeting to review the technical basis of the interventions proposed by CCFH. The experts were specifically asked to: advise on the most appropriate point(s) of application of specific interventions and decontamination treatments; verify, based on the available data, the efficacy of the interventions in terms of reduction of Salmonella; and advise, with some level of confidence, to the extent possible, on the quantifiable level of reduction that interventions achieve, and whether these are appropriate to include in the Codex guideline.

The FAO/WHO systematic review covered all possible interventions from primary production, to the end of processing to control Salmonella in beef and pork. FAO and WHO also issued to all Member Countries a public “call for data” on control measures for Salmonella in beef and pork. Several replies were received in response to the call, a couple of which included previously unavailable information. All this information was then considered by the expert meeting, which was convened 28 September to 2 October 2015 at FAO Headquarters, Rome, Italy.

During the meeting, the experts considered any intervention for which there was available evidence, and which could be applied to prevent, reduce or control Salmonella in the production and processing of fresh beef or pork. These were referred to as hazard-based interventions. While the focus was on identified hazard-based interventions, the experts emphasized that these interventions must not be considered in isolation, but rather as an integral part of an overall meat hygiene
programme. It was noted that there are a range of contextual factors that will guide decisions on whether a particular intervention is implemented, and that efficacy will also vary according to the conditions at the point of implementation. It was agreed that all interventions should be verified at the local establishment of implementation.

In developing conclusions and recommendations, the experts considered the efficacy of each intervention to reduce Salmonella prevalence or concentration, and the most appropriate point(s) of application to achieve the intended reduction. They then agreed on a recommendation for each intervention as to whether or not it should be considered by CCFH for inclusion in the Codex guideline, and by regulators, food safety risk managers or establishment operators as a hazard-based intervention or good hygiene practice (GHP). There are some unique animal, production and processing characteristics that can affect the opportunity for contamination and interventions for the control of Salmonella along the beef and pork chains. The experts therefore considered the two meat types separately for most stages of the chain.

With regard to beef, no specific hazard-based interventions were identified in primary production, although the experts agreed that biosecurity could contribute to general on-farm control of Salmonella and other zoonotic foodborne infections.

Decontamination treatments of cattle hides using chemical washes, including organic acids and other chemicals, were recommended for consideration as potential hazard-based interventions for the control of Salmonella when applied post-exsanguination and before de-hiding. However, decontamination of the hides of live animals was not recommended for consideration due to a lack of confidence in supporting evidence and concerns for animal welfare.

Carcass decontamination treatments were recommended for consideration as potential hazard-based interventions for the control of Salmonella after hide removal and before chilling. Decontamination treatments recommended by the experts for consideration included hot-water washes and steam pasteurization that achieve a carcass surface temperature of at least 70°C, and chemical washes (including organic acids and other chemicals with proven efficacy). Additionally, chemical washes with proven efficacy were recommended for consideration as potential hazard-based interventions for the control of Salmonella in fabricated beef.

For pork, the experts agreed that biosecurity is an important good farming practice (GFP) that can help to prevent the introduction of Salmonella to Salmonella-neg-
ative farms and to reduce the prevalence in finisher pigs in *Salmonella*-positive farms. If a regulator, risk manager or farmer wishes to reduce the pre-harvest *Salmonella* prevalence, then potential on-farm hazard-based interventions for the control of *Salmonella* could be considered, including feed management, such as feeding meal vs pellets, and acidification of feed or water using organic acids. Vaccination could also be considered as a potential hazard-based intervention for the control of *Salmonella* on-farm; however, the experts also identified a number of factors that need to be considered if vaccination is used as a food safety measure. Moreover, if measures are taken only pre-harvest, then there may be a limited effect on the reduction of *Salmonella* on carcasses.

Scalding and singeing are process steps that were recommended for consideration as potential hazard-based interventions for the control of *Salmonella* due to the extensive evidence for reductions in prevalence on pork carcasses. Carcass decontamination treatments with proven efficacy were recommended for consideration as potential hazard-based interventions before chilling. These included hot water washes and steam pasteurization achieving a carcass surface temperature of at least 70°C during treatment, and organic acid washes.

For both beef and pork it was acknowledged that other steps during production and processing are also important for reduction of *Salmonella*; however, a lack of consistent and credible evidence, and insufficient evidence of efficacy specifically for *Salmonella*, meant that they could not be considered as potential hazard-specific interventions. Instead, several of these were considered as important GHP measures, including: hygiene during transport to slaughter and in lairage to limit the spread of *Salmonella*; hygiene during carcass dressing to minimize contamination; bunging to reduce faecal spillage during processing; carcass trimming and steam vacuuming to remove visible contamination; chilling to prevent growth of *Salmonella*; and practices to prevent carcass cross-contamination in the chilling room. In addition, the following were considered as important GHP measures in the pork chain: feed withdrawal to reduce rupturing of the intestines and intestinal spillage during carcass dressing; hygiene during de-hairing and polishing to reduce cross- and re-contamination of carcasses; and full carcass steam vacuuming as a potential alternative to hot water washes in small establishments with limited resources.

During packaging, the experts recommended that irradiation should be considered as a potential hazard-based intervention for the control of *Salmonella* in beef and pork products. In terms of post-packaging interventions, it was noted that there were a number of interventions that could be applied from product distribution to consumption, but these varied widely and limited information was available.
for their consideration. However, the experts highlighted some key areas in terms of *Salmonella* control, including the importance of cold chain management and application of hazard analysis critical control point (HACCP)-based principles and hygiene prerequisites.

The experts also discussed some limitations and caveats regarding available data which should be considered when interpreting the meeting results.
Background and Rationale

Globally, non-typhoidal salmonellosis is estimated to cause 93.8 million cases of acute gastroenteritis and 155,000 deaths each year (Majowicz et al., 2010). It is estimated that 80.3 million of these cases are food-borne (Majowicz et al., 2010). Non-typhoidal salmonellosis has also been associated with various chronic sequelae, such as reactive arthritis and irritable bowel syndrome (Keithlin et al., 2015). As a result, non-typhoidal Salmonella spp. (hereafter simply referred to as Salmonella) can have a significant public health and economic impact on society.

Non-typhoidal salmonellosis cases and outbreaks are most commonly attributed to exposure to contaminated food, and along with eggs and poultry, pork products are among the major food-borne sources globally (Pires et al., 2014). While beef products are not one of the main sources of salmonellosis for most countries, they have been implicated in several large outbreaks of Salmonella infections in the United States of America during the past 15 years, sometimes due to multidrug resistant strains (Laufer et al., 2015). These outbreaks are increasingly associated with ground beef rather than with intact beef cuts (Laufer et al., 2015). Non-typhoidal salmonellosis outbreaks resulting from the consumption of beef products contaminated with multidrug resistant strains have also been recently reported in several European countries (Friesema et al., 2012; Mindlin et al., 2013; Raguenaud et al., 2012).

Salmonella reside in the intestinal tract of pigs, cattle and other food-producing animals, as well as wildlife and pests. Food-producing animals are frequently asymptomatic carriers, who shed the bacterium without showing any signs of
disease (Buncic and Sofos, 2012). *Salmonella* are spread between animals on the farm, during transport, in lairage, and by contact with these environments (Baer, Miller and Dilger, 2013; Buncic and Sofos, 2012). *Salmonella* from contaminated and infected incoming animals and from environmental contamination in the slaughterhouse can be transferred to carcasses during processing, and the contamination level can potentially be amplified during storage and distribution if not controlled (Arthur *et al.*, 2008; Duggan *et al.*, 2010; Mannion *et al.*, 2012; Rivera-Betancourt *et al.*, 2004). Implementation of good production and hygiene practices are needed along the food chain continuum, along with appropriate controls and interventions that minimize *Salmonella* contamination and prevent bacterial growth, as part of an integrated approach to reduce *Salmonella* contamination of beef and pork and the associated burden of food-borne illness in humans.

Such an approach is important not only because of the health significance of food-borne *Salmonella*, but also because the agri-food and trade sectors are negatively affected by this organism. Contamination of beef and pork with *Salmonella* can lead to costly recalls of products (Dey *et al.*, 2013), including destruction of such products, and can hinder economic development by limiting market access. In addition, the global demand for food of animal origin is increasing. With the growing global population, it is expected that by 2050 we will need to be producing 70% more livestock products to meet this demand (FAO, 2009). This has many implications, of which food safety is among them.

In this context, there is an increasing need for global guidance and standards on the control of *Salmonella* in beef and pork. In November 2013, the 45th Session of the Codex Committee on Food Hygiene (CCFH) agreed to develop “Guidelines for the Control of Non-typhoidal *Salmonella* spp. in Beef and Pork Meat”. To facilitate this work, the 46th Session of the CCFH (CCFH46), held in November 2014, requested the FAO and WHO to provide the CCFH with scientific advice on this matter, by

- conducting a systematic literature review to ensure that any relevant measures for the control of *Salmonella* in beef and pork are identified; and
- convening an expert meeting to review the technical basis of the mitigation/intervention measures proposed by a CCFH physical working group (pWG) prior to the 47th Session in November, 2015.

A CCFH pWG meeting was held in Brussels, Belgium, 6–9 May 2015. The pWG meeting resulted in proposed draft guidelines based on the draft prepared by the United States of America and Denmark, and taking into account comments previously submitted to CCFH46 and the interim report of the systematic review prepared by FAO/WHO. The pWG at the Brussels meeting refined the request to
the FAO/WHO expert meeting to provide advice on *Salmonella* control measures that might be included in the draft guidelines, and for each of these interventions to specifically:

- advise on the most the appropriate point(s) of application of specific interventions and decontamination treatments;
- verify, based on the available data, the efficacy of the intervention in terms of reduction of *Salmonella*; and
- advise with some level of confidence, to the extent possible, on the quantifiable level of reduction that the interventions achieve, and whether these are appropriate to include in the Codex guideline.

To address *Salmonella* control measures in pigs and cattle at the pre-harvest level of the food chain, the World Organisation for Animal Health (OIE) has convened an *ad hoc* group to develop draft chapters for their Terrestrial Animal Health Code. Relevant sections of the code will be referenced in the CCFH guideline for pre-harvest measures. Therefore, the focus of the expert meeting guidance was requested to be on control measures at processing, while also recognizing that pre-harvest measures are important considerations affecting the management and control of *Salmonella* across the food chain continuum.
Expert Meeting

The expert meeting was held from 28 September to 2 October 2015, at FAO Headquarters in Rome, to address the requests from the CCFH and the pWG.

2.1 SCOPE AND OBJECTIVES

The experts agreed that the scope of the meeting included the consideration of any treatment or action for which there was available evidence that could be applied to prevent, reduce or control *Salmonella* in the production and processing of fresh beef or pork along the food chain, from farm to consumer. Manufactured beef and pork products (e.g. sausages and salamis) were not considered.\(^1\)

The objectives of the meeting were threefold:

- To review the technical and scientific basis of potential measures for the control of *Salmonella* in beef and pork, with a focus on the processing level of the food chain.
- To make recommendations to CCFH on the effectiveness of specific control measures that should be considered for inclusion in the “Proposed Draft Guidelines for the Control of Non-typhoidal *Salmonella* spp. in Beef and Pork Meat”, including how that information should be presented and quantified.
- To give expert guidance to FAO/WHO Member Countries on contextual factors to consider when planning and implementing control measures for *Salmonella* in beef and pork.

\(^1\) Codex Code of Hygienic Practice for Meat (CAC/RCP 58-2005)
2.2 APPROACH

FAO and WHO conducted a systematic review of the publicly available scientific literature on measures to control *Salmonella* in beef and pork. The review covered all possible interventions from primary production to the end of processing. Post-processing interventions were initially considered in the review, but were later excluded, as the search was not appropriately optimized to capture such studies. The full review document, including a detailed description of the methodology used, is presented in Annex 1, *Rapid Systematic Review of the Efficacy of Interventions to Control Salmonella in Beef and Pork*, with a brief description below. Limitations and caveats of the review methodology and available data are noted in Chapter 8.

The systematic review considered all primary research study designs as well as previously published systematic reviews, risk assessments and stochastic models. The review followed standard methods for systematic reviews (Higgins and Green, 2011; Rajić and Young, 2013), but some steps were streamlined using a rapid approach to ensure that preliminary findings would be available within approximately two months to inform the CCFH pWG meeting in May 2015, with updates and finalization over the following four months to inform this expert meeting in September, 2015. Results were presented as six “Summary Cards”, presenting the evidence stratified by commodity of focus (pork or beef) and stage in the food chain (farm, transport-lairage and processing).

Whenever intervention efficacy results from identified research studies were summarized quantitatively in the review, the level of confidence in the intervention efficacy estimates was assessed using a modified version of the Cochrane Collaboration’s Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach (Guyatt *et al.*, 2011; WHO, 2014). The GRADE approach classifies the confidence in intervention efficacy estimates into one of four levels: very low; low; moderate; or high. Due to inherent differences in strength of evidence for intervention efficacy by study design (Guyatt *et al.*, 2011; Sargeant, Kelton and O’Connor, 2014), controlled trials started at a rating of “high” and other study designs at “moderate”. Five downgrading and three upgrading criteria were then assessed for each estimate, which could lead to reducing or increasing, respectively, the pre-defined GRADE ratings. The downgrading criteria included: risks of bias; heterogeneity in effects across studies; overall precision of the included studies; the degree to which the studies are reflective of the topic of interest and target conditions (directness of evidence); and publication bias. The potential upgrading criteria were: presence of a dose-response relationship; evidence for underestimation of the intervention effect (if one exists); or presence of a very large intervention effect. The corresponding GRADE rating represents the level of confidence...
that one can place in the measured intervention effect estimates in terms of how closely they would be expected to match the actual intervention effect in practice or future studies conducted under similar conditions.

FAO and WHO also issued a public “call for data” to all Member Countries on control measures for Salmonella in beef and pork. Several replies were received in response to the call, two of which included previously unavailable documents that were relevant to the meeting. One was an executive summary of another systematic review lead by a team from Iowa State University, and funded by the United States National Pork Board, that summarized research on the magnitude of change in the prevalence and quantity of Salmonella after administration of pathogen reduction treatments on pork carcasses. This review was conducted concurrently to but independently from the FAO/WHO review. The other document reported on preliminary results from the United States Department of Agriculture (USDA)’s Nationwide Beef and Veal Carcass Baseline Survey. These data described differences in Salmonella prevalence and concentration from paired samples taken at different points in commercial slaughter plants: immediately after hide removal (pre-evisceration) and at pre-chill (after all decontamination interventions).

Prior to the meeting all experts were sent a copy of the most recent version of the CCFH “Proposed Draft Guidelines for the Control of Non-typhoidal Salmonella spp. in Beef and Pork Meat” (CX/FH 15/47/5, August 2015), as well as a report of the FAO/WHO systematic review and the two relevant documents received in the “call for data”.

The meeting was attended by 18 internationally recognized experts from 11 countries, covering all global regions, together with eight resource persons and six individuals from the FAO/WHO secretariat (see list of Contributors in the front matter). The meeting was chaired by Dr Glen Edmunds.

During the meeting, the experts identified interventions from primary production to consumption and assessed them for relevance, processing parameters, and evidence for efficacy. As there was no Codex, FAO or WHO definition of “intervention”, the experts interpreted these according to the Oxford English Dictionary as any “action of intervening, ‘stepping in’, or interfering in any affair, so as to affect its course or issue”, within the context of controlling Salmonella in beef and pork. Interventions were recommended as “hazard-based” if evidence was available specific to their effect on reducing Salmonella prevalence and/or concentration. If such evidence was not available for a potential intervention, but the experts agreed that it was important for general meat hygiene, and as a result could potentially have an effect on Salmonella, then experts considered the intervention as a good hygiene practice (GHP).
To assess the interventions, the experts worked in two groups, one for beef and the other for pork. The beef group was chaired by Dr Sava Buncic, with Dr Renata Ivanek-Miojevic as Rapporteur, and the pork group was chaired by Dr Javier Sanchez, with Dr Héctor Argüello Rodríguez as Rapporteur. Within their groups, the experts made reference to the FAO/WHO systematic review, their knowledge and experience, more recent publications and other sets of data in their deliberations. The experts assessed the interventions in sequence according the steps of the food chain as outlined in the CCFH “Proposed Draft Guidelines for the Control of Non-typhoidal Salmonella spp. in Beef and Pork Meat” (Annex 2). The experts grouped interventions into categories depending on where in the food chain they would mostly likely be applied, and in their assessments made reference to the appropriate steps in the CCFH draft guideline.

For each intervention, the assessment began with a review of the key findings from the systematic review, taking into consideration the GRADE ratings of the intervention efficacy estimates. Experts then discussed the practical applicability of the review results to commercial conditions and appropriately qualified and, where deemed necessary, added to the evidence by drawing on their expertise, experience and any additional data or other resources. They then agreed on a recommendation for each intervention as to whether or not it should be considered by CCFH for inclusion in the Codex guideline and by regulators, food safety risk managers or establishment operators as a hazard-based intervention or GHP. For hazard-based interventions recommended for consideration, the experts also discussed and agreed on how to most appropriately quantify, if at all, the estimates of intervention efficacy.
Salmonella-specific interventions in the context of meat hygiene

3.1 RISK MANAGEMENT CONSIDERATIONS

The Codex “Code of Hygienic Practice for Meat” (CAC/RCP58-2005) states that the principles of food safety risk management should be incorporated wherever appropriate in the design and implementation of meat hygiene programmes. Regulators, export markets, customers and establishment operators may set targets for Salmonella in beef or pork. To achieve these targets, each food safety manager can develop a food safety system which may include good practices for farming, veterinary medicine, hygiene, manufacturing and production. Where these practices are not sufficient to meet the proposed target, then additional risk management options may be used, including specific process interventions whether GHP- or hazard-based.

In the slaughter process, GHP is essential to ensure the prevention or minimization of contamination with Salmonella. Where GHP does not achieve this alone, application of additional interventions may be considered. However, these interventions should not replace the application of GHPs.

It is important to remember that the establishment operators bear primary responsibility for the production of hygienic and safe meat, and they should develop a food safety system that is documented and identifies how they will meet the hazard-control objective. Where the establishment operator has used interventions,
they will need to be fully developed and validated for the specific conditions of the food business and the individual product. It is up to the establishment operator to decide on which interventions to use, and their decision may be influenced by regulatory factors, cost, feasibility, technical requirements, in-house expertise, consumer expectation and other contextual factors. While experts recognized some interventions, including chemical treatments and irradiation, may need approval by the competent authority, this aspect was not considered in detail in the contextual assessment in the meeting.

Any intervention used should be applied at the most effective or appropriate step to obtain the maximum benefit in reducing public health risk. Hazard-based control is applied through the entire food chain and the positive effect of any intervention could be undone at any later stage. It is important to remember that the application of any intervention may be country, region, establishment or production-system specific. The effectiveness of interventions may also be dependent on *Salmonella* serovar and levels of contamination, point of application, background microbiota, presence and amount of soil or organic matter, and season, among other factors. For these reasons, it is critical that any intervention is appropriately validated in the local establishment of application. Once implemented, the intervention should be monitored and verified. Where the intervention is not attaining the stated hazard-control objective, it should be reviewed, any required corrective action should be taken, and the intervention should be revalidated. Interventions should also be reviewed in a timely manner to ensure the most appropriate intervention is being used considering new knowledge and issues as they arise.

At a national or regional level, risk managers require a profile of *Salmonella* in the beef and pork food chains. This can be obtained from surveillance and monitoring programmes and includes data such as prevalence of *Salmonella* in meat production animals, meat and foods, and human incidence of salmonellosis, together with characterization of *Salmonella* isolates, such as by serovar, genotype or antimicrobial resistance profile. Surveys of the prevalence of *Salmonella* on beef and pork carcasses and on meat provide baselines of current production performance and interventions in place, as well as a point of reference for evaluating the effect of any interventions introduced. These systems, if not already in place, will incur significant cost for government and industry.

Practical implementation factors should be considered by the establishment manager when choosing an intervention. These vary with the establishment, intervention type and point of application. Some broad areas to consider, in no particular order, include:

- Ability to contribute to targeted hazard control objectives.
- Cost-effectiveness.
• Reliable and timely supplies of materials or other resources, e.g. chemicals, power.
• Adequate quantity and reliable supply of potable water.
• Impact of chemicals on equipment, and effect of accumulation in the establishment environment.
• Development of resistance in Salmonella strains with long-term use of chemicals and biocides.
• Occupational and safety risks to workers.
• Acceptance of intervention agents as food additives by regulators in domestic and export markets; and need for labelling.
• Technical complexity and ease of use.
• Cost and availability of infrastructure, with ongoing maintenance.
• Impact on meat quality.
• Consumer acceptance.
• Environmental impact, e.g. waste disposal and pollution.

Multiple interventions (multiple-hurdle strategy) can be placed in a single step or in consecutive steps in a processing line. Where multiple interventions are applied, the level of control expected should be greater than any single intervention, but is not likely to be the sum of the individual measures of efficacy of each intervention. The Codex “Code of Hygienic Practice for Meat” (CAC/RCP 58-2005) noted:

A contemporary risk-based approach to meat hygiene requires that hygiene measures should be applied at those points in the food chain where they will be of greatest value in reducing food-borne risks to consumers. This should be reflected in application of specific measures based on science and risk assessment, with a greater emphasis on prevention and control of contamination during all aspects of production of meat and its further processing. Application of HACCP principles is an essential element. The measure of success of contemporary programmes is an objective demonstration of levels of hazard control in food that are correlated with required levels of consumer protection, rather than by concentrating on detailed and prescriptive measures that give an unknown outcome.

This report aims to provide information that builds on the above approach to meat hygiene, by focusing on particular steps of the beef and pork chains and on interventions where there is a potentially demonstrable effect on Salmonella.

3.2 DIFFERENCES IN THE NATURE OF BEEF AND PORK PRODUCTION

There are some unique animal, production and processing characteristics that can have an impact on the opportunity for contamination and the use of interventions
for the control of Salmonella along the beef and pork chains. Some of these are outlined below.

3.2.1 Beef

Cattle can be raised for meat or milk production, with dairy operations also sending bull calves and aged dairy cows for meat processing. Less is known of the epidemiology of Salmonella in cattle compared with farmed pigs. Salmonella can cause clinical salmonellosis in calves and to a much lesser extent in adult cattle. All age groups can be asymptomatic Salmonella carriers, and with varying prevalence in age groups at a location over time. Cattle can carry a wide range of serovars, some are commonly associated with bovine disease and a small number may predominate in a region at a point in time.

Production systems can be extensive and/or intensive, can include pasture and/or feedlot beef herds or dairy herds, and cattle can be part of mixed-species enterprises, all of which can be associated with multiple and differing risk factors for Salmonella. The nature of cattle production systems, the scale of some systems, the movement of cattle between these systems, and the multitude of risk factors for Salmonella, make on-farm control more challenging and less practical than for pigs. In comparison with pigs, hazard-based measures for reducing the Salmonella contamination of cattle entering slaughter have been implemented closer to the point of slaughter (e.g. hide decontamination).

Cattle hides can be heavily contaminated with Salmonella when entering the processing establishment. Protecting the newly exposed carcass surface from this source of contamination during de-hiding and from spillage of intestinal contents during evisceration is essential. As this is not always achieved, decontamination after hide removal has become a common hazard-based food safety measure in beef processing in some regions.

3.2.2 Pork

Pig production has a single end focus: the production of pork, and is often conducted in intensive farming systems. This commonality limits the variability in factors affecting Salmonella carriage in production systems. Carriage of Salmonella in farmed pigs is common worldwide but is not usually associated with clinical disease.

Salmonella serovars found in pigs include the more host-adapted, as well as many other broad-host-range serovars. S. Typhimurium is a common serovar found in pigs. Salmonella can be spread between pigs through the faecal-oral route, nose-
to-nose contact within and between groups, and possible fomite and aerosol transmission. The epidemiology of *Salmonella* varies during the stages of production. Of particular relevance to food safety is the infection status among finishers, as this increases the number of shedding pigs at slaughter. Pigs can rapidly develop new or resurgent infections at this late stage before processing.

Processing of pigs has some unique aspects relevant to *Salmonella* control. Scalding and singeing are process steps where heat is applied to the hide to facilitate hair and hoof removal. These steps, if properly applied, provide an additional opportunity for reducing the prevalence of *Salmonella*. Pigs are frequently processed with the hide intact so that the carcass surface is not directly exposed to hide contamination. However, there are also process steps that can increase the risk of contamination, such as during de-hairing and polishing.

In some regions it has been possible to apply control strategies to declare and maintain *Salmonella*-free herds. This may be in part because pigs are monogastric animals and cattle ruminants, and therefore this may play a role in consideration of interventions in the animal host. In general, it may be that multiple on-farm controls are more feasible and practical in pig production relative to beef production.

More detailed information can be found in the OIE publication: “A review of the scientific literature on the control of *Salmonella* spp. in food-producing animals other than poultry” (Belluco et al., 2015).
4.1 PRIMARY PRODUCTION (STEPS 1 AND 2)

The primary source of *Salmonella* for cattle occurs at the farm level. Therefore, on-farm control of *Salmonella* may assist in reducing *Salmonella* carriage and potential transmission during cattle production, thereby minimizing the *Salmonella* contamination of cattle destined for beef processing. On-farm control of *Salmonella* may thus contribute to the whole food chain continuum of measures for reducing the food safety risk of *Salmonella* in beef.

Limited evidence was identified in the systematic review for the effect of farm-level interventions on the control of *Salmonella* in the population of greatest interest (i.e. beef or culled dairy cattle). The evidence was summarized across five main categories of interventions: non-therapeutic use of antimicrobials; biosecurity; feed management and feed additives; manipulation of microbiota; and vaccination. Some of the specific interventions investigated were also considered good farming practices (GFPs), with additional benefits beyond their specific effects on *Salmonella* prevalence or concentration. The key findings of the review and conclusions of the experts are summarized below.

2 See Annex 2 for steps in the beef chain, as outlined in the CCFH Draft Guidelines
4.1.1 Non-therapeutic use of antimicrobials

Antimicrobials may be used in cattle for therapeutic purposes (to treat clinical disease), and also for non-therapeutic purposes (to prevent clinical disease, or to enhance physiological performance, in accordance with the specific regulatory environment of the farmer or operator).

The systematic review identified a small number of controlled trials that found inconsistent or non-statistically significant effects for the non-therapeutic use of antimicrobials (in-feed sub-therapeutic levels of Tylosin™, a macrolide antimicrobial, or in-feed use of the ionophore monensin) on Salmonella prevalence or concentration in cattle (Annex 1, SC4.3).

While antimicrobial drugs and medications may be warranted to treat clinical disease in cattle, the experts agreed that they should not be used in the treatment of sub-clinical salmonellosis nor should they be used as an intervention in cattle to control Salmonella as a food safety hazard, due to the serious potential for development of antimicrobial resistance.

- Non-therapeutic use of antimicrobial drugs and medications was not recommended for consideration as a food safety intervention for the control of Salmonella in cattle on-farm, due to inconsistent evidence for efficacy and the serious potential for the development of antimicrobial resistance.

4.1.2 Biosecurity

Biosecurity refers to a package of measures implemented on-farm to control infectious disease in general, and as such, is needed for many reasons besides Salmonella control. Numerous observational studies support the use of various biosecurity measures to reduce the likelihood of isolating Salmonella in cattle on-farm (Annex 1, SC4.4).

- Biosecurity was recommended for consideration as an important GFP to control Salmonella in cattle on-farm.

4.1.3 Feed management and feed additives

Feed management may include multiple factors, such as diet composition, feed withdrawal, use of partitioning agents, or energy supplements. Limited and inconsistent evidence was identified for the effect of feed management strategies to control Salmonella in cattle (Annex 1, SC4.5–4.6). Controlled trials and observa-
tional studies showed that some dietary components may, in some settings, potentially increase the prevalence of faecal *Salmonella* shedding (for example, feeding of distiller’s grains to cattle, or non-pasteurized milk to dairy calves). The experts noted that considerable care should be taken when using feed management for the control of *Salmonella* in cattle, as the impact may be inconsistent or may even increase the prevalence of *Salmonella*.

- Feed management was not recommended for consideration as a hazard-based intervention for the control of *Salmonella* in cattle on-farm, while it was noted that considerable care should be taken to ensure feed management and selection does not increase faecal *Salmonella* shedding.

4.1.4 Manipulation of gut microbiota

Probiotics are living microorganisms that are fed to animals to colonize the gut environment and improve the balance of favourable microorganisms. A variety of probiotics (e.g. *Lactobacillus* spp., *Propionobacterium freudenreichii*) have been investigated in a small number of studies (Annex 1, SC4.7). A limited impact of probiotics was found on *Salmonella* prevalence in adult cattle in controlled trials; some probiotics decreased *Salmonella* prevalence and concentration in calves in challenge trials.

The effectiveness of the manipulation of gut microbiota on *Salmonella* reduction was considered by the experts to be dependent on multiple factors, such as cattle age, stage of rumen development, and diet.

- Manipulation of microbiota using probiotics was not recommended for consideration as a hazard-based intervention for the control of *Salmonella* in cattle on-farm due to the limited available evidence for efficacy.

4.1.5 Vaccination

Vaccination programmes in cattle have targeted various *Salmonella* antigens. Vaccine efficacy depends on various factors (e.g. vaccine type, *Salmonella* serovars targeted, age of cattle at vaccination, type of cattle production system).

Controlled trials have shown limited reductions in the prevalence of *Salmonella* in faecal samples of dairy cattle after vaccination (Annex 1, SC4.8); one study found no effect of vaccination on prevalence in faecal samples in feedlot cattle. The experts indicated that the magnitude of effect of vaccination in the studies evaluated was not large enough to be of practical importance. The experts also
noted there was no published data on the effect of vaccines on the presence of Salmonella located in lymph nodes.

- Vaccination for Salmonella was not recommended for consideration as an intervention for Salmonella in cattle on-farm due to insufficient evidence of its efficacy.

4.1.6 Transport duration and hygiene

Cattle ready for slaughter are transported a variable distance from the production unit to the abattoir. Limited evidence from observational studies was available to estimate the potential impact of transport-based interventions on Salmonella control (Annex 1, SC5.3).

The experts recognized that it is not always practical to minimize the duration of transport for cattle in commercial settings, and this was therefore not considered as an intervention. However, the experts suggested that GHPs, including appropriate cleaning and disinfection protocols for transport vehicles, were expected to reduce Salmonella contamination. They noted that adequate cleaning and disinfection of transport vehicles is affected by many factors (e.g. water temperature and pressure, detergents and disinfectants used, their concentration, contact time, contact surfaces, personnel training).

- Interventions during transport were not recommended for consideration as hazard-based interventions for the control of Salmonella in cattle due to lack of evidence and impracticality.
- Hygienic maintenance of transport vehicles was recommended as a GHP-based control measure.

4.2 PROCESSING (STEPS 3–19)

As it is not possible to completely control Salmonella in cattle at the primary production stage and during transport, interventions can be applied during processing to reduce the level of Salmonella prevalence and concentration on beef carcasses and meat products and to prevent Salmonella growth and cross-contamination.

4.2.1 Lairage (Step 4)

At this step after unloading and before slaughter, cattle may be exposed to further Salmonella contamination within and between herds, and endure stress that may
result in an increased load of *Salmonella* in animals entering slaughter establishments. No evidence for specific interventions applied at the lairage stage in cattle was identified in the systematic review. However, observational and molecular studies suggest the potential for lairage to be an area of amplification and transmission of *Salmonella* among cattle (Annex 1, SC5.4).

The experts recognized that it is not always practical to minimize the duration in lairage for cattle in commercial settings, and this was therefore not considered as an intervention.

GHPs were considered necessary in hygienic maintenance of holding pens. The experts noted that the effect of cleaning and disinfection in the lairage area varies with the protocol applied, and could also be affected by design of the lairage area.

- Interventions during lairage were not recommended for consideration as hazard-based interventions for the control of *Salmonella* in cattle due to lack of evidence and impracticality.
- Hygiene in lairage was recommended for consideration as a GHP-based control measure.

4.2.2 Hide decontamination interventions (between Step 4 and Step 8)

Hide decontamination interventions could include washes using ambient or hot water, organic acids and other chemicals, as well as hide de-hairing. These interventions could be applied to the hides of live animals in lairage, or could be applied to animal hides post-exsanguination (pre-hide removal). The key findings of the systematic review and conclusions of the experts regarding these interventions are summarized below.

4.2.3 Live animal hide washes

The systematic review found limited and inconsistent evidence for the effect of ambient water, organic acid and other chemical washes applied to the hides of live animals in lairage (Annex 1, SC6.3).

The experts agreed that animal welfare has to be considered for hide decontamination processes applied to live animals.

- Hide interventions applied to live animals were not recommended for consideration as a hazard-based intervention for the control of *Salmonella* due to a lack of consistent evidence and concerns for animal welfare.
4.2.4 Hide de-hairing

Hide de-hairing refers to the process of applying successive washes with water and chemical solutions containing, for example, sodium hydroxide and sodium sulfide, to remove hair from and improve visible cleanliness of cattle hides. The process might also remove or inactivate *Salmonella*.

The systematic review identified two challenge trials conducted under laboratory and pilot plant conditions that indicated that de-hairing can reduce *Salmonella* concentrations on hides (Annex 1, SC6.3). However, it was the opinion of the experts that this intervention is not practical in a commercial setting due to difficulty in disposal of waste products.

- Although it may be effective, hide de-hairing was not recommended for consideration as a hazard-based intervention for the control of *Salmonella* due to the practical difficulty of disposing of the waste materials accumulated.

4.2.5 Post-exsanguination hide washes

Cattle hides may be washed with ambient or hot water, organic acids (e.g. lactic acid) or other chemical solutions (e.g. chlorine; hydrogen bromide) post-exsanguination to reduce microbial contamination of cattle hides prior to de-hiding.

The systematic review identified four quasi-experimental studies conducted under commercial conditions that found that washes containing chemicals other than organic acids (including hydrogen bromide, chlorine, or sodium hydroxide) significantly reduced the prevalence of *Salmonella* on hides from 62.3% to 18.1–35.8% (Annex 1, SC6.3). One study found a similar effect for an organic acid wash, reducing the prevalence of *Salmonella* on hides from 74.0% to 30.1–69.9%. Challenge trials conducted under laboratory and pilot plant conditions also found that organic acid and other chemical washes were effective in reducing *Salmonella* concentrations on hides compared with ambient water washes. No evidence was found of the effect of water washes at any temperature to reduce the prevalence of *Salmonella* on hides.

The experts noted that the efficacy of all hide decontamination treatments will depend on the type of hide wash, how it is applied (e.g. chemical concentration, and time of application), and the nature of hide contamination, including the amount, type of soiling and its distribution over the animal’s hide. If organic acid or other chemical washes are used, they should be applied at appropriate combinations of concentration, time, duration of application and temperature to achieve the intended *Salmonella* reduction.
The experts noted that hide treatments potentially damage the commercial value of the hide. The washes can be water-intensive processes and there are concerns about the negative environmental impact of waste products.

- Washing hides with ambient or hot water post-exsanguination was not recommended for consideration as a hazard-based intervention for the control of *Salmonella* due to a lack of evidence of efficacy.
- Organic acid and other chemical washes applied to hides post-exsanguination with proven efficacy were recommended for consideration as hazard-based interventions to control *Salmonella*.

4.3 CARCASS DRESSING AND BUNGING (STEPS 8–14)

Carcass dressing refers to the slaughter processes where the appendages and viscera are removed. Bunging is a slaughter process where a cut is made around the rectum (i.e. terminal portion of the large intestine) to free it from the carcass, and then it may be tied off and/or bagged to prevent spillage of faecal material.

The systematic review identified only one study related to the effects of bunging on control of *Salmonella* in beef (Annex 1, SC6.4). The study was a controlled trial that found that bunging conducted prior to evisceration washes may provide greater *Salmonella* reductions compared with not bunging prior to evisceration. No studies were identified related to the effects of other carcass dressing procedures on reducing *Salmonella* in beef.

Given a lack of evidence for the effect of hygiene during carcass dressing or bunging specifically to control *Salmonella*, the experts agreed to recommend these processes as GHPs, noting that their efficacy is affected by the hygienic practices used.

- Hygiene during carcass dressing and bunging were recommended for consideration as GHP-based control measures in meat processing.

Post-mortem inspection (Step 15), which refers to the process before chilling of conducting a detailed inspection of carcasses, was not included in the scope of the systematic review and was not explicitly considered by the experts as an intervention to control *Salmonella*. However, it was noted that the manner in which it is implemented may increase the risk of bacterial cross-contamination of carcasses.
4.4 PRE-CHILL CARCASS INTERVENTIONS (BETWEEN STEP 8 AND STEP 16)

Some level of contamination of carcasses with faecally contaminated material is possible when the hide is removed and if leakage of gut contents is not prevented. Decontamination of carcasses can be used to physically remove and/or inactivate Salmonella, preferably as soon after the bacteria contact the carcass surface as possible.

Pre-chill decontamination interventions could include ambient water washes, hot water washes and steam pasteurization, organic acid and other chemical washes, and carcass trimming to remove visible contamination. Although the systematic review identified studies that investigated other pre-chill carcass interventions such as electricity and natural extracts, these were laboratory-based challenge studies which showed promise, but were not evaluated by experts as they were not commercially applicable. The key findings of the systematic review and conclusions of the experts regarding these interventions are summarized below.

4.4.1 Ambient water washes
Washing carcasses using ambient temperature water may be a routine activity in-plant that may remove superficial visible soiling. However, the systematic review found inconsistent evidence for removal of Salmonella from carcasses by washing with water at ambient temperature (Annex 1, SC6.5).

- Ambient water washes were not recommended for consideration as a hazard-based intervention to control Salmonella due to inconsistent evidence.

4.4.2 Hot water washes and steam pasteurization
The systematic review identified one controlled trial study conducted under commercial conditions that found that hot water applied at 74–87.8°C for 18–39 sec reduced the prevalence of Salmonella on beef carcasses from 30.3% to 2.2% (Annex 1, SC6.5). In addition, several challenge trials conducted under laboratory and pilot plant conditions were identified that found wide-ranging reductions of Salmonella concentrations on pre-chill carcasses for these interventions. The experts agreed that realistic reductions due to hot water washes and steam pasteurization under commercial conditions could be up to 1–2 log₁₀ CFU/cm².

The experts noted that these interventions should be applied uniformly over the carcass surface at a time-temperature combination to achieve the intended reduction. They also noted that the efficacy of water washes and steam pasteuriza-
tion depends on the carcass surface temperature achieved, the duration of application and the coverage of the carcass. The experts agreed that the carcass surface temperature should reach at least 70°C to effectively reduce *Salmonella* and that the time-temperature combinations required to achieve a targeted *Salmonella* reduction were specific to an individual processing plant.

- Hot water washes that achieve a carcass surface temperature of at least 70°C were recommended for consideration as a hazard-based intervention for the control of *Salmonella*, and the experts considered realistic reductions could be up to 1–2 log_{10} CFU/cm².

4.4.3 Organic acid and other chemical washes

The systematic review identified several challenge studies conducted under laboratory and pilot plant conditions that investigated the effect of using organic acid (e.g., lactic or acetic acid) and other chemical washes (e.g., peroxyacetic acid and acidified sodium chlorite) (Annex 1, SC6.5). The studies reported a wide-range of reductions in *Salmonella* levels compared with ambient water washing (from almost no reduction up to 3 log_{10} CFU/cm² for organic acids and up to 2.6 log_{10} CFU/cm² for other chemicals). However, based on the majority of studies, the experts agreed that realistic reductions under commercial conditions could be up to 1 log_{10} CFU/cm².

The experts noted that, if used, organic acid and other chemical washes should be applied uniformly over the carcass at appropriate combinations of concentration, time, duration of contact time, pH, and temperature to achieve the intended reduction with uniform coverage.

In general, the experts noted that the effect of organic acid and other chemical washes is enhanced by increasing the concentrations, but the upper limit of the concentration that can be practically used depends on retaining acceptable sensory quality of the meat. At higher concentrations of chemicals, water rinsing may be needed following their application. The temperature of the organic acid washes will affect their efficacy in reducing *Salmonella*. Additionally, the experts noted that the application of organic acid and other chemical washes might affect consumer acceptability of the meat.

- Organic acid and other chemical washes were recommended for consideration as hazard-based interventions for the control of *Salmonella*, and realistic reductions could be up to 1 log_{10} CFU/cm².
4.4.4 Trimming

Trimming of beef carcasses by slaughterhouse operators can remove visible surface contamination. The systematic review identified limited evidence showing that trimming can reduce *Salmonella* prevalence and concentration on carcasses (Annex 1, SC6.5). The experts noted that the efficacy of trimming to reduce *Salmonella* is affected by the hygienic practices used by operators and by equipment hygiene, and as a result, a specific hazard-based reduction estimate could not be determined.

- The use of carcass trimming was recommended for consideration as a GHP-based control measure in beef processing.

4.4.5 Removal of lymph nodes

While the experts noted that the carcass surface decontamination treatments assessed above are not effective in inactivating *Salmonella* located in lymph nodes, at this time, they agreed that there is insufficient evidence to assess the practice of removing bovine lymph nodes from carcasses as a *Salmonella* intervention in beef.

4.5 CHILLING (STEP 16)

The primary *Salmonella* control measure associated with carcass chilling is inhibition of microbial growth. Carcass chilling may include air, water or chemical spray chilling that causes carcass surface temperature reductions together with carcass surface drying or bacterial inactivation by chemicals, depending on the method used. The systematic review identified limited and inconsistent evidence on the potential effect of chilling to reduce *Salmonella* contamination of beef carcasses (Annex 1, SC6.6), which was in agreement with the opinion of the experts. The experts had some concerns about the overestimation of the reported lethal effect of chilling reported on *Salmonella*, as the poor recovery of *Salmonella* cells from an injured state induced by the effects of the chilling process could influence the results and interpretation of efficacy.

- Chilling was recommended for consideration as a GHP-based control measure to prevent the growth of *Salmonella* on carcasses.
- GHP-based control measures should also be considered to avoid carcass cross-contamination in the chilling room.
4.6 POST-CHILLING INTERVENTIONS (BETWEEN STEPS 16 AND 17)

Adequate and hygienic chilling should prevent cross-contamination of carcasses and prevent growth of *Salmonella*. Excessively high contamination levels and/or poor chilling and poor hygiene practices could result in cross-contamination and in growth of *Salmonella* remaining on carcasses following processing.

Chilled carcasses may be washed with water or chemical solutions (including organic acids and other chemicals such as peroxyacetic acid). Steam vacuuming can also be applied to remove visible contaminating material on a carcass surface. The systematic review identified a limited number of studies investigating the effects of post-chilling interventions, which indicated low or limited reductions of *Salmonella* on beef carcasses (Annex 1, SC6.7). The experts noted that interpretation of the efficacy of interventions at this stage is limited due to the low prevalence of *Salmonella* in available quasi-experimental studies.

The experts noted that if chemical washes are used, they should be applied at combinations of concentration, time, duration of application, and temperature to achieve the intended reduction. They also noted that intervention processes that will significantly increase the temperature of chilled carcasses (e.g. hot water washes) could have a negative impact on the prior effect of carcass chilling.

- Post-chilling interventions were not recommended for consideration as hazard-based interventions for the control of *Salmonella* due to a lack of available evidence for efficacy.

4.7 POST-FABRICATION INTERVENTIONS (BETWEEN STEPS 17 AND 19; STEP 9)

Post-fabrication decontamination interventions primarily involve treatments of small meat cuts and trimmings. Because small meat cuts and trimmings are irregularly shaped, very non-homogeneously contaminated and originate from different carcasses, post-fabrication interventions (e.g. spray washes with liquid solutions of ambient water, hot water, organic acids or other chemicals) were treated differently from carcasses, and assessed together by experts. Cheek meat, which is derived from trimming of heads at Step 9, was included with these steps because the interventions were expected to be applied similarly.
The systematic review identified several studies that investigated the effects of post-fabrication interventions; however, all were challenge trials conducted under laboratory and pilot plant conditions (Annex 1, SC6.8). Interventions considered included ambient water washes, heat-based treatments (e.g. hot water), and various chemical washes (including organic acids and other chemicals such as peroxyacetic acid and acidified sodium chlorite). There were limited data for the efficacy of heat-based treatments. The studies reported wide-ranging reductions in *Salmonella* levels for organic acid and other chemical washes compared with ambient water washes (from almost no reduction to up to $4 \log_{10}$ CFU/g). However, the experts agreed that based on the majority of studies, reductions under commercial conditions from these interventions could be up to $1 \log_{10}$ CFU/g.

The experts noted that, if used, post-fabrication interventions should be applied at combinations of concentration, time, duration of application and temperature to achieve the intended reduction. In general, the effect of chemical treatments is enhanced by increased concentration, but the upper limit of concentration that can be practically used depends on retaining acceptable sensory quality. At higher concentrations, water rinsing after application of chemical washes may be needed. The experts cautioned that application of heat-based treatments could increase the temperature of the product and therefore increase the risk of *Salmonella* growth.

The experts recognized that there are emerging technologies (e.g. high pressure processing) that could be applicable as a post-fabrication intervention to control *Salmonella* in beef, but there was insufficient evidence to consider their efficacy.

- Chemical treatments with proven efficacy were recommended for consideration as hazard-based interventions for the control of *Salmonella* in fabricated beef.
Pork-chain intervention assessment, from primary production to processing

5.1 PRIMARY PRODUCTION (STEPS 1 AND 2)³

The primary source of Salmonella for pigs is at the farm level. Therefore, on-farm control of Salmonella may assist in reducing Salmonella carriage and potential transmission during pig production, thereby minimizing Salmonella contamination of pigs destined for pork processing. On-farm control of Salmonella may thus contribute to the whole food chain continuum of measures for reducing the food safety risk of Salmonella in pork.

The systematic review identified a large amount of literature investigating farm-level interventions to control Salmonella in pigs, but these frequently did not measure similar sample types in the population of greatest interest (i.e. finisher pigs). The evidence was summarized across six main categories of interventions: non-therapeutic antimicrobials and bacteriophage therapy; biosecurity; feed and water acidification; feed management and feed additives; manipulation of microbiota; and vaccination. Some of the specific interventions investigated were also considered GFPs, with additional benefits beyond their specific effects on control of Salmonella. The key findings of the systematic review and conclusions of the experts are summarized below.

³ See Annex 2 for the list of steps as outlined in the CCFH Draft Guidelines.
5.1.1 Non-therapeutic antimicrobials and bacteriophage therapy

Antimicrobials may be used in pigs for therapeutic purposes (to treat clinical disease), and also for non-therapeutic purposes (to prevent clinical disease, or to enhance physiological performance, in accordance with the specific regulatory environment of the farmer or operator). Evidence regarding the effects of non-therapeutic use of antimicrobials in pigs on *Salmonella* prevalence or concentration was inconsistent (Annex 1, SC1.3).

While antimicrobial drugs and medications may be warranted to treat clinical disease in pigs, the experts agreed that they should not be used in the treatment of sub-clinical salmonellosis nor should they be used as an intervention in pigs to control *Salmonella* as a food safety hazard, due to the serious potential for development of antimicrobial resistance.

Bacteriophages are typically applied orally, as a cocktail of several bacteriophages, and are applicable in varying production conditions. Bacteriophages are inexpensive, easy to apply, widely available in the environment, and acceptable to the public. However, current evidence reports inconsistent effects of bacteriophage therapy on prevalence of *Salmonella* shedding, intestinal concentrations, or lymph node colonization in pigs.

- Non-therapeutic use of antimicrobial drugs and medications was not recommended for consideration as a food safety intervention for the control of *Salmonella* in pigs on-farm, due to inconsistent evidence for efficacy and the serious potential for the development of antimicrobial resistance.
- Bacteriophage therapy was not recommended for consideration as a hazard-based intervention for the control of *Salmonella* in pigs on-farm given the limited data currently available.

5.1.2 Biosecurity

Biosecurity refers to a package of measures implemented on-farm to control infectious disease in general, and as such, is needed for many reasons besides *Salmonella* control. External biosecurity, i.e. measures to prevent the introduction of pathogens on-farm, is important to reduce the likelihood of introduction of *Salmonella* into *Salmonella*-free herds. Numerous observational studies support the use of external biosecurity measures (such as rodent control programmes, use of a hygienic lock, restriction of farm visitors, and managing the *Salmonella* status of replacement gilts and boars) to reduce the likelihood of introducing *Salmonella* on-farm (Annex 1, SC1.4).
Observational studies and a small number of controlled trials support the use of internal biosecurity measures (e.g. pig flow, cleaning and disinfection between batches, strategic movement) to control the spread of *Salmonella* within the farm (Annex 1, SC1.4). Internal biosecurity measures could reduce the prevalence of *Salmonella* in finishers in infected herds, but are unlikely to eliminate it in the absence of other measures applied concurrently (e.g. feeding of organic acids; vaccination).

- **Biosecurity was recommended for consideration as an important GFP to control *Salmonella* in pigs on-farm.**

5.1.3 Feed and water acidification

Feed and water acidification refers to the use of organic acids (e.g. lactic or formic acid), administered at conditions which provide a reduction in *Salmonella* prevalence, by taking into account the type of acid, its concentration, the duration of administration, and the age of pigs (e.g. weaners vs finishers) receiving treatment. Organic acids have a direct effect of reducing the level of *Salmonella* in feed.

Adding organic acids in water or feed has been shown in controlled trials to yield varying degrees of reduction of *Salmonella* prevalence in an infected herd (Annex 1, SC1.5).

The experts noted that the effect of organic acids depends on other factors (e.g. *Salmonella* contamination, disease status, type of feed, other management factors). As with other interventions, the use of acids alone might have a limited effect on reducing *Salmonella* prevalence in the finishers leaving the farm, in an infected herd.

- **Acidification of feed or water using organic acids was recommended for consideration as a hazard-based intervention for the control of *Salmonella* in infected herds.**

5.1.4 Feed management and feed additives

Feed management may include several strategies that manipulate feed form, such as: feeding meal versus pellets; varying the degree of feed coarseness; or feeding fermented liquid feed. Controlled trials and observational studies support that feeding meal (vs pellets), coarse feed (vs fine feed) and fermented liquid feed (vs dry feed) each have a varying magnitude of effect in reducing *Salmonella* prevalence on an infected farm (Annex 1, SC1.6).
A variety of feed additives have been investigated for reduction of *Salmonella* prevalence and concentration in pigs, one of the most studied of which is sodium chlorate. Limited published information based on experimental data reported a potential for reduction in *Salmonella* prevalence measured by faecal shedding, with no effect on lymph nodes, from feeding sodium chlorate (Annex 1, SC1.6).

5.1.5 Manipulation of gut microbiota

Probiotics are living microorganisms that are fed to animals to colonize the gut environment and improve the balance of favourable microorganisms. A prebiotic may be defined as a non-digestible food ingredient that selectively stimulates the favourable growth and activity of one or a limited number of bacteria in the colon. A variety of probiotics (e.g. *Lactobacillus* spp.) and prebiotics (e.g. galactomannan) have been reported to be used in finisher pigs.

A small number of published controlled trials show the potential for prebiotics and/or probiotics to reduce *Salmonella* prevalence and concentration in pigs, although with unclear magnitude of effect (Annex 1, SC1.7).

Variability in the efficacy and use of probiotics and prebiotics depends on various factors, including microbial species involved (probiotics), type of nutrient (prebiotics), combinations of pro- and pre-biotics used concurrently, dosages used, and age at administration. Although probiotics and/or prebiotics can reduce *Salmonella* colonization when administered, there may also be potential re-infections later in the productive life of the animal.

5.1.6 Vaccination

Vaccination programmes targeted various *Salmonella* antigens to reduce prevalence. Vaccination was shown in controlled trials to reduce the prevalence of *Sal-*
monella from 26.7% to 0.7–22.1% for individual faecal prevalence in finisher pigs, 47.5% to 12.2–43.8% for lymph node prevalence at slaughter, and 46.3% to 13.4–43.4% for caecal prevalence at slaughter (Annex 1, SC1.8). The effect of vaccination when measured at the pen level was inconsistent.

The experts noted that the effect of vaccination is variable due to factors such as vaccine type, age of pigs at vaccination application, and Salmonella serovars targeted. Vaccination could interfere with herd monitoring for Salmonella where serological control programmes are used. The cost-effectiveness of a vaccination programme is situation dependent. Because the aim of vaccination is to reduce contamination at slaughter, its effect should ideally be assessed in pigs as close to the time of slaughter as possible.

- Vaccination was recommended for consideration as a hazard-based intervention for the control of Salmonella in pigs on-farm; however, only where the context is carefully described and considered.

5.1.7 Transport duration and hygiene

Market pigs are transported for a variable distance and time from the production unit to the abattoir. Sufficient evidence was not identified to estimate the effect of duration of transport on Salmonella control (Annex 1, SC2.3). The experts agreed that transport duration depends on other related factors (e.g. logistics, animal welfare). The experts also agreed that duration of transport should be kept as short as possible.

Sufficient evidence was not identified to estimate the effect of cleaning and disinfection of transport trucks on Salmonella control, although numerous observational studies have reported that current disinfection protocols for cleaning transports between batches can be limited in removal of bacteria, including Salmonella, which are present after hauling animals to slaughter (Annex 1, SC2.3). However, the experts agreed that cleaning and disinfection should be considered between transport loads as a GHP. The experts noted that adequate cleaning and disinfection of transport vehicles is influenced by many factors (e.g. water temperature and pressure, detergents and disinfectants used, their concentration, contact time, contact surfaces, personnel training).

- Interventions during transport were not recommended for consideration as hazard-based interventions for the control of Salmonella in pigs due to a lack of evidence, and impracticality.
- Hygienic maintenance of transport vehicles was recommended for consideration as a GHP-based control measure.
5.2 PROCESSING (STEPS 3–21)

Salmonella contamination of carcasses and meat products may occur throughout processing due to cross-contamination (e.g. from inadequate carcass dressing and environmental contamination), and growth of *Salmonella* has to be controlled. *Salmonella* contamination can be controlled by applying GHPs (e.g. regular sanitation of equipment). As well, a reduction in *Salmonella* contamination may be accomplished by applying hazard-based interventions at various points in the processing chain. However, these interventions should not be considered substitutes for GHPs.

5.2.1 Lairage (Step 4)

At this step after unloading and before slaughter, pigs may be exposed to further *Salmonella* contamination within and between herds and they may endure stress that could result in increased *Salmonella* contamination on animals entering slaughter establishments. Limited evidence was identified in the systematic review for the effect of lairage-based interventions on the control of *Salmonella* in pigs. The key findings of the review and conclusions of the experts are summarized below.

5.2.2 Feed withdrawal

Feed may be withdrawn from the animals for a period, varying with the duration of the interval elapsed between leaving the farm, and slaughter. Feed withdrawal serves to reduce the volume of intestinal content, and the subsequent risk of intestinal spillage at evisceration and contamination of the carcass. However, the length of feed withdrawal should be taken into consideration with animal welfare concerns.

Contradictory evidence exists from controlled trials and challenge trials regarding the effect of feed withdrawal on *Salmonella* shedding in finisher pigs (Annex 1, SC2.3).

- The use of feed withdrawal was recommended for consideration as a GHP-based control measure to reduce rupturing of the intestines and intestinal spillage during carcass dressing.

5.2.3 Duration and hygienic practices in lairage

The duration spent in lairage varies, and increasing duration could increase the *Salmonella* contamination of pigs due to increased exposure to contamination and animal stress. There was insufficient evidence, derived from observational studies,
to estimate the effect that duration in lairage could have on *Salmonella* prevalence and concentration in slaughter pigs (Annex 1, SC2.4). The experts agreed that lairage duration involves other, related, factors (e.g. logistics, meat quality, animal welfare). The experts also agreed that duration of lairage should be kept as short as possible.

Similarly, there was insufficient evidence, derived from controlled trials, to estimate the effect that hygienic practices in lairage pens could have on *Salmonella*. However, the experts suggested that as a GHP, pen hygiene could reduce the *Salmonella* contamination in slaughter pigs, and that cleaning and disinfection should be performed between batches delivered, although it was recognized that it is not always practical in commercial settings. The experts noted that the effect of cleaning and disinfection of holding pens in lairage is influenced by many factors (e.g. water temperature and pressure, detergents and disinfectants used, their concentration, contact time, contact surfaces, personnel training).

- Interventions during lairage were not recommended for consideration as hazard-based interventions for the control of *Salmonella* in pigs due to a lack of evidence and impracticality.
- Hygienic practices in lairage were recommended for consideration as GHP-based control measures.

5.2.4 Logistic slaughter

Logistic slaughter refers to the strategic scheduling of pigs for slaughter based on pre-harvest information on *Salmonella* status. This intervention, therefore, must also involve the segregated transport, and holding in lairage, of pigs from herds with different risks of *Salmonella* infection. Across experimental and observational studies, no consistent evidence was identified to estimate the effect of logistic slaughter (Annex 1, SC2.5). However, theoretically, the experts agreed it would reduce *Salmonella* contamination in post-farm stages.

The success of logistic slaughter depends on many factors (e.g. it requires a pre-harvest *Salmonella* surveillance programme with high accuracy, and good hygiene in post-farm stages). This should not preclude special handling of pigs highly infected relative to the general population.

- Logistic slaughter of pigs was not recommended for consideration as a hazard-based intervention for the control of *Salmonella* due to insufficient evidence; however, this should not preclude special handling of pigs originating from herds that are known to have a high prevalence of *Salmonella* infection relative to the general population.
5.3 SCALDING AND SINGEING (STEPS 7 AND 10)

Scalding and singeing are routine process steps in the slaughter line, performed primarily for removal of hair. Some processors might skin and do not de-hair, in which case scalding and singeing are not applied. The systematic review identified evidence on scalding and singeing from a range of study designs (Annex 1), the key findings of which are summarized below.

One previous systematic review of primary research studies describing the prevalence of Salmonella in pork from slaughter to chilling found that both scalding and singeing steps were associated with a decrease in prevalence. Quasi-experimental studies conducted under commercial conditions found that both scalding and singeing significantly reduced Salmonella prevalence on pork carcasses. These effects are supported by observational studies, which found associations between scalding and singeing practices and reduced Salmonella contamination of carcasses.

5.3.1 Scalding

Scalding involves the use of hot water at temperatures and contact times to facilitate subsequent removal of hair and hooves. This will also result in inactivation of Salmonella with adequate parameters of temperature and time, and with uniform coverage of the carcass. There was extensive evidence from quasi-experiments of reduction of Salmonella prevalence on carcasses during scalding, from 35% to 1.5% (Annex 1, SC3.3).

Scalding at inappropriate temperatures, or in the presence of organic matter in the water, can be a source of Salmonella contamination of carcasses. This may be a particular concern with contamination of the pig’s pharynx, as subsequent carcass decontamination steps would not address this internal contamination. The experts recommended scald conditions of temperature and time (or equivalent combinations) effective for inactivation of Salmonella could include 61°C for 8 min or 70°C for 2–3 min.

- Scalding was recommended for consideration as a hazard-based intervention for the control of Salmonella when applied at appropriate combinations of temperature and time.

5.3.2 Singeing

Singeing involves the use of direct-fire bursts on the animal surface to improve hair removal. This will also result in inactivation of Salmonella, given adequate
parameters for temperature and time, and with uniform coverage of the carcass. There was extensive evidence from quasi-experiments of reduction of *Salmonella* prevalence on carcasses during singeing from 18.1% to 5.4% (Annex 1, SC3.3). A 2 log₁₀ CFU/cm² reduction in *Salmonella* concentration on carcasses after singeing was estimated in a single challenge trial.

Singeing temperature should be homogeneous across the carcass, as areas such as the base of the ears might not reach the required temperature to inactivate *Salmonella*. In some circumstances, a second singeing step might be considered after polishing.

- Singeing was recommended for consideration as a hazard-based intervention for the control of *Salmonella*.

5.3.3 De-hairing and polishing

Although scalding and singeing can reduce carcass contamination, there is a risk of recontamination in de-hairing and polishing steps if GHPs are not used.

- GHP measures were recommended during de-hairing and polishing to reduce cross-contamination of carcasses.

5.4 CARCASS DRESSING AND BUNGING (STEPS 12–16)

Carcass dressing refers to the slaughter processes where the appendages and viscera are removed. Bunging is a slaughter process where a cut is made around the rectum (i.e. terminal portion of the large intestine) to free it from the carcass, and then it may be tied off and/or bagged to prevent spillage of faecal material.

The systematic review did not capture any studies investigating the effects of hygiene during carcass dressing or bunging to reduce the prevalence or concentration of *Salmonella* in pork. Given a lack of evidence for their effect specifically to control *Salmonella*, the experts agreed to recommend these measures as GHPs, noting that the efficacy of the processes is affected by the hygienic practices used.

- Hygiene during carcass dressing and bunging were recommended for consideration as GHP-based control measures in meat processing.
5.5 POST-MORTEM INSPECTION (STEP 17)

This refers to the process before chilling of conducting a detailed inspection of carcasses, but was not included in the scope of the systematic review and was not explicitly considered by the experts as an intervention to control Salmonella. However, it was noted that the manner in which it is implemented may increase the risk of bacterial cross-contamination of carcasses.

5.6 PRE-CHILL CARCASS INTERVENTIONS (BETWEEN STEPS 16 AND 18)

Decontamination of carcasses based on washing interventions (e.g. hot water, organic acids or chemicals) are specifically intended to control microbiological contamination such as Salmonella. There are a number of different treatments that can be applied on carcasses, based on the washing of its surface. The systematic review identified several relevant studies investigating the following types of pre-chill interventions of pork carcasses: ambient water washes; hot-water washes and steam treatments; organic acid washes; other chemical washes; and steam vacuuming. The key findings of the systematic review and conclusions of the experts are summarized below.

5.6.1 Ambient water washes

Washing with ambient water is a routine step in some establishments for aesthetic reasons (to remove bone dust). There was limited evidence identified in the systematic review of its effect on reduction of Salmonella prevalence or concentration of pork carcasses (Annex 1, SC3.4).

- Washing with ambient water was not recommended for consideration as a hazard-based intervention for the control of Salmonella due to lack of evidence for its efficacy.

5.6.2 Hot-water washes and steam pasteurization

The systematic review identified several controlled trials that found that hot-water washes and steam pasteurization at different process parameters (e.g. hot water at 74–81°C for 5–15 sec, or steam at 82–85°C for 60 sec) could reduce the prevalence of Salmonella on pork carcasses from 4.3% to 1.6% (Annex 1, SC3.4), and unpublished data reported in a European Commission cost-benefit analysis found that hot-water washes could reduce the prevalence of Salmonella from 13% to 1% (Food Control Consultants Consortium, 2013). Challenge studies conducted
under laboratory and pilot plant conditions have shown that hot water washes can achieve up to a $2\log_{10}$ CFU/cm² reduction, which was in agreement with the expert opinion of a realistic reduction.

Hot water should be applied at a time×temperature combination appropriate to achieve the intended reduction, and should be uniformly applied over the carcass. The experts agreed the time×temperature combinations required to achieve a specific reduction were processing plant-specific. It was generally accepted that the carcass surface temperature should reach at least 70°C.

- Hot water washes that achieve a carcass surface temperature of at least 70°C were recommended for consideration as a hazard-based intervention for the control of *Salmonella*, and the experts considered realistic reductions could be up to $2\log_{10}$ CFU/cm².

5.6.3 Organic acid washes

Washes containing organic acids (e.g. lactic or acetic acid) have been shown in controlled trials to reduce the prevalence of *Salmonella* on carcasses from 7% to 2% (Annex 1, SC3.4). In challenge studies conducted under laboratory and pilot plant conditions, organic acid washes have shown a wide range of reductions in *Salmonella* levels compared with ambient water washing (from almost no reduction up to $1.8\log_{10}$ CFU/cm²). The experts concluded that a realistic reduction under commercial conditions could be up to 0.5 to $1\log_{10}$ CFU/cm².

The experts noted that, if used, organic acid washes should be applied uniformly over the carcass at combinations of concentration, time, duration of contact time, and temperature to achieve the intended reduction. Washing concentrations need to be measured at the site of application. Concentrations required to achieve a specific reduction are processing plant specific, and vary between acids. Contact time of washes may need to be considered, especially if followed by a rinse step.

- Organic acid washes were recommended for consideration as a hazard-based intervention for the control of *Salmonella*, and the experts considered realistic reductions could be up to 0.5 to $1\log_{10}$ CFU/cm².

5.6.4 Other chemical washes

Examples of other chemical washes include acidified sodium chloride, chlorine and hydrogen peroxide. There was limited evidence identified in the systematic review for reduction of *Salmonella* on carcasses using these washes (Annex 1, SC3.4).
• Other chemical washes were not recommended for consideration as a hazard-based intervention for the control of *Salmonella* due to insufficient data.

5.6.5 Full-carcass steam vacuum

Steam vacuuming may be applied, targeting the whole carcass. There was limited evidence on its efficacy in published studies (Annex 1, SC3.4). However, the experts noted that full carcass steam vacuuming can be a valuable intervention for small establishments, because it is relatively inexpensive and flexible as an alternative to whole carcass hot water washes. However, its efficacy to reduce *Salmonella* can be highly variable and depends on application and operator. Given the lack of published evidence supporting its effect on *Salmonella*, it was not considered as a hazard-based intervention.

• Full carcass steam vacuuming was recommended for consideration as a GHP-based control measure in small establishments with limited resources.

5.6.6 Manual removal of visible contamination

Removal of visible contamination may be performed by knife trimming of carcasses or spot steam vacuuming. Steam vacuuming and knife trimming are useful in removing visible contamination; however, the efficacy depends on various factors, including the operator and hygienic application. The experts noted that the efficacy of these approaches in reducing *Salmonella* can be highly variable, with very limited published evidence supporting their use to reduce *Salmonella*.

• Knife trimming and/or spot-vacuum were recommended for consideration as GHP-based control measures in pork processing.

5.7 CHILLING (STEP 18)

The primary microbial control measure associated with carcass chilling is inhibition of microbial growth, which may be affected by carcass spacing, air flow, and cooling capacity of the chiller. Carcass chilling may include air, water or chemical spray chilling that cause carcass surface temperature reductions together with carcass surface drying or bacterial inactivation by chemicals depending on the method used.
The systematic review identified two previous meta-analyses that measured the effect of chilling to reduce the prevalence of *Salmonella* on pork carcasses (Annex 1, SC3.5). The results indicate a significant effect on reduction of *Salmonella* prevalence due to chilling, but with wide variation in results across studies. The study authors found that the total sample size, number of batches sampled in an abattoir, and size of the carcass swab area had a significant impact on estimates of the effect of chilling, indicating that the sampling methods contributed to the heterogeneity among studies. However, the experts had some concerns about the overestimation of the effect of chilling reported, because experimental factors related to the poor recovery of *Salmonella* cells from an injured state induced by the effects of the chilling process could influence the results.

The experts were of the opinion that blast chilling may yield larger *Salmonella* reductions on pork carcasses compared with conventional chilling; however, there was not enough published evidence to confirm this conjecture.

- Chilling was recommended for consideration as a GHP-based control measure to prevent growth of *Salmonella* on pork carcasses.
- GHP-based control measures should be considered to avoid carcass cross-contamination in the chilling room.
Assessment of interventions from packaging to consumption for beef and pork

Processing steps for beef and pork from packaging to consumer were considered together by the experts, as food safety control measures are very similar for both meats.

6.1 PACKAGING (STEP 19 FOR BEEF; STEP 21 FOR PORK)\(^4\)

Packaging protects finished products from contamination post-processing. The addition of preservatives or application of preservation technologies can be used to extend shelf life and may have an effect on the presence and growth of pathogens such as *Salmonella*. Irradiation is summarized in this section as it is typically applied at the packaging step; however, it could also be applied earlier in the processing chain (e.g. post-fabrication). The key findings of the systematic review and conclusions of the experts are summarized below.

6.1.1 Packaging and emerging technologies

Packaging-based interventions can include modifying the package environment (e.g. modified atmosphere, vacuum packaging), the addition of microbial inhibitors such as chemicals, biological extracts and lactic acid bacteria, and the ap-

\(^4\) See Annex 2 for list of steps as outlined in the CCFH Draft Guidelines.
complication of non-thermal technologies. The systematic review identified several challenge trials conducted under laboratory conditions that reported limited and/or conflicting results for different packaging-based interventions for Salmonella control in beef and pork meat (Annex 1, SC3.6 and SC6.9).

The experts recognized that packaging-based interventions to control Salmonella in beef and pork were subject to many factors, such as the native microbiota, temperature, pH, storage time, and packaging materials which confound the ability to achieve a consistent reduction in Salmonella. Vacuum packaging and modified atmosphere packaging were considered very useful to extend the shelf-life of beef and pork products, but there was no evidence of effect on Salmonella.

The experts recognized that there are emerging non-thermal technologies (e.g. high pressure processing) that could be applicable as an intervention to control Salmonella in fresh beef and pork, but there was insufficient evidence to consider the efficacy of these at this time. Similarly, while the systematic review identified limited evidence from laboratory-based studies on the effect of non-thermal and non-chemical technologies other than irradiation (e.g. cold plasma), they were not assessed by the experts as they were not yet commercially applicable.

- Packaging interventions were not recommended for consideration as hazard-based interventions for the control of Salmonella due to conflicting evidence.

6.1.2 Irradiation

Irradiation consists of the use of ionizing radiation to eliminate or reduce Salmonella. The systematic review identified a limited number of challenge trials that evaluated irradiation to reduce Salmonella concentrations in ground beef, showing potential for large reductions (Annex 1, SC6.8). A previous review found that irradiation of minced pork meat has resulted in D_{10} values (kGy) of 0.403–0.860 for S. Typhimurium, and irradiation of ground beef has resulted in D_{10} values (kGy) of 0.618–0.661 for Salmonella spp., with differences in serovar ranging from 0.55 for S. Typhimurium to 0.78 for S. Stanley (Farkas, 1998). The experts were confident about the efficacy of irradiation to mitigate or eliminate the Salmonella contamination in beef and pork.

Consumer acceptance may be a factor in determining the uptake of irradiation as a hazard-based intervention for the control of Salmonella.
• Irradiation was recommended for consideration as a hazard-based intervention for the control of *Salmonella* in beef and pork products.

6.2 DISTRIBUTION TO CONSUMPTION (STEPS 20–26 FOR BEEF; STEPS 22–25 FOR PORK)

The systematic review scope did not include interventions in these steps. Nevertheless, the experts discussed these and agreed that control of *Salmonella* in beef and pork from distribution to consumption was reliant on strict maintenance of the cold chain. *Salmonella* has a minimum growth temperature of 5°C and temperatures of meat must be maintained below this temperature to prevent growth of *Salmonella* (EFSA BIOHAZ Panel, 2014).

• Maintenance of the cold chain was recommended for consideration as a GHP-based control measure to reduce the risk of *Salmonella* growth and recontamination of beef and pork.

The experts recognized that various approaches can be taken from product distribution to consumption to control and mitigate the risk of food-borne illness due to *Salmonella* and other pathogens. However, given the wide variability and diversity in these steps across different food chains, regions and countries, it was not feasible to consider these measures in detail during the meeting.

The experts acknowledged that hazard-based interventions for the control of *Salmonella* and other pathogens can be applied between distribution and retail; however, the diversity of retail outlets and food service businesses was too extensive, variable and not feasible to assess at this meeting. Nevertheless, the experts noted that food safety in the retail and catering sectors should be based on the effective application of programmes based on HACCP and its prerequisites.

Consumers should follow the WHO “Five Keys to Safer Food” to prevent food-borne illness (WHO, 2006), including cooking beef and pork to a temperature that is sufficient to inactivate *Salmonella*.
Summarized response to CCFH request

In response to the request made to FAO/WHO, this chapter summarizes considerations agreed by the invited experts during the Joint FAO/WHO Technical Meeting on Salmonella in beef and pork.

The experts were specifically asked to address the following aspects of hazard-based interventions for the control of Salmonella in beef and pork, as outlined by the CCFH pWG meeting held in Brussels, Belgium, on May 6-9, 2015:

- Advise on the most appropriate point(s) of application of specific interventions and decontamination treatments.
- Verify, based on the available data, the efficacy of the intervention in terms of reduction of Salmonella.
- Advise, with some level of confidence, to the extent possible, on the quantifiable level of reduction that the intervention achieves, and whether these are appropriate to include in the Codex guideline.

The following is a summary of recommendations resulting from the expert meeting. The quantitative reduction values that are presented in this section were taken from the scientific literature available at the time of the expert meeting, or from the opinion of the experts. Any reference to the efficacy of an intervention to reduce Salmonella prevalence or concentration must consider the specific circumstances of the studies referenced and the conditions under which they were conducted.
7.1 HAZARD-BASED INTERVENTIONS FOR BEEF UP TO STEP 18

7.1.1 Pre-harvest interventions (Step 1)
No specific hazard-based interventions were identified in primary production although the experts agreed biosecurity could contribute to general on-farm control of *Salmonella* and other zoonotic foodborne infections.

7.1.2 Hide decontamination (Step 4)
Decontamination treatments of hides were recommended for consideration as potential hazard-based interventions for the control of *Salmonella*; however, the experts concluded that the step at which hide intervention is performed is important. Decontamination of the hides of live animals was not recommended due to lack of confidence in supporting evidence, and concerns for animal welfare.

Decontamination treatments of hides post-exsanguination and before de-hiding (Step 8) using chemical washes including organic acids and other chemicals were recommended for consideration as a potential hazard-based intervention for the control of *Salmonella*.

The efficacy of washes would depend on the amount, type and distribution of soil on the hide. The expected levels of *Salmonella* reduction under commercial conditions were:
- Organic acid washes could be expected to reduce the prevalence of *Salmonella* on hides from 74.0% to 30.1–69.9%.
- Other chemical washes, such as chlorine and hydrogen bromide washes, could be expected to reduce the prevalence of *Salmonella* on hides from 62.3% to 18.1–35.8%.

7.1.3 Pre-chill carcass decontamination (between Step 8 and Step 16)
Carcass decontamination treatments with proven efficacy were recommended for consideration as potential hazard-based interventions for the control of *Salmonella* after hide removal and before chilling.

The efficacy of carcass decontamination depends on application of specific process criteria and the uniform coverage of the treatment over the carcass surface and should be validated at an individual establishment. The first treatment should be applied as soon as possible after hide removal to counteract bacterial attachment. One or more treatments could be applied depending on the performance required;
however, the overall effect would be greater than a single treatment, although not the sum of individual treatments, and the effect of a sequential treatment should not invalidate the effect of a prior treatment.

Decontamination treatments recommended by the experts were as follows:

Hot water washes and steam pasteurization

Experts agreed the carcass surface temperature should reach at least 70°C to effectively reduce *Salmonella* and the exposure time×temperature combinations required to achieve a targeted *Salmonella* reduction were specific to an individual processing plant.

In one controlled trial conducted under commercial conditions, hot water at 74–87.8°C for 18–39 sec reduced the prevalence of *Salmonella* from 30.3% to 2.2%. The experts considered that realistic reductions in concentration could be up to \(1–2 \log_{10} \text{CFU/cm}^2\).

Chemical washes

Efficacy of washes depends on combinations of concentration, time, duration of contact, temperature, and uniform carcass surface coverage to achieve the intended objective. Examples included:

- Organic acid washes (e.g. lactic or acetic acid) resulted in a wide-range of reductions of *Salmonella* from almost 0 to \(3 \log_{10} \text{CFU/cm}^2\) in challenge studies under laboratory and pilot plant conditions.
- Other chemical washes (e.g. peroxyacetic acid and acidified sodium chlorite) resulted in a wide-range of reductions in *Salmonella* from almost 0 to \(2.6 \log_{10} \text{CFU/cm}^2\) in similar studies.

Based on the majority of studies, the experts considered that realistic reductions for chemical washes could be up to \(1 \log_{10} \text{CFU/cm}^2\).

7.1.4 Post-fabrication decontamination (after Step 17)

Chemical washes with proven efficacy were recommended for consideration as potential hazard-based interventions for the control of *Salmonella*.

The types of washes, types of studies and factors on which efficacy depends were as outlined for pre-chill carcass washes.

Organic acid and other chemical washes resulted in a wide range of reductions in *Salmonella* from almost 0 to \(4 \log_{10} \text{CFU/g}\). Based on the majority of studies, the experts considered that realistic reductions could be up to \(1 \log_{10} \text{CFU/g}\).
7.2 GHP-BASED CONTROL MEASURES FOR BEEF UP TO STEP 18

The following processes or interventions were recommended for consideration by the experts as GHPs and not hazard-based interventions, due to combinations of lack of credible studies, methodological difficulties in confidently measuring efficacy, and insufficient evidence of efficacy specifically for *Salmonella*:

- Hygiene during transport to slaughter and in lairage to limit the spread of *Salmonella*.
- Hygiene during carcass dressing to minimize contamination.
- Bunging to reduce faecal spillage during processing.
- Carcass trimming and steam vacuuming to remove visible contamination.
- Chilling to prevent growth of *Salmonella*.
- Practices to prevent carcass cross-contamination in the chilling room.

7.3 HAZARD-BASED INTERVENTIONS FOR PORK UP TO STEP 20

7.3.1 Pre-harvest interventions (Step 1)

The experts agreed biosecurity is an important GFP, where external measures can help to reduce the likelihood of introduction of *Salmonella* to *Salmonella*-negative farms and internal measures might reduce the prevalence in finishers in infected herds.

Pre-harvest interventions may have a limited effect on the reduction of *Salmonella* on carcasses unless control measures are also taken post-harvest. If a regulator, risk manager or farmer wishes to lower the within-herd prevalence of *Salmonella*, then the following on-farm interventions could be considered as potential hazard-based interventions for the control of *Salmonella*:

- **Feed management**, such as feeding meal (vs pellets), was recommended for consideration to reduce the *Salmonella* prevalence in finisher pigs.

- **Acidification of feed and water** using organic acids, e.g. lactic or formic acids, was recommended for consideration to reduce *Salmonella* in infected herds.

The effect of organic acids depends on other factors (e.g. *Salmonella* contamination, diseases, feed type and other management factors). Organic acids can reduce feed contamination, although use of acids alone might have a limited effect on reducing *Salmonella* in finisher pigs.
Vaccination could be recommended for consideration as a hazard-based intervention for the control of *Salmonella* on-farm; however, the following should be considered if vaccination is used as a food safety measure:

- Vaccine type, age of pigs at application, and *Salmonella* serovars targeted.
- Potential for interference with herd monitoring based on serology.
- Cost-effectiveness of a vaccination programme, which is situation dependent.
- Effects should ideally be assessed in pigs as close to the time of slaughter as possible.

Vaccination may reduce the prevalence of *Salmonella* from 26.7% to 0.7–22.1% for individual faecal prevalence in finisher pigs, 47.5% to 12.2–43.8% for lymph node prevalence at slaughter, and 46.3% to 13.4–43.4% for caecal prevalence at slaughter. No consistent effect was found on reduction of pen faecal culture prevalence.

7.3.2 Scalding and singeing (Steps 7 and 10)

Scalding and singeing are process steps that were also recommended for consideration as potential hazard-based interventions for the control of *Salmonella* due to the dual benefits provided.

Scalding: The efficacy for inactivation of *Salmonella* depends on the temperature and time (or equivalent combinations), e.g. 61°C during 8 minutes or 70°C for 2–3 minutes. There was extensive evidence of reduction in *Salmonella* prevalence on carcasses during scalding, with *Salmonella* prevalence reductions of from 35% to 1.5%.

Singeing: There was extensive evidence of reduction of *Salmonella* prevalence on carcasses during singeing with *Salmonella* prevalence reductions from 18.1% to 5.4%. A 2 log$_{10}$ CFU/cm2 reduction in *Salmonella* concentration on carcasses after singeing was estimated in a single study.

7.3.3 Pre-chill carcass interventions (between steps 16 and 18)

Carcass decontamination treatments with proven efficacy were recommended for consideration as potential hazard-based interventions for the control of *Salmonella* before chilling. The efficacy of carcass decontamination treatments was dependent on a number of factors, as outlined for beef carcasses. Decontamination treatments recommended by the experts were:

Hot water washes and steam pasteurization The experts agreed the carcass surface temperature should reach at least 70°C during treatment to effectively reduce *Salmonella*.
Hot water washes and steam pasteurization (hot water at 74 to 81°C for 5 to 15 sec or steam at 82–85°C for 60 sec) were shown in controlled trials conducted under commercial conditions to reduce the prevalence of Salmonella from 4.3% to 1.6%, with unpublished data from commercial settings indicating that reductions could be from 13% to 1%. The experts considered that realistic reductions could be up to $2 \log_{10} \text{CFU/cm}^2$, which was achieved in challenge trial studies.

Organic acid washes Efficacy of organic acid washes depends on the same process parameters and requirement for uniform carcass surface coverage as for beef.

Organic acids resulted in a reduction of Salmonella prevalence on carcasses of from 7% to 2%. In challenge studies conducted under laboratory and pilot plant conditions, organic acid washes resulted in up to $1.8 \log_{10} \text{CFU/cm}^2$ reductions; however, the experts concluded that a realistic expectation was up to a 0.5 to $1 \log_{10} \text{CFU/cm}^2$ reduction.

7.4 GHP-BASED CONTROL MEASURES FOR PORK UP TO STEP 20

These are the same as for beef, with the addition of:
- Feed withdrawal to reduce rupturing of the intestines and intestinal spillage during carcass dressing.
- Hygiene during de-hairing (Step 8) and polishing (Step 11) to limit cross- and re-contamination of carcasses that might negate reductions achieved during scalding and singeing.
- Full carcass steam vacuuming as a potential alternative to hot-water washes in small establishments with limited resources.

7.5 HAZARD-BASED INTERVENTIONS FOR BEEF AND PORK FROM PACKAGING TO CONSUMPTION (STEPS 19–26 FOR BEEF; STEPS 21–25 FOR PORK)

Irradiation was recommended for consideration as a potential hazard-based intervention for the control of Salmonella in beef and pork products.

Irradiation of pork minced meat resulted in D_{10} values (kGy) of 0.403–0.860 for S. Typhimurium. Irradiation of ground beef has resulted in D_{10} values (kGy) of 0.618–0.661 for Salmonella spp., with differences possible between serovars.
7.6 GHP-BASED CONTROL MEASURES FOR BEEF AND PORK FROM PACKAGING TO CONSUMPTION (STEPS 19–26 FOR BEEF; STEPS 21–25 FOR PORK)

The systematic review scope did not cover interventions post-packaging; however, the experts recommended the following GHPs for consideration:

Cold chain management Beef and pork should be held below 5°C to prevent growth of *Salmonella*.

HACCP and hygiene prerequisites HACCP-based principles and hygiene prerequisites should be practiced during distribution, retail and in all settings where food is prepared for consumption.

Cooking Beef and pork products should be cooked to a temperature that is sufficient to inactivate *Salmonella*.
Limitations and Caveats

There are several limitations associated with the systematic review (presented as Annex 1) that was used as a primary resource by experts in their deliberations about the efficacy of interventions. The review was conducted using pre-tested search algorithms, but it is possible that some important search terms were missed. In addition, only two bibliographic databases were searched for references as part of the rapid approach used. For these reasons, the review could have missed some potentially relevant literature that might have resulted in additional evidence, though a search verification strategy was implemented to attempt to mitigate this potential bias. Another related limitation is that only literature published in English, French, and Spanish was considered for inclusion, which could have resulted in missed articles or underrepresentation of evidence from some geographical regions.

Another limitation of the systematic review is that results of studies on the efficacy of interventions were synthesized across relatively broad intervention categories. This was conducted for pragmatic reasons in order to facilitate summarization and presentation of intervention efficacy trends from a large body of literature. However, as a consequence, details such as intervention application parameters (e.g. dose; treatment duration) and differences in study sampling and laboratory methods were not investigated as possible sources of variation in intervention effects across studies. It is likely that these and other study factors could contribute to the heterogeneity in effects observed for many intervention categories, but it was considered beyond the scope of the review to investigate these factors in detail.

The systematic review only included research that directly measured the impact of interventions on *Salmonella*. Research that measured intervention effects on
other pathogens or surrogate organisms (e.g. non-pathogenic Escherichia coli) was not included because it was not known to what extent these results might reflect and correspond similarly to the control of Salmonella. For example, the behaviour of surrogates such as E. coli can differ when compared with different Salmonella serovars, intervention processes and meat substrates (Niebuhr et al., 2008). As a result, during the meeting, the experts initially considered the results of the systematic review, and if data specific to Salmonella were lacking, considered their experiential knowledge and, where it was agreed to be appropriate, any additional intervention efficacy data on other organisms that might be expected to behave similarly to Salmonella.

While data on Salmonella were preferred for the purposes of this meeting, the experts recognize that in practice, Salmonella is not usually present on beef and pork carcasses in adequate concentrations for enumeration under good hygiene and manufacturing conditions. As a result, surrogate organisms may be necessary for monitoring and validation of interventions. Surrogates for Salmonella are ideally strains that retain all of the characteristics of Salmonella, or have more robust characteristics, and are non-pathogenic. Where necessary, operators should select an appropriate surrogate for Salmonella that meets the requirements of their local plant conditions and situation.

There is a need for caution in interpretation of reported intervention efficacy data due to possible methodological limitations of studies in detecting and isolating injured Salmonella cells, or cells that are recovering from injury following exposure to chemical or physical interventions for inactivation. The experts noted that this was of particular concern in consideration of the potential effect of chilling to control Salmonella, as evidence for this effect was brought to the meeting based on observations on E. coli (Mellef ont, Kocharunchitt and Ross, 2015), with similar unpublished results noted for Salmonella (Tom Ross, pers. comm.). The experts noted that these findings might also apply to interventions other than chilling, but there was no available evidence to support this.
References cited in the Report of the Expert Meeting

Rajić, A. & Young, I. 2013. Knowledge synthesis, transfer and exchange in agri-food public health: A handbook for science-to-policy professionals. Guelph, Canada, University of Guelph Available at: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/7293

Annexes
Systematic Review Report
Rapid Systematic Review of the Efficacy of Interventions to Control *Salmonella* in Beef and Pork

Prepared by
Ian Young, FAO, Rome, Italy,
Barbara Wilhelm, University of Guelph, Canada,
Sarah Cahill, FAO, Rome, Italy,
Rei Nakagawa, WHO, Geneva, Switzerland
Patricia Desmarchelier, Food Safety Principles, Australia
Andrijana Rajič, FAO, Rome, Italy,
RSR1. Background

In November 2013, the 45th Session of the Codex Committee on Food Hygiene (CCFH) agreed to develop Draft Guidelines for the Control of Non-typhoidal Salmonella spp. in Beef and Pork Meat and initiated the process by establishing an electronic working group. The 46th Session, held in November 2014, requested that the Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO) undertake work to provide the Committee with scientific advice on this matter. Specifically, the Committee requested that a systematic review be conducted to identify relevant intervention and mitigation measures for control of Salmonella in fresh beef and pork, from the primary production stage to consumption, to provide evidence-informed inputs into this guideline.

RSR2. Methods

RSR2.1 REVIEW APPROACH

Reflecting the rapid timeline, limited resources for review conduct, and complex, policy-driven review scope and mandate, a mixed-method knowledge synthesis approach was adopted for this systematic review (Mays, Pope and Popay, 2005; Rajić and Young, 2013; WHO, 2014). Specifically, the review considered all available evidence on intervention efficacy available in the public domain, including previously published systematic reviews, risk assessments, and stochastic models, as well as primary research. The review was streamlined using a rapid approach to ensure that preliminary findings would be available within approximately two months to inform a CCFH physical working group meeting in May 2015, with updates and finalization over the following four months to inform a follow-up expert meeting in September 2015. Specifically, the search was targeted; detailed analyses were prioritized; and only one reviewer conducted the relevance confirmation and data extraction steps.

RSR2.2 REVIEW QUESTION, SCOPE, AND ELIGIBILITY CRITERIA

The review question was: “What is the efficacy of all possible interventions to control Salmonella in fresh beef and pork, from primary production to consumption?” The population of interest included all swine and cattle (beef and dairy) produced for domestic meat consumption, including their carcasses at processing and finished products. Any interventions applied throughout the farm-to-fork chain for fresh beef and pork were considered relevant. Relevant outcome measures for on-farm interventions included faecal shedding, serology, and tissue and organ contamination (e.g. lymph nodes). Any measure of carcass or product
contamination was considered relevant during and post-processing (including environmental samples). All diagnostic test methods were considered relevant (e.g. culture, PCR, ELISA), including prevalence (positive/negative) and concentration (CFU) measures. In line with draft CCFH Guidelines, interventions on manufactured (e.g. cured, dried, fermented) and ready-to-eat beef and pork products such as sausages and salamis, and studies measuring milk outcomes in dairy cattle, were excluded from the review scope. All study designs and publication types were considered relevant as long as they were published in English, French or Spanish.

RSR2.3 REVIEW TEAM

The review was conducted by a core team consisting of the JEMRA secretariat (one WHO and two FAO representatives, and two project consultants). The main review activities were implemented by the consultants, with project oversight and coordination from the core team. The team met regularly throughout the review to clarify any questions and areas of discrepancy. Prior to implementing the review, the review protocol and proposed approach, scope, and inclusion criteria were shared with core members of the CCFH working group for feedback.

RSR2.4 SEARCH STRATEGY

Two comprehensive search algorithms were developed to identify relevant literature on beef and pork commodities, respectively. Algorithms were developed by extracting key words from a selection of 10 known relevant articles per commodity, and by reviewing and adapting search strategies and key terms of previously published reviews and risk assessments on this and similar topics (Denagamage et al., 2007, 2010; O’Connor et al., 2008; Friendship et al., 2009; Greig et al., 2012; Wilhelm et al., 2012; Baer, Miller and Dilger, 2013; Wheeler, Kalchayanand and Bosilevac, 2014; Li, Kundu and Holley, 2015). Key terms were combined using the Boolean operator “OR” into categories for Pathogen (Salmonella terms), Population (beef and pork terms), and Intervention (intervention terms), and the categories were combined using the “AND” operator (see RSR Annex 1A for the full search algorithms). Algorithms were pre-tested in Scopus to ensure that a known list of 15 relevant articles could be sufficiently identified.

Final searches were implemented in the bibliographic databases Scopus and CAB Abstracts on 11 February 2015. For the beef search, no publication year or other restrictions were imposed. For the pork search, only literature from 2009-2015 was searched, as a citation list of potentially relevant articles covering any intervention against Salmonella in the pork chain was already available from a previ-
ously conducted scoping review that included a broad search strategy of literature published up to 2009 (Wilhelm et al., 2012). Search verification was conducted by reviewing relevant conference proceedings, through targeted searches in Google to identify potential grey literature (e.g. government and industry reports), and by reviewing the reference lists of a selection of relevant articles (see RSR Annex 1A for details). In addition, any documents and/or unpublished data received from the complementary FAO/WHO “Call for Data” were reviewed for potential inclusion in this review.

RSR2.5 RELEVANCE SCREENING

The relevance of each unique citation was assessed at the title and abstract level using an *a priori* developed form (RSR Annex 1B). The form included one key question to determine the citation’s relevance to review question and eligibility criteria. After this stage, the review team decided to alter the eligibility criteria and exclude all research published prior to 1990 from further consideration in the review, as evidence on interventions published prior to this period was not considered reflective of current industry conditions and practices.

RSR2.6 RELEVANCE CONFIRMATION AND PRIORITIZATION

Citations passing the relevance-screening step were procured as full articles and confirmed for relevance using another pre-specified form (RSR Annex 1C). This form was used to characterize articles according to the document type, study design, commodity (beef or pork), point in food chain, and intervention categories investigated. Results from this stage were used by the review team, in consultation with the CCFH working group chairs, to prioritize more detailed data extraction and summarization according to the availability and applicability of evidence for each commodity and point in food chain. For on-farm interventions, only studies measuring outcomes in animals at market-weight or slaughter were considered for detailed data extraction, risk-of-bias assessment, and quantitative meta-analysis; those measuring outcomes in young animals (without direct relevance to food safety) were summarized narratively only, unless this was the only data available for a particular intervention category. Detailed analyses focused only on controlled trials when available, otherwise challenge trials were considered. For interventions at processing, all experimental study designs (controlled trials, challenge trials and quasi-experimental studies) were considered for detailed data extraction and risk-of-bias assessment, with the exception of studies measuring the effect of packaging.
and final product preservation technique interventions, which were summarized narratively only. Only a limited number of studies were identified evaluating post-processing interventions, as the search strategy was not targeted to properly identify such studies; therefore, these were excluded from further analysis and summarization to avoid possible misrepresentation of interventions at this stage.

RSR2.7 DATA EXTRACTION AND RISK-OF-BIAS ASSESSMENT

Detailed data extractions and risk-of-bias assessments were conducted for prioritized articles using pre-specified tools (RSR Annexes 1D–1G). The data extraction tool included targeted questions about intervention and population descriptions, outcomes measured, diagnostic test methods, and intervention efficacy results. The risk-of-bias tool for primary research studies was adapted from the Cochrane Collaboration's recommended tools for randomized and non-randomized study designs (Higgins and Green, 2011; Cochrane Effective Practice and Organisation of Care Group, 2013). Systematic reviews were assessed for their reporting reliability using the previously validated AMSTAR tool (Shea et al., 2009). Risk assessments and models were evaluated for key reporting reliability criteria using a tool modified from previously suggested quality criteria for risk assessments (Lammerding, 2007).

RSR2.8 REVIEW MANAGEMENT

References identified through the searches were uploaded to RefWorks (Thomson ResearchSoft, Philadelphia, PA), de-duplicated using both the automatic function and manually, then imported into the systematic-review software program DistillerSR (Evidence Partners, Ottawa, ON). DistillerSR was used for relevance screening, relevance confirmation, and risk-of-bias assessment, while detailed data extraction was conducted in Microsoft Excel 2010 (Microsoft Corporation, Redmond, WA). All review forms were pre-tested before use on a selection of relevant citations and articles by two independent reviewers (30 for relevance screening and confirmation, and five for data extraction and risk-of-bias assessment). Reviewing for relevance screening proceeded only when consistent inclusion and exclusion agreement was achieved between reviewers (kappa >0.8). For other steps, pre-tests were used to ensure consistent interpretation of the tools, and, if needed, to improve their clarity. Two independent reviewers conducted relevance screening and risk-of-bias assessment, while only one conducted relevance confirmation and data extraction. Any disagreements between reviewers were resolved through discussion.
RSR2.9 DATA ANALYSIS

Results of previous systematic reviews, risk assessments and stochastic models, and non-prioritized study designs were summarized narratively (Mays, Pope and Popay, 2005). Data from primary research studies of prioritized designs were stratified into comparable subgroups for meta-analysis and descriptive summarization (Borenstein et al., 2009; Higgins and Green, 2011). Data were first stratified by point in the farm-to-fork chain, then study design, then into specific intervention categories that were defined based on insights from previous systematic and narrative literature reviews (Denagamage et al., 2007, 2010; O’Connor et al., 2008; Wilhelm et al., 2012; Baer, Miller and Dilger, 2013; Wheeler, Kalchayanand and Bosilevac, 2014), and finally by different outcome measures (e.g. faecal, serology). Random-effects meta-analysis was conducted in each subgroup when sufficiently reported data were available from ≥2 studies. For processing interventions, challenge trials were only summarized using a median and range of intervention effects due to a lack of reporting of required data, while at farm level, they were considered for meta-analysis only when controlled trials were not available for a particular intervention category. The unit of analysis in all cases was individual trials reported within studies. Prevalence (positive vs negative) data were summarized using the odds ratio (OR) measure, while concentration data were analysed as mean changes in log bacterial counts (e.g. log CFU/cm²) (Borenstein et al., 2009; Higgins and Green, 2011). All meta-analysis models were conducted using the DerSimonian and Laird method (DerSimonian and Laird, 1986). For interventions at processing, several challenge trials were identified that compared more than one intervention group (e.g. multiple combinations of different chemical washes) to a single control group. In these cases, to avoid counting the same samples more than once in the same summary, multiple treatment groups within the same intervention category in these studies were collapsed together by averaging the intervention effects and summing the sample sizes.

Heterogeneity in all meta-analyses was measured using I^2, which indicates the proportion of variation in effect estimates across studies that is due to heterogeneity rather than sampling error (Higgins et al., 2003). Heterogeneity was considered high and average estimates of effect were not shown when I^2>60% (Higgins et al., 2003; Higgins and Green, 2011). In these cases, a median and range of effect estimates from individual studies in the meta-analysis subgroup was shown instead, as presenting pooled meta-analysis estimates in the presence of so much variation can be misleading (Higgins and Thompson, 2002). Meta-analysis effect estimates were considered significant if the 95% confidence intervals (CI) excluded the null. Begg’s adjusted rank correlation and Egger’s regression tests were used to test for possible publication bias on meta-analysis data subsets if there were ≥10 trials and if heterogeneity was not significant (Sterne et al., 2011). For these tests, P <0.05 was
considered significant. Meta-analysis was conducted using CMA software (Comprehensive Meta-Analysis Version 3, Biostat, Inc., Englewood, NJ) for on-farm studies, and R Version 3.1.3 (R Core Team, 2015) for processing studies.

RSR2.10 GRADE ASSESSMENT

The Cochrane Collaboration’s Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach was used to assess the confidence in the estimated measures of intervention effect for each data subgroup (Guyatt et al., 2011; Wilhelm et al., 2012; WHO, 2014), in terms of how well they might be expected to represent actual intervention effects in practice or in future studies. The GRADE tool and criteria were modified to suit the needs of the topic and study designs applicable to the research question (Higgins and Green, 2011; Sargeant, Kelton and O’Connor, 2014). The GRADE approach classifies the confidence in findings from each subgroup into one of four levels: one=very low (the true effect is likely to be substantially different from the measured estimate); two=low (the true effect may be substantially different from the measured estimate); three=moderate (the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different); four=high (there is strong confidence that the true effect lies close to that of the measured estimate). Due to inherent differences in strength of evidence by study design (Guyatt et al., 2011; Sargeant, Kelton and O’Connor, 2014), controlled trials started at level four (high) and other study designs at level three (moderate). Five downgrading and three upgrading criteria were then assessed for each subgroup, which could lead to reducing or increasing, respectively, the pre-defined GRADE levels (RSR Annex 1H).

RSR2.11 KNOWLEDGE TRANSFER OF RESULTS

Evidence from each data subgroup was compiled and summarized by point-in-chain and commodity into “summary cards” to enhance the relevance and uptake of the results by end-users. The Summary Card approach has been used previously in food safety knowledge synthesis and risk analysis contexts to provide decision-makers and risk managers with complex scientific information in a more practical and interpretable format than traditional technical reports (Ruzante et al., 2010; FAO/WHO, 2014). Summary Cards included the following sections: summary of key findings; intervention description; detailed intervention efficacy summaries; and references.

The first 1 or 2 pages of each Summary Card provides users with an “up-front” synopsis of the key results and findings of the evidence covered in the card, including key take-home messages and practical implications for the CCFH guideline de-
velopment. The next section provides users with a description and definitions of the intervention categories that are summarized in the card. The detailed evidence section provides a narrative and descriptive summary of the evidence identified for each study design, separated by the main intervention category (farm level) or applicable point in the processing chain (processing level). These summaries are supplemented with “Summary-of-findings” tables that outline the quantitative results and level of confidence in the estimates of intervention effect (GRADE rating) for each evidence subgroup where a quantitative analysis was conducted (Higgins and Green, 2011).

RSR2.12 HOW TO INTERPRET SUMMARY-OF-FINDINGS TABLES AND GRADE RATINGS

The “summary-of-findings” tables include one or more of the following categories: intervention and outcome sample; comparison group; number of trials and studies; quantitative intervention effect; and GRADE rating. The intervention sample indicates the sample type or animal subjects to which the intervention was applied, and the outcome sample indicates the sample type that was subsequently measured for *Salmonella* contamination (in some cases these two samples types were the same). The comparison group refers to the control group to which the intervention is compared, either: (1) no treatment; (2) a reference or standard treatment; or (3) the pre-intervention sample for quasi-experiments. The number of trials indicates the number of unique intervention comparisons included in the specific data subgroup; in some cases studies contained more than one trial.

For studies measuring prevalence outcomes (positive vs negative), results are presented as ORs for the effect of a reduced (or increased) prevalence in the intervention vs control group. For studies that measured concentration outcomes (e.g. log CFU/cm²), intervention efficacy results are presented as log reductions in the intervention compared with the control group. For interventions with multiple trials, the values presented in these columns refer to the average meta-estimate and 95% confidence interval (CI) from random-effects meta-analysis if heterogeneity was not significant ($I^2<60\%$). If heterogeneity was significant, the median and range of ORs or log reduction values from individual studies is presented instead. If only one trial was available, the values refer to the OR or log reduction value and 95% CI from the individual study.

For studies measuring prevalence outcomes (positive vs negative), an additional column is presented that presents the intervention effect in more intuitive terms (Higgins and Green, 2011), as the change in a given baseline level of *Salmonella* prevalence due to the intervention in the included studies. In this column, the
median prevalence of *Salmonella* in the comparison group trials (assumed control risk, ACR) is shown as a reference or baseline prevalence for the given data subgroup. The percentage of samples positive for *Salmonella* in the intervention group was calculated using the following formula (Higgins and Green, 2011): \((\text{OR} \times \text{ACR}) / (1 - \text{ACR} + [\text{OR} \times \text{ACR}]) \). The OR value used in this formula corresponds to the one presented in the intervention effect column, as described above. This value is accompanied by a 95% CI in brackets if heterogeneity was not significant. If heterogeneity was significant, the range of expected reductions from the individual studies is shown in brackets instead to illustrate the variability in intervention effects across studies.

The final column in all tables shows the GRADE rating for the level of confidence in the estimated intervention effect (as very low; low; moderate; or high). The GRADE ratings should not be interpreted as an indication of the overall quality of evidence of the results or confidence in whether or not an intervention is effective, but as a level of confidence that one can place in the estimated, quantitative intervention effect in terms of how closely it would be expected to match the actual intervention effect in practice or future studies. This level of confidence is derived from the factors considered in the GRADE assessment, namely:

- Possible risks of bias in the included research (such as confounding factors).
- How well the effects of the included studies agree with each other (heterogeneity) in both magnitude and direction.
- The power to detect an intervention effect if one exists (sample size of included studies).
- The degree to which the studies are reflective of the topic of interest and target conditions (commercial, real-life application of interventions).
- The possibility that the included evidence is a biased subset of all possible evidence about the efficacy of the intervention (publication bias).

In rare circumstances, when the studies are well-conducted and reported and there is no evidence of risks of bias, other factors might increase the confidence in the estimated intervention effect: (1) presence of a dose-response relationship; (2) all possible confounding factors would likely underestimate rather than overestimate the intervention effect if one exists; or (3) presence of a very large intervention effect.

Taking all of the above factors into account, even when confidence in the estimated intervention effect is high, it is possible that one could expect a different outcome or level of effect in future studies or in practice due to differences (variation) in the specific intervention application circumstances and setting (e.g. different intervention protocols, *Salmonella* strains and their behaviour, environmental factors). Recognizing the importance of these various factors, we have developed a short
summary document that outlines some of the possible factors that might contribute to the variation in intervention effects in different settings and that should be considered when making decisions about the possible applicability, transferability, and effectiveness of adopting interventions in a given situation or context (RSR Annex AI).
RSR2.13 REFERENCES

RSR3. Results of Review Process and Key Characteristics of Relevant Articles

A flow chart of the knowledge synthesis process for this review is shown below in RSR Figure 1. Key characteristics of all 520 relevant articles are shown in RSR Table 1. More articles were identified investigating interventions for control of *Salmonella* in the pork (n=309) vs beef (n=216) chain. While studies investigating interventions in the pork chain had a more global distribution (RSR Table 1), most studies (76%) investigating interventions in the beef chain were conducted in North America. The most common study design for both commodities was challenge trials (RSR Table 1). Most studies (70%) investigating interventions in the pork chain were conducted at the farm level, while most beef studies (64%) investigated interventions at processing.

Detailed results of the efficacy of interventions are presented as six Summary Cards:
- SC1 Pork – on-farm interventions
- SC2 Pork – transport, lairage, and logistic slaughter interventions
- SC3 Pork – processing interventions
- SC4 Beef – on-farm interventions
- SC5 Beef – transport and lairage interventions
- SC6 Beef – processing interventions

Detailed GRADE assessment results for each Summary Card are presented in Rapid Systematic Review, Appendix J.
RSR FIGURE 1. Review Flow Chart

Search

Search total: 8900
Database searches: 8660
Citation list of prior scoping review on Salmonella in pork: 147
Search verification: 93

Excluded (duplicates): 2539

Excluded (not relevant): 5443

Relevance Screening

Citations screened: 6361

Excluded (not relevant): 398
Published pre-1990: 132
Measures irrelevant outcomes: 75
Other language: 56
No intervention measured: 43
No control/comparison group: 29
No Salmonella found: 22
Not retrievable: 13
In vitro study: 12
Measures irrelevant populations or samples: 11
Not primary research: 3
Duplicate data: 2

Articles characterized: 918

Relevance Confirmation

Articles characterized: 918

Pork chain: 309 articles
Beef chain: 216 articles

Excluded (not relevant): 398

Relevant articles: 520

Data Extraction

Descriptive analysis
Narrative synthesis;
Meta-analysis;

Data Analysis and Reporting

Summary Cards (inputs for Expert Meeting and CCFH)
TABLE RSR 1. Key Characteristics of Relevant Articles

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pork (N=309)</th>
<th>Beef (N=216)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>154</td>
<td>49.8</td>
</tr>
<tr>
<td>North America</td>
<td>108</td>
<td>35.0</td>
</tr>
<tr>
<td>Asia/Middle East</td>
<td>34</td>
<td>11.0</td>
</tr>
<tr>
<td>Central-South America/Caribbean</td>
<td>10</td>
<td>3.2</td>
</tr>
<tr>
<td>Australia/South Pacific</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>Africa</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Document type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal article</td>
<td>237</td>
<td>76.7</td>
</tr>
<tr>
<td>Conference proceedings paper/abstract</td>
<td>67</td>
<td>21.7</td>
</tr>
<tr>
<td>Report</td>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>Thesis</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Study design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Challenge trial</td>
<td>105</td>
<td>34.0</td>
</tr>
<tr>
<td>Controlled trial</td>
<td>77</td>
<td>24.9</td>
</tr>
<tr>
<td>Cross-sectional</td>
<td>54</td>
<td>17.5</td>
</tr>
<tr>
<td>Quasi-experiment</td>
<td>30</td>
<td>9.7</td>
</tr>
<tr>
<td>Risk assessment/model</td>
<td>30</td>
<td>9.7</td>
</tr>
<tr>
<td>Systematic review/meta-analysis</td>
<td>9</td>
<td>2.9</td>
</tr>
<tr>
<td>Cohort</td>
<td>8</td>
<td>2.6</td>
</tr>
<tr>
<td>Case-control</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Study conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial/field conditions</td>
<td>166</td>
<td>53.7</td>
</tr>
<tr>
<td>Laboratory conditions</td>
<td>58</td>
<td>18.8</td>
</tr>
<tr>
<td>Research farm/pilot plant</td>
<td>33</td>
<td>10.7</td>
</tr>
<tr>
<td>Not reported</td>
<td>35</td>
<td>11.3</td>
</tr>
<tr>
<td>Intervention type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Farm:</td>
<td>216</td>
<td>69.9</td>
</tr>
<tr>
<td>Biosecurity/management practices</td>
<td>68</td>
<td>22.0</td>
</tr>
<tr>
<td>Feed/water acidification</td>
<td>51</td>
<td>16.5</td>
</tr>
<tr>
<td>Feed characteristics/management</td>
<td>51</td>
<td>16.5</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>32</td>
<td>10.4</td>
</tr>
<tr>
<td>Intervention</td>
<td>Frequency</td>
<td>%</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>Competitive exclusion/probiotics/prebiotics</td>
<td>32</td>
<td>10.4</td>
</tr>
<tr>
<td>Vaccination</td>
<td>40</td>
<td>12.9</td>
</tr>
<tr>
<td>Other:</td>
<td>49</td>
<td>15.9</td>
</tr>
<tr>
<td>Transport/lairage/logistic slaughter</td>
<td>34</td>
<td>11.0</td>
</tr>
<tr>
<td>Processing:</td>
<td>92</td>
<td>29.8</td>
</tr>
<tr>
<td>Standard processing procedures/GHPs</td>
<td>44</td>
<td>14.2</td>
</tr>
<tr>
<td>Carcass/product washes, rinses, sprays</td>
<td>36</td>
<td>11.7</td>
</tr>
<tr>
<td>Packaging-based interventions</td>
<td>8</td>
<td>2.6</td>
</tr>
<tr>
<td>Cleaning/disinfection</td>
<td>7</td>
<td>2.3</td>
</tr>
<tr>
<td>Irradiation</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
<td>2.3</td>
</tr>
<tr>
<td>Post-processing to consumer</td>
<td>6</td>
<td>1.9</td>
</tr>
</tbody>
</table>
SC0. Summary Card Preface: How to Interpret Summary Cards

The Summary Cards are organized as follows:

1. Summary of key findings:
 - 1- to 2-page synopsis of the key results and findings of the evidence covered in the card, including key take-home messages and overall implications.

2. Intervention description:
 - A description and definitions of the intervention categories that are summarized in the card.

3. Detailed intervention efficacy summaries
 - A narrative and descriptive summary of the evidence identified for each study design, separated by the main intervention category (farm-level cards) or applicable point in the food chain (post-farm-level cards). Includes “summary-of-findings” tables that outline the quantitative results and level of confidence in the applicability of the findings (GRADE rating) for each evidence subgroup where a quantitative analysis or summary was conducted.

4. References

“Summary of findings” tables:
These tables include one or more of the following categories: intervention and outcome sample; comparison group; number of trials and studies; quantitative intervention effect; GRADE rating; and references.

The intervention sample indicates the sample type or animal subjects to which the intervention was applied, and the outcome sample indicates the sample type that was subsequently measured for Salmonella contamination (in some cases these two samples types were the same).

The comparison group refers to the control group to which the intervention is compared, either: (1) no treatment; (2) a reference or standard treatment; or (3) the before or pre-intervention sample for quasi-experiments and some challenge trials.

The number of trials indicates the number of unique intervention comparisons included in the specific data subgroup; in some cases studies contained more than one trial.

The intervention effect is presented as an odds ratio (OR) for studies measuring prevalence outcomes (positive vs negative) or as log reductions for studies that
measured concentration outcomes (e.g. log CFU/cm²) in the intervention vs comparison group. These estimates of intervention effect represent one of the following values:

- Average estimate and 95% confidence interval (CI) from meta-analysis if there was no significant variability in the magnitude or direction of effect across studies.
- Median and range of effects from the individual studies when there was significant variability in the effect across studies.
- Result of the individual study with a 95% CI when only one study was available.

The percentage of samples positive for Salmonella in the study population is shown for studies measuring prevalence outcomes (positive vs negative). These values show how the prevalence of Salmonella changes from a given baseline level (median prevalence in the comparison groups of included studies) due to the intervention. A measure of variability is provided for this change from baseline, which represents a 95% CI in cases of no significant variability between studies, or a range of reductions from the included studies in cases when the magnitude of intervention effect varied widely between studies.

GRADE ratings:

A GRADE rating is shown for each intervention subgroup in all tables. This rating represents the level of confidence that one can place in the estimated, quantitative intervention effect in terms of how closely it would be expected to match the actual intervention effect in practice or in future studies. This level of confidence is rated at one of four levels (very low; low; moderate; or high). Controlled trials start at a level of “high” as they provide the strongest evidence for measuring the effect of an intervention, while other study designs start at a level of “moderate”.

The level of confidence can be reduced due to one or more of five criteria:

- **Possible risks of bias** in the included research (such as confounding factors).
- How well the effects of the included studies agree with each other (heterogeneity/variability) in both magnitude and direction.
- The power to detect an intervention effect if one exists (sample size of included studies).
- The degree to which the studies are reflective of the topic of interest and target conditions (representativeness of commercial, real-life application of interventions).
- The possibility that the included evidence is a biased subset of all possible evidence about the efficacy of the intervention (publication bias).
In rare circumstances, when the studies are well-conducted and reported and there is no evidence of risks of bias, other factors might increase the confidence in the estimated intervention effect: (1) presence of a dose-response relationship; (2) any possible confounding factors would likely underestimate rather than overestimate the intervention effect if one exists; or (3) presence of a very large intervention effect.

Taking all of the above factors into account, a low or very low confidence level does not necessarily mean that an intervention is not effective, as in many cases it may simply mean that one cannot expect the same specific level or magnitude of reduction in *Salmonella* in practice as shown in the studies due to one or more of the factors above, such as variability in the study conditions and how well they might represent real-world settings.

Similarly, even when confidence in the estimated intervention effect is high, it is possible that one could expect a different outcome or level of effect in future studies or in practice due to differences (variation) in the specific intervention application circumstances and setting (e.g. different intervention protocols, *Salmonella* strains and their behaviour, environmental factors). Users should refer to RSR Annex I, which outlines some of these possible factors that should be considered when making decisions about the possible applicability, transferability and effectiveness of adopting interventions in a given situation or context.
SUMMARY CARD SC1: Pork Chain – On-Farm Interventions

SC1.1 SUMMARY OF KEY FINDINGS

This Summary Card covers the evidence supporting on-farm interventions for mitigation of *Salmonella* in pigs. Overall, consistent with previous systematic reviews on this topic, we captured a relatively small volume of literature investigating similar outcomes, in the population of greatest interest (i.e. finisher pigs/carcasses), which limited our ability to perform meta-analysis (MA) for estimation of pooled summary estimates of effect. Where possible, we selected data from controlled trials for MA to calculate a summary estimate of effect. However, for major topics which were not underpinned by evidence from controlled trials, we used data from challenge trials for MA.

SC1.1.1 Antimicrobials, including bacteriophage therapy

- Evidence regarding the effects of antimicrobial use in pigs on *Salmonella* prevalence or load was inconsistent. Two systematic reviews investigated antimicrobial use and its effect on *Salmonella*: one reported that no conclusion could be made given the inconsistent findings across literature containing important methodological limitations; and the other one reported a harmful treatment effect for one specific antimicrobial administered orally, with high heterogeneity across studies and low confidence partly reflecting relatively small sample sizes. The four challenge trials captured were the only studies that reported a significantly protective treatment effect. Controlled trials reported inconsistent findings, as did cross-sectional studies.

- Evidence for bacteriophage therapy was also inconsistent. We estimated non-significant MA summary estimates for treatment effect for phage therapy on individual rectal faecal sample, or lymph node prevalence, in challenged weaner and market pigs. In contrast, two challenge trials (Callaway *et al.*, 2011; Saez *et al.*, 2011) reported a significantly reduced ileal load in phage-treated weaner pigs relative to controls.

SC1.1.2 Biosecurity

- External biosecurity measures – including rodent control programmes, use of a hygienic lock, restriction of farm visitors, and restriction of introduction of semen or boars – were significantly associated with reduced odds of *Salmonella* on-farm in observational studies, using both culture and serology as outcome measures.
• Internal biosecurity measures were investigated in a small number of controlled trials, as well as observational studies. Evidence from the one controlled trial investigating the use of cleaning and disinfection reported inconsistent findings across four sampling events. The three controlled trials investigating use of strategic movement, however, yielded a strongly protective summary estimate of effect (odds ratio (OR) = 0.05, 95% confidence Interval (CI) (0.01–0.27)), with low confidence in the results, partly reflecting relatively small sample size. Four stochastic models consistently reported that application of external and/or internal biosecurity measures could reduce on-farm Salmonella prevalence, but could not reduce prevalence to negligible levels without the concurrent application of other interventions.

SC1.1.3 Feed/water acidification

• Six controlled trial studies investigated the feeding of organic acids using serology as the outcome measure, with 15/19 trials from the six studies reporting a protective effect (median = 0.46, range (0.01–6.82)), with low confidence. Three controlled trials investigated the effect of organic acids on Salmonella prevalence in carcass lymph nodes, with 7/13 trials indicating a protective treatment effect (OR = 0.36, 95% CI (0.19–0.67)), with moderate confidence. Findings when assaying individual finisher faecal culture, or rectal content at slaughter, were inconsistent or non-significant, respectively, both with low confidence.

SC1.1.4 Feed management

• Several potential strategies were captured. Feeding meal as opposed to pellets was investigated in three controlled trials, with a protective treatment effect (median OR = 0.30, range (0.19–1.79)) on Salmonella seroprevalence in finishers, and low confidence, partly reflecting inconsistent findings. However, the protective association between feeding meal, relative to pellets, and Salmonella prevalence in finishers, was supported by 11 cross-sectional studies. Feeding coarse vs finely-ground feed was associated with a consistently protective effect on Salmonella prevalence in three trials from two studies (median OR = 0.17, range (0.12–0.65)), with moderate confidence.

SC1.15 Manipulation of gut microbiota

• Three controlled trials reported a significant reduction in faecal load in finisher pigs fed both prebiotic and probiotic concurrently, and two reported a significant reduction in prevalence of faecal shedding in pigs fed a commercial prebiotic. In contrast, a controlled trial investigating use of a direct-fed microbial reported no significant treatment effect. Challenge trials reported
inconsistent findings, and three observational studies reported a non-significant association between use of prebiotics or probiotics and *Salmonella* prevalence in finishers.

SC1.1.6 Vaccinations

- The efficacy of vaccination in reducing *Salmonella* prevalence was investigated in four controlled trials from two studies measuring individual faecal prevalence, with a significant protective, heterogeneous summary estimate of effect (median OR = 0.22, range (0.02–0.78)), with moderate confidence. Treatment effect when measured at the pen level was inconsistent. In contrast, treatment effect was significantly protective although heterogeneous when assaying either individual carcass lymph nodes (median OR = 0.41, range (0.12–0.86)) or caecal content (median OR = 0.53, range (0.18–0.89)) as the outcome measure, with moderate confidence.

SC1.1.7 Multiple interventions concurrently

- A European Union (EU) risk assessment of *Salmonella* in slaughter and breeding pigs suggested that a prioritized list of interventions should be implemented to reduce the risk of salmonellosis from pigs (EFSA, 2010), with high prevalence in breeder pigs to be targeted first, followed by feed, and then environmental contamination and external sources such as rodents and birds. This prioritization of breeding herds is supported by both European and North American observational studies identifying breeding sows as an important source of shedding (Cardinale *et al.*, 2010; Wilkins *et al.*, 2010).

SC1.1.8 Overall implications

- While interventions from each area were reported efficacious in some primary research settings, the effectiveness of biosecurity and vaccination measures was additionally supported by stochastic modelling and risk assessment. Significant reduction of lymph node contamination was supported by summary estimates of treatment effect, for feed/water acidification, and vaccination.
- Many of the datasets underpinning on-farm interventions were supported by datasets with a low level of confidence in the MA summary estimates of effect, which is not an indication of the quality of individual studies, but reflects that the reported estimates are likely to change with further research.
- Several relevant risk assessments and stochastic models were identified (n=24), often describing multiple levels of the pork production chain. Across these studies, the generalizability of data and assumptions from target population to others was frequently unclear (n=14 of 24 studies), making the wider applicability of these studies’ findings uncertain.
• Results from stochastic models studying the farm-to-fork continuum were consistent in identifying post-farm levels of the chain as the areas containing points for more effective applications of intervention, regardless of outcome modelled (e.g. carcass prevalence vs human clinical cases of salmonellosis).

SC1.2. INTERVENTION DESCRIPTION

This Summary Card summarizes the evidence for a range of interventions that can be implemented at on-farm level to reduce *Salmonella* contamination of pork. Specific categories of interventions covered in this Summary Card include:

• **Antimicrobials:** any substance of natural, semi-synthetic, or synthetic origin, that kills or inhibits the growth of a microorganism but causes little or no damage to the host (Giguere *et al.*, 2006). Includes those administered parenterally and orally, for treatment or prophylaxis. Therapy employing bacteriophages, i.e. naturally occurring viruses capable of infecting and killing bacteria, is included within this category.

• **Biosecurity:** has been defined as the implementation of measures that reduce the risk of introduction and spread of disease agents (FAO/OIE/World Bank, 2010). Includes, but is not limited to, sanitation, biosafety, disinfection, hygiene and hygiene barriers, all-in-all-out production, depopulation, staff and the environment, litter testing and treatment, and pest control. Biosecurity may consist of external (targeting prevention of introduction of targeted pathogens to the farm or unit) or internal (aimed at reducing spread of pathogens on-farm) procedures.

• **Feed/water acidification:** addition of organic acids such as lactic acid, to feed or water. Includes ‘nutraceuticals’ such as copper, chromium, zinc, betaine or carnitine.

• **Feed management:** includes various feed strategies such as administration of coarse or finely-ground feed, fermented feed, or liquid feed. Also included in this category is deliberate withholding of feed in the hours immediately prior to transport to slaughter.

• **Manipulation of gut microbiota:** includes use of probiotics, prebiotics, and synbiotics. *Probiotics* are living microorganisms that are fed to animals to colonize the gut environment to encourage a better microbial balance. A *prebiotic* may be defined as a non-digestible food ingredient that beneficially affects the host by selectively stimulating the favourable growth and activity of one or a limited number of bacteria in the colon. The term *synbiotic* describes a combination of probiotic and prebiotic approaches. It includes application of protective bacterial species or cultures to out-compete and prevent *Salmonella* colonization in pigs. It can also include specific bacterial species or cultures,
or caecal contents or other materials from animals or the environment that contain many different (known or unknown) bacterial species.

- **Vaccination**: refers to immunization of the subject using either autogenous or commercial *Salmonella* vaccines.

Evidence was identified for each of these six categories of interventions, which are presented and discussed separately below.

SC1.3 ANTIMICROBIALS

Twenty-eight primary research studies investigated the use of antimicrobials for reduction of *Salmonella* in pork, including eight controlled trials, nine challenge trials, and 11 cross-sectional studies, as well as two systematic reviews.

SC1.3.1 Antimicrobials

Denagamage *et al.* (2010), using systematic review methodology, reported that no conclusion could be made regarding the association of sub-therapeutic use of antimicrobials on *Salmonella* Typhimurium in market pigs, given the inconsistent findings across literature containing important methodological limitations. Wilhelm *et al.* (2012) reported a significantly harmful treatment effect (OR range: 14 (95% CI 1.9–108); 1.0 (0.43–2.5)) for one specific antimicrobial (oral tetracycline), using faecal *Salmonella* spp. shedding as the outcome measure. High heterogeneity across studies was found, with low confidence in the results. The systematic reviews received scores of 9/10 relevant fields for Denagamage *et al.* (2010), and 9/11 for Wilhelm *et al.* (2012), using the AMSTAR quality assessment tool.

Eight controlled trials were captured and investigated a variety of antimicrobials (aureomycin, bacitracin, chlortetracycline, flavomycin, tylosin). One reported a significantly (*P* < 0.05) harmful treatment effect (Funk *et al.*, 2007), while six other studies reported no significant treatment effect (Funk *et al.*, 2006; Kim *et al.*, 2014; LeJeune *et al.*, 2006; Roesler *et al.*, 2005; Wagner *et al.*, 2008; Wells *et al.*, 2013) and one reported a protective treatment effect on small intestinal *Salmonella* load (Wang *et al.*, 2007).

In contrast, four challenge studies (Ebner and Mathew, 2000; Letellier *et al.*, 2000; Mathew *et al.*, 2009; Robbins *et al.*, 2013) all reported a significantly protective treatment effect of various antimicrobials on faecal shedding.

Observational studies reported inconsistent findings, with four cross-sectional studies (Correge, Hemonic and Gouvars, 2009; Hotes *et al.*, 2010; Leontides,
Grafanakis and Genigeorgis, 2003; Van der Wolf et al., 2001a) reporting a significantly harmful treatment effect on prevalence of Salmonella in finishers, four (Farzan et al., 2006; Garcia-Feliz et al., 2009; Hautekiet et al., 2008; Lo Fo Wong et al., 2004) a non-significant treatment effect (\(P > 0.05\)) on Salmonella prevalence in finishers, with two (Correia-Gomes et al., 2012, 2013) reporting a non-significant treatment effect in breeder herds, using both serology and faecal culture as the outcome measures. Tenhagen et al. (2009) reported a non-significant association between antimicrobial use (tetracycline, amoxicillin, and colistin) and the culture of Salmonella spp. from lymph nodes of German slaughter pigs, but a significant association between antimicrobial use and Salmonella Typhimurium. Farzan et al. (2006) reported a significant positive relationship between daily antimicrobial usage and crude optical density of the individual pig, using an enzyme linked immunosorbent assay (ELISA) and multivariable mixed linear regression with farm as a random variable.
SC1.3.2 Phage therapy

One controlled trial and five challenge studies investigated the use of bacteriophage therapy for reduction of *Salmonella* in pigs. Three challenge studies measured *Salmonella* prevalence or load in weaner pigs (Callaway *et al*., 2011; Saez *et al*., 2011; Wall *et al*., 2010); one controlled trial (Yan *et al*., 2012) and one challenge study (Gebru *et al*., 2010) sampled grower pigs; and two challenge studies sampled market pigs (Albino *et al*., 2014; Wall *et al*., 2010). Yan *et al*. (2012) reported significantly reduced faecal *Salmonella* spp. load in grower pigs fed a basal diet plus 0.25 g/kg, or 0.50 g/kg bacteriophage (1 × 10⁸ PFU/g), relative to controls.

Albino *et al*. (2014) reported a non-significant reduction in mean *Salmonella* concentration in ileal and caecal content of 90–100 kg pigs treated with various concentrations of a phage pool. Wall *et al*. (2010) administered 15 ml of 10⁹ PFU/ml of a phage cocktail orally every two hours for six hours, to market pigs, and reported no significant treatment effect on prevalence, assaying either ileo-caecal lymph nodes or faecal samples. However, caecal *Salmonella* concentrations were significantly reduced in the treatment group. Callaway *et al*. (2011) administered 3 × 10⁹ PFU of phage cocktail orally to weaner pigs, at 24 and 48 hours after *Salmonella* Typhimurium challenge. Upon sacrifice at 96 hours post-challenge, there was a non-significant difference in lymph node and caecal content prevalence between treatment and control groups, but a significant reduction in rectal shedding in the treatment group. Using a semi-quantitative shedding score, Gebru *et al*. (2010) reported significantly reduced faecal shedding of *Salmonella* Typhimurium in grower pigs (initially 38.7 kg ±6.7 kg) administered 3 × 10⁹ PFU of bacteriophage/kg feed, sampled 14 days after challenge. Saez *et al*. (2011) reported a non-significant reduction in lymph node prevalence, relative to controls, but a significant reduction in ileal content load, between pigs either fed 5 × 10¹¹ PFU, microencapsulated, in-feed, per day for 5 days; or administered 5 × 10¹¹ PFU orally by gavage every 2 hr for 6 hr immediately post-challenge.

Three studies investigated the effect of phage therapy on prevalence of *Salmonella* lymph node contamination in weaner pigs, with a non-significant summary estimate of treatment effect (SC1 Table 1). Similarly, two studies investigated the effect of phage therapy on faecal *Salmonella* shedding in weaner pigs, with a non-significant summary estimate of effect. Both summary estimated received a GRADE rating of ‘very low confidence’ reflecting relatively small sample sizes and also sampling of animals younger than this review’s preferred age group (i.e. finisher/market animals).

SC1.4 BIOSECURITY

Sixty-eight relevant studies were found investigating biosecurity interventions for mitigation of *Salmonella* in pigs: five controlled trials, three quasi-experiments,
two cohort studies, one case-control study, and 40 cross-sectional studies, as well as 16 stochastic models and one systematic review. More experimental studies tended to examine internal biosecurity measures (i.e. those measures to potentially mitigate within-farm spread), relative to external biosecurity measures, (i.e. those attempting to prevent pathogen entry to the farm).

SC1.4.1 External biosecurity practices

Cross-sectional studies in this dataset investigated several external biosecurity measures. Three cross-sectional studies (Cardinale et al., 2010; Choe, Hassan and Loh, 2011; Vico and Mainar-Jaime, 2012) investigated the association between feral bird access to the pigs and farm Salmonella status, and all reported that not allowing bird access to pigs had a significantly protective effect on Salmonella culture or serology in finishers. In two cross-sectional studies of Portuguese breeding farms (Correia-Gomes et al., 2012; 2013), a significant association was reported between presence of rodents in the pig barn and Salmonella culture in breeding animals’ faecal samples. Similarly, Vico, Mainr-Jaime and Aussere (2011) reported that Spanish pig farms not employing rodent control programmes had significantly increased odds (OR = 4.3, 95% CI (2.2–8.4)) of Salmonella contamination of lymph nodes in slaughter pigs, and Kich et al. (2001) reported an association between implementation of rodent control programmes and reduced Salmonella seroprevalence in Brazilian finishing herds. However, Garcia-Feliz et al. (2009) reported a non-significant association between presence of a rodent control programme on-farm, and Salmonella faecal shedding in Spanish finisher pigs. Wales et al. (2009) reported that Salmonella serovars isolated in local wildlife were often also isolated from the pigs on-farm in the area.

Use of a hygienic lock facility was reported to be significantly protective of Salmonella seropositivity in finishers in three studies (Hautekiet et al., 2008; Lo Fo Wong et al., 2004; van der Wolf et al., 2001a). The protective effect of footwear disinfection on odds of Salmonella culture or seropositives in finishers was reported by two studies (Choe, Hassan and Loh, 2011; Hautekiet et al., 2008). In contrast, Vico and Mainar-Jaime (2012) reported a significant harmful association between use of footwear exclusive to the farm and Salmonella seropositives; Garcia-Feliz et al. (2009) reported a non-significant association. Failure to disinfect farm vehicle wheels was associated with increased odds of Salmonella seropositives in two studies (Choe, Hassan and Loh, 2011; Twomey et al., 2010a). Simons et al. (2009) reported a cost analysis examining several potential farm-level Salmonella interventions and concluded that rodent control was less cost effective than vaccination or administration of organic acids in reducing human salmonellosis in the UK.
Policy regarding introduction of animals and/or semen was reported to be a significant predictor of Salmonella on-farm. Correia-Gomes et al. (2012; 2013) report a significant association between introducing semen or boars from off-farm, with increased odds of Salmonella faecal culture in breeding production holdings. Similarly, two studies reported significantly increased odds of Salmonella seropositives in finishers from farms obtaining pigs from multiple sources (Correge, Hemonic and Gouvars, 2009; Lo Fo Wong et al., 2004). Dahl (2009) reported significantly increased odds of Salmonella seropositives in Danish slaughter pigs in conventional, relative to specific-pathogen-free farms (OR = 2.65, 95% CI (1.55–4.50)). Burns et al. (2013) report a cross-sectional study of 10 Irish pig farms with historically high Salmonella seroprevalence, in which the Salmonella Typhimurium monophasic variant predominant from faecal samples on-farm was recovered from feed samples from four farms, suggesting that contaminated feed could have been an infection source.

Bahnson et al. (2007), sampling 115 herds, reported significantly increased odds of Salmonella in ileo-caecal lymph nodes of slaughter pigs from farms allowing visitors with same-day contact with other pig herds (OR = 2.2–95% CI (1.15–4.3)). Smith, Clough and Cook (2010), sampling 566 UK pig holdings, reported that farms with more than five pig deliveries per year, or more than six deadstock visits per year, were associated with significantly increased mean Salmonella meat juice ELISA S/P ratios.

Hill et al. (2011a) reported a stochastic model for farm-level Salmonella transmission. Authors report that the breeding sow was potentially an important infection source, and that reduction of potential external sources of contamination should only be targeted in situations of relatively low breeding herd prevalence. Soumpasis, Alban and Butler (2012) described a stochastic model of Salmonella Typhimurium infection on pig farms, with parameters for employing internal and biosecurity procedures, and/or a hypothetical 100% protective vaccine. The model predicts that perfect external biosecurity measures will not eliminate Salmonella prevalence on a positive farm without internal measures, since the Salmonella bacteria spread rapidly room-to-room. Similarly Lurette, Belloc and Keeling (2011) described a network model based upon recorded pig movements within France. The model predicts that once infection is endemic within a production system, animal movement restrictions need to be augmented by within-herd controls to reduce Salmonella prevalence.

SC1.4.2 Internal biosecurity practices

Strategic movement of pigs at weaning was studied in two controlled trials (Table SC1.2) with each trial reporting a significant protective treatment effect (Dahl et
al., 1997; Nietfeld et al., 1998), although Nietfeld et al., note that the ‘treatment’
group, as with the control group, received an antimicrobial (Carbadox™) in the
ration and may have received benefit from this.

Cleaning and disinfection, which may be considered an external or internal
measure depending on the specific setting, was investigated in one systematic
review (Wilhelm et al., 2012) that reported a non-significant summary estimate
effect for pen disinfection, with significant heterogeneity and low confidence.

Cook (2004) reported a controlled trial with four sampling events, using pooled
faecal culture as the outcome measure, with inconsistent findings (median OR =
0.90, Range (0.27–2.65)). In contrast, van der Heijden et al. (2006) investigated the
improvement of hygiene and management by using a HACCP control programme,
reporting a decline in mean herd-level ELISA S/P ratio in a year-long study of
five ‘high risk’ herds. Bode, Baier and Blaha (2007) described a quasi-experiment
in which a suite of cleaning and disinfection measures were introduced into one
German production system consisting of a breeding sow herd, nursery and three
finisher barns, having persistently high Salmonella meat juice seroprevalence in
finishers despite apparent good hygiene. Authors reported that stringent applica-
tion of the disinfection measures would be required for sustained reduction in
Salmonella prevalence. Mannion et al. (2007) reported a quasi-experiment inves-
tigating the effectiveness of cleaning and disinfection practices on both low- and
high-risk herds. The investigators reported that in low-risk herds, the cleaning and
disinfection procedures reduced the levels of Salmonella on pen floors. In contrast,
in high-risk herds, levels of Salmonella in the pens were increased after cleaning;
this was also true of feeders.

Observational studies reported inconsistent findings regarding the effectiveness of
pen disinfection in reduction of Salmonella in finishers. Funk et al. (1999), in a
study of cohorts of United States of America finisher pigs, assigned a score of 0
(clean) to 3 (greatest faecal accumulation) weekly for 14 weeks of finishing period,
for 200 pens. The investigators reported an inverse relationship between faecal ac-
cumulation score in the finisher pen, and the relative risk of a finisher pig shedding
Salmonella. Choe, Hassan and Loh (2011) reported significantly increased odds
of Salmonella faecal culture in finishers in farms employing less frequent pen
cleaning; in contrast, Correge and Hemonic (2012) reported that the persistence of
Salmonella in the pens themselves was influenced not by cleaning and disinfection
protocols, but by the bacteriological status of the sows, and serological status of
finishers, in farrow-to-finish farms. A French cohort study of 119 farrow-to-finish
farms reported a significant association between hygiene score in both farrowing
and post-weaning areas of the production unit, and Salmonella culture on-farm
(Fravalo et al., 2003a). Leontides, Grafanakis and Genigeorgis (2003) reported a
non-significant association between pen disinfection and ELISA seropositivity in finishers from 59 Greek herds. Ikwap et al. (2014), in a survey of piglets and weaners from 93 Ugandan herds, reported significantly reduced odds of *Salmonella* on-farms regularly cleaning feeders every two days, relative to daily (OR=0.18; 95% CI 0.05–0.72)). Tessier et al. (2013), in a survey of 50 farrow-to-finish and multiplier herds in Reunion Island, reported a significant \((P < 0.05)\) protective association between cleaning and disinfection of the ceiling and natural service area, and positive *Salmonella* culture from finishers.

Berriman et al. (2013a) described a stochastic compartmental model of *Salmonella* transmission within UK pig herds, in both slatted and non-slatted barns. The authors concluded that hygiene measures (i.e. cleaning and disinfection) alone were insufficient to eliminate *Salmonella* on infected farms. Gautam et al. (2014) described a modified Susceptible-Infected-Recovered-Susceptible (SIRS) model, investigating the effects of enhanced cleaning on *Salmonella* prevalence in grow-finishers. The authors concluded that increased frequency and effectiveness of cleaning may reduce *Salmonella* prevalence in pigs at time of slaughter, but will not eliminate it. Hill et al. (2011b) described a stochastic model studying the effect of on-farm and abattoir interventions in reducing human salmonellosis. Running scenarios for two hypothetical high- and low-prevalence EU member states, the model predicted no significant change in incidence of human salmonellosis would be achieved by increased cleaning and disinfection on-farm and during transport, in the absence of other measures. Hotes, Traulsen and Kriete (2011) described a stochastic model of non-clinical *Salmonella* transmission within a pork supply chain. Their findings suggest hygiene control strategies in farrowing units were associated with a significant decrease in *Salmonella* prevalence after lairage at the abattoir; similar measures applied only to finishers were less effective.

Erdman et al. (2005) performed a pig depopulation quasi-experiment and reported a significantly reduced odds of *Salmonella* culture from finisher pooled faecal pen cultures and slaughter pig ELISA ‘positives’ post- vs pre-treatment.

Funk, Davies and Gebreyes (2001) investigated risk factors for individual faecal *Salmonella* in finishers in a cohort study of three-site systems. Presence of a toilet on-site was used as a proxy measure for owners’ attitudes towards hygiene; finisher pigs on sites with a toilet had significantly reduced odds of faecal samples culturing ‘positive’ for *Salmonella*.

In contrast, several observational studies reported a beneficial effect associated with management procedures which potentially enhanced pig *Salmonella* exposure. A German farm-level case-control study (Gotter et al., 2012) reported that farm staff wearing dirty boots was significantly associated with reduced *Sal-
monella prevalence assaying carcass meat juice ELISA, although pig contact with other animal species significantly increased the odds of a farm being categorized as 'positive'. Similar findings were reported by Davies et al. (1997), who reported a lower farm-level prevalence of Salmonella in farrow-to-finish farms reporting a continuous flow of pigs, relative to participating farms using all-in-all-out flow. As well, van der Wolf et al. (2001a) reported that omission of disinfection after pressure washing a compartment as part of an all-in-all-out procedure was significantly associated with reduced Salmonella seroprevalence.

Cross-sectional studies were also employed to investigate several aspects of the farm site. Four studies, including the EU baseline Salmonella survey conducted in 2008, reported that presence of fully slatted flooring was associated with significantly reduced odds of Salmonella seropositives in finishers, relative to other flooring types (EFSA, 2011; Hotes et al., 2010; Smith et al., 2010b; Twomey et al., 2010a); Leontides, Grafanakis and Genigeorgis (2003) reported a non-significant association between flooring type and ELISA seropositivity. Davies (1998), in a study of six Salmonella positive farms using open flush gutters, hypothesized that the increased risk of Salmonella shedding by pigs in barns with open gutters may not be due to the use of recycled lagoon water for flushing, but to inefficient removal of faecal matter. In contrast, in a survey of 65 herds, Kich et al. (2001)
reported increased odds of *Salmonella* seroprevalence in Brazilian finishers associated with presence of flush gutter systems. Potential snout-to-snout contact between pens was reported to be associated with increased odds of *Salmonella* in finishers, measured by both serology (Lo Fo Wong *et al.*, 2004) and faecal culture (Wilkins *et al.*, 2010).

Baptista *et al.* (2010) described a survey of 50 Portuguese pig herds, assaying pig faeces, lymph nodes or serum ELISA, in which farms were categorized for overall biosecurity based on multiple criteria, including provision of boots for visitors; requiring shower-in; cleaning and disinfection of loading bay after use; access of other animals such as cats to livestock; and rodent control programmes in place. The authors reported that using logistic regression analysis, ‘factor 1’ (or overall poor biosecurity) was significantly (*P* = 0.04) associated with *Salmonella* in pigs on-farm.

Continuous pig flow was reported to be associated with increased odds of both faecal *Salmonella* spp. shedding (Farzan *et al.*, 2010; 2006) and increased mean herd S/P value (Hautekiet *et al.*, 2008), while Twomey *et al.* (2010b) reported reduced odds of *Salmonella* on-farms practicing all-in-all-out flow (OR = 0.34, 95% CI (0.18–0.65)). In contrast, Davies *et al.* (1997) reported more North Carolina farms practising all-in-all-out flow were *Salmonella* culture positive at the herd level, relative to farrow-to-finish farms. Rostagno, Hurd and McKean, 2009 reported that those pigs marketed in later ‘pulls’ from a finisher pen had significantly greater *Salmonella* faecal shedding, and also meat juice ‘positives’, relative to the first group to be pulled. Hill *et al.* (2007) reported a stochastic model for farm *Salmonella* infection which predicted that average prevalence of meat-juice positive pigs was five percent greater on continuous farms relative to units practising all-in-all-out pig flow, although over time the variation between individual farms was much greater than that between the two management groups. Lurette *et al.* (2011b) describe a stochastic model of a farrow to finish herd with two components: animal dynamics, and *Salmonella* transmission. The authors conclude that all-in all-out pig movement had little impact on reducing *Salmonella* prevalence compared with reducing the mean slaughter age and improving the efficacy of room decontamination. Berriman *et al.* (2013b) described stochastic models investigating *Salmonella* spread on-farm for both slotted and non-slotted floors. The authors report that rate of shedding was an important parameter in predicting control of pathogen spread.

SC1.5 FEED AND WATER ACIDIFICATION

O’Connor *et al.* (2008), using systematic review methodology, reported no strong evidence for an association between presence of *Salmonella* and feed acidifica-
tion. In contrast, Wilhelm et al. (2012) used systematic review-cum-meta-analysis methodology, and reported a protective, but heterogeneous, treatment effect for the inclusion of organic acids in finisher rations for reduction of Salmonella, with low confidence. The reviews met 7/10 (O’Connor et al., 2008) and 9/11 (Wilhelm et al., 2012) AMSTAR reporting criteria.

Forty primary research studies captured in this review investigated inclusion of organic acids in feed: 14 controlled trials, one quasi-experiment, 16 challenge trials, and nine cross-sectional studies, as well as five risk assessments or stochastic models.

Three controlled trials (Arguello et al., 2013a; Cook et al., 2006; Willamil et al., 2011) assayed individual finisher faecal prevalence, with inconsistent treatment effect reported (median OR = 0.08–range (0.01–26)) (Table SC1.3). Inconsistent results may have reflected the varied effects of post-weaning multi-systemic wasting syndrome (PWMS) across several of the treatment groups. When the trials potentially influenced by PWMS were removed from the dataset, the treatment effect showed a significantly greater magnitude, with reduced heterogeneity (OR = 0.30, 95% CI (0.18–0.49)).

Dos Santos et al. (2007) report a trial investigating feeding of non-protected or lipid micro-encapsulated lactic and formic acid to finishing pigs. The authors reported a significant reduction in Salmonella seroprevalence in the non-protected acid treatment group, and also a non-significant change in prevalence of faecal shedding during transport and lairage (in comparison with control and protected acid treatment groups, which showed significantly increased faecal shedding during this period). Jorgensen et al. (2001) reported a non-significant ($P = 0.07$) association between feeding 2.8% lactic acid and Salmonella pen faecal prevalence in weaners on high-risk farms. Similarly, Kristensen, Jorgensen and Boes (2005) reported a non-significant association between feeding 1.0% benzoic acid or 0.5% formic acid plus 0.5% lactic acid to weaner pigs, and faecal Salmonella prevalence.

Six controlled trials investigated the feeding of organic acids and measured finisher serum ELISA (Arguello et al., 2013a; Creus et al., 2007; Cook et al., 2006, van der Wolfe et al., 2001b; Wingstrand et al., 1997; Willamil et al., 2011), with 15 of 19 trials reporting a protective effect, with low confidence in the results, partly reflecting the inconsistent findings across trials (Table SC1.3). Again, inconsistent results may have in part reflected the varied effects of PWMS across some treatment groups. However, when the trials potentially influenced by PWMS were removed from this dataset, the treatment effect showed a non-significant change in magnitude, and the dataset still had significant heterogeneity of treatment effect across trials. Van der Heijden et al. (2006) reported a field trial investigating feeding of either 0.85%
Ramf™ in-feed, or 0.2% Selko-pH™ in water, each to 10 infected herds over a one year study period. The authors report a significant decline in mean herd ELISA S/P ratio during the study period.

Three controlled trials (Arguello et al., 2013a; Creus et al., 2007; De Busser et al., 2009) measured the effectiveness of organic acids to reduce Salmonella prevalence in carcass lymph nodes, with seven of 13 trials indicating a significant protective treatment effect for a pooled summary OR of 0.36 (95% CI: 0.19–0.67)

Summary-of-findings tables for feed and water acidification

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(0)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidification</td>
<td>Finishers (Faecal culture)</td>
<td>9/3</td>
<td>Median = 0.08 (Range: 0.01–26.0)</td>
<td>20.1% (Range: 0.3–86.7)</td>
<td>Low</td>
<td>Arguello et al., 2013a; Cook et al., 2006; Willamil et al., 2011</td>
</tr>
<tr>
<td>Acidification</td>
<td>Finishers (Serum ELISA)</td>
<td>19/6</td>
<td>Median = 0.46 (Range: 0.01–6.82)</td>
<td>39.0%</td>
<td>22.7% (95% CI: 0.6–81.3)</td>
<td>Low</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios from individual studies are presented instead. If only one trial was available, refers to the odds ratio and 95% confidence interval from the individual study.

(2) The percentage of samples positive for Salmonella in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]), and provides an indication of the effect of the intervention on changing a given baseline level of Salmonella prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
(Table SC1.4). Three studies (Creus et al., 2007; De Busser et al., 2009; Visscher et al., 2009) reported a non-significant summary estimate of effect on rectal content (Table SC1.4). Correge et al. (2012) reported a significant protective treatment effect on Salmonella excretion after administering a mixture of organic acids, sodium salts, and bioflavonoids to sows for four weeks in water, using a quasi-experimental design.

Van der Heijden et al. (2006) reported a field trial investigating feeding of either 0.85% Ram£ in-feed, or 0.2% Selko-pH™ in water, to 10 infected herds, each, over a one-year study period. Authors reported a significant decline in mean herd ELISA S/P ratio. Visscher et al. (2009) described a trial in which pigs received either fine (control) or coarse (treatment) textured feed, as well as organic acids;

TABLE SC1.4. Controlled trials investigating feed and water acidification, sampling carcasses

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population (Sample)</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect</th>
<th>% Samples Salmonella positive in study population</th>
<th>GRADE rating</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidification</td>
<td>Carcasses (Lymph nodes)</td>
<td>13/3</td>
<td>MA = 0.36 (95% CI: 0.19-0.67)</td>
<td>22.6%</td>
<td>9.5% (95% CI: 5.3-16.3)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Acidification</td>
<td>Carcasses (Rectal content)</td>
<td>12/3</td>
<td>MA = 0.56 (95% CI: 0.20-1.53)</td>
<td>10.0%</td>
<td>5.9% (95% CI: 1.8-14.5)</td>
<td>Low</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

1. For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios from individual studies are presented instead. If only one trial was available, refers to the odds ratio and 95% confidence interval from the individual study.

2. The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: \(OR \times ACR / (1-ACR + [OR \times ACR]) \), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

3. GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
this investigation is further described in the ‘feed management’ section. Trawinska et al. (2012) described a trial in which pre-partum gilts received 2.5 g/100 kg body weight/day ascorbic acid; the authors report a non-significant treatment effect on faecal shedding of Salmonella, relative to controls.

Five challenge trials reported a significant protective treatment effect on Salmonella shedding in weaner pigs when administered organic acids (Gebru et al., 2010; Michiels et al., 2012; Sweeney et al., 2011; Tanaka et al., 2010; Taube et al., 2009). In contrast, nine other challenge trials reported a non-significant treatment effect (Ahmed et al., 2014a; Boyen et al., 2008; Calveyra et al., 2012; De Ridder et al., 2013a, b; Howard, Hurd and Gailey, 2003; Letellier et al., 2000; Martin-Pelaez et al., 2010; Walsh et al., 2012). Rajtak et al. (2012) studied the survival of Salmonella strains spiked in faeces from pigs fed organic acids, and concluded that rates of decline were significantly greater for Salmonella isolates in faeces from pigs supplemented with potassium diformate, relative to controls. Van Winsen et al. (2002) described a challenge study investigating particularly the lactic acid component of fermented feed; this trial is included with other studies of fermented feed in the ‘feed management’ section of this report.

Eight cross-sectional studies reported a non-significant association between feeding organic acids and Salmonella prevalence, measured by faecal culture or serology, in finishers (Bruhn, Rushton and Reist, 2011; Correia-Gomes et al., 2011; Correge, Hemonic and Gouvars, 2009; EFSA, 2011; Garcia-Feliz et al., 2009; Hotes et al., 2010; Leontides, Grafanakis and Genigeorgis, 2003; Lo Fo Wong et al., 2004), while one (Hotes et al., 2010) reported a significant positive association between feed or water acidification and seropositivity, measuring meat juice ELISA (OR = 1.8, 95% CI (1.3–2.49)). The pH of liquid feed was a variable captured by the cross-sectional survey of van der Wolfe et al. (2001a) but was non-significant in the final multivariable model.

EFSA, in outlining a scientific opinion on a quantitative microbial risk assessment (QMRA) of Salmonella in slaughter and breeder pigs (EFSA, 2010), quoted the QMRA itself, describing the potential for on-farm interventions such as feed or water acidification to change the pig’s Salmonella dose-response relationship by half a log (thus achieving significant reduction in human cases):

“This type of effect has rarely been described in the literature and it is debatable whether such an effect could be achieved consistently at a national-herd level.”

Similarly, Hill et al. (2011b) described risk model outputs from two scenarios for fictional high- and low-prevalence EU member states. Modifying pig resistance by
increasing required infectious dose by one log was predicted to significantly reduce incidence of human salmonellosis; however the authors reported no evidence that on-farm interventions such as administration of organic acids were capable of achieving a change in dose-response of this magnitude. Hill et al. (2011c) described a QMRA model which predicted that maximum reduction in cases of human salmonellosis could be achieved by implementing on-farm interventions such as feeding organic acids concurrently with processing-level interventions.

Goldbach and Alban (2006) described a stochastic cost-benefit model of the Danish pork production industry, comparing the effects of feeding home-prepared feed, feeding organic acid, hot water decontamination at processing, and sanitary slaughter. The authors concluded that hot water decontamination was the only economically viable option. Similarly, Simons et al. (2009) described a model comparing the cost effectiveness of implementation of selected interventions to reduce Salmonella in the UK pork production chain. Use of organic acids on-farm was predicted to be significantly less cost-effective relative to the processing interventions (bunging, carcass washing, carcass washing and drying) investigated.

SC1.6 FEED MANAGEMENT

O’Connor et al. (2008) investigated several potential feeding management interventions (feed withdrawal from swine prior to slaughter; heat treatment of feed; pelletized feed vs mash; coarse vs fine grind; and wet vs dry feeds) using systematic review methodology. Strongest evidence was found for a protective association between feeding meal relative to pelleted feed, but a low level of confidence was expressed, given some of the underpinning studies’ relatively low evidentiary value or sample size. Wilhelm et al. (2012) also used systematic review and meta-analysis methodology to investigate five selected on-farm interventions, including feed management, for reduction of Salmonella in pigs. Strongest evidence was again reported for feeding meal relative to pellets (OR = 0.21, 95% CI (0.14–0.31)) with non-significant heterogeneity. Using a modification of the GRADE approach for assessing quality of evidence, the dataset underpinning the intervention ‘meal vs pellets’ was ranked ‘low’ confidence, meaning that further research is likely to revise this estimate.

Forty-five primary research studies identified in this review investigated feed management interventions for Salmonella reduction in pigs: eight controlled trials, one quasi-experiment, five challenge trials, two cohort studies, one case-control study, and 28 cross-sectional studies, as well as four stochastic models. Additionally, five controlled trials and three challenge trials were found investigating various feed additives.
The effect of feeding meal relative to pellets was investigated in four controlled trials sampling finishers and measuring serology (Hansen et al., 2001; Jorgensen, Dahl and Wingstrand, 1999; Jorgensen et al., 2003; Kjeldsen and Dahl, 1999), in one controlled trial measuring rectal and faecal culture of slaughter pigs (Lebel et al., 2013), and in one controlled trial sampling sows and measuring faecal culture (Kjaersgaard et al., 2002). The median OR in finishers, measuring serology, was 0.30 (range 0.19–1.79), with a protective treatment effect reported in four of five trials (Table SC1.5). The farm that was the subject of the fourth trial became classified as ‘high risk’ during the study period. Removing this from the dataset yielded a pooled summary OR estimate of 0.52 (95% CI: 0.35–0.77) with low heterogeneity. This observation highlights the potential for variation in treatment effect both within our dataset, and in future application of the interventions, resulting from the presence or absence of known and unknown covariates. Additionally, all four finisher investigations noted reduced average daily gain (ADG) in the treated groups.

Kjaersgaard et al. (2002), sampling sows in a controlled trial, reported a significantly greater individual-level faecal Salmonella prevalence in the treatment group receiving meal (authors state the meal was not heat-treated and may have been a source of infection). In contrast, Lebel et al. (2013) reported a significant reduction in Salmonella prevalence, measured via culture of rectal and caecal content of slaughter pigs naturally challenged with Salmonella post-weaning, associated with feeding meal as opposed to pelleted feed. Rajtak et al. (2012), describing a survival study in which Salmonella strains were spiked in faeces of pigs fed meal or pellets, reported a reduction (P < 0.10) in the rate of decline in the faeces of pigs fed pellets, relative to meal. A protective effect of feeding meal, relative to pellets, was also reported in eleven cross-sectional studies (Dahl, 2009; Davies et al., 1997; EFSA, 2011; Farzan et al., 2010; Garcia-Feliz et al., 2009; Hautekiet et al., 2008; Hotes et al., 2010; Leontides, Grafanakis and Genigeorgis, 2003; Vico and Mainar-Jaime, 2012; Wilkins et al., 2010; Lo Fo Wong et al., 2004) measuring both faecal and serological Salmonella prevalence in finishers. In contrast, Gotter et al. (2012) reported a non-significant association between Salmonella feeding pellets and presence of Salmonella on German pig farms in a case-control study.

The effect of feed texture (fine vs coarse) was investigated sampling finishers (Kjeldsen and Dahl, 1999) and slaughter pigs (Visscher et al., 2009) assaying serum and meat juice ELISA, respectively. Feeding coarsely ground feed was associated with a significantly protective treatment effect across three trials (Table SC1.5), with moderate confidence. In contrast, Taube et al. (2009) reported a challenge trial conducted in weaned pigs with a non-significant treatment effect reported for coarse diet relative to the control diet. However, authors note that the study diets did not differ as much as intended in particle size.
In a controlled trial investigating the effect of withholding feed for 0, 12 or 24 hours prior to slaughter, Morrow et al. (2002) report a non-significant treatment effect, with *Salmonella* prevalence in caecal contents as the outcome measure. Rostagno, Eicher and Lay (2009) reported a challenge trial investigating the effects of 12-hour feed withdrawal, two hours of transportation, or both, on *Salmonella* prevalence in slaughter pigs measuring ileal, caecal, and rectal contents and mesenteric lymph nodes. No significant treatment effect was reported using prevalence as the outcome measure. However, feed withhold, with or without transport, was significantly associated with higher *Salmonella* concentrations in ileal contents.

Feeding of wet and/or fermented feed was investigated in eight cross-sectional studies (Bahnson et al., 2006; Correge, Hemonic and Gouvars, 2009; Dahl, 2009; Farzan et al., 2006; Hotes et al., 2010; Stojanac, Stevancevic and Stancic, 2013.; Twomey et al., 2010a; van der Wolf et al., 2001a), which reported a significant protective treatment effect. In contrast, Van Winsen et al. (2002) described a seeder challenge trial reporting no significant treatment effect for feeding of fermented ration on the prevalence of *Salmonella* shedding. Fravalo et al. (2003b) reported a cohort study of 119 French farrow-to-finish herds, with a non-significant association between dry feeding and *Salmonella* prevalence, relative to wet feeding, measuring faecal samples in finisher pigs. A non-significant association between wet feeding and *Salmonella* prevalence was reported by three cross-sectional studies (Cardinale et al., 2010; Smith et al., 2010b; Twomey et al., 2010b) measuring meat juice ELISA or faecal samples.

The use of home-mixed as opposed to purchased feed was reported associated with significantly reduced odds of *Salmonella* in cross-sectional studies measuring faecal culture (Correia-Gomes et al., 2012; 2013), meat juice ELISA (Smith et al., 2010a), or lymph node culture (Tenhagen et al., 2009). Pieper et al. (2012) described a study investigating the effect of feeding hull-less, relative to common barley, to weaner pigs and reported significantly reduced rectal shedding six days after *Salmonella* Typhimurium challenge, but non-significant differences were noted when measuring mesenteric lymph nodes, or ileal, caecal, or colonic content, in treatment relative to control groups. Similarly, Smith, Clough, and Cook (2010) reported that the percentage of barley in the finisher diet was significantly associated with reduced *Salmonella* meat juice ELISA S/P ratio in slaughter pigs. Funk, Davies and Gebreyes (2001), in a cohort study, reported that finishers in cohorts with relatively greater *Salmonella* prevalence had significantly less efficient feed conversion (FC) relative to the lower prevalence (<18.75%) cohorts (OR = 13.48, 95% CI (1.22–149.46)).
SC1.6.1 Other feed additives

Four studies investigated addition of chlorate to feed or water for reduction of *Salmonella* prevalence or load: one controlled trial (Patchanee, Crenshaw and Bahnson, 2007) and three challenge trials (Anderson et al., 2004; 2001; Callaway et al., 2003), of which two (Anderson et al., 2004; Callaway et al., 2003) sampled market pigs.

Patchanee, Crenshaw and Bahnson (2007) administered oral chlorate daily for 5 days, to weaner pigs originating from sows known to be shedding *Salmonella*. The authors reported a significant reduction in load of faecal *Salmonella* shedding at five days post-weaning, and reduced caecal content load, as well as prevalence of lymph

Summary-of-findings tables for feed management interventions

TABLE SC1.5. Controlled trials investigating feed texture

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population (Sample)</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal vs pellets</td>
<td>Finishers (Serum ELISA)</td>
<td>5/4</td>
<td>Median = 0.30 (Range: 0.19–1.79)</td>
<td>32.8% (Range: 12.4–46.6)</td>
<td>Low</td>
<td>Hansen et al., 2005; Jorgensen, Dahl and Wingstrand, 1999; Jørgensen et al., 2003; Kjeldsen and Dahl, 1999</td>
</tr>
<tr>
<td>Coarse vs fine grind</td>
<td>Finishers Carcasses Serum / meat juice (ELISA)</td>
<td>3/2</td>
<td>Median = 0.17 (Range: 0.12–0.65)</td>
<td>6.5% (Range: 0.8–4.3)</td>
<td>Moderate</td>
<td>Kjeldsen and Dahl, 1999; Visscher et al., 2009</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant ($I^2<60\%$). If heterogeneity was significant, the median and range of odds ratios from individual studies are presented instead. If only one trial was available, refers to the odds ratio and 95% confidence interval from the individual study.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: \[\frac{OR \times ACR}{1 - ACR + [OR \times ACR]} \], and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant ($I^2<60\%$), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
node contamination, at 14 days post-weaning. Anderson et al. (2001) reported a significant ($P < 0.05$) treatment effect on caecal *Salmonella* load in weaner pigs after administering 100 millimoles of sodium chlorate by gavage, at 8 and 16 hrs after *Salmonella Typhimurium* challenge, and also reported a significant treatment by time-after-treatment interaction. Anderson et al. (2004) reported significantly reduced caecal *Salmonella* load in weaner pigs after administration of drinking water containing either 30–40, or 60–80 mg/kg body weight chlorate, using experimental chlorate preparation (ECP) in drinking water, for 24 or 36 hours, starting 24 hours after challenge. The authors also reported significantly reduced prevalence of *Salmonella* in caecal and rectal contents relative to control animals, with a non-significant effect on prevalence of lymph node contamination.

In the same study, the authors reported a significant treatment effect of chlorate on caecal *Salmonella* load in market pigs, with a non-significant treatment effect on rectal faecal load, or prevalence measuring caecal or rectal content, or lymph node contamination. In contrast, Callaway et al. (2003) reported a non-significant reduction, after four hours of exposure to feed containing ECP, on *Salmonella* prevalence in the tonsils of *Salmonella Typhimurium* challenged market pigs. The authors also reported no difference in lymph node or intestinal content *Salmonella* status between treatment and control groups. However, in a quasi-experiment using 10 naturally *Salmonella* infected pigs, the same authors reported that ECP significantly reduced caecal *Salmonella* colonization.

The use of several other feed additives was also reported. Two controlled trials (Chu et al., 2013a, b) reported a significantly protective treatment effect when 0.3% bamboo charcoal was added to the ration of finisher pigs for reduction of faecal *Salmonella* load; ADG and FC were significantly improved in all treatment groups. Jung et al. (2011) reported feeding a mixture of *Coptidis rhizoma*, *Lonicerae flos* and *Paeonia japonica* (1:1:1, v/v/v) methanol extracts and dioctahedral smectite (0.5–1.0%) mixed with feed, to five-week-old weaned pigs. The authors reported a significantly reduced faecal *Salmonella* load from days two to seven (termination) of the trial. Tallarico et al. (2013) investigated feeding encapsulated formic and citric acid plus essential oils (FORMA XOLTM) added to diet at 4 kg/ton for the first 4 weeks, then 1 kg/ton for the remainder of the trial, to finisher pigs. The authors reported a significantly protective treatment effect on carcass lymph node *Salmonella* prevalence, with a non-significant effect on seroprevalence. Edrington et al. (2006), describing a challenge trial, reported a significant treatment effect of feeding ractopamine (Paylean 9™ at 18 g/ton) on faecal *Salmonella* shedding and prevalence of liver contamination with the challenge strain, in grower pigs.

Five risk analyses investigated potential feeding management strategies. EFSA’s scientific opinion on a QMRA of *Salmonella* in slaughter and breeder pigs concluded
that contaminated feed was an important potential source of *Salmonella* infection, particularly in situations of relatively lower prevalence in the breeding herd; however, its complete elimination from feed might not be practical. Hill *et al.* (2011a) reported a stochastic model for *Salmonella* transmission on pig farms. The model predicted that in situations of lower prevalence in the breeding herd, introduction of *Salmonella* on-farm via contaminated feed became a relatively more important transmission pathway. In such low prevalence situations, strategies to mitigate transmission via contaminated feed could be more effective than in the baseline scenario of higher prevalence in the breeding herd. Similar to the observations described for feeding of organic acids, Hill *et al.* (2011b) described a *Salmonella* transmission model and concluded that modifying the pig *Salmonella* dose-response curve by the 1 to 2 logs required to significantly reduce human salmonellosis would be very difficult to achieve nationally via feed management strategies such as wet feeding.

Goldbach and Alban (2006) described a stochastic cost-benefit model of the Danish pork production industry, concluding that of the options investigated, including use of home-prepared feeds, only hot-water carcass decontamination was an economically viable option for *Salmonella* reduction.

SC1.7 MANIPULATION OF GUT MICROBIOTA

Use of prebiotics, probiotics, or synbiotics for reduction of *Salmonella* in pigs was investigated in 31 primary research studies: nine controlled trials, 21 challenge trials, and three cross-sectional studies.

Suryanarayana, Sreedhar and Babu (2013) sampled pigs into the finisher stage and reported a significant reduction in mean faecal *Salmonella* load in finishers receiving both the prebiotic (fructo-oligosaccharides) and probiotic (*Saccharomyces cerevisiae*) treatments relative to un-supplemented controls. Improved FC and ADG were also reported for all three (prebiotic/probiotic/both) treatment groups. Vico, Mainr-Jaime and Aussere (2011) investigated feeding a galactomannan (Salmosan™, fed at 0.5 kg or 3.0 kg/ton of feed) during the entire fattening period. The investigators reported no significant treatment effect on seroprevalence, faecal shedding, or mesenteric lymph node prevalence at the lower dosage, but a significant treatment effect on all three measures at the higher (3.0 kg/ton) dosage. Similarly, Mainar-Jaime *et al.* (2013) reported a controlled trial in which weaner pigs were fed a galactomannan (Salmosan™, fed at 0.5 kg, 2.0 kg, or 3.0 kg/ton of feed). The investigators reported a significant treatment effect for the two groups receiving the higher dosages, using both mesenteric lymph node and faecal culture prevalence at slaughter as the outcome measure. In contrast, LeJeune *et al.* (2006)
investigated pigs receiving direct-fed microbials (*Lactobacillus acidophilus, Streptococcus faecalis*, *Bifidobacterium thermophilum, Bifidobacterium pseudolongium*) for six weeks post-weaning, compared with pigs the same age fed sub-therapeutic antimicrobials, or basal diet, and reported no significant treatment effect on *Salmonella* prevalence, with improved ADG in the antimicrobial-fed group relative to the probiotic group.

Application of the treatment in five controlled trials was either during the suckling stage, or at weaning, with sampling shortly thereafter. Zhang *et al.* (2014) described an investigation of feeding multi-enzymes derived from *Bacillus subtilis*, *Bacillus amyloliquefaciens* and *Trichoderma* spp. to pigs 35-65 days of age, reporting significantly reduced *Salmonella* concentration in faecal shedding, with a significant dose-response relationship demonstrated to increasing doses of multi-enzymes (ranging from 100 to 350 mg/kg of diet).

Manewaan *et al.* (2011) reported a significantly reduced *Salmonella* load in 11-day-old piglets fed *B. subtilis* MP9 (10¹¹ CFU/ml.) and *B. subtilis* MP10 (10¹¹ CFU/ml) relative to controls. The effect of feeding dietary yeast to young pigs was investigated in two controlled trials. Upadrasta *et al.* (2013) reported a ‘significantly reduced *Salmonella* level’ in pigs treated from four weeks to seven weeks of age with spent cider yeast, relative to controls. In contrast, Weedman *et al.* (2011) reported a non-significant treatment effect on *Salmonella* when 3-day-old pigs were fed either milk or milk supplemented with yeast culture (0.1 g of yeast culture product per kg of body weight) from days 4 to 21. Wells *et al.* (2005) investigated feeding non-fat dried skim milk powder, which was roughly 50% lactose, as 10% of grower/grower-finisher/finisher diets in a controlled trial, reporting a non-significant treatment effect with faecal culture as the outcome measure.

Of the 19 challenge trials identified, 15 sampled animals 65 days of age or younger. However, Calveyra *et al.* (2012) investigated pigs treated with a probiotic starting at 43 days old, challenged with *Salmonella Typhimurium*, and followed for an additional 28 days. The authors reported no significant treatment effect on faecal prevalence, but noted a trend towards reduced load of shedding. Gebru *et al.* (2010) investigated grower pigs (mean body weight 38 ±6.7 kg) fed six different treatments, including a probiotic (*Lactobacillus plantarum* CJLP56) for two weeks prior and two weeks after oral challenge with *Salmonella Typhimurium*. At day 14 post-challenge, shedding scores in the treatment groups were significantly reduced relative to the control group, with probiotic-treated pigs having significantly better ADG relative to control pigs over the four-week trial. Spiehs, Shurson and Johnston (2008) investigated the use of a probiotic (either *Bacillus* licheniformis and *B. subtilis* or *Enterococcus faecium*) in finishers (110 kg at the start of the
The authors reported no significant difference in faecal shedding across the treatment and control groups.

Four challenge trials investigated *E. faecium*: three (Kreuzer *et al.*, 2012; Spiehs, Shurson and Johnston, 2008; Walsh *et al.*, 2012) reported a non-significant treatment effect on *Salmonella* prevalence or load, while Szabo *et al.* (2009) reported significantly greater faecal shedding and organ colonization in pigs treated with *E. faecium* relative to controls. Studies investigating the feeding of *Lactobacillus* spp. also reported a range of findings: three reported a significant protective treatment effect (Ahmed *et al.*, 2014b; Casey *et al.*, 2007; Naqid *et al.*, 2015) and three a non-significant treatment effect (Afonso *et al.*, 2013; LeJeune *et al.*, 2006; Letellier *et al.*, 2000).

Nisbet *et al.* (1999) described feeding a competitive exclusion culture to pigs at birth and weaning, reducing *Salmonella* Typhimurium shedding post-challenge. Fedorka-Cray *et al.* (1999) reported significantly reduced *Salmonella* load in caecal contents of treated pigs. Genovese *et al.* (2003) similarly reported significant treatment effects of competitive exclusion cultures on caecal colonization and faecal shedding in suckling and weaned pigs. In contrast, Anderson *et al.* (1999) reported widespread *Salmonella* shedding in both treatment and control groups receiving porcine-derived competitive exclusion culture; no statistical analysis was presented due to potential confounding of treatment effects by litter effects. Bergeron *et al.* (2013) described a trial in which weaned pigs were fed *Pediococcus acidilactici* as well as other ‘functional foods’ including cranberry and challenged at 49 days of age with *Salmonella* Typhimurium; the authors did not report a significant treatment effect of diet on *Salmonella* faecal shedding. Mroz and Toride (2002) reported a non-significant treatment effect on *Salmonella* Typhimurium shedding post-challenge when feeding dried bacterial cells to weaned piglets. Sweeney *et al.* (2011) described feeding a commercial mixture of herbs and organic acids to weaner pigs, reporting a significant treatment effect on concentration of *Salmonella* in tonsils at slaughter on day 32 post-challenge.

Three observational studies reported a non-significant association between use of prebiotic or probiotics on-farm and *Salmonella* prevalence (EFSA, 2011; Leontides, Grafanakis and Genigeorgis, 2003; Lo Fo Wong *et al.*, 2004).

SC1.8 Vaccination

Vaccination of pigs for reduction of *Salmonella* was investigated in three systematic reviews (Denagamage *et al.*, 2007; Wilhelm *et al.*, 2012; Wisener *et al.*, 2014). Denagamage *et al.* (2007) concluded that there was evidence that some vaccines
were effective; however, because of the methodological quality of the underpinning evidence, this conclusion might be incorrect. Wilhelm et al. (2012) concluded that evidence regarding vaccine effectiveness in finisher pigs was inconsistent. Wisener et al. (2014) investigated the use of challenge trials to assess *Salmonella* vaccine effectiveness in pigs, concluding that challenge trials tend to report a more favourable outcome relative to controlled trials. The systematic reviews received reporting reliability scores of 7/10 relevant fields for Denagamage et al. (2007), and 9/11 for Wilhelm et al. (2012) and Wisener et al. (2014) using the AMSTAR quality assessment tool.

Vaccination for mitigation of *Salmonella* was investigated in 29 primary research studies found in this review: 10 controlled trials and 19 challenge trials.

Faecal samples from individual market pigs were assayed in two studies with four trials (Arguello et al., 2013b; De Ridder et al., 2014) investigating a live attenuated

Summary-of-findings tables for vaccination

TABLE SC1.6 Controlled trials investigating vaccination, measuring outcomes in finisher pigs

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population/sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(3)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine</td>
<td>Individual faecal culture</td>
<td>4/2</td>
<td>Median = 0.22 (Range: 0.02–0.78)</td>
<td>26.7% (Range: 0.7–22.1)</td>
<td>Moderate</td>
<td>Arguello et al., 2013b; De Ridder et al., 2014</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Pen faecal culture</td>
<td>4/2</td>
<td>Median = 1.41 (Range: 0.17–4.42)</td>
<td>22.5% (Range: 5.3–56.2)</td>
<td>Very Low</td>
<td>Arguello et al., 2013b; Farzan and Friendship, 2010</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

1. For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I^2<60%). If heterogeneity was significant, the median and range of odds ratios from individual studies are presented instead. If only one trial was available, refers to the odds ratio and 95% confidence interval from the individual study.

2. The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I^2<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

3. GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
and an inactivated *Salmonella* Typhimurium vaccine, respectively, yielding a significant median protective OR of 0.22 (Range 0.02–0.78), with moderate confidence (Table SC1.6). Two controlled trials assayed pooled finisher pen faecal samples, with opposing findings: one reported a significant protective treatment effect for an autogenous *Salmonella* Typhimurium vaccine (Arguello *et al*., 2013b) and one a non-significant effect for both an autogenous *Salmonella* Typhimurium and a commercial *Salmonella* Choleraesuis vaccine (Farzan and Friendship, 2010), with very low confidence, partly reflecting the inconsistency of findings (Table SC1.6). Farzan and Friendship (2010) noted several potential problems with their study: the control group had the lowest prevalence of *Salmonella* of any group prior to initiation of the study; pigs had probably been exposed to the *Salmonella* on-farm prior to vaccination; and given that three different *Salmonella* serovars had been identified on-farm, perhaps a multivalent autogenous vaccine might have been more appropriate.

TABLE SC1.7 Controlled trials measuring outcomes in pork carcasses

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population/sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine</td>
<td>Lymph nodes</td>
<td>6/4</td>
<td>Median = 0.41 (Range: 0.12–0.86)</td>
<td>47.5% 27.1% (Range: 12.2–43.8)</td>
<td>Moderate</td>
<td>Arguello et al., 2013b; De Ridder et al., 2014; Maes et al., 2001; Schwarz et al., 2011</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Caecal content</td>
<td>3/2</td>
<td>Median = 0.53 (Range: 0.18–0.89)</td>
<td>46.3% 31.3% (Range: 13.4–43.4)</td>
<td>Moderate</td>
<td>Arguello et al., 2013b; De Ridder et al., 2014</td>
</tr>
</tbody>
</table>

NOTES:

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios from individual studies are presented instead. If only one trial was available, refers to the odds ratio and 95% confidence interval from the individual study.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + OR × ACR), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
Four studies measured *Salmonella* prevalence in carcass lymph nodes (Arguello et al., 2013b; De Ridder et al., 2014; Maes et al., 2001; Schwarz et al., 2011) and two (Arguello et al., 2013b; De Ridder et al., 2014) measured prevalence in caecal contents at slaughter to assess vaccine efficacy. All ten individual trials reported a significant protective treatment effect, although meta-analysis indicated a high degree of heterogeneity in the treatment effect across studies in both datasets (Table SC1.7), with moderate confidence.

Liu et al. (2011) reported a trial in which 2-month-old pigs were immunized with an autogenous *Salmonella Typhimurium* vaccine. Vaccinated pigs had significantly greater mean optical densities of *Salmonella* immunoglobulins relative to control pigs, and consistent with other investigators (Arguello et al., 2013b; Farzan and Friendship, 2010), the authors also reported improved ADG in the vaccinated group. Kolb et al. (2011) reported that vaccinating suckling pigs orally with a modified live *Salmonella* vaccine significantly reduced peritoneal swab and ileo-caecal lymph node prevalence. Marier et al. (2009) administered an attenuated live *Salmonella Typhimurium* vaccine to sows on a farm with a history of *Salmonella* in finishers. The authors reported that there was no significant treatment effect on faecal shedding in sows or piglets, or *Salmonella* spp. prevalence in ileo-caecal lymph nodes or meat juice ELISA of slaughter pigs. However, there was significantly reduced *Salmonella* spp. prevalence in caecal content of slaughter pigs. Additionally, the authors reported that the dominant serovar on-farm was *Salmonella Derby*, and speculated that the findings reflected the limited cross-protection of the *S. Typhimurium* vaccine.

Roesler et al. (2006) reported a controlled trial in which 25 sows were immunized with an autogenous *Salmonella Typhimurium* vaccine and the performance of the pigs in their next litters was compared with that of pigs derived from 37 sows receiving oral enrofloxacin from 14 days pre-farrowing to weaning. *Salmonella Typhimurium* was not detected in the faeces of any of the vaccinated sows’ offspring, from birth to slaughter; in contrast, 47.4% of the pigs in the unvaccinated group shed the bacterium.

The challenge trials identified investigated both modified live and killed vaccines, measuring both *Salmonella* culture and serology outcomes in a range of ages (1–20 weeks). All of the studies measuring culture of faeces or organs reported a significant protective effect of vaccination on *Salmonella* (Bearson and Bearson, 2011; De Ridder et al., 2013a, b; Foss et al., 2013; Gradassi et al., 2013; Groninga et al., 2000; Haneda et al., 2011; Hur et al., 2011; Jordan, Kaiser and Cline, 2013; Kolb et al., 2003; Letellier et al., 2000; Leyman et al., 2012; Matiasovic et al., 2013; Neubauer, Roof and Kolb, 2005; Roesler et al., 2004, 2011; Ruggeri et al., 2014; Springer et al., 2001). The difference in findings across challenge trials relative to controlled trials
in this dataset highlights the potential importance of some contextual predictors of effect (such as baseline prevalence, co-infection with other pathogens, and the effect of herd immunity) on controlled trial results, and supports the observations of Wisener et al. (2014).

As mentioned previously, Hill et al. (2011b) described a Salmonella transmission model and concluded that modifying the pig dose-response curve by the 1 to 2 logs required to significantly reduce human salmonellosis would be very difficult to achieve nationally via on-farm strategies such as vaccination.

Hotes, Traulsen and Kriete (2011) described a stochastic model of non-clinical Salmonella transmission within a pork supply chain, reporting that vaccination of sows and piglets was an effective control measure to decrease slaughter pig Salmonella prevalence, if a large enough proportion of farms adopted vaccination. Soumpasis, Alban and Butler (2012) used stochastic modelling to investigate potential effects of vaccination on Salmonella prevalence in a pig farm. The authors concluded that vaccination, even with a vaccine of hypothetically perfect effectiveness, was not sufficient to eliminate Salmonella infection on a high-risk farm.

SC1.9 MULTIPLE STRATEGIES CONCURRENTLY OR COMPARATIVELY

Bode, Baier and Blaha (2007) applied a suite of practices (intensified cleaning and disinfection practices; improved rodent control; switched to chlorinated drinking water; added Formi [0.6–1.2% potassium formate] to finisher ration; switching to roughest possible feed grind; increased barley to 35% of ration) to three German category three (high risk) farms using a quasi-experimental (i.e. ‘before-and-after’) study design. Individual finisher faecal Salmonella prevalence was reduced in two of three farms.

Alban and Stärk (2005) described a stochastic model of the Danish pig production system, with the individual pig as the unit of interest. The variables with maximum effect on the Salmonella prevalence on the final carcass were: (1) number of herds with a high prevalence of Salmonella; (2) singeing efficiency; (3) contamination and cross-contamination at degutting; and (4) cross-contamination during handling. The largest reduction was observed when several factors were improved concurrently.

Bollaerts et al. (2010) described a stochastic risk model for Salmonella prevalence in Belgian minced pork, from primary production to preparation and consumption. Reducing seroprevalence of pigs at primary production was less effective in reducing human risk relative to strategies applied at processing.
The risk assessment reported by EFSA (2010) on Salmonella in slaughter or breeder pigs considered the potential for application of multiple interventions pre-slaughter and concluded that:

‘farm and transport interventions are likely to vary in their ability to change slaughter pig prevalence by a sufficient amount to change numbers of (human) salmonellosis cases. However, a combination of farm interventions applied across a large proportion of farms is likely to have a cumulative effect in reducing slaughter pig prevalence’.

SC1.10 MISCELLANEOUS PREDICTORS

Observational studies have identified several factors that may not be directly amenable to an intervention but are important to understand as they influence other intervention strategies’ effectiveness. For example, the importance of sow shedding on nursery and finisher pig prevalence has been identified by a large baseline study of Salmonella prevalence in European herds (EFSA, 2011) and also in cross-sectional studies both in Europe (Correge and Hemonic, 2012) and North America (Wilkins et al., 2010). Similarly, Hill et al. (2011a) described a farm-level stochastic model of Salmonella transmission in pigs for individual EU member states, in which the most influential predictor was sow Salmonella prevalence. Larger farms have been reported to have greater odds of Salmonella in finishers, measuring serology or culture, in five cross-sectional studies (Bruhn, Rushton and Reist, 2011; Correia-Gomes et al., 2012, 2013; Garcia-Feliz et al., 2009; Van der Wolf et al., 2001a). Ikwap et al. (2014), in a survey of Ugandan pig farms, reported that an ‘intensive’ method of pig farming was associated with a significantly reduced odds of positive Salmonella culture in weaner pigs, relative to ‘tethering and roaming’ (OR=0.11; 95% CI 0.02–0.64), and ‘intensive’ methods also were associated with significantly reduced odds relative to ‘semi-intensive’ methods (OR=0.12; 95% CI (0.01–0.96)).

SC1.11 References cited in Summary Card 1

Farzan, A. & Friendship, R.M. 2010b. A clinical field trial to evaluate the efficacy of vaccination in controlling Salmonella infection and the association of Salmonella-shedding and weight gain in pigs. Canadian Journal of Veterinary Research, 74: 258–263.

the 10th International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork. Portland, ME, USA.

SC2.1 SUMMARY OF KEY FINDINGS

This Summary Card covers the evidence for interventions implemented variously at transport to slaughter, at lairage or prior to slaughter, for control of *Salmonella* in pork. Overall, we found a relatively small volume of literature investigating similar outcomes in the population of interest (i.e. finisher pigs or carcasses), which limited our ability to perform meta-analysis for estimation of pooled summary estimates of effect.

SC2.1.1 Transport to slaughter

- Pigs transported to slaughter may yield a significantly increased carcass prevalence of *Salmonella* relative to those not experiencing transport, reflecting exposure to increased shedding in transit, and also to off-farm sources of infection. The trailer itself, even after washing and disinfection, may potentially be a source of infection. However, stochastic modelling suggests that even though hygiene during transportation to slaughter could be improved, this is likely to have less impact on carcass prevalence or human salmonellosis than other post-farm interventions.

SC2.1.2 Lairage

- While seven of eight trials investigating avoidance of lairage as an intervention, and measuring caecal content of slaughter pigs, reported a protective treatment effect on *Salmonella* prevalence; four trials measuring lymph node prevalence yielded opposing findings. Similarly, investigations comparing carcass *Salmonella* prevalence in pigs exposed to contaminated or uncontaminated lairage reported opposing findings.

SC2.1.3 Logistic slaughter

- Three primary research studies (controlled trial, quasi-experiment and a cohort study) report a non-significant treatment effect for logistic slaughter on prevalence of *Salmonella* in carcasses. Similarly, five stochastic models investigated logistic slaughter, reporting treatment effects from ‘negligible’ to ‘insufficient to reach target prevalence, in the absence of other measures applied concurrently’.
SC2.1.4 Overall implications

- Although the potential for animals that are not infected with *Salmonella* on-farm to become exposed and/or infected *en route* to slaughter and processing is well-recognized, the evidence supporting interventions for reduction of *Salmonella* at transport, lairage, or in the timing or organization of slaughter (i.e. logistic slaughter), remains inconsistent, and with a ‘very low’ to ‘moderate’ level of confidence.

- The level of evidence and inconsistent treatment effects reported reflect the complexity of potential transmission routes in this process. Also, there are a large number of known and unknown predictors and confounders for risk of infection from farm to slaughter, including: animal susceptibility; cut-points for categorization of herd prevalence; extent and intensity of staff training; efficacy of abattoir standard hygienic practice implementation; and time of slaughter relative to elapsed time since start of shift.

- The varied observations from primary research as well as stochastic models measuring the effects of interventions at multiple points in the pork production chain suggest that while transport, lairage, and logistic slaughter interventions may reduce *Salmonella* contamination of carcasses, other areas in the chain (particularly processing) offer more effective intervention points to attempt to ultimately reduce incidence of human salmonellosis. However, more effective reduction in human cases may be achieved by intervening concurrently on-farm; during transport and lairage; and slaughter and processing.

SC2.2 INTERVENTION DESCRIPTION

This Summary Card summarizes the evidence for interventions that can be implemented during transport and at lairage, and policies to segregate slaughter of herds with different contamination levels to reduce *Salmonella* contamination of pork. Specific categories of interventions covered in this Summary Card are:

- **Transport to slaughter:** refers to the transportation of market animals from the final farm production unit to the abattoir.

- **Lairage:** refers to holding facilities at the abattoir for animals awaiting slaughter.

- **Logistic slaughter:** refers to the strategic scheduling of slaughter of animals from herds categorized as ‘low risk’ for the pathogen prior to animals from herds categorized as ‘higher risk’, to minimize the potential for cross-contamination.
SC2.3 TRANSPORT TO SLAUGHTER

Primary research investigating transport to slaughter included one controlled trial, two quasi-experiments, and one case-control study, as well as six stochastic models.

Hurd et al. (2002) investigated bacterial flora in pigs experiencing or not experiencing transport and lairage prior to slaughter. *Salmonella* prevalence was significantly less in those animals not experiencing transport and lairage, regardless of sample matrix assayed (faecal material, caecal contents, or carcass lymph nodes). Serotyping of isolates demonstrated a greater abundance of strains at the abattoir relative to on-farm, suggesting that some animals were infected from sources off-farm.

Rajkowski, Eblen and Laubauch (1998), using a quasi-experimental design, sampled stock trailer floors prior to and after cleaning and disinfection, across all four seasons and after both short (<500 miles) and long (>500 miles) hauls. The authors report no significant difference in *Salmonella* prevalence by season or length of haul, with contamination in 80% of bedding sampled. Similarly, Dorr, Lowman and Gebreyes (2005) sampled ten stock trailers from each of four truck wash stations in North Carolina, United States of America, all using different methods of disinfection. While the post-wash prevalence in trucks from one station (using recycled water and Virkon™ disinfectant) was 0%, two stations had trucks with detectable *Salmonella* post-wash (20% and 45%, using recycled water with phenol, and fresh water with soap and phenol, respectively) and one station, using and recycled water and phenol, had 100% *Salmonella* prevalence in trucks post-wash (an actual increase in prevalence after washing-disinfection).

Mannion et al. (2007) similarly used quasi-experimental design to study effectiveness of truck washing and disinfection in removing *Salmonella*. The authors reported that of 108 samples taken post-wash after carrying Irish high-risk herds and 54 taken post-wash after carrying low-risk herds, 18% and 6%, respectively, were still *Salmonella* positive. The authors concluded that current washing protocols were inadequate.

Rostagno and Lay (2011) described a study in which market pigs were mixed for six hours with another pig, or transported for an hour, or both, prior to being challenged with a low dose (10⁴ CFUs) of *Salmonella* Typhimurium, with slaughter six hours post-challenge. The authors reported that all treatment groups had significantly greater concentrations of *Salmonella* in the ileum, with pigs receiving both treatments (i.e. mixing and transport) also having significantly greater concentrations of *Salmonella* in caecal contents, and a non-significant treatment effect on lymph node *Salmonella* concentrations. The authors concluded that pre-slaughter stress increased animal susceptibility to low-dose *Salmonella* challenge.
Rostagno, Eicher and Lay (2009) described a study in which market pigs were randomly assigned to 12 hours of feed withdrawal, or two hours of transportation, or both, three days after intra-nasal challenge with *Salmonella Typhimurium*. The authors reported that the treatment group receiving both feed withdrawal and transportation had significantly greater *Salmonella* concentration in ileal contents.

Gotter *et al.* (2012) reported a German farm-level case-control study assaying slaughter pigs’ meat juice ELISA, investigating risk factors for farm-level *Salmonella* infection. The authors reported that movement of individual animals during the fattening period (although transportation is not described as part of ‘movement’) increased the odds of a farm being positive (odds ratio (OR) = 5.3, 95% confidence intervals (CI) (1.35–20.35)). Failure to use a separate transporter for each age group of animals was significantly associated with increased odds of *Salmonella* on-farm (OR = 11.4, 95% CI (1.94–66.18)). Unexpectedly, failure to clean the transporter was significantly associated with reduced odds of *Salmonella* on-farm (OR = 0.2, 95% CI (0.05–0.72)).

Alban and Stärk (2005) describe a stochastic model of *Salmonella* prevalence from farm to carcass. The authors reported no predicted significant effect on *Salmonella* prevalence for separate transportation of herds of different risk levels.

The European Food Safety Authority (EFSA) reported a quantitative risk assessment of *Salmonella* in slaughter and breeder pigs (EFSA, 2010). Transport and lairage did not have a major effect on the modelled outcome (human cases) in any of the scenarios, even when modelling improved hygiene practices with 100% uptake and effectiveness. However, the authors noted that ‘neglecting the pre-harvest stage inevitably leads to maintaining the flow of *Salmonella* into the slaughterhouse’ (EFSA, 2010).

Hill *et al.* (2011) described stochastic modelling of a transport and lairage model for *Salmonella* transmission in pigs for individual European Union member states. For both case studies presented, the model predicted a small increase in the prevalence of contaminated lymph nodes after transport, with large variation in prevalence across batches. The authors concluded that factors such as stress can have large effects on individual batch prevalence, but that this occurs relatively rarely across all batches processed, and therefore does not have large effect on mean national *Salmonella* prevalence between farm and slaughter.

Hotes, Traulsen and Krieter (2012) also described a cost model for estimating the potential costs associated with segregated transport of slaughter pigs to the abattoir, based upon-farm *Salmonella* risk. The authors reported that costs incurred in such a programme would be driven by the proportion of changed shipments (as de-
terminated by the relationship between low and high prevalence farms), as well as
selected cut-point for categorization, and the additional distance travelled per re-
structured shipment.

Krebs and Belloc (2012) described a model for Salmonella contamination in pork
carcasses and potential effects of interventions applied at transport, lairage and
slaughter. Interventions applied at transport had the least impact on prevalence in
the three areas studied.

The Irish Agriculture and Food Development Authority (Teagasc) reported a sto-
chastic model studying the process from slaughter to boned-out cuts, supported
by abattoir and retail surveys in the Republic of Ireland and Northern Island
(Teagasc, 2010); in the Republic of Ireland, pigs were also sampled for Salmonella
from farm, through transport and lairage, to slaughter. These surveys demonstrat-
ed that transport of Salmonella-negative pigs in contaminated trucks could be a
means of Salmonella infection. Cold power washing of transport trucks was in-
adequate to remove Salmonella, and some trucks were more widely contaminated
after washing.

SC2.4 LAIRAGE

The effect of lairage and potential interventions to mitigate its effect were investi-
gated in 10 primary research studies: seven controlled trials, one quasi-experiment,
and two cross-sectional studies, as well as three stochastic models. Additionally,
two challenge studies were conducted in conditions designed to simulate lairage.

Five controlled trials investigated the effect of lairage relative to no lairage on indi-
vidual animals’ Salmonella prevalence in caecal content (Fravalo et al., 2003; Hurd
et al., 2001, 2002; Larsen et al., 2004; Rostagno, Hurd and McKean, 2005), with
six of seven individual trials reporting a protective treatment effect (median OR =
0.47, range (0.11–1.06)) for ‘no lairage’, with low confidence (Table SC2.1). Three
controlled trials investigated the effect of lairage relative to none (Hurd et al., 2001,
2002; Larsen et al., 2004) with prevalence of carcass lymph nodes as the outcome
measure; opposing results were reported (Table SC2.1). Low confidence in both
summary estimates reflects significant heterogeneity of effects across trials.

Two studies investigated carcass Salmonella prevalence following animal exposure
to contaminated or non-contaminated lairage. Boes et al. (2001) described a con-
trolled trial in which pigs from a Salmonella-negative herd were kept either in
clean lairage or in lairage contaminated by faeces containing Salmonella, for two
to four hours; there was a non-significant difference in carcass Salmonella preva-
lence between the two groups. Arguello et al. (2014) studied the effect of slaughter pig exposure to previously contaminated lairage on individual Salmonella carcass prevalence in pigs originating from herds categorized as one of three (low, medium or high) risk levels for Salmonella infection. Similarly, a non-significant treatment ($P > 0.05$) effect was observed.

Schmidt et al. (2004) described four trials in which pigs arriving at an abattoir were randomly assigned to pens, either treated (cleaned and disinfected) or non-treated, prior to slaughter; carcasses were subsequently cultured for Salmonella (faeces, caecal contents, and ileo-caecal lymph nodes). Inconsistent results were reported, with one trial yielding a non-significant treatment effect for cleaning-disinfection on Salmonella, two trials yielding a significantly harmful treatment effect, and one trial yielding a significantly protective effect. Pen swabs taken after cleaning and disinfection in the treated pens but prior to animal entry confirmed that cleaning had been effective, and environmental Salmonella prevalence was significantly reduced in treated pens relative to control pens.

Two challenge trials were conducted in conditions designed to simulate lairage. Wall et al. (2010) investigated the use of a phage cocktail to reduce Salmonella in slaughter pigs, reporting no significant treatment effect on prevalence, assaying either ileo-caecal lymph nodes or faecal samples. However, caecal Salmonella concentrations were significantly reduced in the treatment group. Callaway et al. (2003) reported a non-significant reduction, after four hours of exposure to feed containing sodium chlorate, on Salmonella prevalence in the tonsils of market pigs, and no difference in lymph node or intestinal content Salmonella status between treatment and control groups. In contrast, in a quasi-experiment using 10 naturally infected pigs, the same authors report that chlorate significantly reduced caecal Salmonella colonization.

In a cross-sectional study, Milnes et al. (2009) studied potential effect of lairage on Salmonella contamination of intestinal contents in slaughter pigs, reporting that pigs held in lairage for more than 12 hours had significantly greater odds (OR = 2.83, 95% CI (1.33–6.01)) of Salmonella contamination relative to those held for 12 hours or less. In contrast, Kim and Song (2009) reported that increased duration of lairage (in hours) was protective of Salmonella carcass contamination.

Bollaerts et al. (2010) describe a stochastic pork farm-to-fork risk model (METZOON) and its use in modelling the effects of 14 intervention scenarios on reducing human salmonellosis cases. Scenarios include reduction of Salmonella prevalence at lairage, as measured by both internal and external contamination, by 10%, 25%, 50% or 75%. The authors categorized the scenarios involving reduction
of internally contaminated animals as 'less effective' and the scenarios involving reduction of externally contaminated animals as 'not effective', relative to other scenarios considered (e.g. during polishing, evisceration or chilling).

Delhalle et al. (2009) described a quantitative risk model of *Salmonella* prevalence in Belgian minced pork from lairage to consumption; scenarios include effect of changes in prevalence at various stages of the pork production chain. Reduction of *Salmonella* prevalence in pigs entering lairage by 10%, 25% and 75% was modelled, yielding a predicted relative reduction in human salmonellosis cases ranging from 24.7% to 84.2%.

Summary-of-findings table for lairage interventions

TABLE SC2.1. Controlled trials investigating the effect of presence or absence of lairage

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples expected to be Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>No lairage</td>
<td>Carcasses (Caecal content)</td>
<td>8/5</td>
<td>Median = 0.19 (Range: 0.12–1.06)</td>
<td>20.7%</td>
<td>4.8% (Range: 2.4–24.7)</td>
<td>Low</td>
</tr>
<tr>
<td>No lairage</td>
<td>Carcasses (Lymph nodes)</td>
<td>4/4</td>
<td>Median = 0.79 (Range: 0.37–2.19)</td>
<td>35.6%</td>
<td>30.4% (Range: 14.5–54.3)</td>
<td>Low</td>
</tr>
</tbody>
</table>

NOTES:

1. For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios from individual studies are presented instead. If only one trial was available, refers to the odds ratio and 95% confidence interval from the individual study.

2. The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

3. GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
Similar to the findings described above for effect of transport, Hill et al. (2011) reported that their stochastic model of transport and lairage predicts a small increase in the prevalence of contaminated lymph nodes after lairage, with large variation in prevalence across batches.

The farm to abattoir surveys reported by Teagasc (2010) as inputs to the stochastic model described, identified that lairage was a source of infection for pigs (and carcasses) from herds categorized as ‘low risk’, and pigs from ‘high risk’ herds were a significant source of lairage contamination. Expert elicitation performed in conjunction with the field surveys identified logistical difficulties and ‘just in time’ delivery difficulties as barriers to minimizing time in lairage; inadequate facilities and resources were suggested as barriers to improved cleaning of lairage.

SC2.5 LOGISTIC SLAUGHTER

Logistic slaughter was investigated in three primary research studies (one controlled trial, one quasi-experiment and one cohort study), and five stochastic models.

Boes et al. (2001) mixed ‘control’ pigs from Salmonella-negative herds, with Salmonella-positive pigs in lairage; all were slaughtered together. In contrast, ‘intervention’ pigs from Salmonella-negative herds were kept separately and slaughtered first at the abattoir. Salmonella carcass prevalence was slightly greater for the intervention group relative to the control group.

Arguello et al. (2014) described a study in which 42 pig herds were categorized as low, medium, or high risk for Salmonella infection based on serum ELISA of finishers, then all of the low risk herds were slaughtered at the same abattoir on day one, high risk herds on day two, and medium risk herds on day three. The authors report no significant treatment effect on carcass Salmonella prevalence, with the greatest absolute number of contaminated carcasses occurring on day three (i.e. in the carcasses originating from herds categorized as ‘medium’ risk).

Swanenburg et al. (2001) described a cohort study in which farms were categorized as low, medium or high risk for Salmonella infection based on finisher serum ELISA. Then slaughter pigs were processed at one abattoir, with low risk herds going first in the afternoon, followed by high-risk herds, and then more low risk herds. In a second trial, 200 pigs from Salmonella-free farms were slaughtered after 200 pigs from Salmonella-positive farms. In both trials, prevalence of Salmonella was greater in herds considered positive relative to those considered negative. However, in trial two, more Salmonella-positive samples were cultured...
from carcasses originating from low risk herds, slaughtered at the beginning of the abattoir shift, than at the end. The authors cite Snijders (1976) in hypothesizing that equipment at the end of a shift was contaminated even after it was cleaned, and the first animals through the line on the next shift physically removed the residual contamination.

Alban and Stärk (2005) describe a stochastic model of Salmonella prevalence from farm to final carcass, which examined logistic slaughter as a potential intervention. A minor (3.9% vs 3.8%) difference in prevalence of human salmonellosis was achieved only if there was no mixing and the stay in lairage was short (<3 hours).

Baptista et al. (2011) described a Danish stochastic model estimating carcass Salmonella prevalence in the pork production chain. The authors report that sanitary slaughter did not reduce carcass contamination to less than 1%, in 90% of model iterations. When only level 1/2/3 (i.e. higher risk) pigs were subjected to logistic slaughter, and level 0 pigs to routine abattoir procedures, the model did not achieve a (targeted) national Salmonella prevalence of 1%.

EFSA (2010) reported a quantitative risk assessment of Salmonella in slaughter and breeder pigs. The authors concluded that unhygienic practices enabling direct or indirect, or both, faecal contamination during transport and lairage increase the risk of carcass contamination with Salmonella. However, due to insufficient quantitative data on the microbial load of Salmonella on the skin of slaughter pigs, it was not possible to quantify the effect of cross-contamination during transport and lairage.

Goldbach and Alban (2006) described a stochastic cost-benefit model of the Danish pork production industry, comparing the effects of feeding home-prepared feed, feeding acid, hot water decontamination, and sanitary slaughter. Hot water decontamination was found to be the only economically viable option.

Hotes, Traulsen and Krieter (2011) described a stochastic model for Salmonella transmission in a pork production chain. All scenarios involving logistic slaughter produced a prevalence of carcass contamination not significantly different from the baseline (i.e. no logistic slaughter) scenario.

Teagasc (2010), reporting on the Irish farm to slaughter surveys of pigs and pork carcasses for Salmonella, concluded that, on an individual level, there was little association between serological status and culture of rectal or caecal contents at slaughter; therefore, logistic slaughter based on historical serological data was unlikely to be effective in reducing Salmonella prevalence on carcasses. They also
identified inadequate lairage design as a potential barrier to successful implementation of logistic slaughter.

SC2.6 REFERENCES CITED IN SUMMARY CARD 2

Fravalo, P., Cariolet, R., Quegiiune, M. & Salvat, G. 2003. Individual effect of the steps preceding slaughtering on *Salmonella* contamination of pigs. pp. 61–64, in: Pro-

SUMMARY CARD 3:
Pork Chain – Processing Interventions

SC3.1 SUMMARY OF KEY FINDINGS

This Summary Card covers the evidence for interventions implemented at various stages of pork processing on Salmonella control.

SC3.1.1 Scalding and singeing

- Results from a previous systematic review and several studies of different designs (quasi-experimental, challenge trial and cross-sectional) indicate that these steps can provide a large reduction in Salmonella prevalence on pork carcasses when operating under good hygienic practices, with low (scalding) to moderate (singeing) confidence in the specific magnitudes of effect from quasi-experimental field studies.

SC3.1.2 Post-slaughter and pre-chill

- Results from three controlled trial studies conducted under commercial conditions indicate that organic acid washes can significantly reduce Salmonella prevalence on pork carcasses prior to chilling, with high confidence in the specific magnitudes of effect; while three studies suggest a similar trend for thermal treatments, but with an overall non-significant effect. One study each found that an acidified sodium chlorite wash, hot water/organic acid wash combinations, steam vacuuming, and knife trimming may also be effective. Results with low to very low confidence from six quasi-experimental studies also found that various pre-chill washes were effective to reduce Salmonella prevalence.
 - Several challenge trials conducted under laboratory and pilot plant conditions found that several different wash treatments can reduce inoculated Salmonella levels on pork carcasses. However, enhanced formulations (e.g. containing organic acids or other chemicals) did not always provide significant benefits compared with ambient water washes alone. There is low to very low confidence in results of these studies due to the artificial study conditions, small sample sizes, and, in some cases, large variation in effect between studies.

SC3.1.3 Chg

- The primary purpose of chilling is to inhibit microbial growth; however, the process also can have an ‘intervention’ effect on reducing Salmonella. One
previous systematic review that included 13 quasi-experimental studies found that chilling tends to reduce *Salmonella* prevalence on pork carcasses, but some studies found higher prevalence values post- vs pre-chilling, indicating potential for cross-contamination during this step. The confidence in the specific quantitative estimate of *Salmonella* reduction due to chilling is very low due to the large variation in results among studies and possible risks of bias in the available studies.

- One controlled trial conducted under commercial conditions found, with low confidence, that spray chilling (intermittent water sprays during the first 8 h) reduced *Salmonella* on carcasses compared with conventional air chilling at 4°C.

SC3.1.4 Packaging

- Various laboratory challenge trials indicate that modified packaging and preservation with various chemicals and extracts have potential to reduce *Salmonella* concentrations and growth in pork products during distribution and storage.

SC3.1.5 Multiple processing stages

- One systematic review found evidence with low confidence from three quasi-experimental studies that HACCP implementation on its own is not linked to reductions in *Salmonella* prevalence on pork carcasses.
- Two quasi-experimental studies found that, with low confidence, cleaning and disinfection practices in processing plants can lead to reductions in *Salmonella* prevalence on environmental samples. Two cross-sectional studies also found relationships between good hygienic practices and lower *Salmonella* prevalence.
- Results from eight other quasi-experimental studies suggest a clear trend for *Salmonella* to be reduced to very low levels by implementing multiple interventions throughout processing from slaughter to chilling, but with very low confidence in the specific magnitude of effect due to possible confounding factors and variation among studies.
- Six challenge trials conducted under laboratory conditions found, with low to very low confidence, that various non-thermal interventions (UV irradiation, plasma, and supercritical carbon dioxide) could be promising to further control *Salmonella* in pork.
- Various quantitative microbial risk assessment models (QMRAs) and other simulation models suggest that multiple intervention combinations are probably needed to achieve the largest reductions in *Salmonella* contamination and human illness, but the extent of external generalizability of these models to other settings and contexts is unclear.
SC3.1.6 Overall implications

- Moderate to high confidence was identified across multiple studies for the effect estimates of singeing and pre-chill thermal and organic acid washes to reduce *Salmonella* prevalence on pork carcasses.
- Other intervention effect estimates were of lower confidence due to one or more of the following factors: potential for confounding bias, small sample sizes, variability in effects across studies, and laboratory conditions that might not reflect real-world settings.
- In challenge trials, enhanced washes (e.g. containing organic acids or other chemicals) did not always achieve more effective reductions compared with ambient temperature water washes alone.
- Greatest reductions in *Salmonella* are likely to be achieved when multiple interventions are implemented in combination, as part of a “multiple-hurdle” strategy.
- Potential for increases in *Salmonella* prevalence at various points in the chain (e.g. evisceration) highlight the importance of preventing cross-contamination and maintaining good hygienic practices.

SC3.2 INTERVENTION DESCRIPTION

This Summary Card summarizes the evidence for a range of interventions that can be implemented at the processing level to reduce *Salmonella* contamination of pork. Specific categories of interventions where evidence was identified in the literature on *Salmonella* control and that are covered in this Summary Card include:

- **Organic acid washes**: refers to washes with antimicrobials such as lactic, acetic or citric acid that affect microbial growth through disruptions to nutrient transport and energy generation, and can cause injury to microbial cells through their low pH (Wheeler, Kalchayanand and Bosilevac, 2014).
- **Washes containing other chemicals and oxidizers**: includes washes containing other *miscellaneous products* that destroy bacteria through various actions, such as oxidation and disruption of cellular functions (Wheeler, Kalchayanand and Bosilevac, 2014), or that prevent bacterial attachment to meat. Examples include chlorine solutions, trisodium phosphate, acidified sodium chlorite, electrolysed oxidized water, and ozone.
- **Water washes**: refers to an ambient, warm or cold temperature wash to physically remove contamination from carcasses.
- **Thermal washes**: refers to various heat treatment washes to destroy microbial cells. Examples include hot water and steam pasteurization.
- **Steam vacuuming** refers to steam treatment of carcasses to loosen soil and destroy bacteria, followed by application of a vacuum to remove contaminants.
• **Non-thermal interventions**: refers to alternative, non-chemical and non-thermal interventions that aim to reduce microbial contamination while preserving product quality and nutrients that can be affected by thermal treatments (Wheeler, Kalchayanand and Bosilevac, 2014). Examples include ionizing irradiation, ultraviolet (UV) light, plasma gases, and high pressure processing.

• **Modified packaging and preservation techniques**: refers to a range of interventions that can be applied to prevent spoilage and inhibit microbial growth during final product distribution and storage.

• **Good hygienic and production practices**: includes a range of different practices that are implemented in processing plants and that may have a pathogen-reduction effect. Examples with evidence included in this summary are:

 – **Scalding** is the process of immersing pigs in hot water tanks with the primary purpose of softening hairs on the pig skin to make them easier to remove.
 – **Singeing** is the process of removing remaining hairs from a pig carcass.
 – **Chilling** is the step at the end of the slaughter process and before fabrication, for rapidly reducing the carcass temperature to prevent microbial growth, and preserve product quality.
 – **Hazard analysis critical control point (HACCP)** is a system that identifies, evaluates, and controls hazards which are significant for food safety (Codex Alimentarius Commission, 2003).

These interventions can be applied at various stages of the processing line, with some steps themselves having a pathogen-reduction effect. Evidence was identified for interventions at the following stages of processing, each of which is presented and discussed separately below:

• Scalding and singeing
• Post-slaughter and pre-chill
• Chilling
• Packaging
• Multiple and unspecified processing stages

SC3.3 SCALDING AND SINGEING

One previous systematic review of primary research studies describing the prevalence of *Salmonella* in pork from slaughter to chilling found that both the scalding and singeing steps were associated with a decrease in prevalence (O’Connor et al., 2012). However, the review also noted that following these steps, evisceration, splitting and post-mortem inspection were associated with an increase in *Salmonella* prevalence, highlighting the importance of preventing cross-contamination.
following scalding and singeing (O’Connor et al., 2012). The review met 10/11 recommended reporting reliability criteria using the AMSTAR quality assessment tool.

Six quasi-experimental studies conducted under commercial conditions were identified that evaluated the effect of either scalding or singeing in pre- vs post-samples, five of which reported extractable data and are summarized in Table SC3.1. The studies found that both scalding and singeing significantly reduced *Salmonella* prevalence on pork carcasses (Davies, McLaren and Bedford, 1999; Bolton et al., 2002; Pearce et al., 2004; Da Silva et al., 2012; Cocora et al., 2013; Hernandez et al., 2013). The confidence in the estimate of reduction for singeing is moderate, while for scalding it is low due to significant heterogeneity in the findings among studies.

One challenge trial conducted under pilot plant conditions (Table SC3.2) found that singeing reduced inoculated *Salmonella* levels on pork carcasses by more than 2 logs compared with no treatment (Clayton, 2002).

One cross-sectional study in Canada found that contamination of the scald tank water with *Salmonella* was significantly associated with a higher *Salmonella* prevalence in carcass lots (Letellier et al., 2009), while another cross-sectional study in Thailand found that re-use of the scalding tank water in multiple processing batches was associated with a higher *Salmonella* prevalence on carcass swabs (Tadee, Boonkhot and Patchanee, 2014). A cross-sectional study of 10 Belgian slaughterhouses found that scalding with steam was associated with a lower odds of identifying *Salmonella* on post-chill pork carcasses (Delhalle et al., 2008). Another cross-sectional study found that increasing time spent in the singeing unit was associated with lower *Salmonella* prevalence in carcass swabs (Marier et al., 2014).

SC3.4 POST-SLAUGHTER AND PRE-CHILLING

Seven controlled trials conducted under commercial conditions were identified that evaluated the effect of pre-chill washes on *Salmonella* reduction in pork (Table SC3.3). Three studies investigated hot water (74°C for 5 sec, and 76.5–81°C for 15 sec) or steam (82–85°C for 60 sec), finding a trend for reduction in *Salmonella* prevalence, but an overall non-significant effect, with high confidence (Eggenberger-Solorzano et al., 2002; Trivedi, Reynolds and Chen, 2007; Hamilton et al., 2010). Four studies found that organic acid sprays (2–5% lactic acid for up to 60 sec and 1.8–2% acetic acid for 3–25 sec) also significantly reduced *Salmonella* prevalence on carcasses, with high confidence in the results when compared with no treatment (Epling, Carpenter and Blankenship, 1993; Frederick et al., 1994; Eggenberger-Solorzano et al., 2002). One study found that an acidified sodium chlorite
TABLE SC3.1 Quasi-experimental studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/ outcome sample</th>
<th>No. trials or studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalding</td>
<td>Carcass</td>
<td>4/4</td>
<td>Median = 0.03 (Range: 0.02–0.17)</td>
<td>34.8% (Range: 0.9–8.3)</td>
<td>Low</td>
<td>Davies, McLaren and Bedford, 1999; Bolton et al., 2002; Pearce et al., 2004; Hernandez et al., 2013</td>
</tr>
<tr>
<td>Singeing</td>
<td>Carcass</td>
<td>4/4</td>
<td>MA = 0.26 (95% CI: 0.15–0.43)</td>
<td>18.1% (95% CI: 3.3–8.8)</td>
<td>Moderate</td>
<td>Davies, McLaren and Bedford, 1999; Pearce et al., 2004; Da Silva et al., 2012; Hernandez et al., 2013</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average odds ratio estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I^2<60%). If heterogeneity was significant, the median and range of odds ratios from individual studies is presented instead. If only one trial was available, refers to the odds ratio and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) The percentage of samples expected to be positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The expected percentage in the intervention/treatment group was calculated using the following formula: $(OR \times ACR / 1 - ACR + [OR \times ACR])$. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I^2<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.

TABLE SC3.2 Challenge trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/ outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Log CFU/cm² reduction(1)</th>
<th>GRADE rating(2)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singeing</td>
<td>Carcass</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 2.20 (95% CI: 2.10–2.30)</td>
<td>Low</td>
<td>Clayton, 2002</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

(1) For interventions with multiple trials, refers to the average odds ratio estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I^2<60%). If heterogeneity was significant, the median and range of odds ratios from individual studies is presented instead. If only one trial was available, refers to the odds ratio and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
spray (900–1100 ppm for 15 sec) reduced *Salmonella* prevalence on pork carcasses compared with the control group (Hamilton *et al.*, 2010), and one study found that a combination of hot water and organic acid washes also tended to reduce *Salmonella* prevalence on pork carcasses compared with a control group (Eggenberger-Solorzano *et al.*, 2002). Le Roux, Minvielle and Gault (2008) found that steam vacuuming (at 90°C for 15 sec) was equally as effective as knife trimming to reduce *Salmonella* prevalence on pork carcasses (Table SC3.3).

Four other controlled trials conducted under commercial conditions were found, but none identified *Salmonella*, precluding evaluation of intervention efficacy on this pathogen (Prasai *et al.*, 1992; Fu, Sebranek and Murano, 1994; Morris *et al.*, 1997; Carr *et al.*, 1998). One of these studies evaluated the effect of hot fat trimming against *Salmonella* in pork, finding that it resulted in significantly lower coliform counts on pork carcasses compared with those that were not trimmed of fat, but had no effect on *Staphylococcus* spp., lactic acid bacteria or aerobic plate counts (Carr *et al.*, 1998). The other three trials found mixed evidence for the effect of pre-chill wash interventions: one study found that a trisodium phosphate wash, dip or spray was not effective to reduce aerobic plate counts on pork carcasses and loins (Morris *et al.*, 1997); another found that organic acid sprays had limited effect on aerobic plate counts, coliforms, *E. coli* and other pathogens on pork loins (Fu, Sebranek and Murano, 1994); and the third found that a hot (55°C) water spray with 1% lactic acid did not significantly reduce aerobic plate counts on pork carcasses (Prasai *et al.*, 1992).

Six quasi-experiments conducted under commercial conditions were identified evaluating the effect of pre-chill washes on *Salmonella* control in pork (Table SC3.4). Five of these studies were conducted under natural contamination conditions and found that a lactic acid wash (Larsen *et al.*, 2003), unspecified pre-chill washes (Mannion *et al.*, 2012; Hernandez *et al.*, 2013), and multiple interventions applied post-evisceration and pre-chilling (Creus, Pérez and Mateu, 2005; Da Silva *et al.*, 2012) tended to reduce *Salmonella* prevalence pre- vs post-treatment, with moderate to low confidence in the specific estimates of reduction. The other study found that a warm (22–23°C) water wash at high pressure (8 bar) reduced *Salmonella* prevalence on carcasses that were artificially inoculated with faecal contamination (Brustolin *et al.*, 2014).

A total of 14 challenge trials were identified that investigated the efficacy of post-slaughter and pre-chill interventions on pork carcasses in laboratory and pilot plant settings, eight of which reported extractable data and are summarized in Table SC3.5. The available evidence indicates that ambient water washes and washes containing organic acids or other chemicals tend to be effective in reducing
inoculated *Salmonella* concentrations on various pork carcass tissues (Frederick *et al*., 1994; van Netten *et al*., 1994; Morris *et al*., 1997; Fabrizio and Cutter, 2004; Choi *et al*., 2009; Carpenter, Smith and Broadbent, 2011), but enhanced washes did not always provide significant benefits compared with simple ambient water washes alone (Fabrizio and Cutter, 2004; Carpenter, Smith and Broadbent, 2011; Machado *et al*., 2013). The studies in Table SC3.5, as well as others that did not report extractable data, found that combinations of carcass washes and other processing interventions tended to achieve the largest reductions in inoculated *Salmonella* levels (Choi *et al*., 2009; Christiansen, Krag and Aabo, 2009; Kich *et al*., 2011; Morild *et al*., 2011; King *et al*., 2012; Machado *et al*., 2013; Mansur *et al*., 2015). There is low to very low confidence in these specific estimates of reduction due to the artificial study conditions, small sample sizes, and in some cases heterogeneity among the studies.

Preliminary results from another systematic review and network meta-analysis of water, thermal, and organic acid/chlorine-based wash interventions to control *Salmonella* on pork carcasses or carcass parts with skin found that there was no strong evidence for the superiority of any one of the three treatment types (Totton *et al*., unpublished data). This review found that the most consistently observed association was a positive effect of organic acid/chlorine-based washes on the reduction in *Salmonella* prevalence.

One cross-sectional study found that use of chlorine in the wash water was associated with a lower *Salmonella* prevalence on carcass swabs (Tadee, Boonkhot and Patchanee, 2014).

A European Union QMRA found that implementation of pre-chill interventions to consistently reduce *Salmonella* concentrations by two logs could reduce the number of salmonellosis cases by over 90% in member states (EFSA, 2010). The study found that processing interventions are currently best placed to consistently reduce the number of human cases due to *Salmonella* from pork, but that combinations of pre- and post-harvest interventions can achieve larger reductions (EFSA, 2010).
Summary-of-findings tables for the effects of post-slaughter and pre-chill interventions

TABLE SC3.3 Controlled trial studies

<table>
<thead>
<tr>
<th>Intervention/Antimicrobial</th>
<th>Sample Type</th>
<th>Control Group</th>
<th>No. Trials/Studies</th>
<th>Odds Ratio for Intervention Effect (1)</th>
<th>% Samples Salmonella Positive in Study Population (2)</th>
<th>GRADE Rating (3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal wash</td>
<td>Carcass (immediately after)</td>
<td>No treatment</td>
<td>4/3</td>
<td>MA = 0.37 (95% CI: 0.09–1.43)</td>
<td>4.3% Without treatment, 1.6% With treatment</td>
<td>High</td>
<td>Eggenberger-Solorzano et al., 2002; Trivedi, Reynolds and Chen, 2007; Hamilton et al., 2010</td>
</tr>
<tr>
<td>Organic acid washes</td>
<td>Carcass (immediately after)</td>
<td>No treatment</td>
<td>4/3</td>
<td>MA = 0.29 (95% CI: 0.12–0.75)</td>
<td>7.7% Without treatment, 2.4% With treatment</td>
<td>High</td>
<td>Epling, Carpenter and Blankenship, 1993; Frederick et al., 1994; Eggenberger-Solorzano et al., 2002</td>
</tr>
<tr>
<td></td>
<td>Carcass (immediately after)</td>
<td>Water wash</td>
<td>2/1</td>
<td>MA = 0.12 (95% CI: 0.03–0.49)</td>
<td>100.0%</td>
<td>Low</td>
<td>van Netten et al., 1995</td>
</tr>
<tr>
<td></td>
<td>Carcass (24 hours after)</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.003 (95% CI: 0.00–0.05)</td>
<td>10.7%</td>
<td>Low</td>
<td>Epling, Carpenter and Blankenship, 1993</td>
</tr>
<tr>
<td>Other chemical/oxidizer wash</td>
<td>Carcass (immediately after)</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.40 (95% CI: 0.16–0.96)</td>
<td>16.0%</td>
<td>Low</td>
<td>Hamilton et al., 2010</td>
</tr>
<tr>
<td>Steam vacuuming</td>
<td>Carcass (immediately after)</td>
<td>Knife trimming</td>
<td>1/1</td>
<td>Single study = 1.12 (95% CI: 0.12–77.32)</td>
<td>2.2%</td>
<td>Low</td>
<td>Le Roux, Minvielle and Gault, 2008</td>
</tr>
<tr>
<td>Multiple Interventions</td>
<td>Carcass (immediately after)</td>
<td>No treatment</td>
<td>2/1</td>
<td>MA = 0.53 (95% CI: 0.08–3.34)</td>
<td>4.2% Without treatment, 2.3% With treatment</td>
<td>Low</td>
<td>Eggenberger-Solorzano et al., 2002</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I^2<60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study. For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) The percentage of samples expected to be positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The expected percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]). The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I^2<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
TABLE SC3.4 Quasi-experimental studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water wash</td>
<td>Carcass</td>
<td>1/1</td>
<td>Single study = 0.02 (95% CI: 0.001–0.23)</td>
<td>91.7%</td>
<td>16.7% (95% CI: 1.5–71.9)</td>
<td>Very low</td>
</tr>
<tr>
<td>Organic acid wash</td>
<td>Carcass</td>
<td>1/1</td>
<td>Single study = 0.45 (95% CI: 0.22–0.92)</td>
<td>13.9%</td>
<td>6.7% (95% CI: 3.4–12.9)</td>
<td>Low</td>
</tr>
<tr>
<td>Unspecified washes</td>
<td>Carcass</td>
<td>2/2</td>
<td>MA = 0.60 (95% CI: 0.10–3.52)</td>
<td>5.1%</td>
<td>3.1% (95% CI: 0.5–15.9)</td>
<td>Low</td>
</tr>
<tr>
<td>Multiple Interventions</td>
<td>Carcass</td>
<td>2/2</td>
<td>MA = 0.94 (95% CI: 0.47–1.88)</td>
<td>8.6%</td>
<td>8.1% (95% CI: 4.2–15.0)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant ($I^2<60\%$). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) The percentage of samples expected to be positive for _Salmonella_ in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The expected percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: $\left(\text{OR} \times \text{ACR} / (1 - \text{ACR}) + \text{ACR}\right)$. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant ($I^2<60\%$), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/ outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Log CFU/cm² reduction (1)</th>
<th>GRADE rating (2)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water washes Carcass tissues</td>
<td>No treatment</td>
<td>3/3</td>
<td>Median = 1.03</td>
<td>Very low</td>
<td>Frederick et al., 1994; Fabrizio and Cutter, 2004; Carpenter, Smith and Broadbent, 2011</td>
<td></td>
</tr>
<tr>
<td>Thermal wash Carcass tissues</td>
<td>No treatment</td>
<td>2/2</td>
<td>Median = 1.76</td>
<td>Very low</td>
<td>Clayton, 2002; Morild et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Organic acid washes Carcass tissues</td>
<td>Water wash</td>
<td>4/4</td>
<td>Median = 0.79</td>
<td>Very low</td>
<td>Frederick et al., 1994; van Netten et al., 1994; Fabricio and Cutter, 2004; Carpenter, Smith and Broadbent, 2011</td>
<td></td>
</tr>
<tr>
<td>Carcass tissues</td>
<td>No treatment</td>
<td>6/6</td>
<td>Median = 1.43</td>
<td>Very low</td>
<td>Clayton, 2002; Frederick et al., 1994; Fabricio and Cutter, 2004; Choi et al., 2009; Carpenter, Smith and Broadbent, 2011; Morild et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Other chemical/ oxidizer washes Carcass tissues</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = 0.17 (95% CI: -0.31–0.66)</td>
<td>Low</td>
<td>Fabrizio and Cutter, 2004</td>
<td></td>
</tr>
<tr>
<td>Carcass tissues</td>
<td>No treatment</td>
<td>3/3</td>
<td>Median = 1.58</td>
<td>Very low</td>
<td>Clayton, 2002; Frederick et al., 1994; Fabricio and Cutter, 2004; Morild et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Multiple Interventions Carcass tissues</td>
<td>Chilling only</td>
<td>1/1</td>
<td>Single study = 0.38 (No measure of variability reported)</td>
<td>Low</td>
<td>King et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Carcass tissues (measured post- treatment)</td>
<td>Pre-treatment</td>
<td>1/1</td>
<td>Single study = 1.78 (95% CI: 0.69–2.87)</td>
<td>Very low</td>
<td>Morild et al., 2011</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I^2<60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC3.5 CHILLING

The primary purpose of carcass chilling is to inhibit microbial growth; however, the process also can have an ‘intervention’ effect on reducing *Salmonella*. One previous systematic review was identified (including a recent update) evaluating the effects of chilling to reduce *Salmonella* prevalence on pork carcasses (Barron, Bergin and Butler, 2008; Barron *et al.*, 2013). The review identified 13 quasi-experimental studies that measured changes in *Salmonella* pre vs post chilling and meta-analysis indicated a significant average reduction (Barron *et al.*, 2013). Reported in Table SC3.6 below is a median estimate of reduction for chilling (significant heterogeneity among studies was noted). The confidence in these estimates is very low due to the large variation in results among studies (with some showing higher prevalence values post-chilling), possibility for publication bias (lack of small studies showing no effect), and unclear risk of bias of the included studies. The authors found that the total sample size, number of batches sampled in an abattoir, and size of the carcass swab area had a significant impact on the effect of chilling, indicating that the sampling methods contributed to the heterogeneity between studies (Barron *et al.*, 2013). Data from this analysis were used as inputs into a QMRA model that found that the chilling, as well as pre-chill washing, were the processing stages that contributed most significantly to reducing *Salmonella* prevalence in pork joints (Barron *et al.*, 2009; Teagasc, 2010). The review did not meet several recommended reporting criteria for systematic reviews using the AMSTAR quality assessment tool.

Two controlled trials conducted under commercial conditions were identified that evaluated the effect of different chilling methods to reduce *Salmonella* in pork (Epling, Carpenter and Blankenship, 1993; Carr *et al.*, 1998). Epling, Carpenter and Blankenship (1993) found that spray chilling (intermittent water at 4°C every 20 min for 11 sec during the first 8 hours) reduced *Salmonella* on carcasses compared with conventional air chilling at 4°C (Table SC3.7). The other study isolated *Salmonella* from only one sample, precluding evaluation of intervention efficacy on this pathogen (Carr *et al.*, 1998). The authors compared blast chilling (-10 to -25°C for 45 min followed by chilling at 2°C for 23 hours) to standard chilling (2°C for 24 hours) and found that the former resulted in significantly lower coliform counts and *Staphylococcus* spp. on pork carcasses that were not trimmed of fat, but had no effect on fat-trimmed carcasses and on aerobic plate counts (Carr *et al.*, 1998). Significant reductions were also noted for lactic acid bacteria counts (Carr *et al.*, 1998).

One challenge trial conducted under laboratory conditions was identified that found that blast chilling was more effective to reduce *Salmonella* on pork belly surfaces compared with conventional chilling, with log reduction values ranging from 0.09 to 0.18 (Table SC3.8).
Summary-of-findings tables for the effects of chilling

TABLE SC3.6 Systematic review

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Study design</th>
<th>Intervention/ outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilling</td>
<td>Quasi-experiments</td>
<td>Carcass</td>
<td>13/13</td>
<td>Median = 0.41 (Range: 0.14–2.93)</td>
<td>10.3% (Range: 1.6–25.2)</td>
<td>Very low</td>
<td>Barron, Bergin and Butler, 2008; Barron et al., 2013</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

1. For interventions with multiple trials, refers to the average odds ratio estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios from individual studies is presented instead. If only one trial was available, refers to the odds ratio and 95% CI from the individual study. For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

2. The percentage of samples expected to be positive for Salmonella in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The expected percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]). The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

3. GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
TABLE SC3.7 Controlled trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/ outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect<sup>(1)</sup></th>
<th>% Samples Salmonella positive in study population<sup>(2)</sup></th>
<th>GRADE rating<sup>(3)</sup></th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray chilling</td>
<td>Carcass (immediately after)</td>
<td>Conventional (air) chilling</td>
<td>1/1</td>
<td>Single study = 0.67, (95% CI: 0.32–1.38)</td>
<td>13.3%</td>
<td>9.3% (95% CI: 4.8–17.5)</td>
<td>Epling, Carpenter and Blankenship, 1993</td>
</tr>
<tr>
<td>Carcass (24 h after)</td>
<td>Conventional (air) chilling</td>
<td>1/1</td>
<td>Single study = 0.66, (95% CI: 0.33–1.30)</td>
<td>15.3%</td>
<td>10.7%</td>
<td>95% CI: 5.7–19.1</td>
<td>Epling, Carpenter and Blankenship, 1993</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

⁽¹⁾ For interventions with multiple trials, refers to the average odds ratio estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (<i>I</i>²^{<}60%). If heterogeneity was significant, the median and range of odds ratios from individual studies is presented instead. If only one trial was available, refers to the odds ratio and 95% CI from the individual study. For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

⁽²⁾ The percentage of samples expected to be positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The expected percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]). The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (<i>I</i>²^{<}60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

⁽³⁾ GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.

TABLE SC3.8 Challenge trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/ outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Log CFU/cm<sup>2</sup> reduction<sup>(4)</sup></th>
<th>GRADE rating<sup>(3)</sup></th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast chilling</td>
<td>Carcass belly surfaces</td>
<td>Conventional (air) chilling</td>
<td>4/1</td>
<td>Median = 0.13 (0.09–0.18)</td>
<td>Low</td>
<td>Chang et al., 2003</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

⁽¹⁾ For interventions with multiple trials, refers to the average odds ratio estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (<i>I</i>²^{<}60%). If heterogeneity was significant, the median and range of odds ratios from individual studies is presented instead. If only one trial was available, refers to the odds ratio and 95% CI from the individual study. For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

⁽³⁾ GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC3.6 PACKAGING

The effects of various packaging and final product preservation interventions were studied in eight laboratory challenge trials identified in this review (Van Laack et al., 1993; Nam et al., 2006; Latha et al., 2009; Nanasombat and Chooprang, 2009; Shan et al., 2009; Piachin and Trachoo, 2011; Chen et al., 2013; Chantarasataporn et al., 2014).

Three studies investigated the effects of various natural extracts as product preservatives/antimicrobials (Nam et al., 2006; Shan et al., 2009; Chen et al., 2013). One study found that significant log reductions in *Salmonella* on ground pork over 7 days storage were achieved with cinnamon oil and olive extracts, while oregano oil and apple extracts showed limited effectiveness (Chen et al., 2013). One study investigated the inhibitory effects of cinnamon stick, oregano, clove, pomegranate peel, and grape seed extracts on *Salmonella* in raw pork, finding that all extracts were effective to reduce *Salmonella* over 9 days of storage by ~1–2 logs compared with the control group, with clove extracts being the most effective (Shan et al., 2009). Another study found that while a rosemary-tocopherol combination was effective to prevent quality changes in irradiated restructured pork loins, it had no effect on *Salmonella* (Nam et al., 2006).

Two studies investigated salt preservatives (Latha et al., 2009; Nanasombat and Chooprang, 2009). One study found that potassium sorbate and sodium lactate each lowered the survival rate of *Salmonella* on raw pork during freezing for 72 hours (Nanasombat and Chooprang, 2009), while the other study found that 5% potassium sorbate and a combination of 5% sodium chloride and 2.5% each of sodium acetate, sodium citrate, sodium lactate and potassium sorbate applied to pork carcasses before de-boning resulted in non-detectable levels of *Salmonella*, compared with a nearly 3 log contamination in the control group after storage until spoilage (Latha et al., 2009).

One study found that vacuum packaging of pork loins prior to chilling for 24 hours at 2°C resulted in enhanced reductions of *Salmonella* compared with vacuuming packing after chilling and compared with unpacked loins (Van Laack et al., 1993). One study found that 0.2–0.4% water-based oligochitosan reduced *Salmonella* to undetectable levels in ground pork after 1 or 2 days of storage (Chantarasataporn et al., 2014). Another study found that fresh pork treated with 2-4% potassium lactate and packaged with and without ozone injected at 200–1000 mg/h reduced *Salmonella* levels by up to 0.8 logs over 15 days of storage compared with the untreated, packaged control group (Piachin and Trachoo, 2011).
SC3.7 MULTIPLE AND UNSPECIFIED PROCESSING STAGES

One previous systematic review evaluated the efficacy of HACCP to reduce *Salmonella* contamination of pork carcasses during processing (Wilhelm *et al.*, 2011). A meta-analysis was conducted on three eligible quasi-experimental studies measuring changes in *Salmonella* prevalence before and after implementation of HACCP programmes. Results indicate low confidence of no overall effect of HACCP on *Salmonella* reduction in pork (Table SC3.9). Significant heterogeneity between study findings was noted, which the authors noted could be due to the wide variability in how HACCP is defined and implemented in different settings (Wilhelm *et al.*, 2011). Although HACCP may be effective in some settings and likely depends on the specific critical control points and other implementation factors, these findings suggest that there is insufficient evidence that HACCP itself is effective in reducing *Salmonella* prevalence on pork during processing. The review met 9/11 recommended reporting reliability criteria using the AMSTAR quality assessment tool.

One controlled trial conducted under commercial conditions was identified that evaluated the effect of a modified pluck removal practice (leaving tongue in the intact head during plucking, no head splitting, removal of head pre-chilling and pre-inspection) on *Salmonella* reduction in pork (Olsen *et al.*, 2001). The study found no significant difference in *Salmonella* prevalence on pork between the modified and conventional plucking practice (Olsen *et al.*, 2001).

Ten quasi-experiments conducted under commercial conditions were identified evaluating the effect of interventions at multiple processing stages on *Salmonella* control in pork (Table SC3.10). Two studies found that cleaning and disinfection of the abattoir equipment and environment resulted in significant reductions in *Salmonella* prevalence in environmental samples (Conter *et al.*, 2006; Gantzhorn *et al.*, 2014). There is low confidence in this estimate in terms of a possible reduction on pork carcasses, since the studies only measured environmental samples. Two cross-sectional studies also found relationships between cleaning, disinfection, and good hygienic practices and a reduced *Salmonella* prevalence on pork carcasses (Kim and Song, 2009; Letellier *et al.*, 2009).

Eight other quasi-experimental studies measured the effects of multiple and unspecified interventions applied over various processing stages (Saide-Albornoz *et al.*, 1995; Tamplin *et al.*, 2001; Keenliside *et al.*, 2005; Algino *et al.*, 2009; De Busser *et al.*, 2011; Schmidt *et al.*, 2012; Keelara *et al.*, 2013; Williams, Ebel and Allender, 2015). The studies generally found a very large effect on *Salmonella* reduction (Table SC3.10). However, the overall confidence in the effect estimates is very low.
due to potential for confounding in these studies and because of large variations between studies in the magnitude of the effect, which could be due to differences in the specific interventions applied or other factors. While the overall confidence in identifying a specific estimate of reduction is very low due to these factors, the studies highlight a clear trend for *Salmonella* to be reduced to very low levels by implementing multiple interventions throughout processing. However, potential for cross-contamination in one study was noted, finding a higher prevalence of *Salmonella* post-chilling compared with pre-washing (Algino *et al.*, 2009).

Six challenge trials were identified that investigated the efficacy of various non-thermal interventions to reduce *Salmonella* contamination of pork carcasses in laboratory settings, four of which reported extractable data and are summarized in Table SC3.11. Two studies investigated UV light irradiation (Wong, Linton and Gerrard, 1998; Sommers, Sites and Musgrove, 2010) and two studies investigated plasma gas interventions (Kim *et al.*, 2013; Jayasena *et al.*, 2015), achieving up to 1 to 2 log reductions. Two other trials investigated the effect of supercritical carbon dioxide and found that at high doses it resulted in multiple log reductions of *Salmonella* in pork loins and ground pork (Bae *et al.*, 2011a, b).

Two cross-sectional studies found that a faster processing time was associated with a lower *Salmonella* prevalence on carcasses (Kim and Song, 2009; Marier *et al.*, 2014).

A QMRA to assess the risks for human salmonellosis due to consumption of fresh minced pork meat in Belgium evaluated different hypothetical *Salmonella* mitigation strategies at different stages of production and found that those implemented at the polishing, evisceration, chilling and post-processing stages were most effective, whereas pre-harvest interventions and those at the beginning of the slaughter process had a more limited effect (Bollaerts *et al.*, 2010).

An Irish expert elicitation study to rank interventions to control *Salmonella* in the pork chain found that, at processing, experts ranked (1) careful evisceration, (2) bagging the bung and (3) logistic slaughter as the interventions with the most potential to reduce the risk of carcass/cross contamination (Teagasc, 2010). Sufficient employee training was noted as a critical factor affecting the success of the first two interventions (Teagasc, 2010). The experts noted that a combination of interventions along the farm-to-fork chain is essential (Teagasc, 2010). QMRA models assessing the risk of human salmonellosis cases due to pork consumption in the UK and EU also found that a combination of interventions implemented along the food chain were most effective to reduce the illness burden (Hill *et al.*, 2009, 2011).

Four Danish stochastic simulation models were identified (Alban and Stärk, 2005; Goldbach and Alban, 2006; Lawson *et al.*, 2009; Baptista *et al.*, 2011). Alban and
Stärk (2005) found that herd prevalence, singeing efficiency, and cross-contamination during slaughter and handling were the most important factors affecting pork carcass *Salmonella* prevalence, and that a combination of interventions achieved the largest reductions in prevalence. A cost-benefit analysis of four interventions (hot water decontamination of carcasses, logistic slaughter, use of home-mixed feed, and acidified feed) found that hot water decontamination was the only economically viable option (Goldbach and Alban, 2006). Another cost-effectiveness analysis found that among four processing intervention options (hot water, steam ultrasound, steam vacuum and lactic acid decontamination), steam ultrasound was the most cost-effective, following by hot water decontamination (Lawson *et al*., 2009). An economic model comparing alternative processing intervention scenarios (logistic slaughter, hot-water decontamination, steam ultrasound and steam vacuum) found that steam vacuuming and steam ultrasound were the most cost-effective, and that cost-effectiveness varied by abattoir size (Baptista *et al*., 2011).

A cross-sectional study by Bollerslev *et al*. (2013) found a correlation between the level of *E. coli* and *Salmonella* prevalence on pork carcasses during processing, with a risk model finding that the number of human cases could have been reduced by approximately 50% if the *E. coli* levels at slaughter had not exceeded 3 to 4 log CFU/38 cm².

Summary-of-findings tables for the effects of interventions applied at multiple or unspecified processing stages

TABLE SC3.9 Systematic review

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Study design</th>
<th>Intervention/ outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect (1)</th>
<th>% Samples Salmonella positive in study population (2)</th>
<th>GRADE rating (3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HACCP</td>
<td>Quasi- experiments</td>
<td>Carcass</td>
<td>3/3</td>
<td>Median = 0.94 (Range: 0.51–1.29)</td>
<td>6.9% (Range: 3.7–8.7)</td>
<td>Low</td>
<td>Wilhelm et al., 2011</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

1. For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant ($I^2<60\%$). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study. For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

2. The percentage of samples expected to be positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The expected percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: $\text{OR} \times \text{ACR} / (1 - \text{ACR} + [\text{OR} \times \text{ACR}])$. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant ($I^2<60\%$), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

3. GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
TABLE SC3.10 Quasi-experimental studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(^{(1)})</th>
<th>% Samples Salmonella positive in study population(^{(2)})</th>
<th>GRADE rating(^{(3)})</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning and disinfection of abattoir equipment/environment</td>
<td>Various environmental samples</td>
<td>2/2</td>
<td>MA = 0.27 (95% CI: 0.16–0.46)</td>
<td>Pre treatment: 22.8%</td>
<td>Post treatment: 7.5% (95% CI: 4.6–12.1)</td>
<td>Low</td>
</tr>
<tr>
<td>Multiple interventions (post-exsanguination to post-chill)</td>
<td>Carcass</td>
<td>1/1</td>
<td>Single study = 0.003 (95% CI: 0.00–0.02)</td>
<td>Pre treatment: 73.0%</td>
<td>Post treatment: 0.8% (95% CI: 0.1–5.8)</td>
<td>Very low</td>
</tr>
<tr>
<td>Multiple interventions (pre-evisceration to post-chill)</td>
<td>Carcass</td>
<td>4/4</td>
<td>Median = 0.06 (Range: 0.01–0.16)</td>
<td>Pre treatment: 14.9%</td>
<td>Post treatment: 1.0% (Range: 0.2–2.8)</td>
<td>Very low</td>
</tr>
<tr>
<td>Multiple interventions (post-evisceration to post-chill)</td>
<td>Carcass</td>
<td>3/3</td>
<td>Median = 0.97 (Range: 0.14–2.23)</td>
<td>Pre treatment: 9.4%</td>
<td>Post treatment: 9.1% (Range: 1.5–18.8)</td>
<td>Very low</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate; CI = confidence interval.

\(^{(1)}\) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (\(I^2<60\%\)). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

\(^{(2)}\) The percentage of samples expected to be positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The expected percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: \((OR \times ACR / 1 - ACR + [OR \times ACR])\). The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under \(^{(1)}\) above. If heterogeneity was not significant (\(I^2<60\%\)), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

\(^{(3)}\) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; low = there is strong confidence that the true effect lies close to that of the measured estimate.
TABLE SC3.11 Challenge trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/ outcome sample</th>
<th>Comparison group</th>
<th>Units</th>
<th>No. trials/ studies</th>
<th>Log reduction(1)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV irradiation</td>
<td>Carcass tissue</td>
<td>No treatment</td>
<td>CFU/ cm²</td>
<td>1/1</td>
<td>Single study = 0.51 (95% CI: 0.34–0.67)</td>
<td>Very low</td>
<td>Sommers, Sites and Musgrove, 2010</td>
</tr>
<tr>
<td>Pork chops</td>
<td>No treatment</td>
<td>CFU/g</td>
<td>1/1</td>
<td>Single study = 2.37 (no measure of variability reported)</td>
<td>Low</td>
<td>Wong, Linton and Gerrard, 1998</td>
<td></td>
</tr>
<tr>
<td>Non-thermal plasma</td>
<td>Pork loin/butts</td>
<td>No treatment</td>
<td>CFU/g</td>
<td>2/2</td>
<td>Median = 1.47 (Range: 1.38–1.56)</td>
<td>Low</td>
<td>Kim et al., 2013; Jayasena et al., 2015</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant ($I^2<60\%$). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC3.8 REFERENCES CITED IN SC3

demiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork. Maastricht, The Netherlands.

SC4.1 SUMMARY OF KEY FINDINGS

This Summary Card covers the evidence supporting on-farm interventions for reduction of *Salmonella* in beef. Overall, we found a relatively small volume of literature investigating similar outcomes in the population of greatest interest (i.e. feeder cattle and beef carcasses), which limited our ability to perform meta-analysis for estimation of pooled summary estimates of effect. Where possible, we selected data from controlled trials for meta-analysis to calculate a summary estimate of effect. However, for major topics which were not underpinned by evidence from controlled trials, we used data from challenge trials.

SC4.1.1 Antimicrobials

- Four controlled trials investigated antimicrobials. One described the feeding of a basal diet plus tylosin to feedlot heifers, reporting a non-significant ($P > 0.05$) treatment effect on faecal *Salmonella* prevalence. In contrast, two cross-sectional studies reported a significant ($P < 0.05$) protective association between feeding dairy calves medicated milk replacer and *Salmonella* isolation on-farm. The three other trials all reported a non-significant treatment effect of feeding ionophores to cattle, both in a feedlot and a pasture setting, with moderate confidence.

SC4.1.2 Biosecurity

- Biosecurity interventions were only investigated in observational studies and stochastic models. Three different observational study designs (cohort, case-control and cross-sectional studies) as well as stochastic models consistently identified maintaining an ‘open’ herd (e.g. allowing introduction of purchased animals) as a significant predictor of *Salmonella* isolation on-farm. One cross-sectional study reported that a proxy measure for owner attitude towards hygiene (clean parking lot) was significantly associated with reduced odds of *Salmonella* prevalence on-farm. A stochastic model of the Danish dairy industry predicted that enhanced external biosecurity practices could reduce the herd-level prevalence of *Salmonella* from 3.25% to 0.1% over 10 years.

SC4.1.3 Feed/water acidification

- One controlled trial reported a non-significant treatment effect when feeding micro-encapsulated acids to Friesian calves, with *Salmonella* shedding as the
outcome measure. In contrast, one United States of America cross-sectional study reported a significant harmful effect of feeding anionic salts to pre-partum dairy cows on faecal *Salmonella* shedding.

SC4.1.4 Feed management

- Three controlled trials and three cross-sectional studies investigated feeding of distiller’s grains to cattle. All controlled trials and one cross-sectional study reported a non-significant treatment effect, with the other two cross-sectional studies reporting a significant positive association between feeding distillers’ grains and faecal *Salmonella* shedding. Two cross-sectional studies reported a significant positive association between feeding cottonseed hulls to feeder cattle and *Salmonella* shedding. Inconsistent findings were reported for the effect on *Salmonella* shedding of withholding feed.

SC4.1.5 Manipulation of gut microbiota

- A small dataset of studies investigated use of prebiotics, probiotics or synbiotics to reduce *Salmonella* in cattle, consistently reporting a non-significant treatment effect, with low confidence.

SC4.1.6 Vaccination

- The dataset underpinning this intervention consists of controlled trials, challenge trials and observational studies, largely conducted in a dairy setting. While three controlled trials yielded a significant protective pooled summary estimate of effect of *Salmonella* vaccines on shedding in dairy cattle, with very low confidence, evidence for their effectiveness in reducing prevalence or load of shedding in feeder cattle is lacking. The effectiveness of a vaccine demonstrated to be effective in a dairy setting in reducing *Salmonella* shedding in beef herds, with potentially different age structures and population densities, is unclear.

SC4.1.7 Overall implications

- Use of biosecurity measures and vaccines are the intervention categories with the broadest dataset of supporting evidence, although confidence is ‘low’ to ‘very low’ meaning that the reported estimates are likely to change with further research. One risk assessment of *Salmonella* spp. in ground beef reported that implementing a generic package of on-farm interventions that reduced prevalence and load of deep tissue lymph node contamination in fed cattle could also significantly reduce total *Salmonella* load in ground beef from fed cattle (Li, Kundu and Holley, 2015).

- Much of the literature captured in this review describes research conducted in dairy cattle. The extent to which intervention effectiveness may be generalized to beef cattle is currently unknown, particularly for vaccine research, which uses specific serotypes in specific population structures that have different characteristics from those of beef cattle.
In contrast with the pork dataset, which included 24 risk assessments or stochastic models studying on-farm interventions, we found only eight risk assessments or models investigating *Salmonella* interventions in cattle on-farm. Across these studies, the generalizability of data and assumptions from the target population to others was frequently unclear (n = 7 of 8 studies), making the wider applicability of these studies’ findings uncertain. In further contrast with the pork dataset, we were not able to compile or compute summary estimates of effect for any interventions measuring lymph node contamination as the outcome measure.

SC4.2 INTERVENTION DESCRIPTION

This Summary Card summarizes the evidence for a range of interventions that can be implemented at the on-farm level to reduce *Salmonella* contamination of beef. Specific categories of interventions covered in this Summary Card include:

- **Antimicrobials**: any substance of natural, semi-synthetic, or synthetic origin, that kills or inhibits the growth of a microorganism but causes little or no damage to the host (Giguere *et al.*, 2006). Includes those administered parenterally and orally, for treatment or prophylaxis.
- **Biosecurity**: has been defined as the implementation of measures that reduce the risk of introduction and spread of disease agents (FAO/OIS/World Bank, 2010). Includes, but is not limited to: sanitation; biosafety; disinfection; hygiene and hygiene barriers; all-in-all-out production; depopulation; staff and the environment; litter testing and treatment; and pest control. Biosecurity may consist of external (targeting prevention of introduction of targeted pathogens to the farm or unit) or internal (aimed at reducing spread of pathogens on-farm) procedures.
- **Feed/water acidification**: addition of organic acids, such as lactic acid, to feed or water. This would include ‘nutraceuticals’ such as copper, chromium, zinc, betaine or carnitine. We also found investigations of the effects on *Salmonella* prevalence of feeding anionic salts to dairy cattle (for prevention of peri-parturient hypocalcaemia).
- **Feed management**: comparisons of coarse vs finely ground feed; specific feed-stuffs; or additives. Also included in this category is deliberate withholding of feed in the hours immediately prior to transport to slaughter.
- **Manipulation of gut microbiota**: includes use of probiotics, prebiotics, and synbiotics. *Probiotics* are living microorganisms that are fed to animals to colonize the gut environment to encourage a better microbial balance. A *prebiotic* may be defined as a non-digestible food ingredient that beneficially affects the host by selectively stimulating the favourable growth and activity of
one or a limited number of bacteria in the colon. The term *synbiotic* describes a combination of probiotic and prebiotic approaches. It includes application of protective bacterial species or cultures to out-compete and prevent *Salmonella* colonization. It can include specific bacterial species or cultures, or caecal contents or other materials from animals or the environment that contain many different or unknown bacterial species.

- **Vaccination:** refers to immunization of the subject using either autogenous or commercial vaccines.

Evidence was identified for each of these six categories of interventions, which are presented and discussed separately below.

SC4.3 ANTIMICROBIALS

The effect of antimicrobial administration on *Salmonella* reduction in cattle was investigated in 11 primary research studies: four controlled trials, one cohort study and five cross-sectional studies.

Jacob *et al.* (2008) reported a controlled trial in which 370 feedlot heifers were fed a basal ration plus wet corn distiller's grains with solubles, with no antimicrobials, monensin, or with monensin (300 mg/animal/day) and tylosin (90 mg/animal/day). No significant treatment effect on *Salmonella* prevalence was reported for feeding antimicrobials.

Berge, Moore and Sischo (2006) investigated cohorts of calves 1 to 84 days old from 26 dairies and seven calf ranches, and reported a significantly (*P < 0.05*) protective association between antimicrobial supplementation of milk replacer and faecal *Salmonella* shedding in calves. Conversely, prophylactic antimicrobial treatment of day-old calves was associated with increased shedding.

Three cross-sectional studies investigated the effect of antimicrobial exposure on *Salmonella* in cattle. Fossler *et al.* (2005a) reported a significant harmful association on faecal *Salmonella* shedding of not feeding milk replacer containing antimicrobials to United States of America pre-weaned dairy calves (odds ratio (OR) = 2.8, 95% confidence interval (CI) (1.4–5.8)). Similarly, Losinger *et al.* (1995) reported a significant protective association between feeding medicated milk replacer to pre-weaned dairy heifers and culture of *Salmonella* spp. (OR = 0.35, 95% CI (0.20–0.61)). In a feedlot setting, Green *et al.* (2010) reported a significant protective treatment effect on faecal *Salmonella* shedding associated with feeding antimicrobials of the tetracycline class in the ration within 2 weeks before sampling.
Devant et al. (2009) investigated the effect of feeding monensin-supplemented or basal diet (straw and concentrate), to 90 Holstein bulls over the 108-day trial period; there was a non-significant difference in *Salmonella* prevalence on hides at slaughter between the control group and the group fed monensin. Edrington et al. (2006a) reported a non-significant treatment effect on *Salmonella* shedding of feeding a mineral supplement with ionophore (1.76 g lasalocid/kg) for 61 days to stocker calves on pasture, relative to control calves. A meta-analysis summary estimate from these two studies yielded a non-significant treatment effect, with moderate confidence (Table SC4.1). Similarly, Jacob et al. (2008) reported a non-significant treatment effect on *Salmonella* faecal shedding in feedlot heifers fed a basal diet plus either monensin, or monensin and tylosin, relative to controls.

Inconsistent findings were reported from cross-sectional studies investigating ionophore use and *Salmonella*. In a study of United States of America dairy cows, Fossler et al. (2005b) reported a significant association between not using

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population (Sample)</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella-positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionophores: monensin/</td>
<td>Feedlot Bulls</td>
<td>2/2</td>
<td>MA = 0.79 (95% CI: 0.20–3.15)</td>
<td>14.4% (95% CI: 3.3–4.6)</td>
<td>Moderate</td>
<td>Devant et al., 2009; Edrington et al., 2006a</td>
</tr>
<tr>
<td>lasalocid</td>
<td>Stocker calves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Faecal/hide culture)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.
(1) Refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis, as heterogeneity was not significant ($I^2$$<60\%$).
(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: $(OR \times ACR / 1 - ACR + [OR \times ACR])$, and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant ($I^2$$<60\%$), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.
(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.

(OR = 0.04–95% CI 0.02–0.09) and more than 2 weeks before sampling (OR = 0.23, 95% CI (0.06–0.80)) in United States of America feeder cattle.
monensin in weaned calf or bred heifer diets and Salmonella shedding (OR = 3.2, 95% CI (2.0–5.4)). In contrast, in another cross-sectional study of United States of America dairy cows, Habing et al. (2012) report a significant harmful association between feeding ionophores to dairy cows and Salmonella shedding (OR = 2.1, 95% CI (1.2–3.7)). Losinger et al. (1997), in a survey of 100 United States of America feedlots, reported a non-significant association between feeding ionophores in United States of America feeder cattle and Salmonella ‘positive’ pens.

SC4.4 BIOSECURITY

Twenty primary research studies investigated biosecurity measures for reduction of Salmonella in cattle, all of which were observational: three cohort studies, three case-control studies, and 14 cross-sectional studies, as well as four predictive models.

SC4.4.1 External biosecurity practices

External biosecurity practices were investigated in two cohort studies, and several cross-sectional studies. Berge, Moore and Sischo (2006) investigated risk factors for Salmonella shedding in cohorts of California calves (1 to 84 days of age). Herds which were ‘open’ to introductions had significantly greater odds of Salmonella shedding in calves (OR = 35.53, 95% CI (7.11–178.5)).

Similar findings were reported in the three case-control studies found. Evans (1996) reported that reporting the purchase of replacement stock from dealers was significantly associated with Salmonella Typhimurium identified on-farm in case vs control herds in the UK (OR = 3.9, 95% CI (1.62–9.36)). Similarly, Vaessen et al. (1998) reported significantly increased odds of farm-level Salmonella Dublin infection associated with the purchase of livestock in case vs control herds in the Netherlands (OR = 4.29, 95% CI (1.28–14.45)), although interestingly odds of infection decreased if cattle had contact with cattle from other farms (OR = 0.07, 95% CI (0.01–0.49)). In contrast, Vanselow et al. (2007) reported a significantly increased risk of Salmonella shedding in dairy cattle if they had access to new arrivals on the farm (risk ratio (RR) = 4.0, \(P = 0.03 \)). A Dutch case-control study (Veling et al., 2002) investigating risk factors for clinical infection with Salmonella Typhimurium on dairy farms reported that the purchase of manure significantly increased odds of infection (OR = 21.5, 95% CI (1.4–332)). Warnick et al. (2003), in a survey of 65 United States of America dairy herds, reported that movement of livestock off-premises and back on again within the past 12 months was a non-significant predictor of Salmonella serogroup B on-farm in the final multivariable model.
Davison et al. (2006) investigated risk factors for culturing environmental *Salmonella* on 449 dairy farms in England and Wales. Cattle introductions in the past 3 to 12 months were a significant predictor in multivariable analysis, with farms introducing only adult cattle over 24 months of age having greater odds of *Salmonella* than those farms not allowing introductions. Using Poisson multivariable regression, the authors unexpectedly demonstrated that farms that did not use common or rented cattle grazing had significantly greater risk of becoming *Salmonella*-positive (incidence risk ratio (IR) = 1.71–95% CI (0.98–2.97)). Green et al. (2010) reported that sourcing animals in a feedlot pen from multiple sources was associated with increased odds of *Salmonella* infection (OR = 5.17, 95% CI (2.32–11.31)). Nielsen et al. (2012a), in a study of 86 dairy herds diagnosed with endemic *Salmonella Dublin*, observed that purchasing cattle from known positive herds was strongly associated (OR = 14.5, 95% CI (3.1–67)) with unsuccessful control (successful control was defined as the 10 youngest calves above three months of age testing *Salmonella* Dublin antibody-negative).

Evans (1996) reported that a feral cat population on-farm increased odds of *Salmonella on-farm* (OR = 1.35, 95% CI ((1.09–1.65)). In contrast, Veling et al. (2002) reported that having cats on-farm was significantly associated with a reduced odds of detection of *Salmonella* Dublin (OR = 0.06, 95% CI (0.006–0.6)).

Carlson et al. (2011), in a survey of Texas dairy farms, reported that numbers of European starlings on-farm better explained *Salmonella enterica* contamination of cattle feed and water than other variables studied, including cattle stocking, facility management, and environmental variables.

SC4.4.2 Internal biosecurity practices

Davison et al. (2006) reported that farms that did not have a clean visitor parking area had significantly increased odds of *Salmonella* cultured on-farm (OR = 2.86, 95% CI (1.82–6.92)) relative to those that did. The authors speculated that this predictor could be a proxy measure for attitudes toward hygiene. Using Poisson multivariable regression to model risk factors associated with farms becoming positive for *Salmonella*, absence of a clean visitor parking lot was similarly a significant predictor (IR = 3.49, 95% CI (1.37–8.92)). Younis et al. (2009), in a study of 220 diarrhoeic Egyptian calves, reported a significant protective association between hygiene on-farm (estimated as a categorical variable) and *Salmonella* culture (OR = 0.63, 95% CI (1.73–5.61)). In contrast, Dewell et al. (2008) studied 40 lots of feedlot cattle from the feedlot through to slaughter, and reported that presence of standing water in the pens and dirty feedlot water troughs were non-significant predictors in the final Poisson multivariable model for *Salmonella hide* contamination at slaughter.
Two cross-sectional studies (Fossler et al., 2005b; Habing et al., 2012) reported a significant association between manure management and *Salmonella* shedding in dairy cows, with Fossler et al. (2005b) reporting a harmful association between manure disposal as liquid slurry and *Salmonella* status (OR = 1.8, 95% CI (1.0–3.0)) and Habing et al. (2012) reporting a protective association with manure application by broadcast/solid spreader (OR = 0.26, 95% CI (0.11–0.63)).

Kabagambe et al. (2000) reported a significantly increased odds of faecal *Salmonella* shedding on dairy farms using flush water systems for removal of manure from alleys (OR = 3.5, 95% CI (0.9–14.7)). Vanselow et al. (2007) also reported that large numbers of flies in feedlot pens (RR = 9.0, *P* = 0.02), or around stored manure (RR = 6.5, *P* = 0.04), significantly increased the risk of *Salmonella* isolation in cattle on Australian feedlots. Huston et al. (2002), in a study of 105 United States of America dairy farms, reported that use of straw bedding was a non-significant predictor in the final model for *Salmonella* on-farm, relative to farms using shavings. Losinger et al. (1997) reported a non-significant association between use of sprinklers in the feedlot and *Salmonella* culture ‘positive’ pens. In contrast, Habing et al. (2012) reported significantly increased odds of *Salmonella* culture on United States of America dairy farms (OR = 2.8, 95% CI (1.6–4.9)) using sprinklers, relative to those not using them.

Veling et al. (2002) reported a significantly protective association between feeding only dam colostrum to calves and *Salmonella* infection on-farm (OR = 0.08, 95% CI (0.01–0.54)). Losinger et al. (1995) reported a significant protective association between calving in an individual area of a building and faecal *Salmonella* prevalence in pre-weaned United States of America dairy heifers (OR = 0.53, 95% CI (0.28–0.99)).

Bergevoet et al. (2009) described a stochastic compartmental model for herd-level spread of *Salmonella* in Dutch dairy herds, evaluating management measures including: no entry of infected animals; no entry of infected manure; hygienic measures; and culling chronically infected animals. Modelling suggested that culling chronically infected animals and not transporting potentially infected animals could significantly reduce the prevalence of *Salmonella*-positive herds, and was most cost-effective. Adding hygienic measures and banning the transportation of animal manure reduced prevalence slightly more, but with significantly greater costs.

Jordan, Nielsen and Warnick (2008) describe a stochastic compartment model for *Salmonella* kinetics within the Danish dairy industry using field survey inputs for parameterization, in which an enhanced biosecurity scenario model improved external biosecurity practices (fewer cattle trades per year, with fewer animals,
with less risky herds). After 10 years, the effect of enhanced biosecurity reduced predicted median herd prevalence from 3.25% to 0.1%.

Nielsen, Kudahl and Ostergaard (2012) described a stochastic model (a modification of the existing SIMHERD model) for *Salmonella* spread in dairy herds, containing six age groups, five infectious states (susceptible, acutely infected, super-shedder, carrier, resistant), four hygiene levels, three herd sizes, and four herd susceptibility levels stratified by age group. The authors concluded that hygiene level was highly predictive of the probability of infection spread, length and size of epidemic.

Van Schaik, Nielen and Dijkhuizen (2001) described a deterministic model to investigate economic consequences of a ‘more-closed system’ of dairy cattle production. This system involved application of additional external biosecurity measures: no external purchases; provision of protective clothing to visitors and employees; and double perimeter fence. Positive economic outcomes were experienced by a 55-cow herd in the basal scenario, and also when a sanitary barrier was used as opposed to just protective clothing.

SC4.5 FEED AND WATER ACIDIFICATION

Two studies found in this review investigated the use of organic acids for reduction of *Salmonella* in cattle. Spanghero *et al.* (2007) reported a controlled trial investigating effects of feeding milk replacer supplemented with microencapsulated organic acids on faecal *Salmonella Typhimurium* shedding in male Friesian calves from birth to 32 days of age, and reported no significant treatment effect (*P* > 0.05). Habing *et al.* (2012) conducted a cross-sectional study of 265 dairy herds in 17 United States of America states, studying herd-level risk factors for *Salmonella* infection. Feeding anionic salts to close-up cows significantly increased odds of *Salmonella* on-farm prevalence (OR = 1.9, 95% CI (1.1–3.5)).

SC4.6 FEED MANAGEMENT

Twenty-one primary research studies investigated feed management or additives for reduction of *Salmonella* in beef: six controlled trials, one quasi-experiment, one cohort study, two case-control studies and 11 cross-sectional studies.

Jacob *et al.* (2009) investigated feeding a basal diet plus either dried distiller’s grains with solubles or dry rolled corn to 700 yearling feedlot heifers, culturing pooled pen faecal samples as the outcome measure. No significant treatment effect was reported for pen-level *Salmonella* prevalence. Similarly, Jacob *et al.* (2008) investigated feeding
basal diet plus wet corn distiller’s grain with solubles to 370 yearling heifers, culturing pooled pen faecal samples as the outcome measure; no significant treatment effect was reported. Edrington et al. (2010) investigated the effect of feeding 20% wet distiller’s grains with steam-flaked corn or dry-rolled corn to feedlot cattle on faecal prevalence of *Salmonella*; a significantly increased *Salmonella* prevalence was observed in the cattle fed dry-rolled corn relative to those fed dry-rolled corn plus distiller’s grains on one sampling event (day 132 of the trial), but no difference was observed overall. Four cross-sectional studies investigated feeding cattle distiller’s grains. Green et al. (2010) and Kabagambe et al. (2000) both reported a significant positive association between feeding distiller’s grains and *Salmonella* culture, assaying feedlot cattle pen samples and dairy cattle faecal samples, respectively. In contrast, Habing et al. (2012) and Fossler et al. (2005b) reported a non-significant association between feeding distiller’s grains and *Salmonella* culture in dairy cattle.

Huston et al. (2002) in a survey of 105 United States of America dairy herds reported that method of concentrate delivery (separate from forage vs total mixed ration) was a non-significant predictor of *Salmonella* on-farm. Losinger et al. (1995), in a survey of United States of America dairy herds, reported that feeding dairy heifers hay from one day of age to weaning had a significant protective association with *Salmonella* shedding on-farm (OR = 0.52, 95% CI (0.31–0.88)). Warnick et al. (2003), in a survey of 65 United States of America dairy herds, reported that source of water (well vs town) was a non-significant predictor for *Salmonella* presence on-farm in the final multivariable model. Berge, Moore and Sischo (2006), in a cohort study of pre-weaned dairy calves on United States of America dairy and calf ranches, reported that method of feeding (bottle vs bucket) was a non-significant predictor of faecal *Salmonella* shedding.

Looper et al. (2006) described a controlled trial comparing the effect of various forage diets (endophyte-infected or novel endophyte-infected fescue, or common Bermudagrass) on *Salmonella* shedding in yearling steers. The authors reported a non-significant treatment effect.

Devant et al. (2009) reported a controlled trial investigating feeding a basal diet or diet supplemented with monensin or plant extracts (Biostar™) containing artichoke (20 to 30%), Siberian ginseng (15 to 25%), and fenugreek (55 to 65%) to 90 Holstein bulls for a 108-day feeding period. The authors reported a significant protective treatment effect on *Salmonella* prevalence for the bulls in the plant extract treatment group.

Edrington et al. (2006b) described a controlled trial investigating the effect of feeding ractopamine on faecal *Salmonella* prevalence in feeder steers, reporting a non-significant (*P < 0.05*) treatment effect.
Edrington et al. (2012) reported a cross-sectional study investigating potential risk factors for *Salmonella* shedding in dairy calves. The authors reported that all 1-week-old calves fed non-pasteurized waste milk shed *Salmonella*; none of the calves receiving pasteurized waste milk did.

Two cross-sectional studies conducted in the United States of America investigated feeding cottonseed hulls to feeder cattle. Losinger et al. (1997) reported a significant association (OR = 3.5, 95% CI (1.0–11.9)) between feeding whole cottonseed or cottonseed hulls within 7 days before faecal sample collection, and *Salmonella* shedding. Similarly, Green et al. (2010) reported a significant association (OR = 8.34, 95% CI (3.58–19.42)) between *Salmonella* shedding and feeding cottonseed hulls. In contrast, Fossler et al. (2005b) reported a non-significant association between feeding cottonseed and isolation of *Salmonella* on 129 United States of America dairy farms.

Beach, Murano and Acuff (2002) used a quasi-experimental design to investigate risk factors for *Salmonella* shedding in United States of America feeder and cull adult cattle from farm to slaughter. The authors reported no significant association between withholding feed and odds of individual faecal, hide or carcass contamination. In contrast, Abouzeed et al. (2000) described a cross-sectional study of Canadian slaughter beef and dairy cattle in Prince Edward Island. Fasted animals (i.e. those experiencing 18 to 24 hours of lairage) had a significantly greater faecal *Salmonella* prevalence relative to non-fasted cattle (7.5% vs 0.94%, respectively). The authors do not report microbial sampling of the lairage area itself prior to cattle entry.

Two case-control studies investigated forage management in dairy cattle and potential effects on *Salmonella* shedding. Vaessen et al. (1998) reported that Dutch dairy cattle grazing grass only, as opposed to grazing supplemented with hay, had significantly increased odds of *Salmonella* Dublin shedding (OR = 14.16, 95% CI (2.15–93.3)). In contrast, Veling et al. (2002) reported that unrestricted grazing of lactating cows was significantly protective (OR = 0.07, 95% CI (0.006–0.70)) of *Salmonella* Typhimurium shedding.

SC4.7 MANIPULATION OF GUT MICROBIOTA

Six studies investigated manipulation of gut microbiota for *Salmonella* reduction in cattle: two controlled trials, two challenge trials and two cross-sectional studies.

Stephens et al. (2007) investigated feeding low (1 ×10⁷), medium (1 ×10⁸), and high (1 ×10⁹) CFU/steer/day doses of *Lactobacillus acidophilus* as well as a high dose
of Propionobacterium freudenreichii (NP24) to 269 feeder steers for an average 137 days, culturing faecal grab samples and hide sponge samples for Salmonella. No significant \((P < 0.05) \) treatment effects were reported for any of the dosages, for either of the outcome measures. Similarly, Tabe et al. (2008) fed \(1 \times 10^9 \) CFU/steer/day of L. acidophilus (LA 51 1) and P. freudenreichii (NP24) to steers for nine weeks, with culture of faecal grab samples as the outcome measure; the treatment effect was non-significant. An overall non-significant \((P > 0.05) \) summary estimate of effect was calculated across both studies, with low confidence (Table SC4.2).

Supplementation with probiotics was also investigated in two challenge trials conducted in suckling calves (Brewer et al., 2014; Frizzo et al., 2012). Brewer et al. (2014) reported a significant reduction in faecal Salmonella load on day six post-infection in calves administered Saccharomyces cerevisiae fermentation products incorporated into both milk replacer and starter grain, relative to control calves. Frizzo et al. (2012) reported a non-significant treatment effect on detection of Salmonella in internal organs (liver, spleen, lung, and visceral lymph nodes) in calves administered Lactobacillus casei DSPV 318T, L. salivarius DSPV 315T, and Pedio-

Summary-of-findings table for the effects of manipulation of gut microbiota

<table>
<thead>
<tr>
<th>TABLE SC4.2 Controlled trials investigating feeding probiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Probiotics</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

1. Refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis, as heterogeneity was not significant (I\(^2\)<60%).

2. The percentage of samples positive for Salmonella in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: \(\frac{(OR \times ACR) / (1 - ACR + [OR \times ACR])} \), and provides an indication of the effect of the intervention on changing a given baseline level of Salmonella prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I\(^2\)<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

3. GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
coccus acidilactici DSPV 006T (10⁹ CFU/kg body weight of each strain daily) with or without lactose (100 g/day) during the experiment (from 5 to 20 days of age).

Losinger et al. (1997), in a cross-sectional study of pen-level risk factors in United States of America feeder cattle, reported a non-significant association between feeding probiotics and Salmonella shedding. Similarly, Habing et al. (2012) reported a non-significant association between the use of probiotics and culture of Salmonella on United States of America dairy farms.

SC4.8 VACCINATION

Vaccination for reduction of Salmonella in cattle was investigated in 25 primary research studies: eight controlled trials, 11 challenge trials, two cohort studies and four cross-sectional studies, as well as three stochastic models.

Miller, Sprouse and Garner (1991) reported vaccinating 37 dairy cows in late gestation with either a Salmonella Typhimurium mutant bacterin-toxoid or placebo, and reported a significant treatment effect for dam seroconversion, Colostral antibodies and calf seroconversion in the vaccinated group, relative to unvaccinated (placebo) controls. Smith et al. (2015) reported that administering a commercial Salmonella Dublin vaccine to 30 United States of America Holstein cows twice in late gestation had a significant treatment effect on cow seroconversion and calf acquisition of Colostral antibodies relative to unvaccinated controls. Similarly, Smith et al. (2014) reported vaccinating 30 United States of America Holsteins at drying-off with a commercially available Salmonella Newport vaccine, and boosting 4 weeks later, reporting a significant treatment effect for cow seroconversion at calving, Colostral antibodies, and calf seroconversion after Colostral feeding ($P = 0.01$, $P = 0.011$, and $P = 0.003$, respectively). In contrast, Habing et al. (2011) administered a commercial modified live Salmonella Dublin vaccine orally to randomly selected Holstein calves at three and 10 days of age, reporting a non-significant treatment effect on Salmonella-specific morbidity rate from birth to weaning.

Dodd et al. (2011) reported a non-significant treatment effect in an investigation of Salmonella shedding in 10 pens of United States of America feeder cattle vaccinated with Salmonella Newport SRP vaccine relative to 10 pens of non-vaccinated controls.

Three controlled trials (Heider et al., 2008; Hermesch et al., 2008; House et al., 2001) investigated the effect of vaccination using commercial Salmonella Dublin or autogenous Salmonella Montevideo bacterins, or a modified live Salmonella Choleraesuis vaccine, on individual dairy cow faecal Salmonella shedding, with a significant protective pooled summary estimate of effect (Table SC4.3).
Challenge trials investigated the potential effect of vaccination on *Salmonella* prevalence, measured from culture of various organs and load of bacterial shedding. Immunization of calves from 1-7 weeks of age with a modified live *Salmonella Typhimurium* vaccine was reported in three challenge trials (Mizuno, McLennan and Trott, 2008; Mohler et al., 2006, 2008), all reporting significantly reduced frequency of *Salmonella* shedding and reduced colonization of mesenteric lymph nodes, relative to controls. Two studies investigated the use of modified live *Salmonella Dublin* (Mukkur et al., 1991; Smith et al., 1993) or *Salmonella Typhimurium* (Van der Walt et al., 2001) vaccine in calves, reporting significantly improved clinical outcomes in the vaccinated group post-challenge; in contrast, Anderson, Smith and Ulrich (1991) reported a non-significant treatment effect of a killed *Salmonella Typhimurium* vaccine on calf mortality post-challenge. Fox et al. (1997) reported the use of a commercial modified live *Salmonella* Choleraesuis vaccine in calves 3 to 5 weeks of age; all treatment groups demonstrated a significant protective treatment effect on *Salmonella* prevalence and colonization of organs and lymph nodes. Mortola et al. (1992) described a challenge trial in which pregnant dairy cows were vaccinated with a killed *Salmonella Dublin* vaccine and their calves challenged orally with *Salmonella Dublin*; both clinical outcomes and faecal shedding were improved in the offspring of vaccinated cows.

Edrington et al. (2013) described a series of experiments investigating development of a *Salmonella* challenge model in cattle. In the first trial, weaned steers were vaccinated with a commercial *Salmonella Newport* vaccine and challenged with either *Salmonella Newport* or *Salmonella Montevideo*. The authors reported a significant reduction in prevalence of *Salmonella Newport* contaminated lymph nodes in the vaccinated group, at 21 days post-challenge. In a second, similar trial, using a larger challenge dose, no significant treatment effects were observed with the exception of one of the six lymph node sampling sites. In a trial investigating the use of a transdermal challenge, a significant treatment effect was reported ($P = 0.03$) on prevalence of *Salmonella Newport* contaminated lymph nodes.

Cummings et al. (2009) described a cohort study of 831 United States of America dairy herds, reporting that use of a commercial gram-negative vaccine was a non-significant predictor for *Salmonella* incidence on-farm. Davies (1997) describe a cohort study of 14 UK cattle farms, reporting a significant difference ($P < 0.01$) in the incidence of *Salmonella* in herds implementing a combined *Salmonella Dublin/Typhimurium* vaccination programme during the study.

Four cross-sectional studies reported a non-significant association between use of *Salmonella* vaccines and presence of *Salmonella* on United States of America dairy farms (Fossler et al., 2005b; Huston et al., 2002; Habing et al., 2012; Kabagambe et al., 2000).
Lu et al. (2014) described a stochastic model of Salmonella kinetics in United States of America dairy herds, and the potential effects of imperfect vaccines. Parameters considered included reducing shedding, reducing the length of the infectious period, reducing the number of clinical cases, and reducing host susceptibility. The authors concluded that vaccines effective at reducing the length of the infectious period are best for reducing prevalence, and vaccines effective at reducing host susceptibility are best for reducing outbreak size. Vaccines moderately effective in multiple domains may be considered in the absence of availability of a vaccine more effective in a specific domain.

Lu et al. (2009) described a deterministic model of Salmonella kinetics in an endemically infected United States of America dairy herd, concluding that lifetime (continuous) vaccination was more effective in reducing Salmonella prevalence than cohort vaccination.

Nielsen, Kudahl and Ostergaard (2012) described a stochastic model for Salmonella spread in dairy herds, investigating the potential effects of several interventions. They report that within the model, manipulation of herd susceptibility by itself was insufficient to control infection within the herd.

Summary-of-findings table for the effects of vaccines

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population (Sample)</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect</th>
<th>% Samples Salmonella positive in study population</th>
<th>GRADE rating</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine</td>
<td>Adult dairy cows (Faecal culture)</td>
<td>7/3</td>
<td>0.81 (95% CI: 0.67–0.97)</td>
<td>50.4% (95% CI: 28.9–49.6)</td>
<td>Very low</td>
<td>Heider et al., 2008; Hermesch et al., 2008; House et al., 2001</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) Refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis, as heterogeneity was not significant (I²<60%).

(2) The percentage of samples positive for Salmonella in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]), and provides an indication of the effect of the intervention on changing a given baseline level of Salmonella prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC4.9 MULTIPLE STRATEGIES CONCURRENTLY OR COMPARATIVELY

Li, Kundu and Holley (2015) described a stochastic simulation model covering the pre-to post-harvest stages of beef production to assess the relative contribution of deep tissue lymph nodes (DTLNs) as compared with carcass surface contamination to influence Salmonella contamination in ground beef. The potential impact of various pre- and post-harvest interventions was also evaluated. Increasing the effectiveness of generic pre-harvest interventions on prevalence and load of DTLNs was predicted to reduce overall load of the ground beef, but did not have a major effect on the relative contribution from DTLNs.

SC4.10 MISCELLANEOUS PREDICTORS

Observational studies have identified several factors which may not be directly amenable to an intervention but are important to understand as they influence other intervention strategies’ effectiveness. Berge, Moore and Sischo (2006) investigated risk factors for Salmonella shedding in cohorts of Californian calves (1 to 84 days of age), and reported that calf age in days was negatively associated with shedding (OR = 0.97, 95% CI (0.95–0.98). Davison et al. (2006) reported a cross-sectional study of UK dairy farms in which farms with more than 100 cattle (of all ages) on-site had significantly greater odds of Salmonella presence relative to those with 100 cattle or less. Five cross-sectional studies (Fossler et al., 2005a; Huston et al., 2002; Kabagambe et al., 2000; Losinger et al., 1997; Warnick et al., 2003) studied the effect of herd size on odds of Salmonella infection on-farm, with three studies (Huston et al., 2002; Kabagambe et al., 2000; Warnick et al., 2003) reporting a significant association between larger farms and increased odds of Salmonella infection on-farm. This observation was supported by one United States of America cohort study (Cummings et al., 2009). Vaessen et al. (1998) reported a significant association between presence of liver flukes on-farm and odds of Salmonella Dublin isolation in Dutch dairy cattle (OR = 14.16, 95% CI (2.15–93.3)).

SC4.11 REFERENCES CITED IN SC4

Dodd, C.C., Renter, D.G., Thomson, D.U. & Nagaraja, T.G. 2011. Evaluation of the effects of a commercially available Salmonella Newport siderophore receptor and porin...

SUMMARY CARD 5:
Beef Chain – Transport and Lairage Interventions

SC5.1 SUMMARY OF KEY FINDINGS

This Summary Card covers the evidence supporting transport and lairage interventions for reduction of Salmonella in beef. Overall, we found few studies investigating reduction of Salmonella in cattle during transport and none investigating reduction of Salmonella during lairage, although the potential amplification of bacteria at this stage has been confirmed in multiple studies.

SC5.1.1 Transport to slaughter

- A quasi-experiment (before-and-after trial) demonstrated that hide contamination significantly increased in both feedlot and adult cattle during transport, as did rectal shedding in adult cattle. Risk factors identified for increased odds of contamination post-transport included transportation distance and cattle behaviour during loading, although cleanliness of the transport trucks was a non-significant predictor of Salmonella contamination in one study.

SC5.1.2 Lairage

- A study of Salmonella spp. isolates collected from United States of America cattle in lairage concluded that the majority of isolates from both hides and carcasses at slaughter genotypically matched those from abattoir lairage, and not those from the farm of origin. However, a cross-sectional study conducted in the UK concluded that, in contrast with pigs, time in lairage was not a significant predictor of odds of carcass Salmonella contamination. Cattle type was, however, a significant predictor, with dairy cattle having increased odds of carcass contamination relative to beef breeds.

SC5.1.3 Overall implications

- The small body of literature found suggests the potential for both transport and lairage to be areas of amplification and transmission of Salmonella in cattle. However, currently, investigations of interventions applied at these points for Salmonella reduction are lacking.
SC5.2 INTERVENTION DESCRIPTION

This Summary Card summarizes the evidence for interventions that can be implemented post-farm during transport and at lairage to reduce *Salmonella* contamination of beef. Specific categories of interventions covered in this Summary Card are:

- **Transport to slaughter**: refers to the transportation of market animals from the final farm production unit to the abattoir.
- **Lairage**: refers to holding facilities encountered by animals at the abattoir from the time of unloading from trucks, to the stunning event.

SC5.3 TRANSPORT TO SLAUGHTER

Beach, Murano and Acuff (2002) describe a quasi-experiment in which United States of America cattle were sampled before and after transport to abattoir; rectal, hide and carcass swabs were cultured for *Salmonella*. For feedlot cattle, the prevalence of rectal shedding was similar pre-and post-transport. For adult pasture cattle, the prevalence of rectal shedding increased significantly post-transport relative to pre-transport. Hide contamination increased significantly post-transport for both types of cattle. A significantly greater proportion of adult carcasses cultured positive for *Salmonella*, relative to feedlot cattle.

Dewell *et al.* (2008) describe a multistage cross-sectional study of hide prevalence of *Salmonella* in United States of America cattle at the feedlot, and after transport to the abattoir, using multi-level Poisson regression to identify risk factors. The authors reported that transportation distance (long (>160.9 km) vs short) was a significant predictor of risk of *Salmonella* (relative risk (RR) = 2.28, 95% confidence interval (CI) (1.41–3.69)). Cattle behaviour during loading (agitated vs calm) was also a significant predictor (RR = 2.19, 95% CI (1.32–3.62)).

Reicks *et al.* (2007) report a cross-sectional study of United States of America feedlot cattle, sampled before and after transport to the abattoir, as well as samples of the trucks before and after transport. Although there was a significant difference in *Salmonella* prevalence in dirty trucks relative to clean ones prior to transporting the cattle being studied, the *Salmonella* prevalence of dirty and clean trucks was similar after transporting a load of cattle. The authors sampled the animals at two sites (midline and withers) and reported significantly greater prevalence at the midline site relative to the withers, in both before- and after-transport settings. However, at each site, the prevalence at the abattoir did not differ significantly between cattle transported in clean relative to dirty vehicles.
SC5.4 LAIRAGE

Our search found no investigations of specific interventions applied at the lairage stage of the journey to slaughter. We did, however, capture several observational studies of lairage cleaning and disinfection practices, as well as the change in *Salmonella* prevalence in cattle between their pen on-farm and at the abattoir.

Small *et al.* (2006) captured cleaning practices in 21 UK ruminant abattoirs. Authors report that bedding was used in the majority of lairages and was changed either between animal batches, daily, weekly or monthly. Roughly one in four lairages investigated was washed daily. None were cleaned using detergents or disinfectants. The authors concluded that the cleaning and disinfection protocols employed, in general, were unlikely to eliminate the microbial burden.

Small *et al.* (2002) reported an increase in *Salmonella* prevalence in environmental samples in the lairage of UK abattoirs, from 1.1% before a shift began to 11.1%, after a shift was completed.

Arthur *et al.* (2008) sampled 581 United States of America feedlot cattle hides on-farm, and again at the abattoir just prior to the wash cabinet. Prevalence of *Salmonella* on hides was significantly greater at the abattoir relative to on-farm (74.2% vs 0.7%). Additionally, pulsed field gel electrophoresis demonstrated that none of the *Salmonella* genotypes identified on-farm matched any of the genotypes isolated from animals at the abattoir. However, 959 of the 1007 hide isolates identified at the abattoir matched those from lairage, and 42 of 50 carcass isolates identified matched genotypes from lairage, highlighting the potential importance of lairage in transmission of hide-level infection.

Dewell *et al.* (2008) reported that United States of America slaughter cattle spending time in dirty lairage had greater risk of *Salmonella* positive hides at slaughter relative to those in clean lairage (RR = 1.83, 95% CI (0.7–3.14)).

Milnes *et al.* (2009) reported a cross-sectional study of *Salmonella* in carcasses in UK abattoirs, using logistic regression to identify risk factors for contamination. In contrast to findings for pork, time in lairage was a non-significant predictor for *Salmonella* contamination of beef carcasses. Breed was significant, however, with dairy breeds having increased odds of *Salmonella* contamination relative to beef breeds (OR = 3.38, 95% CI (1.49–7.66)). This is consistent with a cross-sectional Australian study of slaughter cattle, which reported that dairy cattle were significantly more likely to be faecally shedding *Salmonella* relative to beef cattle kept on pasture (Vanselow *et al.*, 2007).
SC5.5 REFERENCES CITED IN SC5

SUMMARY CARD SC6:
Beef Chain – Processing Interventions

SC6.1 SUMMARY OF KEY FINDINGS

This Summary Card covers the evidence for interventions implemented at various stages of beef processing for *Salmonella* control:

SC6.1.1 Hide interventions
- Limited evidence was found for the effect of washes applied to live animals.
- Four quasi-experiments found that other chemical washes (including hydrogen bromide, chlorine, or sodium hydroxide) applied post-exsanguination significantly reduced *Salmonella* prevalence on hides, with moderate confidence in the estimate of effect. One study found a similar effect for an organic acid wash, while conflicting results were shown for water washes.
- Two challenge trials indicated that de-hairing may be effective to control *Salmonella* on hides, but two controlled trials showed conflicting evidence of its effect on other microbial hazards and indicator bacteria.

SC6.1.2 Bunging
- One controlled trial study suggests that bunging conducted prior to evisceration washes may provide significant *Salmonella* reductions compared with not bunging prior to evisceration, with low confidence in the specific estimate of reduction.

SC6.1.3 Post-evisceration and pre-chill
- Two controlled trials conducted under commercial conditions found, with high confidence, that thermal pre-chill washes can significantly reduce *Salmonella* prevalence on beef carcasses. Estimates of intervention effect with moderate to low confidence from seven quasi-experimental studies suggest that water washes, thermal washes, and multiple intervention combinations tend to decrease *Salmonella* prevalence on carcasses prior to chilling.
- Similar results with low to very low confidence were noted in several challenge trials. These studies did not always find a consistent benefit of thermal and organic acid washes compared with ambient or cold temperature water washes. Multiple intervention combinations were the most consistently effective compared with no treatment and water washes.
SC6.1.4 Chilling
- The primary purpose of carcass chilling is to inhibit microbial growth. Five quasi-experimental studies found a very low *Salmonella* prevalence in both pre- and post-chill samples, but the identification of positive samples post-chill could suggest a potential for cross-contamination, which could possibly be due to differences in study sampling methodologies or other factors.

SC6.1.5 Post-chilling and pre-fabrication
- One quasi-experimental study with a very low post-chill *Salmonella* prevalence (1%) suggested, with low confidence in the estimate of effect, that additional reductions in prevalence might be achievable with a post-chill organic acid wash.

SC6.1.6 Post-fabrication
- Several challenge trials suggest that all intervention categories tend to reduce inoculated *Salmonella* levels on beef trimmings when compared with no treatment, with low to very low confidence in the range of possible effects. Organic acid, other chemical/oxidizer, lactic acid bacteria, and multiple treatment combination washes showed consistent benefits when compared with ambient or cold temperature water.

SC6.1.7 Packaging
- Several challenge trials have shown that modified packaging and preservation with various chemicals and extracts have potential to mitigate *Salmonella* in beef products during distribution and storage, although some may affect product sensory quality.

SC6.1.8 Multiple processing stages
- One systematic review found evidence from five quasi-experimental studies that HACCP implementation on its own is not linked to reductions in *Salmonella* prevalence, with moderate confidence in the estimate of effect; but was linked to a reduction in aerobic bacterial counts.
- Results from several quasi-experimental studies suggest a clear trend for *Salmonella* to be reduced to very low levels by implementing multiple interventions between pre-evisceration and chilling; however, there is very low confidence in the expected magnitude of effect due to possible confounding factors and variation among studies.

SC6.1.9 Overall implications
- Overall, evidence was limited to studies with mostly low to very low confidence in terms of how closely one could expect a similar estimate of intervention effect in practice due to one or more of the following: potential for
confounding bias; small sample sizes; variability across studies; and laboratory conditions that might not reflect commercial settings.

- Nevertheless, the evidence suggests that *Salmonella* reductions can be expected at multiple stages of processing with different washes, alternative treatments (e.g. irradiation), and various combinations of interventions.
- Use of thermal, organic acid, and other chemical washes at multiple stages of processing should provide consistent reductions in *Salmonella* contamination of beef; however, these enhanced washes did not always consistently achieve more effective reductions compared with ambient or cold temperature water alone.
- Greatest reductions in *Salmonella* are likely to be achieved when multiple interventions are implemented in combination, together with chilling, to prevent the growth of any microbes present, as part of a “multiple-hurdle” strategy.

SC6.2 INTERVENTION DESCRIPTION

This Summary Card summarizes the evidence for a range of interventions that can be implemented at the processing level to reduce *Salmonella* contamination of beef. Specific categories of interventions where evidence was identified in the literature on *Salmonella* control and that are covered in this Summary Card are:

- **Organic acid washes**: refers to washes with antimicrobials such as lactic, acetic, and citric acid, that affect microbial growth through disruptions to nutrient transport and energy generation and can cause injury to microbial cells through their low pH (Wheeler, Kalchayanand and Bosilevac, 2014).
- **Washes containing other chemicals and oxidizers**: includes washes containing other miscellaneous products that destroy bacteria through various actions, such as oxidation and disruption of cellular functions (Wheeler, Kalchayanand and Bosilevac, 2014), or that prevent bacterial attachment to meat. Examples include chlorine solutions, trisodium phosphate, alcohols, peracetic acid, peroxyacetic acid, hypobromous acid, acidified sodium chlorite, electrolyzed oxidized water, and ozone. Includes chemical de-hairing, which is a patented process of applying successive water and chemical washes in a cabinet to remove hair and improve visible cleanliness and therefore reduce microbial loads on animal hides (Schnell *et al.*, 1995).
- **Protective bacterial culture washes**: refers to washes containing lactic acid bacteria to control pathogens through the production of antimicrobial compounds such as bacteriocins, hydrogen peroxide, and organic acids (Baer, Miller and Dilger, 2013).
- **Water washes**: refers to an ambient or cold-temperature wash to physically remove contamination from carcasses.
- **Thermal washes**: refers to various heat treatment washes to destroy microbial
cells. Examples include hot water and steam pasteurization.

- **Dry heat**: refers to non-hydrating thermal interventions such a forced-air heating.
- **Electricity**: refers to application of electricity, such as through electric stunners.
- **Natural extracts**: refers to plant and other extracts applied as a treatment.
- **Non-thermal interventions**: refers to alternative, non-chemical and non-thermal interventions that aim to reduce microbial contamination while preserving product quality and nutrients that can be affected by thermal treatments (Wheeler, Kalchayanand and Bosilevac, 2014). Examples include electron beam and gamma irradiation, ultraviolet (UV) light, cold atmospheric plasma and high pressure processing.
- **Modified packaging and preservation techniques**: refers to a range of interventions that can be applied to prevent spoilage and inhibit microbial growth during final product distribution and storage.
- **Good hygienic and production practices**: includes a range of different practices that are or can be implemented in processing plants and that may have a pathogen-reduction effect. Examples with evidence included in this summary:
 - **Bunging** = tying off the rectum with a plastic bag during removal of intact viscera at slaughter to minimize the spread of cross-contamination on a carcass (Stopforth *et al.*, 2006).
 - **Trimming** = the removal of visible contamination from beef carcasses prior to washing (Graves Delmore *et al.*, 1997).
 - **Chilling** = step at the end of the slaughter process and before fabrication of rapidly reducing the carcass temperature to prevent microbial growth and preserve product quality.
 - **HACCP (Hazard analysis critical control point)** = a system that identifies, evaluates, and controls hazards which are significant for food safety (Codex Alimentarius Commission, 2003).

These interventions can be applied at various stages of the processing line, from decontamination of animal hides prior to slaughter to product decontamination post-fabrication and prior to shipment. Evidence was identified for interventions at the following stages of processing, each of which is presented and discussed separately below:

- Pre-de-hiding
- Bunging
- Post-evisceration and pre-chill
- Chilling
- Post-chilling and pre-fabrication
- Post-fabrication
- Packaging
- Multiple processing stages
SC6.3 PRE-DE-HIDING

SC6.3.1 Live animal treatments

One controlled trial conducted under commercial conditions in Pakistan was identified that investigated the effect of a live animal hide wash (hot water, 65.6°C) to reduce *Salmonella* contamination of the hide (Aftab et al., 2012), but the reporting of the results was unclear in terms of the intervention's impact on *Salmonella*. In addition, one quasi-experiment conducted under commercial conditions was identified evaluating the effect of live animal hide washes (Table SC6.1). The study found that a single or double water wash and a lactic acid wash increased *Salmonella* prevalence of the hide, while a 50 ppm chlorine solution slightly decreased prevalence (Mies et al., 2004).

SC6.3.2 Post-exsanguination treatments

One controlled trial conducted under commercial conditions was identified that evaluated the effect of a post-exsanguination hide wash to reduce *Salmonella* contamination; however, *Salmonella* was not isolated from any sample, precluding evaluation of intervention efficacy on this pathogen (Schnell et al., 1995). The study investigated a de-hairing treatment and found no significant difference in reduction of aerobic plate counts or *E. coli* counts between de-haired and non-de-haired (control) carcasses (Schnell et al., 1995). In contrast, another controlled trial that did not measure *Salmonella* found that de-hairing hides significantly reduced *E. coli* 0157 prevalence and aerobic plate counts and enterobacteriaceae counts on pre-evisceration carcasses (Nou et al., 2003).

Five quasi-experiments conducted under commercial conditions were identified evaluating the effect of post-exsanguination hide washes (Table SC6.3). Two studies reported conflicting evidence on water washes with very low confidence in the intervention effect estimates (Arthur et al., 2008a; Scanga et al., 2011). In contrast, one study found that an organic acid wash (6.0% lactic acid at 30°C for 15 sec) was effective to reduce *Salmonella* prevalence of hides (Scanga et al., 2011), while four studies found that other chemical washes (including hydrogen bromide, chlorine, or sodium hydroxide) also significantly reduced *Salmonella* prevalence on hides, with moderate confidence in the estimate of effect (Arthur et al., 2007; Bosilevac et al., 2009; Scanga et al., 2011; Schmidt et al., 2012).

In addition, interim results (July, 2015) from the United States Department of Agriculture (USDA) Nationwide Beef and Veal Carcass Baseline Survey found that a total of 143/561 (25.5%) post-hide removal/pre-evisceration samples collected from commercial slaughter and processing plants tested positive for *Salmonella*, a value that was lower among establishments that used one or more interventions.
Summary-of-findings tables for pre-slaughter interventions

TABLE SC6.1 Quasi-experimental studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/ outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water washes</td>
<td>Live animal (hide)</td>
<td>2/1</td>
<td>MA = 1.51 (95% CI: 0.97–2.34)</td>
<td>46.7% (95% CI: 45.8–67.2)</td>
<td>Very low</td>
<td>Mies et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median = 1.75 (Range: 0.04–3.45)</td>
<td>78.1% (Range: 13.4–92.5)</td>
<td>Very low</td>
<td>Arthur et al., 2008a; Scanga et al., 2011</td>
</tr>
<tr>
<td>Organic acid wash</td>
<td>Live animal (hide)</td>
<td>1/1</td>
<td>Single study = 1.09 (95% CI: 0.61–1.96)</td>
<td>50.0% (95% CI: 37.9–66.2)</td>
<td>Very low</td>
<td>Mies et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single study = 0.35 (95% CI: 0.15–0.81)</td>
<td>74.0% (95% CI: 30.1–69.9)</td>
<td>Low</td>
<td>Scanga et al., 2011</td>
</tr>
<tr>
<td>Other chemical/ oxidizer washes</td>
<td>Live animal (hide)</td>
<td>1/1</td>
<td>Single study = 0.83 (95% CI: 0.46–1.51)</td>
<td>60.0% (Range: 40.9–69.3)</td>
<td>Very low</td>
<td>Mies et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA = 0.21 (95% CI: 0.13–0.34)</td>
<td>62.3% (Range: 18.1–35.8)</td>
<td>Moderate</td>
<td>Arthur et al., 2007; Bosilevac et al., 2009; Scanga et al., 2011; Schmidt et al., 2012</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant ($I^2<60\%$). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% confidence interval from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: \((OR \times ACR / (1-ACR + [OR \times ACR]))\), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant ($I^2<60\%$), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
during hide removal (22.9%) compared with samples from establishments that didn’t use any interventions at this step (28.4%) (USDA, 2015). The preliminary findings indicated that the types of interventions used included cold water washes, hot water washes, and/or chlorine-based interventions.

Five challenge trials conducted under laboratory conditions were also identified, three of which reported extractable data and are summarized in Table SC6.2. Four studies found that washes containing either organic acids or other chemicals were effective in reducing inoculated *Salmonella* levels on hides compared with water washes (Mies *et al.*, 2004; Carlson *et al.*, 2008; Baskaran *et al.*, 2012; Jadeja and Hung, 2014). Two studies investigated hide de-hairing treatments, finding a reduction in inoculated *Salmonella* levels compared with no treatment and water washes (Castillo *et al.*, 1998a; Carlson *et al.*, 2008). However, the confidence in these estimates of reduction is low to very low due to the artificial study conditions, small sample sizes, and/or inconsistency across studies.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Log CFU/cm² reduction(1)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic acid washes</td>
<td>Hide</td>
<td>Water wash</td>
<td>2/2</td>
<td>Median = 1.73 (Range: 0.70–2.75)</td>
<td>Very low</td>
<td>Mies et al., 2004; Carlson et al., 2008</td>
</tr>
<tr>
<td>Other chemical/oxidizer washes</td>
<td>Hide</td>
<td>Water wash</td>
<td>3/2</td>
<td>Median = 0.90 (Range: 0.57–2.35)</td>
<td>Very low</td>
<td>Mies et al., 2004; Carlson et al., 2008</td>
</tr>
<tr>
<td>De-hairing</td>
<td>Hide</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 4.6 (no measure of variability reported)</td>
<td>Very low</td>
<td>Castillo et al., 1998a</td>
</tr>
<tr>
<td>Hide</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = 0.75 (95% CI: 0.02–1.48)</td>
<td>Low</td>
<td>Carlson et al., 2008</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% confidence interval from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC6.4 BUNGING

One controlled trial was identified conducted under commercial conditions that evaluated the effect of bunging applied prior to pre-evisceration washes on *Salmonella* reduction on beef carcasses (Stopforth *et al.*, 2006). The authors found a significant reduction in *Salmonella* prevalence in intervention carcasses compared with those where no bunging was conducted before the pre-evisceration wash (Table SC6.3).

Summary-of-findings table for the effects of bunging

TABLE SC6.3 Controlled trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
</table>
| Bunging applied before pre-evisceration wash | Carcass | No bunging before pre-evisceration wash | 1/1 | Single study
= 0.08
(95% CI: 0.004–1.54) | 8.3%
0.8%
(95% CI: 0.04–12.3) | Low | Stopforth *et al.*, 2006 |

NOTES: CI = confidence interval.

(1) Refers to the odds ratio and 95% CI from the individual study.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect:
\[(OR \times ACR / 1 - ACR + [OR \times ACR]) \], and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as reported in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.

SC6.5 POST-EVISCERATION AND PRE-CHILL

Three controlled trials were identified that evaluated the effect of post-evisceration and pre-chill interventions against *Salmonella* in beef (Table SC6.4). Two studies found that a hot water (74–87.8°C for 18–39 sec) or steam (82–85°C for 60 sec) spray significantly reduced *Salmonella* prevalence on beef carcasses compared with a no treatment control group, with high confidence in the estimates of reduction (Reagan *et al.*, 1996; Trivedi, Reynolds and Chen, 2007). One of the studies also found that warm water washes and knife trimming significantly reduced *Salmonella* prevalence on treated carcasses, while other chemicals (specifically hydrogen peroxide and ozone) were not effective (Reagan *et al.*, 1996). *Salmonella* was not
isolated from any sample in the third study, precluding evaluation of intervention efficacy on this pathogen (Prasai et al., 1991). The study found that lactic acid washes at multiple points during processing (both after de-hiding and after evisceration) resulted in the largest reductions in aerobic plate counts on carcasses immediately and 72 hours post-slaughter. However, this reduction was in most cases not significantly greater than that achieved by a single post-evisceration lactic acid wash (Prasai et al., 1991).

Seven quasi-experiments conducted under commercial conditions were identified evaluating the effect of post-evisceration and pre-chill washes and wash combinations (Table SC6.5). Studies found that water (Hajmeer et al., 1999; Trairatapiwan, Lerptaparakomol and Mitchoathai, 2011; Narváez-Bravo et al., 2013; Dong et al., 2014) and thermal (Nutsch et al., 1997; Wright, 2009) washes tended to decrease Salmonella prevalence prior to chilling (Table SC6.5), with low or moderate confidence, respectively, in the specific estimates of reduction. Large reductions were noted in one study that investigated a sequence of ambient temperature water, hot water (82°C), then 4–5% lactic acid washes (Ruby, Zhu and Ingham, 2007).

A total of 35 challenge trials were identified that investigated the efficacy of post-evisceration and pre-chill interventions on beef carcasses (Dickson and Anderson, 1991; Greer and Dilts, 1992; Dickson, Cutter and Siragusa, 1994; Kim and Slavik, 1994; Bawcom et al., 1995; Hardin et al., 1995; Bell, Cutter and Sumner, 1997; Cutter, Dorsa and Siragusa, 1997; Cutter et al., 1999a, 2000; Phebus et al., 1997; Tinney et al., 1997; Arthur et al., 2008b; Cabrera-Diaz et al., 2009; Castillo et al., 1998b, c, 1999; Dorsa et al., 1998a; Dorsa et al., 1998b; Cutter and Rivera-Betancourt, 2000; Castillo et al., 1998b, 2001, 2003; Reyes et al., 2003; Retzlaff et al., 2004; Ellebracht et al., 2005; King et al., 2005; Niebuhr et al., 2008; Pearce and Bolton, 2008; Sawyer et al., 2008; Kalchayanand et al., 2009; Laury et al., 2009; Njongmeta et al., 2011; Wolf et al., 2012; Yoder et al., 2010, 2012). Thirty-three of these reported extractable log reduction data and are summarized in Table SC6.6. Compared with no treatment, regular water, thermal, and organic acid washes tended to reduce inoculated Salmonella levels on beef carcasses by one or more logs, but thermal and organic acid washes did not always provide significant benefits compared with ambient or cold temperature water (Table SC6.6). Multiple intervention combinations were the most consistently effective to reduce inoculated Salmonella levels compared with no treatment and ambient or cold temperature water washes (Table SC6.6). Conflicting evidence was found for the efficacy of washes with other chemicals and oxidizers, with some studies indicating a potential for multiple log reductions (Table SC6.6). Two studies investigating trimming of visible contamination found that it reduced inoculated Salmonella levels by 1.5–1.9 logs compared with a warm-water wash (Hardin et al., 1995; Phebus et al., 1997). Two
studies found that electricity via stunners slightly reduced inoculated *Salmonella* levels on carcasses by <1 log (Bawcom *et al.*, 1995; Tinney *et al.*, 1997), while two other studies found potential for multiple log reductions from sprays with natural (specifically dairy and grapefruit) extracts (Reyes *et al.*, 2003; Pearce and Bolton, 2008). In two studies that measured outcomes in treated beef carcasses that were

Summary-of-findings tables for interventions applied post-evisceration and pre-chill

TABLE SC6.4 Controlled trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect</th>
<th>% Samples Salmonella positive in study population</th>
<th>GRADE rating</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water wash</td>
<td>Carcass</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.23 (95% CI: 0.12–0.45)</td>
<td>30.3% (95% CI: 4.8–16.3)</td>
<td>Very low</td>
<td>Reagan et al., 1996</td>
</tr>
<tr>
<td>Thermal wash</td>
<td>Carcass</td>
<td>No treatment</td>
<td>2/2</td>
<td>MA = 0.09 (95% CI: 0.02–0.48)</td>
<td>15.4% (95% CI: 0.3–8.0)</td>
<td>High</td>
<td>Reagan et al., 1996; Trivedi, Reynolds and Chen, 2007</td>
</tr>
<tr>
<td>Other chemical/ oxidizer wash</td>
<td>Carcass</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 1.28 (95% CI: 0.79–2.09)</td>
<td>30.3% (95% CI: 25.5–47.6)</td>
<td>Very low</td>
<td>Reagan et al., 1996</td>
</tr>
<tr>
<td>Trimming</td>
<td>Carcass</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.19 (95% CI: 0.09–0.39)</td>
<td>30.3% (95% CI: 4.0–14.6)</td>
<td>Very low</td>
<td>Reagan et al., 1996</td>
</tr>
<tr>
<td>Multiple Interventions</td>
<td>Carcass</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.03 (95% CI: 0.01–0.14)</td>
<td>30.3% (95% CI: 0.3–5.6)</td>
<td>Very low</td>
<td>Reagan et al., 1996</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant ($I^2<60\%$). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: $\text{OR} = \text{ACR} \times \text{OR} + 1 - \text{ACR} + \text{ACR} \times \text{OR}$, and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as noted in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant ($I^2<60\%$), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
subsequently ground, limited reductions (<1 log) were noted for all intervention categories (Dorsa et al., 1998a, b). One study that measured a dry heat intervention (forced-air heater at 400°C) found that the intervention was inferior when used alone compared with a warm water wash (Cutter, Dorsa and Siragusa, 1997). Overall, there is low to very low confidence in the specific effect estimates reported in Table 6.6 due to the artificial study conditions, small sample sizes, and/or inconsistency in results across studies.

Table SC6.5 Quasi-experimental studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water washes Carcass</td>
<td></td>
<td>4/4</td>
<td>MA = 0.53 (95% CI: 0.20–1.38)</td>
<td>7.2% (95% CI: 1.5–9.6)</td>
<td>Low</td>
<td>Hajmeer et al., 1999; Trairatapiwan, Lertpatarakomol and Mitchaonthai, 2011; Narváez-Bravo et al., 2013; Dong et al., 2014</td>
</tr>
<tr>
<td>Thermal wash Carcass</td>
<td></td>
<td>2/2</td>
<td>MA = 0.17 (95% CI: 0.02–1.51)</td>
<td>7.0% (95% CI: 0.1–10.2)</td>
<td>Moderate</td>
<td>Nutsch et al., 1997; Wright, 2009</td>
</tr>
<tr>
<td>Multiple interventions Carcass</td>
<td></td>
<td>1/1</td>
<td>Single study = 0.06 (95% CI: 0.04–0.09)</td>
<td>28.1% (95% CI: 1.5–3.5)</td>
<td>Low</td>
<td>Ruby, Zhu and Ingham, 2007</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I² < 60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as noted in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I² < 60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
Challenge trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Sample</th>
<th>Intervention sample</th>
<th>Outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Log CFU/cm² reduction(1)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water washes</td>
<td>Carcass</td>
<td>Water washes Carcass</td>
<td>Carcass</td>
<td>No treatment</td>
<td>10/10</td>
<td>Median = 1.31 (Range: 0.15–2.76)</td>
<td>Very low</td>
<td>Smith, 1992; Cutter, Dorsa and Siragusa, 1997; Dorsa et al., 1998a, b; Cutter, 1999a; Cutter and Rivera-Betancourt, 2000; Cutter et al., 2000; Reyes et al., 2003; Sawyer et al., 2008; Yoder et al., 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carcass Ground beef (0 days storage)</td>
<td>No treatment</td>
<td>2/2</td>
<td>Median = -0.10 (Range: -0.20–0)</td>
<td>Low</td>
<td>Dorsa et al., 1998a, b</td>
<td></td>
</tr>
<tr>
<td>Thermal washes</td>
<td>Carcass</td>
<td>Carcass Thermal washes</td>
<td>Carcass</td>
<td>Water wash</td>
<td>11/11</td>
<td>Median = 1.60 (Range: -0.20–3.0)</td>
<td>Very low</td>
<td>Smith, 1992; Phebus et al., 1997; Castillo et al., 1998b, c; Dorsa et al., 1998a, b; Cutter and Rivera-Betancourt, 2000; Retzlaff et al., 2004; Arthur et al., 2008b; Niebuhr et al., 2008; Yoder et al., 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carcass</td>
<td>Carcass</td>
<td>No treatment</td>
<td>5/5</td>
<td>Median = 2.50 (Range: 0.10–2.74)</td>
<td>Very low</td>
<td>Smith, 1992; Dorsa et al., 1998a, b; Cutter and Rivera-Betancourt, 2000; Castillo et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ground beef (0 days storage)</td>
<td>Water wash</td>
<td>2/2</td>
<td>Median = 0.35 (Range: 0–0.70)</td>
<td>Low</td>
<td>Dorsa et al., 1998a, b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carcass</td>
<td>Ground beef (0 days storage)</td>
<td>No treatment</td>
<td>2/2</td>
<td>Median = 0.25 (Range: 0–0.50)</td>
<td>Low</td>
<td>Dorsa et al., 1998a, b</td>
</tr>
<tr>
<td>Intervention</td>
<td>Intervention sample</td>
<td>Outcome sample</td>
<td>Comparison group</td>
<td>No. trials/studies</td>
<td>Log CFU/cm² reduction(1)</td>
<td>GRADE rating(3)</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Organic acid washes</td>
<td>Carcass</td>
<td>Carcass</td>
<td>Water wash</td>
<td>22/14</td>
<td>Median = 0.75 (Range: 0.01–3.05)</td>
<td>Low</td>
<td>Dickson and Anderson, 1991; Greer and Diits, 1992; Hardin et al., 1995; Bell, Cutter and Sumner, 1997; Castillo et al., 1998b; Dorsa et al., 1998a, b; Cutter, 1999a; Cutter and Rivera-Betancourt, 2000; Arthur et al., 2008b; Niebuhr et al., 2008; Sawyer et al., 2008; Njongmeta et al., 2011; Yoder et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Carcass</td>
<td>Carcass</td>
<td>No treatment</td>
<td>7/7</td>
<td>Median = 2.50 (Range: 0.82–4.94)</td>
<td>Very low</td>
<td>Dorsa et al., 1998a, b; Cutter, 1999a; Cutter and Rivera-Betancourt, 2000; Reyes et al., 2003; Tinney et al., 1997; Sawyer et al., 2008; Laury et al., 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcass</td>
<td>Ground beef (0 days storage)</td>
<td>Water wash</td>
<td>2/2</td>
<td>Median = 0.60 (Range: 0.45–0.75)</td>
<td>Low</td>
<td>Dorsa et al., 1998a, b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcass</td>
<td>Ground beef (0 days storage)</td>
<td>No treatment</td>
<td>2/2</td>
<td>Median = 0.50 (Range: 0.45–0.55)</td>
<td>Low</td>
<td>Dorsa et al., 1998a, b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>Intervention sample</td>
<td>Outcome sample</td>
<td>Comparison group</td>
<td>No. trials/studies</td>
<td>Log CFU/cm² reduction(1)</td>
<td>GRADE rating(3)</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Other chemical/oxidizer washes</td>
<td>Carcass</td>
<td>Carcass</td>
<td>Water wash</td>
<td>22/17</td>
<td>Median = 0.59 (Range: -1.90–2.60)</td>
<td>Low</td>
<td>Kim and Slavik, 1994; Bell, Cutter and Sumner, 1997; Dorsa et al., 1998a, b; Castillo et al., 1999; Cutter, 1999a; Cutter and Rivera-Betancourt, 2000; Cutter et al., 2000; Castillo et al., 2003; Reyes et al., 2003; King et al., 2005; Arthur et al., 2008b; Niebuhr et al., 2008; Sawyer et al., 2008; Kalchayanand et al., 2009; Njongmeta et al., 2011; Yoder et al., 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>Carcass</td>
<td>No treatment</td>
<td>9/8</td>
<td>Median = 1.85 (Range: -0.40–4.35)</td>
<td>Very low</td>
<td>Dorsa et al., 1998a, b; Cutter, 1999a; Cutter and Rivera-Betancourt, 2000; Cutter et al., 2000; Reyes et al., 2003; Ellebracht et al., 2005; Sawyer et al., 2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>Ground beef (0 days storage)</td>
<td>Water wash</td>
<td>2/2</td>
<td>Median = 0.65 (Range: 0.50–0.80)</td>
<td>Low</td>
<td>Dorsa et al., 1998a, b;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>Ground beef (0 days storage)</td>
<td>No treatment</td>
<td>2/2</td>
<td>Median = 0.55 (Range: 0.50–0.60)</td>
<td>Low</td>
<td>Dorsa et al., 1998a, b;</td>
<td></td>
</tr>
<tr>
<td>Dry heat</td>
<td>Carcass</td>
<td>Carcass</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = -3.40 (No measure of variability reported)</td>
<td>Low</td>
<td>Cutter, Dorsa and Siragusa, 1997</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>Carcass</td>
<td>Carcass</td>
<td>No treatment</td>
<td>3/2</td>
<td>Median = 0.64 (Range: 0.54–0.83)</td>
<td>Very low</td>
<td>Bawcom et al., 1995; Tinney et al., 1997</td>
<td></td>
</tr>
<tr>
<td>Natural extracts</td>
<td>Carcass</td>
<td>Carcass</td>
<td>No treatment</td>
<td>4/2</td>
<td>Median = 5.34 (Range: 2.12–6.22)</td>
<td>Very low</td>
<td>Reyes et al., 2003; Pearce and Bolton, 2008</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>Intervention sample</td>
<td>Outcome sample</td>
<td>Comparison group</td>
<td>No. trials/studies</td>
<td>Log CFU/cm² reduction<sup>(1)</sup></td>
<td>GRADE rating<sup>(3)</sup></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Carcass</td>
<td>Carcass</td>
<td>Carcass</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = 1.01 (No measure of variability reported)</td>
<td>Very low</td>
<td>Reyes et al., 2003</td>
<td></td>
</tr>
<tr>
<td>Trimming</td>
<td>Carcass</td>
<td>Carcass</td>
<td>Water wash</td>
<td>2/2</td>
<td>Median = 1.67 (Range: 1.49–1.86)</td>
<td>Low</td>
<td>Hardin et al., 1995; Phebus et al., 1997</td>
<td></td>
</tr>
<tr>
<td>Multiple Interventions</td>
<td>Carcass</td>
<td>Carcass</td>
<td>Water wash</td>
<td>16/11</td>
<td>Median = 1.62 (Range: 0.30–3.24)</td>
<td>Very low</td>
<td>Bell, Cutter and Sumner, 1997; Cabrera-Diaz et al., 2009; Castillo et al., 1998b, 1999, 2001; Cutter, Dorsa and Siragusa, 1997; Dickson and Anderson, 1991; Phebus et al., 1997; Niebuhr et al., 2008; Njongmeta et al., 2011; Sawyer et al., 2008</td>
<td></td>
</tr>
<tr>
<td>Carcass</td>
<td>Carcass</td>
<td>Carcass</td>
<td>No treatment</td>
<td>4/4</td>
<td>Median = 2.69 (Range: 1.12–3.25)</td>
<td>Very low</td>
<td>Castillo et al., 2003; Cutter, 1999a; Sawyer et al., 2008; Tinney et al., 1997</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.
(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.
(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as noted in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.
(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC6.6 CHILLING

The primary purpose of carcass chilling is to inhibit microbial growth. Five quasi-experimental studies conducted under commercial conditions were identified evaluating the effects of chilling on *Salmonella* reduction (Hajmeer *et al*., 1999; Sofos *et al*., 1999; Fegan *et al*., 2005; Trairatapiwan, Lertpatarakomol and Mitchaothai, 2011; Dong *et al*., 2014). The studies found infrequent *Salmonella* contamination in both pre- and post-chilling samples (Table SC6.7). The identification of positive *Salmonella* samples post-chilling in some studies could potentially be due to cross-contamination during the chilling process and emphasizes the importance of good hygienic practices during all processing steps (Hajmeer *et al*., 1999; Trairatapiwan, Lertpatarakomol and Mitchaothai, 2011). There is low confidence in the specific estimate of effect of chilling to reduce *Salmonella* prevalence on beef carcasses due to potential for confounding bias in the included studies, and due to other factors, such as differences in study sampling methodologies and chilling procedures.

Summary-of-findings tables for the effects of chilling

<table>
<thead>
<tr>
<th>Intervention/ outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilling Carcass</td>
<td>5/5</td>
<td>MA = 1.60 (95% CI: 0.58–4.41)</td>
<td>2.0% (95% CI: 1.1–8.1)</td>
<td>Low</td>
<td>Dong et al., 2014; Hajmeer et al., 1999; Sofos et al., 1999; Fegan et al., 2005; Trairatapiwan, Lertpatarakomol and Mitchaothai, 2011</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (\(I^2<60\%\)). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study. For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: \((OR \times ACR / 1 - ACR + [OR \times ACR])\), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as noted in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (\(I^2<60\%\)), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
One challenge trial was identified that investigated the efficacy of spray vs dry chilling under simulated commercial conditions (Tittor et al., 2011). The authors found that spray chilling reduced inoculated Salmonella levels when sampled within 48 hours of chilling, but after extended storage of 7 to 28 days, Salmonella counts were lower on dry chilled carcasses (Table SC6.8). Another challenge trial found that various cycles of spray chilling carcass tissues with acetic acid (at 0.5%, 1.0%, or 2.0%) and water and acetic acid combinations reduced inoculated Salmonella levels compared with spray chilling with water alone (Dickson, 1991).

SC6.7 POST-CHILL AND PRE-FABRICATION

One quasi-experiment conducted under commercial conditions was identified evaluating the effect of a post-chill and pre-fabrication wash (Table SC6.9). A very low level of contamination was found (Ruby, Zhu and Ingham, 2007), but a slight reduction in Salmonella prevalence was noted due to an organic (5% lactic) acid wash (Table SC6.9).
Two challenge trials conducted under laboratory conditions were also identified (Table SC6.10). One study found that a steam vacuum treatment at 130°C reduced inoculated *Salmonella* levels on post-chill beef carcasses by <1 log compared with no treatment (Bacon *et al*., 2002b). The other study found that a combination of lactic acid wash followed by 200 ppm peroxyacetic acid wash reduced inoculated *Salmonella* concentrations on carcasses compared with samples measured after a pre-chill water wash, but a 200 ppm peroxyacetic acid wash alone was not effective (King *et al*., 2005).

Summary-of-findings tables for interventions applied post-chill and pre-fabrication

TABLE SC6.9 Quasi-experimental studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic acid wash</td>
<td>Carcass</td>
<td>1/1</td>
<td>Single study = 0.33 (95% CI: 0.01–8.19)</td>
<td>1.0%</td>
<td>0.3% (95% CI: 0.01–7.9)</td>
<td>Low</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]), and provides an indication of the effect of the intervention on changing a given baseline prevalence as noted in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.

TABLE SC6.10 Challenge trial studies

<table>
<thead>
<tr>
<th>Intervention/oxidizer wash</th>
<th>Intervention/outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Log CFU/cm² reduction(1)</th>
<th>GRADE rating(2)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam vacuum</td>
<td>Carcass</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.6 (95% CI: 0.43–0.77)</td>
<td>Low</td>
<td>Bacon et al., 2002b</td>
</tr>
<tr>
<td>Other chemical/oxidizer</td>
<td>Carcass</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = -0.3 (95% CI: -0.62–0.02)</td>
<td>Low</td>
<td>King et al., 2005</td>
</tr>
<tr>
<td>Multiple interventions</td>
<td>Carcass</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = 0.2 (95% CI: -0.76–1.16)</td>
<td>Low</td>
<td>King et al., 2005</td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC6.8 POST-FABRICATION

One controlled trial was identified that evaluated the effect of post-fabrication and pre- and post-storage washes on *Salmonella* reduction of beef cuts, but *Salmonella* was not isolated from any sample, precluding evaluation of intervention efficacy on this pathogen (Prasai *et al.*, 1997). The authors found that lactic acid washes significantly reduced levels of aerobic plate counts (APCs) and the prevalence of *Listeria* spp. on beef cuts, with greater reductions in APCs for washes implemented pre-storage compared with post-storage (Prasai *et al.*, 1997).

A total of 32 challenge trials were identified that investigated the efficacy of post-fabrication interventions on beef trimmings in laboratories under simulated commercial conditions (Podolak *et al.*, 1995; Ellebracht *et al.*, 1999; Chung, Ko and Kim, 2000; Pohlman *et al.*, 2002a, b, 2009; Stivarius *et al.*, 2002a, b, c; Ellebracht *et al.*, 2005; Harris *et al.*, 2006; McCann *et al.*, 2006; Ozdemir *et al.*, 2006; Echeverry *et al.*, 2009, 2010; Hughes *et al.*, 2010; Quilo *et al.*, 2010; Fouladkhah *et al.*, 2012; Geornaras *et al.*, 2012; Harris *et al.*, 2012; McDaniel *et al.*, 2012; Mehall *et al.*, 2012a, b; Mohan *et al.*, 2012; Patel *et al.*, 2012; Dias-Morse *et al.*, 2014; Kundu *et al.*, 2014; Pohlman, Dias-Morse and Pinidiya, 2014; Tango *et al.*, 2014; Zhao *et al.*, 2014; Li, Kundu and Holley, 2015). Twenty-nine of these reported extractable log reduction data and are summarized in Table SC6.11. Compared with no treatment, all intervention categories tended to reduce inoculated *Salmonella* levels on treated beef trimmings when measured as subsequently produced ground beef or beef cuts, with organic acid washes, irradiation, and multiple treatment combinations showing the largest log reductions (Table SC6.11). Consistent benefits were also observed when some interventions (organic acids washes, other chemical and oxidizer washes, lactic acid bacteria washes, and multiple treatment combinations) were compared with an ambient or cold temperature water wash and measured in subsequent beef cuts (Table SC6.11). Two studies investigated hydrodynamic pressure processing, finding that it significantly reduced inoculated *Salmonella* levels by 0.25 to 1.1 logs in beef stew pieces (Patel and Solomon, 2005; Patel *et al.*, 2012). Another study investigated a dry heat intervention and found it reduced inoculated *Salmonella* levels by 1–2 logs at lower temperatures (60° and 75°C) and by up to 4–6 logs at higher temperatures (90° and 100°C) (McCann *et al.*, 2006). Overall, there is low to very low confidence in these estimates of effect due to the artificial study conditions, small sample sizes, and/or variations in magnitude of effect across studies.

One challenge trial conducted under laboratory conditions was identified that evaluated the effect of various treatments to reduce *Salmonella* contamination of beef cheek meat (Schmidt *et al.*, 2014). The authors found a significant reduction in inoculated *Salmonella* levels for thermal, organic acid, and other chemical washes, with the former two having the largest overall reduction effect (Table SC6.11).
Summary-of-findings table for interventions applied post-fabrication

TABLE SC6.11 Challenge trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention sample</th>
<th>Outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Log CFU reduction(1)</th>
<th>GRADE rating(2)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water washes</td>
<td>Beef trimmings</td>
<td>Ground beef (0 days storage)</td>
<td>No treatment</td>
<td>3/3</td>
<td>Median = 0.27 (Range: 0.25–0.95)</td>
<td>Very low</td>
<td>Ellebracht et al., 2005; Harris et al., 2012; Pohlman, Dias-Morse and Pinidiya, 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beef trimmings</td>
<td>Steaks (0 days storage)</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.18 (95% CI: -0.17-0.53)</td>
<td>Low</td>
<td>Mehall et al., 2012a</td>
</tr>
<tr>
<td></td>
<td>Cheek meat</td>
<td>Cheek meat</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.13 (no measure of variability reported)</td>
<td>Very low</td>
<td>Schmidt et al., 2014</td>
</tr>
<tr>
<td>Thermal washes</td>
<td>Beef trimmings</td>
<td>Ground beef (across 7–42 days of storage)</td>
<td>No treatment</td>
<td>2/2</td>
<td>Median = 0.41 (Range: 0.11–0.70)</td>
<td>Very low</td>
<td>Ellebracht et al., 1999; Stivarius et al., 2002c</td>
</tr>
<tr>
<td></td>
<td>Beef trimmings</td>
<td>Beef cuts/steaks (0 days storage)</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 0.54 (no measure of variability reported)</td>
<td>Very low</td>
<td>Ozdemir et al., 2006</td>
</tr>
<tr>
<td></td>
<td>Cheek meat</td>
<td>Cheek meat</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 1.95 (no measure of variability reported)</td>
<td>Very low</td>
<td>Schmidt et al., 2014</td>
</tr>
<tr>
<td>Organic acid washes</td>
<td>Beef trimmings</td>
<td>Ground beef (0 days storage)</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = 0.17 (95% CI: 0.12–0.22)</td>
<td>Very low</td>
<td>Harris et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Beef trimmings</td>
<td>Ground beef (0 days storage)</td>
<td>No treatment</td>
<td>4/4</td>
<td>Median = 0.50 (Range: 0.22–1.68)</td>
<td>Very low</td>
<td>Stivarius et al., 2002a; Stivarius et al., 2002c; Pohlman et al., 2009; Harris et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Beef trimmings</td>
<td>Beef cuts/steaks (0 days storage)</td>
<td>Water wash</td>
<td>12/5</td>
<td>Median = 1.39 (Range: -0.10–3.96)</td>
<td>Very low</td>
<td>Podolak et al., 1995; Echeverry et al., 2009, 2010; Mehall et al., 2012a; Tango et al., 2014</td>
</tr>
<tr>
<td>Intervention sample</td>
<td>Outcome sample</td>
<td>Comparison group</td>
<td>No. trials/studies</td>
<td>Log CFU reduction (1)</td>
<td>GRADE rating (2)</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Beef trimmings</td>
<td>Beef cuts/steaks (0 days storage)</td>
<td>No treatment</td>
<td>8/4</td>
<td>Median = 1.45 (Range: 0.31–1.70)</td>
<td>Very low</td>
<td>Ozdemir et al., 2006; Fouladkhah et al., 2012; Mehall et al., 2012a; Li, Kundu and Holley, 2015</td>
<td></td>
</tr>
<tr>
<td>Cheek meat</td>
<td>Cheek meat</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = 1.42 (no measure of variability reported)</td>
<td>Very low</td>
<td>Schmidt et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Cheek meat</td>
<td>Cheek meat</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study = 1.56 (no measure of variability reported)</td>
<td>Very low</td>
<td>Schmidt et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Other chemical/oxidizer washes</td>
<td>Beef trimmings</td>
<td>Ground beef (0 days storage)</td>
<td>Water wash</td>
<td>2/2</td>
<td>Median = 0.11 (Range: -0.13–0.34)</td>
<td>Very low</td>
<td>Harris et al., 2012; Pohlman, Dias-Morse and Pinidiya, 2014</td>
</tr>
<tr>
<td>Beef trimmings</td>
<td>Ground beef (0 days storage)</td>
<td>No treatment</td>
<td>9/8</td>
<td>Median = 0.70 (Range: 0–1.97)</td>
<td>Very low</td>
<td>Stivarius et al., 2002b; Ellebracht et al., 2005; Pohlman et al., 2009; Harris et al., 2012; Mehall et al., 2012a; Mohan et al., 2012; Dias-Morse et al., 2014; Pohlman, Dias-Morse and Pinidiya, 2014</td>
<td></td>
</tr>
<tr>
<td>Beef trimmings</td>
<td>Beef cuts/steaks (0 days storage)</td>
<td>Water wash</td>
<td>11/4</td>
<td>Median = 0.97 (Range: 0.11–3.38)</td>
<td>Very low</td>
<td>Echeverry et al., 2009; Echeverry et al., 2010; Mehall et al., 2012a; Tango et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Beef trimmings</td>
<td>Beef cuts/steaks (0 days storage)</td>
<td>No treatment</td>
<td>7/2</td>
<td>Median = 0.60 (Range: 0.36–2.31)</td>
<td>Very low</td>
<td>Geornaras et al., 2012; McDaniel et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Cheek meat</td>
<td>Cheek meat</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = 0.54 (no measure of variability reported)</td>
<td>Very low</td>
<td>Schmidt et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>Intervention sample</td>
<td>Outcome sample</td>
<td>Comparison group</td>
<td>No. trials/studies</td>
<td>Log CFU reduction(1)</td>
<td>GRADE rating(2)</td>
<td>References</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Cheek meat</td>
<td>Cheek meat</td>
<td>No treatment</td>
<td>1/1</td>
<td>Single study</td>
<td>0.68</td>
<td>Very low</td>
<td>Schmidt et al., 2014</td>
</tr>
<tr>
<td>Irradiation</td>
<td>Beef trimmings</td>
<td>Beef trimmings</td>
<td>5/3</td>
<td>Median = 2.0</td>
<td>(Range: 1.79–6.0)</td>
<td>Very low</td>
<td>Chung, Ko and Kim, 2000; Kundu et al., 2014; Li, Kundu and Holley, 2015</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>Beef trimmings</td>
<td>Tenderized steaks (0 days storage)</td>
<td>9/2</td>
<td>Median = 1.22</td>
<td>(Range: 0.20–2.94)</td>
<td>Very low</td>
<td>Echeverry et al., 2009, 2010</td>
</tr>
<tr>
<td>Multiple Interventions</td>
<td>Beef trimmings</td>
<td>Ground beef (0 days storage)</td>
<td>Water wash</td>
<td>1/1</td>
<td>Single study = 0.29 (95% CI: 0.10–0.48)</td>
<td>Low</td>
<td>Pohlman, Dias-Morse and Pinidiya, 2014</td>
</tr>
<tr>
<td>Beef trimmings</td>
<td>Ground beef (0 days storage)</td>
<td>No treatment</td>
<td>8/8</td>
<td>Median = 1.45 (Range: 0.40–1.87)</td>
<td>Very low</td>
<td>Ellebracht et al., 1999, 2005; Pohlman et al., 2002a, b; Quilo et al., 2010; Mohan et al., 2012; Dias-Morse et al., 2014; Pohlman, Dias-Morse and Pinidiya, 2014</td>
<td></td>
</tr>
<tr>
<td>Beef trimmings</td>
<td>Beef cuts/steaks (0 days storage)</td>
<td>Water wash</td>
<td>2/2</td>
<td>Median = 3.45 (Range: 1.90–5.0)</td>
<td>Very low</td>
<td>Tango et al., 2014; Zhao et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Beef trimmings</td>
<td>Beef cuts/steaks (0 days storage)</td>
<td>No treatment</td>
<td>4/4</td>
<td>Median = 1.64 (Range: 0.45–2.85)</td>
<td>Very low</td>
<td>Ozdemir et al., 2006; McDaniel et al., 2012; Mehall et al., 2012b; Li, Kundu and Holley, 2015</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: CI = confidence interval.
(1) Due to limiting data reporting, meta-analysis was not conducted for challenge trials. Instead, log reduction results in this column are presented as a median (range) log reduction for multiple trials and as the single estimate and 95% CI for individual studies.
(2) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC6.9 PACKAGING

The effects of various packaging and final product preservation interventions were studied in 31 laboratory challenge trials identified in this review.

Six studies were identified that investigated the use of *Lactobacillus* spp. to decrease *Salmonella* contamination on beef products (Gomółka-Pawlicka and Uradzinski, 2003; Smith *et al.*, 2005; Hoyle *et al.*, 2009; Ruby and Ingham, 2009; Olaoye and Onilude, 2010; Chaillou *et al.*, 2014). All studies reported a decrease in *Salmonella* that depended on the applied *Lactobacillus/Salmonella* ratio. Higher doses of *Lactobacillus* spp. were reported to be more effective in reducing pathogenic load (Smith *et al.*, 2005; Ruby and Ingham, 2009; Chaillou *et al.*, 2014); however, when applied in very high quantities product spoilage was observed (Ruby and Ingham, 2009). Some studies reported a reduction of *Salmonella* until undetectable levels in 5 days (Smith *et al.*, 2005; Hoyle *et al.*, 2009). A study that investigated differences in the effectiveness of various strains of lactic acid bacteria reported that *L. acidophilus* and *L. plantarum* were most effective to inhibit *Salmonella* in ground beef (Gomółka-Pawlicka and Uradzinski, 2003).

Thirteen studies investigated the effects of natural extracts to reduce *Salmonella* contamination in beef products (Cutter, 2000; Skandamis, Tsigarida and Nychas, 2002; Careaga *et al.*, 2003; Ahn, Grun and Mustapha, 2004; Uhart, Maks and Ravishankar, 2006; Qiu and Wu, 2007; Hayouni *et al.*, 2008; Turgis *et al.*, 2008; Chao and Yin, 2009; Shalaby, 2011; Tayel *et al.*, 2012; Cruz-Galvez *et al.*, 2013; De Oliveira, Soares and Piccoli, 2013). Compounds investigated included various spices (oregano, red pepper, lemon grass, garlic, turmeric, cinnamon, mustard), fruits (pomegranate, grape seed, cranberry), or other plant extracts (roselle, pine bark, *Artemisia absinthium*, *Salvia officinalis* and *Schinus molle*). The compounds were typically administered as essential oils or aqueous extracts. Most of the above mentioned compounds were shown to be effective in reducing inoculated *Salmonella* levels, sometimes in conjugation with irradiation (Turgis *et al.*, 2008) or modified packaging (Skandamis, Tsigarida and Nychas, 2002), although the magnitude of the effects varied among the compounds and experimental conditions. The use of essential oils has been shown to affect the sensory properties of the meat in some cases (Hayouni *et al.*, 2008; De Oliveira, Soares and Piccoli, 2013).

Seven studies reported on modified atmosphere packaging interventions (Gill and DeLacy, 1991; Bergis, Poumeyrol and Beaufort, 1994; Cutter, 1999b; Nissen *et al.*, 2000; Skandamis, Tsigarida and Nychas, 2002; Brooks *et al.*, 2008; Miya *et al.*, 2014). Modified packages with increased oxygen (80%) or with added carbon monoxide (0.4%) were shown to result in a significant reduction of *Salmonella* after 7 and 14
days of storage in one study (Brooks et al., 2008). Other studies reported effective reduction of Salmonella by applying a vacuum or a CO₂ atmosphere at lower temperatures (Gill and DeLacy, 1991), combinations of CO₂, O₂ and/or N₂ (Bergis, Poumeyrol and Beaufort, 1994), combining an epsilon-polylysine treatment with a CO₂ atmosphere (Miya et al., 2014), and a combination of a modified atmosphere or vacuum package with an oregano essential oil extract (Skandamis, Tsigarida and Nychas, 2002). Other studies found that packaging materials containing 1500 ppm triclosan (Cutter, 1999b) and a high CO₂ / low CO mixture (0.4% CO / 60% CO₂ / 40% N₂) at 10°C (Nissen et al., 2000) had no significant pathogen-reduction effect.

Other preservation treatments such as various salts, organic acids or volatile compounds were investigated in seven studies (Cutter and Siragusa, 1995; Tu and Mustapha, 2002; Jensen, Saxena and Keener, 2009; Ryu and Fung, 2010; Shalaby, 2011; Stelzleni, Ponrajan and Harrison, 2013; Miya et al., 2014; Faith et al., 2015). The use of gaseous anhydrous ammonia (5100 ppm) was shown to result in an up to 7 log reduction of Salmonella in textured beef in one study, whereas liquid ammonia and ammonium hydroxide were not effective (Jensen, Saxena and Keener, 2009). The use of sodium salts was investigated in several studies with inconsistent results (Cutter and Siragusa, 1995; Ryu and Fung, 2010; Stelzleni, Ponrajan and Harrison, 2013). Treatment with nisin, a polypeptide, was reported to be not effective (Tu and Mustapha, 2002) or to result in only a small (0.4) log reduction in combination with lactate (Cutter and Siragusa, 1995) in two studies. One study found that application of a mixture of volatile compounds resulted in a 1.7–2.2 log reduction of Salmonella in ground beef during a 5-day storage period at 8°C (Faith et al., 2015). Another study found that an epsilon-polylysine treatment reduced Salmonella levels by 1.5–2.4 logs in fresh beef over 7 days, depending on the storage conditions (Miya et al., 2014).

SC6.10 MULTIPLE PROCESSING STAGES

One previous systematic review evaluated the efficacy of HACCP to reduce Salmonella contamination of beef carcasses during processing (Wilhelm et al., 2011). A meta-analysis was conducted on five eligible quasi-experimental studies measuring changes in Salmonella prevalence before and after implementation of HACCP programmes. Results indicate no overall effect of HACCP on Salmonella reduction in beef (Table SC6.12), with moderate confidence in the estimate of effect. However, the review found that HACCP was linked to a reduction in aerobic bacterial counts (Wilhelm et al., 2011). Although HACCP may be effective in some settings (and may depend on the specific critical control points and other implementation factors), these findings suggest that there is limited evidence that HACCP itself is
effective in reducing *Salmonella* prevalence on beef during processing (Wilhelm *et al.*, 2011). The review met 9/11 recommended reporting reliability criteria using the AMSTAR quality assessment tool.

Seven quasi-experimental studies conducted under commercial conditions were identified that evaluated the effect of multiple interventions applied between pre-evisceration and chilling (Sofos *et al.*, 1999; Bacon *et al.*, 2002a; Barkocy-Gallagher *et al.*, 2003; Rivera-Betancourt *et al.*, 2004; Ruby, Zhu and Ingham, 2007; Brichta-Harhay *et al.*, 2008; Koohmaraie *et al.*, 2012). The studies found a very large effect on *Salmonella* reduction (Table SC6.13), but the overall confidence in the median effect estimate is very low due to potential for confounding in these studies and because of large variations between studies in the magnitude of the effect, which could be due to differences in the intervention combinations applied across studies as well as other confounding factors. While the overall confidence in identifying a specific estimate of effect is very low due to these factors, the studies highlight a clear trend for *Salmonella* to be reduced to very low levels by implementing multiple interventions throughout processing.

In addition, interim results (July, 2015) from the USDA Nationwide Beef and Veal Carcass Baseline Survey correspond with the above findings from Table SC6.13, indicating that 25.5% of carcasses were positive during post-hide removal/pre-evisceration testing, and only 3.9% of paired carcass samples were positive pre-chill after receiving one or more different combinations of interventions (USDA, 2015). Furthermore, of 77 positive carcass samples at the post-hide removal/pre-evisceration step that did not receive an intervention at or before hide removal, only eight paired carcass samples remained positive (8/77, 10.4%) when tested at the pre-chill step after receiving one or more different combinations of interventions (USDA, unpublished data). MPN/ml values for the 77 positive samples at post-hide removal/pre-evisceration ranged from 0.225 to 645, with a median of 0.225. Of the eight carcass samples that remained positive, all had MPN/ml values of 0.225 on both pre- and post-samples.

Four challenge trials were identified that compared multiple combinations of pre-and post-evisceration washes, and/or pre- and post-chill washes with spray chilling, with and without organic acids and other chemicals, compared with spray chilling alone to reduce inoculated *Salmonella* on beef carcasses (Dickson and Anderson, 1991; Dickson and Siragusa, 1994; Tinney *et al.*, 1997; Stopforth *et al.*, 2005). All three studies that reported extractable data (Table SC6.14) found reductions in *Salmonella* levels ranging up to 2.5 logs. The other study found that organic acid water washes with and without spray chilling resulted in significant reductions of inoculated *Salmonella* levels, up to 3 logs, in carcass tissue after extended storage.
at 10–20 days (Dickson and Siragusa, 1994). The confidence in these estimates of reduction is very low due to the artificial study conditions, small sample sizes, and variation in effect across studies.

One cross-sectional study from Ethiopia found that several good hygienic practices (e.g. wearing protective garments during slaughtering, hand-washing after separating intestinal contents, washing of the knife before slaughtering, and slaughtering on sanitized floor) were associated with a lower *Salmonella* prevalence in carcass swab samples (Muluneh and Kibret, 2015).

Summary-of-findings tables for the effects of interventions applied at multiple processing stages

TABLE SC6.12 Systematic review

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Study design</th>
<th>Intervention/ outcome sample</th>
<th>No. trials/ studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HACCP</td>
<td>Quasi- experiments</td>
<td>Carcass</td>
<td>5/5</td>
<td>MA = 0.89 (95% CI: 0.53–1.48)</td>
<td>2.1% (95% CI: 1.1–3.1)</td>
<td>Moderate</td>
<td>Wilhelm et al., 2011</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.

(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant ($I^2<60\%$). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.

For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.

(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: \((\text{OR} \times \text{ACR}) / (1 - \text{ACR} + (\text{OR} \times \text{ACR}))\), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as noted in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant ($I^2<60\%$), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.

(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
TABLE SC6.13 Quasi-experimental studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>No. trials/studies</th>
<th>Odds ratio for intervention effect(1)</th>
<th>% Samples Salmonella positive in study population(2)</th>
<th>GRADE rating(3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Interventions (pre-evisceration to pre-chill)</td>
<td>Carcass</td>
<td>7/7</td>
<td>Median = 0.01 (Range: 0.006–0.48)</td>
<td>28.7% (Range: 0.2–16.0)</td>
<td>0.5%</td>
<td>Very low</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.
(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.
For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.
(2) The percentage of samples positive for *Salmonella* in the comparison group (assumed control risk, ACR) refers to the median prevalence in the comparison group trials. The percentage in the intervention/treatment group was calculated using the following formula for the odds ratio (OR) measure of effect: (OR × ACR / 1 - ACR + [OR × ACR]), and provides an indication of the effect of the intervention on changing a given baseline level of *Salmonella* prevalence as noted in the included studies. The odds ratio used in this formula corresponds to the odds ratio presented in the intervention effect column as described under (1) above. If heterogeneity was not significant (I²<60%), the estimate is presented with a 95% CI in brackets. If heterogeneity was significant, the median estimate is presented with the range of individual study effects in brackets to illustrate the variability in results across studies.
(3) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.

TABLE SC6.14 Challenge trial studies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intervention/outcome sample</th>
<th>Comparison group</th>
<th>No. trials/studies</th>
<th>Log CFU/cm² reduction(1)</th>
<th>GRADE rating(2)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Interventions</td>
<td>Carcass</td>
<td>Spray chill only</td>
<td>4/3</td>
<td>Median = 1.58 (Range: 0.78–2.52)</td>
<td>Very low</td>
<td>Dickson and Anderson, 1991; Stopforth et al., 2005; Tinney et al., 1997</td>
</tr>
</tbody>
</table>

NOTES: MA = meta-analysis average estimate from random-effects model; CI = confidence interval.
(1) For interventions with multiple trials, refers to the average meta-analysis estimate and 95% CI from random-effects meta-analysis if heterogeneity was not significant (I²<60%). If heterogeneity was significant, the median and range of odds ratios or log reduction values from individual studies are presented instead. If only one trial was available, refers to the odds ratio or log reduction value and 95% CI from the individual study.
For challenge trials, meta-analysis was not conducted due to limiting data reporting. Instead, results are presented as a median (range) log reduction for multiple trials, and as the single estimate and 95% CI for individual studies.
(2) GRADE rating descriptions: very low = the true effect is likely to be substantially different from the measured estimate; low = the true effect may be substantially different from the measured estimate; moderate = the true effect is likely to be close to the measured estimate, but there is a possibility that it is substantially different; high = there is strong confidence that the true effect lies close to that of the measured estimate.
SC6.11 REFERENCES CITED IN SC6

Dorsa, W.J., Cutter, C.N. & Siragusa, G.R. 1998a. Bacterial profile of ground beef made from carcass tissue experimentally contaminated with pathogenic and spoilage bacteria before being washed with hot water, alkaline solution, or organic acid and then stored at 4 or 12°C. *Journal of Food Protection*, 61(9): 1109–1118.

Geornaras, I., Yang, H., Moschonas, G., Nunnely, M.C., Belk, K.E., Nightingale, K.K., Woerner, D.R., Smith, G.C. & Sofos, J.N. 2012. Efficacy of chemical interventions against *Escherichia coli* O157:H7 and multidrug-resistant and antibiotic-

ground beef and freshly harvested beef briskets after exposure to commonly used industry antimicrobial interventions. *Journal of Food Protection*, 73(7): 1231–1237.

Stopforth, J.D., Ashton, L.V., Skandamis, P.N., Scanga, J.A., Smith, G.C., Sofos, J.N. & Belk, K.E. 2005. Single and sequential treatment of beef tissue with lactic acid, ammonium hydroxide, sodium metasilicate, and acidic and basic oxidized water to re-
duce numbers of inoculated Escherichia coli 0157:H7 and Salmonella Typhimu-

Stopforth, J.D., Lopes, M., Shultz, J.E., Miksch, R.R. & Samadpour, M. 2006. Location of
bung bagging during beef slaughter influences the potential for spreading patho-

maric acid and slightly acidic electrolysed water on the inactivation of food-borne
pathogens and extending the shelf life of fresh beef. *Journal of Applied Microbiol-

Tayel, A.A., El-Tras, W., Moussa, S.H. & El-Sabbagh, S. 2012. Surface decontamination
and quality enhancement in meat steaks using plant extracts as natural biopreserv-

of microorganisms on beef surfaces with electricity and acetic acid. *Journal of Food

Tittor, A.W., Tittor, M.G., Brashears, M.M., Brooks, J.C., Garmyn, A.J. & Miller, M.F.
2011. Effects of simulated dry and wet chilling and aging of beef fat and lean tis-
ues on the reduction of *Escherichia coli* O157:H7 and *Salmonella*. *Journal of Food
Protection*, 74(2): 289–293.

Trairatapiwan, T., Lertpatarakomol, R. & Mitchaothai, J. 2011. Evaluation of *Salmonella*
contamination and serovar isolation from slaughtering and cutting processes of
Conference on Sustainable Animal Agriculture for Developing Countries. Nakhon
Ratchasima, Thailand.

Trivedi, S., Reynolds, A.E. & Chen, J. 2007. Use of a commercial household steam cleaning
system to decontaminate beef and hog carcases processed by four small or very
small meat processing plants in Georgia. *Journal of Food Protection*, 70(3): 635–
640.

Tu, L. & Mustapha, A. 2002. Reduction of *Brochothrix thermosphacta* and *Salmonella* se-
rotype Typhimurium on vacuum-packaged fresh beef treated with nisin and nisin

Turgis, M., Han, J., Borsa, J. & Lacroix, M. 2008. Combined effect of natural essential oils,
modified atmosphere packaging, and gamma radiation on the microbial growth on

Uhart, M., Maks, N. & Ravishankar, S. 2006. Effect of spices on growth and survival of
Salmonella Typhimurium DT 104 in ground beef stored at 4 and 8C. *Journal of

RAPID SYSTEMATIC REVIEW
Appendix A: Search Strategy Details

This Appendix A gives the full search algorithms used for the search of peer-reviewed literature.

SALMONELLA INTERVENTIONS IN BEEF

<table>
<thead>
<tr>
<th>DATE</th>
<th>11 FEBRUARY 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performed by</td>
<td>Ian Young</td>
</tr>
<tr>
<td>Platform/Interface</td>
<td>Ovid</td>
</tr>
<tr>
<td>Databases</td>
<td>CAB Abstracts (1910-2015 week 5)</td>
</tr>
<tr>
<td>Institution</td>
<td>FAO</td>
</tr>
<tr>
<td>Search string:</td>
<td>(salmonella OR salmonellae) AND (biosecur* OR vaccin* OR immunis* OR immuniz* OR antibiotic* OR antimicrobial* OR antibacterial* OR phage* OR bacteriophage* OR "sodium chloride" OR probiotic* OR "competitive exclusion" OR lactob* OR bifidobac* OR "lactic acid bacteria" OR dehid* OR dehair* OR skin* OR dress* OR vaccum* OR eviserat* OR wash* OR rins* OR steam OR pasteuriz* OR irradiat* OR spray* OR "hot water" OR chlorine OR chill* OR cool* OR debon* OR boning OR cut* OR fabricat* OR trim* OR grind* OR mitigat* OR disinfect* OR inactiv* OR reduce* OR reducing OR reduction OR intervention* OR decontaminat* OR contamination OR control OR decreas* OR treatment* OR hygiene OR trial OR efficacy OR storage) AND (beef OR veal OR cattle OR cow OR cows OR steer OR steers OR heifer* OR bull OR bulls OR calf OR calves) in Article title OR in Abstract OR in Subject headings</td>
</tr>
<tr>
<td>Hits</td>
<td>2985</td>
</tr>
<tr>
<td>Limits</td>
<td>None</td>
</tr>
<tr>
<td>DATE</td>
<td>11 FEBRUARY 2015</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Performed by</td>
<td>Ian Young</td>
</tr>
<tr>
<td>Platform/Interface</td>
<td>Scopus</td>
</tr>
<tr>
<td>Databases</td>
<td>Scopus (1823-2015)</td>
</tr>
<tr>
<td>Institution</td>
<td>FAO</td>
</tr>
<tr>
<td>Search string:</td>
<td>(salmonella OR salmonellae) AND (biosecur* OR vaccin* OR immunis* OR immuniz* OR antibiotic* OR antimicrobial* OR antibacterial* OR phage* OR bacteriophage* OR "sodium chlorate" OR probiotic* OR "competitive exclusion" OR lactob* OR bifidobac* OR "lactic acid bacteria" OR dehid* OR dehair* OR skin* OR dress* OR vaccum* OR eviserat* OR wash* OR rins* OR steam OR pasteuriz* OR irradiat* OR spray* OR “hot water” OR chlorine OR chill* OR cool* OR debon* OR boning OR cut* OR fabricat* OR trim* OR grind* OR mitigat* OR disinfect* OR inactiv* OR reduce* OR reducing OR reduction OR intervention* OR decontaminat* OR contamination OR control OR decaes* OR treatment* OR hygiene OR trial OR efficacy OR storage) AND (beef OR veal OR cattle OR cow OR cows OR steer OR steers OR heifer* OR bull OR bulls OR calf OR calves) in Title OR in Abstract OR Key words</td>
</tr>
<tr>
<td>Hits</td>
<td>3478</td>
</tr>
<tr>
<td>Limits</td>
<td>None</td>
</tr>
</tbody>
</table>
SALMONELLA INTERVENTIONS IN PORK

<table>
<thead>
<tr>
<th>DATE</th>
<th>11 FEBRUARY 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performed by</td>
<td>Ian Young</td>
</tr>
<tr>
<td>Platform/Interface</td>
<td>Ovid</td>
</tr>
<tr>
<td>Databases</td>
<td>CAB Abstracts (1910-2015 week 5)</td>
</tr>
<tr>
<td>Institution</td>
<td>FAO</td>
</tr>
<tr>
<td>Search string:</td>
<td>(salmonella OR salmonellae) AND (biosecur* OR feed OR vaccin* OR immunis* OR immuniz* OR antibiotic* OR antimicrobial* OR antibacterial* OR phage* OR bacteriophage* OR “sodium chlorate” OR probiotic* OR “competitive exclusion” OR lactob* OR bifidobac* OR “lactic acid bacteria” OR eviserat* OR wash* OR rins* OR steam OR pasteuriz* OR irradiat* OR spray* OR “hot water” OR chlorine OR scald* OR chill* OR cool* OR mitigat* OR disinfect* OR inactiv* OR reduce* OR reducing OR reduction OR intervention* OR decontaminat* OR contamination OR control OR decreases* OR treatment* OR hygiene OR trial OR efficacy OR storage) AND (swine OR pig OR pigs OR piglet OR piglets OR gilt OR gilts OR sow OR sows OR hog OR hogs OR weaner OR weaners OR feeder OR feeders OR finisher OR finishers OR market-weight OR porcine OR pork) in Article title OR in Abstract OR in Subject headings</td>
</tr>
<tr>
<td>Hits</td>
<td>1100</td>
</tr>
<tr>
<td>Limits</td>
<td>Published since 2009 (update of previous systematic review)</td>
</tr>
<tr>
<td>Search string:</td>
<td>(salmonella OR salmonellae) AND (biosecur* OR feed OR vaccin* OR immunis* OR immuniz* OR antibiotic* OR antimicrobial* OR antibacterial* OR phage* OR bacteriophage* OR "sodium chlorate" OR probiotic* OR "competitive exclusion" OR lactob* OR bifidobac* OR "lactic acid bacteria" OR eviserat* OR wash* OR rins* OR steam OR pasteuriz* OR irradiat* OR spray* OR "hot water" OR chlorine OR scald* OR chill* OR cool* OR mitigat* OR disinfect* OR inactiv* OR reduce* OR reducing OR reduction OR intervention* OR decontaminat* OR contamination OR control OR decreases* OR treatment* OR hygiene OR trial OR efficacy OR storage) AND (swine OR pig or pigs OR piglet OR piglets OR gilt OR gilts OR sow OR sows OR hog OR hogs OR weaner OR weaners OR feeder OR feeders OR finisher OR finishers OR market-weight OR porcine OR pork) in Title OR in Abstract OR Key words</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hits</td>
<td>1097</td>
</tr>
<tr>
<td>Limits</td>
<td>Published since 2009 (update of previous systematic review)</td>
</tr>
</tbody>
</table>
CONFERENCES PROCEEDINGS SEARCHED FOR ADDITIONAL RELEVANT CITATIONS

<table>
<thead>
<tr>
<th>TOPIC AREA</th>
<th>CONFERENCE</th>
<th>RELEVANT DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork on-farm</td>
<td>Safe Pork (International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork)</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Proceedings of the International Society for Veterinary Epidemiology and Economics</td>
<td>Since 2000</td>
</tr>
<tr>
<td></td>
<td>Centre de developpement du porc du Quebec Canadian Swine Health Board</td>
<td>Current</td>
</tr>
<tr>
<td>Beef on-farm</td>
<td>Proceedings of the American Association of Bovine Practitioners/Bovine Practitioner</td>
<td>Since 2000</td>
</tr>
<tr>
<td></td>
<td>Proceedings of International Conference on Animal Health Surveillance</td>
<td>Since 2000</td>
</tr>
<tr>
<td>Pork farm to abattoir</td>
<td>Safe Pork (International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork)</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Reciprocal Meat Science Conference</td>
<td>Since 2000</td>
</tr>
<tr>
<td></td>
<td>Centre de developpement du porc du Quebec</td>
<td>Current</td>
</tr>
<tr>
<td>Beef farm to abattoir</td>
<td>Reciprocal Meat Science Conference</td>
<td>Since 2000</td>
</tr>
<tr>
<td>Pork processing</td>
<td>Safe Pork (International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork)</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Reciprocal Meat Science Conference</td>
<td>Since 2000</td>
</tr>
<tr>
<td></td>
<td>ICoMST (International Congress of Meat Science and Technology)</td>
<td></td>
</tr>
<tr>
<td>Beef processing</td>
<td>Reciprocal Meat Science Conference</td>
<td>Since 2000</td>
</tr>
<tr>
<td></td>
<td>ICoMST (International Congress of Meat Science and Technology)</td>
<td></td>
</tr>
</tbody>
</table>
DETAILS OF INTERNET SEARCHES FOR ADDITIONAL RELEVANT CITATIONS

Google search strings:

Pork

i. **On-farm: run consecutively (i.e. one major intervention at a time)**
Population term (swine OR pig or pigs OR piglet OR piglets OR gilt OR gilts OR sow OR sows OR hog OR hogs OR weaner OR weaners OR feeder OR feeders OR finisher OR finishers OR market-weight OR porcine) AND bacterial term (salmonella OR salmonellae) AND Intervention term:
 - (antibiotic* OR antimicrobial* OR antibacterial* or decontaminat* OR hygiene) OR
 - (acid*) OR
 - (biosecur* OR disinfect*) OR
 - (phage* OR bacteriophage) OR
 - ("sodium chlorate") OR
 - (probiotic* OR “competitive exclusion” OR lactob* OR bifidobac* OR “lactic acid bacteria”) OR
 - (vaccin* OR immuninis* OR immuniz)

ii. **Post-farm: run consecutively**
Population term (finishers OR market-weight OR porcine OR pork) AND bacterial term ((salmonella OR salmonellae) AND intervention term
 - (viserat*) OR
 - (wash* OR rins*) OR
 - (steam OR pasteuriz*) OR
 - (irradiat*)
 - (spray* OR scald* OR “hot water”) OR
 - (chlorine*) OR
 - (chill* OR cool*)

Beef

i. **On-farm: run consecutively (i.e. one major intervention at a time)**
Population term (beef OR veal OR cattle OR cow OR cows OR steer OR steers OR heifer* OR bull OR bulls OR calf OR calves) AND bacterial term (salmonella OR salmonellae) AND Intervention term
 - (antibiotic* OR antimicrobial* OR antibacterial* or decontaminat* OR hygiene) OR
 - (acid*) OR
(biosecur* OR disinfect*) OR
(phage* OR bacteriophage) OR
("sodium chloride") OR
(probiotic* OR “competitive exclusion” OR lactob* OR bifidobac* OR “lactic acid bacteria”) OR
(vaccin* OR immunis* OR immuniz)

ii. Post-farm: run consecutively
Population term (beef OR veal OR cattle OR cow OR cows OR steer OR steers OR heifer* OR bull OR bulls) AND bacterial term (salmonella OR salmonellae) AND intervention term
 (viserat*) OR
 (dehid* OR dehair* OR skin*)
 (wash* OR rins*) OR
 (steam OR pasteuriz*) OR
 (irradiat*)
 (spray* OR scald* OR “hot water”) OR
 (chlorine*) OR
 (chill* OR cool*)

LIST OF SEARCH VERIFICATION ARTICLES WHOSE REFERENCE LISTS WERE HAND-SEARCHED

Primary research: pigs on-farm

Primary research: pork post-farm

Review articles: pork chain

Primary research: beef on-farm

Primary research: beef post-farm

Review articles: beef chain

RAPID SYSTEMATIC REVIEW

Appendix B: Relevance Screening Form

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>OPTIONS</th>
<th>KEY DEFINITIONS</th>
</tr>
</thead>
</table>
| 1. Does this citation describe research evaluating the efficacy and/or effectiveness (including costs or practically of implementation) of interventions to control *Salmonella* in pork or beef at any stage from the primary production to consumption? | 1. Yes, primary research
2. Yes, systematic review/meta-analysis
3. Yes, risk assessment, risk profile, or other risk-based tool (e.g. cost-benefit analysis)
4. No (exclude) | **Primary research** is collection of new data in a single study. **Risk assessment** is a scientifically based process consisting of the following steps (i) hazard identification, (ii) hazard characterization, (iii) exposure assessment, and (iv) risk characterization. A **risk profile** presents the current state of knowledge related to a food safety issue, describes potential options that have been identified to date (if any), and the food safety policy context that will influence further possible actions. Other risk-based tools could include cost-benefit analyses, risk ranking, or risk prioritizations. **Systematic review** is a structured review of a clearly defined question with a transparent search strategy, relevance screening process, data extraction, risk-of-bias assessment and synthesis of results. **Meta-analysis** is a statistical technique that can be used on data collected in a systematic review. **Exclude** research on feral animals (e.g. feral pigs not produced for human consumption), and *in vitro* lab experiments. |

Selections 1-3 will pass the citation to the next review stage and the article will be procured.

| 2. If no to the above, is the article a potentially relevant narrative literature review on the subject? | ☐ Yes (check box if relevant) | **Narrative reviews** are an expert-based review not using or reporting a structured or systematic approach (often will not have a methods section). |

(To be used for possible search verification)
RAPID SYSTEMATIC REVIEW

Appendix C: Relevance Confirmation Form

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>OPTIONS</th>
<th>KEY DEFINITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance confirmation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does this article investigate the efficacy and/or effectiveness of interventions to control Salmonella in beef and pork at any stage from the primary production stage to consumption and meet the PICOS eligibility criteria?</td>
<td>□ Yes, proceed</td>
<td>Tertiary processed meat = e.g. cured, fermented or dried sausages, salamis, etc.</td>
</tr>
<tr>
<td></td>
<td>□ No, exclude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Only investigates tertiary processed meat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Measures irrelevant outcomes (e.g. milk samples only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In vitro study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Review article</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Language other than English, French or Spanish</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No extractable data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other, specify:________</td>
<td></td>
</tr>
</tbody>
</table>

Key article characteristics

What type of document is this article?	□ Journal article	
	□ Conference proceedings	
	□ Government or research report	
	□ Thesis	
	□ Book or book chapter	
	□ Other, please specify:____	

In what region and country was the study conducted?	□ North America:________	
	□ Europe:_______________	
	□ Australasia:___________	
	□ Central and South America/Caribbean:_______	
	□ Asia:_________________	
	□ Africa:________________	
	□ Not stated	

Specify country name only (not sub-regions, states, provinces, etc.)

- **North America:** Canada, United States of America and Mexico
- **South America/Caribbean:** Caribbean, and all of south America.
- **Europe:** includes, Belarus, Latvia, Ukraine, Estonia, Cyprus & west (inc. Iceland and Greenland)
- **Asia:** Russia, Turkey, middle eastern countries and east
- **Australasia** is limited to Australia, New Guinea, New Zealand, New Caledonia, and neighbouring islands, including the Indonesian islands
| Specify study design | □ Experimental research:
| | • Randomized controlled trial
| | • Non-randomized controlled trial
| | • Challenge trial
| | • Quasi-experiment
| □ Observational research
| | • Cohort study
| | • Case-control study
| | • Cross-sectional study
| | • Other
| □ Systematic review-meta-analysis
| □ Risk assessment, risk profile, cost-benefit analysis, or other risk-based tool
| | **Observational study:** Assignment of subjects into a treated group versus a control group is outside the control of the investigator.
| | **Cross-sectional:** Examines the relationship of a risk factor and outcome (disease) at a point in time on representative samples of the target population.
| | **Cohort study:** subjects with differing exposures to a suspected risk factor are observed through time for occurrence of an outcome.
| | **Case-control study:** compares exposure to the risk factor in subjects who have an outcome (the ‘cases’) with subjects who do not have the outcome, but are otherwise similar (the ‘controls’) and drawn from the same sampling frame.
| | **Other:** Hybrid or other observational designs but not experiments evaluating the effectiveness of interventions.
| | **Experimental study:** Each subject is assigned to a treated group or a control group before the start of the treatment
| | **Controlled trial:** subjects are allocated to intervention/comparison groups and evaluated for outcomes.
| | **Challenge trial:** Subjects are artificially challenged or exposed to the disease agent and then allocated to the intervention groups for evaluation of the outcome.
| | **Quasi-experiment:** Observations are made on a population before and after receiving an intervention.
| In what setting was the study carried out? | □ Commercial/field conditions
| | □ Research farm/pilot plant
| | □ Smallholder farm/abattoir conditions
| | □ Laboratory conditions
| | □ Not reported

ANNEX 1 - SYSTEMATIC REVIEW REPORT
<table>
<thead>
<tr>
<th>What commodity is investigated?</th>
<th>□ Swine/pork production</th>
<th>□ Cattle/beef production</th>
</tr>
</thead>
</table>
| What point in the food chain and category of intervention(s) are investigated in this article? | □ Farm:
- Biosecurity/management practices
- Vaccination
- Antimicrobials
- Competitive exclusion/probiotics
- Feed/water acidification
- Feed characteristics/management
- Other (e.g. bacteriophages) |
| □ Transport to slaughter |
| □ Processing:
- Segregated/logistic slaughter
- Cleaning/disinfection of equipment/environments
- Carcass/product washes, rinses, sprays
- Standard processing procedures/good hygienic practices (GHP)
- Irradiation
- Modified packaging
- Other |
| □ Post-processing to consumer |

Antimicrobials: Examples include: Fluoroquinolones, cephalosporins, gentamicin, ampicillin, tetracyclines, spectinomycin, ciprofloxacin, ceftriaxone. These may be administered via feed.

Biosecurity: includes, but is not limited to, sanitation, biosafety, disinfection, hygiene and hygiene barriers, all-in-all-out production, depopulation, staff and the environment, litter testing and treatment, pest control, etc.

Competitive exclusion: May also be referred to as probiotics, prebiotics, synbiotics. May include *Lactobacillus* spp., bacteroides, *Bifidobacterium* spp., *Enterococcus faecium*, *Aspergillus oryzae*, and *Saccharomyces* spp. (*S. cerevisiae*, *S. boulardii*). May be caecal contents or other materials from animals or the environment that contain many different or unknown bacterial species.

Feed/water acidification: Addition of organic acids such as lactic acid, to feed or water. Would include ‘nutraceuticals’ such as copper, chromium, zinc, betaine or carnitine.

Feed management: E.g. comparisons of coarse/finely ground feed, fermented feed, or liquid feed.

Segregated/logistic slaughter = slaughtering/processing of more highly contaminated lots after less contaminated lots.

Standard processing procedures/good hygienic practices (GHP) refers to steps such as singeing, de-hiding, cooling, chilling, etc.
| Did the study investigate outcomes other than *Salmonella*? | □ Yes, *E. coli* (generic and/or pathogenic strains)
□ Yes, other bacteria
□ No |
| --- | --- |
| What intervention efficacy/effectiveness measures are investigated? | □ Efficacy
□ Cost
□ Practicality
□ Consumer acceptability
□ Other contextual factor, specify:________________ |
| Does the article report any extractable data about intervention efficacy/effectiveness that could be used for possible meta-analysis? | □ Yes
□ No, reason:_________ |
RAPID SYSTEMATIC REVIEW

Appendix D: Data Extraction Form

Multiple forms were submitted for each unique trial (i.e. intervention/population/outcome combination) reported in a study

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
<th>Excel code</th>
</tr>
</thead>
</table>
| **Specify intervention category being extracted and specify points in the food chain where intervention is applied** | □ Farm: ________
 - Biosecurity/management practices
 - Vaccination
 - Antimicrobials
 - Competitive exclusion/probiotics
 - Feed/water acidification
 - Feed characteristics/management
 - Other (e.g. bacteriophages)
 □ Transport to slaughter
 □ Processing: ________
 - Segregated/logistic slaughter
 - Cleaning/disinfection of equipment/environments
 - Carcass/product washes, rinses, sprays
 - Standard processing procedures/GHPs
 - Irradiation
 - Modified packaging/preservation techniques
 Other
 □ Post-processing to consumer: ________ | Int_point_in_chain
Int_point_specific (text boxes)
Int_category |
| **If conducted at processing, specify point in chain where the intervention is applied?** | □ Yes (proceed with DE)
□ No (exclude/do not proceed) | Process_level |
| **If conducted at farm level, did the study measure outcomes in market-weight animals or animals at slaughter?** | □ Yes (proceed with DE)
□ No (exclude/do not proceed) | Market_weight |
<table>
<thead>
<tr>
<th>Intervention description (including dose, application method, etc.)</th>
<th>□ _______________</th>
<th>Int_description</th>
</tr>
</thead>
<tbody>
<tr>
<td>At what level was the intervention applied?</td>
<td>□ Individual</td>
<td>Int_level</td>
</tr>
<tr>
<td>□ Group (e.g. pen, farm): _______________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If this was a challenge trial, describe the challenge details (e.g. dose, serovars, application method)</td>
<td>□ _______________</td>
<td>ChT_description</td>
</tr>
</tbody>
</table>
| Specifying target population/sample to which intervention is applied (indicate animal age, other contextual details in text box) | □ Swine/pork:
• Breeders
• Suckling swine
• Nursery swine
• Growers
• Finishers
• Swine at slaughter
• Carcass
• Final product
□ Cattle beef:
• Cow-calf production
• Feedlot cattle
• Dairy cattle
• Cattle at slaughter
• Carcass
• Final product
□ Other: _______________ | Pop_category
Pop_specific
Pop_details |
| What type of sample was measured for Salmonella? | □ Blood/serum
□ Faeces
□ Carcass muscle
□ Organs
□ Swab
□ Carcass wash
□ Other | Sample_type |
| Which diagnostic method(s) were used to determine the prevalence or level of the Salmonella? (copy and paste key test details, e.g. media, incubation time/temp, etc.) | □ Culture
□ ELISA
□ PCR
□ Other: _______________ | Diag_method
Diag_details |
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Notes</th>
</tr>
</thead>
</table>
| What *Salmonella* serovar(s) are measured? | | | □ ____________

| Does this trial include indirect measurement of the intervention, population, comparison, and/or outcome of interest? | Yes | No | A study may indirectly address the question of interest if:
| | | | • e.g. interventions we wish to compare are measured independently in two separate trials compared with controls.
| | | | • e.g. the population, intervention, comparisons or outcomes were not exactly what we are trying to draw conclusions for. (e.g., surrogate outcomes = e.g. might measure seroprevalence when outcome of interest is shedding).

| Is there reason to believe that due to the population studied, the magnitude of effect of the intervention is likely to be underestimated? | Yes | No | ONLY answer yes if there is good reason to think that the study underestimated the potential association or effect of an intervention due to the population that was sampled. (I.e. all plausible biases working to underestimate apparent intervention effect).
| | | | E.g. intervention was tested only on animals with a very low prevalence of *Salmonella* and it is likely that a stronger effect would be shown in most populations in the field.

| Was a dose-response gradient detected for the intervention effect? | Yes | No | If a dose response gradient is demonstrated in some or all of the studies, this increases our confidence in the findings of the study and thus we can consider upgrading the evidence.

| At what level are the data reported? | Individual | Group (e.g. pen, farm):__________ | Data_level

| What outcome data were measured? | Prevalence (presence/absence) | Concentration (e.g. CFU, MPN) | Ordinal data | Outcome_type

<p>| | | | | |
| | | | | |</p>
<table>
<thead>
<tr>
<th>Extract quantitative outcome data in text boxes for each relevant category</th>
<th>Dichotomous/ordinal data options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Raw 2×2 data</td>
</tr>
<tr>
<td></td>
<td>□ Number positive group 1</td>
</tr>
<tr>
<td></td>
<td>□ Number negative group 1</td>
</tr>
<tr>
<td></td>
<td>□ Number positive group 2</td>
</tr>
<tr>
<td></td>
<td>□ Number negative group 2</td>
</tr>
<tr>
<td></td>
<td>□ Define group 1</td>
</tr>
<tr>
<td></td>
<td>□ Define group 2</td>
</tr>
<tr>
<td></td>
<td>□ For ordinal data, specify above for additional response categories as appropriate:</td>
</tr>
<tr>
<td></td>
<td>□ Computed effect size / measure of association (e.g. OR):</td>
</tr>
<tr>
<td></td>
<td>□ Measure of association value</td>
</tr>
<tr>
<td></td>
<td>□ Specify measure (e.g. OR, RR, etc.)</td>
</tr>
<tr>
<td></td>
<td>□ N in group 1</td>
</tr>
<tr>
<td></td>
<td>□ N in group 2</td>
</tr>
<tr>
<td></td>
<td>□ Define group 1</td>
</tr>
<tr>
<td></td>
<td>□ Define group 2</td>
</tr>
<tr>
<td></td>
<td>□ SE</td>
</tr>
<tr>
<td></td>
<td>□ Variance</td>
</tr>
<tr>
<td></td>
<td>□ Lower CI</td>
</tr>
<tr>
<td></td>
<td>□ Higher CI</td>
</tr>
<tr>
<td></td>
<td>□ Was the outcome adjusted for other variables? If yes, check this box and specify:______</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Continuous data options</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Raw continuous data in each group (final outcome measure):</td>
</tr>
<tr>
<td>□ Counts in group 1</td>
</tr>
<tr>
<td>□ SD in group 1</td>
</tr>
<tr>
<td>□ N in group 1</td>
</tr>
<tr>
<td>□ Counts in group 2</td>
</tr>
<tr>
<td>□ SD in group 2</td>
</tr>
<tr>
<td>□ N in group 2</td>
</tr>
<tr>
<td>□ Define group 1</td>
</tr>
<tr>
<td>□ Define group 2</td>
</tr>
<tr>
<td>□ P-value (exact Ps only)</td>
</tr>
<tr>
<td>□ T-value</td>
</tr>
<tr>
<td>□ Outcome units</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Difference in means:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Difference in means (value)</td>
</tr>
<tr>
<td>□ N group 1</td>
</tr>
<tr>
<td>□ N group 2</td>
</tr>
<tr>
<td>□ Common SD</td>
</tr>
<tr>
<td>□ SE</td>
</tr>
<tr>
<td>□ Variance</td>
</tr>
<tr>
<td>□ Lower CI</td>
</tr>
<tr>
<td>□ Higher CI</td>
</tr>
<tr>
<td>□ P-value (exact Ps only)</td>
</tr>
<tr>
<td>□ T-value</td>
</tr>
<tr>
<td>□ Outcome units</td>
</tr>
<tr>
<td>□ Was the outcome adjusted for other variables? If yes, check this box and specify:______</td>
</tr>
</tbody>
</table>

| Other:______________ |

| Other_outcomes |
Risk-of-Bias Tool for Primary Research Studies

<table>
<thead>
<tr>
<th>Bias domain/question</th>
<th>Risk of bias</th>
<th>Definitions/additional NOTES</th>
</tr>
</thead>
</table>
| **Random sequence generation**
Was the allocation sequence adequately generated? | • Low
• High
• Unclear
• N/A (quasi-experiments/observational studies) | Describe the method used to generate the allocation sequence (for allocating subjects/samples into treatment groups) in sufficient detail to allow an assessment of whether it should produce comparable groups.
Low: a random component in the sequence generation process is described (e.g. referring to a random number table or computer random number generator) OR lack of randomization unlikely to bias the results (e.g. lab-based study conducted on comparable meat samples).
High: a non-random method is used (e.g. performed by date of birth, by preference, or convenience).
Unclear: insufficient method is used (e.g. performed by date of birth, by preference, or convenience). |
| **Allocation concealment**
Was the allocation sequence adequately concealed from the participants and the researcher? | • Low
• High
• Unclear
• N/A (quasi-experiments/observational studies) | Describe the method used to conceal the allocation sequence in sufficient detail to determine whether intervention allocations could have been foreseen in advance of, or during, enrolment.
Low: allocation was unlikely to influence enrolment (e.g. each farm received both treatment and untreated groups); or if the unit of allocation was by participant (e.g. individual farm received only one group), there was some form of centralised randomisation scheme such as an on-site computer system or sealed opaque envelopes were used.
High: a non-random method is used (e.g. performed by date of birth, by preference, or convenience).
Unclear: insufficient information provided to permit judgement (includes reported randomization with no description of randomization process). |
| **Blinding of participants and personnel**
Were participants and personnel blinded from knowledge of intervention/control group status? | • Low
• High
• Unclear
• N/A (quasi-experiments/observational studies) | Describe all measures used, if any, to blind study participants (e.g. swine/cattle farmers) and personnel from knowledge of which intervention a subject/sample received.
Low: no blinding of outcome assessment, but the review authors judge that the outcome measurement is not likely to be influenced by lack of blinding. Blinding of outcome assessment ensured, and unlikely that the blinding could have been broken.
High: no blinding of outcome assessment, and the outcome measurement is likely to be influenced by lack of blinding. Blinding reported, but likely that the blinding could have been broken, and the outcome measurement is likely to be influenced by lack of blinding.
Unclear: insufficient information provided to permit judgement. |
Similarity of study and target populations

Cohort studies:
Was the level of exposure representative of exposure in the population of interest?

Cross-sectional:
Were the study subjects/samples selected randomly so the sample reflects disease and exposure in the population of interest?

Case-control:
Were the controls selected from the same source population as the cases? (case control)

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Definitions/additional NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Note whether this is a possible selection bias: systematic differences between sample and target population or for case control studies between the groups being compared and an appropriate range of clinical severity.</td>
</tr>
<tr>
<td>High</td>
<td>High: • Level of exposure not representative of exposure in the population of interest (cohort studies) • Non-random subject/sample collection (cross-sectional) • Controls not selected from the same source population as cases (case-control)</td>
</tr>
<tr>
<td>Unclear</td>
<td>Unclear: insufficient information provided to permit judgement.</td>
</tr>
<tr>
<td>N/A</td>
<td>(experimental studies/quasi-experiments)</td>
</tr>
</tbody>
</table>

Independence of intervention effect from confounding bias

Are there any concerns that confounders have not been appropriately identified and accounted for?

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Definitions/additional NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Describe whether or not the intervention occurred independently of other changes over time and whether or not the outcomes may have been influenced by other confounding variables/historic events during the study period. Important confounders could include: animal age and weight; housing/feed characteristics; farm/abattoir characteristics; sampling details (e.g. time of day when sampling is conducted), etc.</td>
</tr>
<tr>
<td>High</td>
<td>High: intervention was likely not independent of other changes in time.</td>
</tr>
<tr>
<td>Unclear</td>
<td>Unclear: insufficient information provided to permit judgement.</td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
Bias domain/question

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Definitions/additional NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete outcome data</td>
<td>Describe the completeness of outcome data for each main outcome, including attrition and exclusions from the analysis. State whether attrition and exclusions were reported, the numbers in each intervention group (compared with total subjects/samples), whether reasons for attrition/exclusions where reported, and any re-inclusions in analyses.</td>
</tr>
<tr>
<td></td>
<td>Low: missing outcome measures were unlikely to bias the results (e.g. the proportion of missing data was similar in the intervention and control groups or the proportion of missing data was less than the effect size - i.e. unlikely to overturn the study result).</td>
</tr>
<tr>
<td></td>
<td>High: missing outcome data likely to bias the results.</td>
</tr>
<tr>
<td></td>
<td>Unclear: not specified in the paper (Do not assume 100% follow up unless stated explicitly).</td>
</tr>
<tr>
<td>Selecting reporting</td>
<td>State how the possibility of selective outcome reporting was examined by the review authors, and what was found.</td>
</tr>
<tr>
<td></td>
<td>Low: there is no evidence that outcomes were selectively reported (e.g. all relevant outcomes in the methods section are reported in the results section).</td>
</tr>
<tr>
<td></td>
<td>High: some important outcomes are omitted from the results.</td>
</tr>
<tr>
<td></td>
<td>Unclear: insufficient information provided to permit judgement.</td>
</tr>
<tr>
<td>Other</td>
<td>State any important concerns about bias not addressed in the other domains in the tool (e.g. study funded by industry with concerns about sponsor involvement, inadequate control of hierarchical data structure/clustering, or important differences in baseline outcome measurements, i.e. Salmonella status, were present and not adjusted for in analysis)</td>
</tr>
<tr>
<td></td>
<td>Low: there is no risk of other biases (please specify details).</td>
</tr>
<tr>
<td></td>
<td>High: there is a risk of other biases (please specify details).</td>
</tr>
<tr>
<td></td>
<td>Unclear: possible risk of other biases but insufficient information provided to permit judgement (please specify details).</td>
</tr>
<tr>
<td>Overall risk-of-bias for each outcome (within-study summary assessment)</td>
<td>Low: plausible bias unlikely to seriously alter the results. Low risk of bias for key domains.</td>
</tr>
<tr>
<td></td>
<td>High: plausible bias that seriously weakens confidence in the results. High risk of bias for key domains.</td>
</tr>
<tr>
<td></td>
<td>Unclear: plausible bias that raises some doubt about the results. Unclear risk of bias for key domains.</td>
</tr>
</tbody>
</table>

Assessments should be made for each main outcome (or class of outcomes), as appropriate. If more than one answer please specify which outcomes are associated with each answer.
RAPID SYSTEMATIC REVIEW

Appendix F: AMSTAR Quality Assessment Tool for Systematic Reviews

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Was an ‘a priori’ design provided?</td>
<td>□ Yes □ No □ Can’t answer □ Not applicable</td>
</tr>
<tr>
<td>The research question and inclusion criteria should be established before the conduct of the review.</td>
<td>Note: Need to refer to a protocol, ethics approval, or pre-determined/a priori published research objectives to score a “yes.”</td>
</tr>
<tr>
<td>2. Was there duplicate study selection and data extraction?</td>
<td>□ Yes □ No □ Can’t answer □ Not applicable</td>
</tr>
<tr>
<td>There should be at least two independent data extractors and a consensus procedure for disagreements should be in place.</td>
<td>Note: 2 people do study selection, 2 people do data extraction, consensus process or one person checks the other’s work.</td>
</tr>
<tr>
<td>3. Was a comprehensive literature search performed?</td>
<td>□ Yes □ No □ Can’t answer □ Not applicable</td>
</tr>
<tr>
<td>At least two electronic sources should be searched. The report must include years and databases used (e.g., Central, EMBASE, and MEDLINE). Key words and/or MESH terms must be stated and where feasible the search strategy should be provided. All searches should be supplemented by consulting current contents, reviews, textbooks, specialized registers, or experts in the particular field of study, and by reviewing the references in the studies found.</td>
<td>Note: If at least 2 sources + one supplementary strategy used, select “yes” (a grey literature search counts as supplementary).</td>
</tr>
<tr>
<td>4. Was the status of publication (i.e. grey literature) used as an inclusion criterion?</td>
<td>□ Yes □ No □ Can’t answer □ Not applicable</td>
</tr>
<tr>
<td>The authors should state that they searched for reports regardless of their publication type. The authors should state whether or not they excluded any reports (from the systematic review), based on their publication status, language etc.</td>
<td>Note: If review indicates that there was a search for “grey literature” or “unpublished literature,” indicate “yes.” SINGLE database, dissertations, conference proceedings, and trial registries are all considered grey for this purpose. If searching a source that contains both grey and non-grey, must specify that they were searching for grey/unpublished lit.</td>
</tr>
<tr>
<td>5. Was a list of studies (included and excluded) provided?</td>
<td>□ Yes □ No □ Can’t answer □ Not applicable</td>
</tr>
<tr>
<td>A list of included and excluded studies should be provided.</td>
<td>Note: Acceptable if the excluded studies are referenced. If there is an electronic link to the list but the link is dead, select “no.”</td>
</tr>
</tbody>
</table>
6. Were the characteristics of the included studies provided?
In an aggregated form such as a Table, data from the original studies should be provided on the participants, interventions and outcomes. The ranges of characteristics in all the studies analyzed e.g. age, race, sex, relevant socioeconomic data, disease status, duration, severity, or other diseases should be reported.
Note: Acceptable if not in Table format as long as they are described as above.

7. Was the scientific quality of the included studies assessed and documented?
‘A priori’ methods of assessment should be provided (e.g., for effectiveness studies if the author(s) chose to include only randomized, double-blind, placebo controlled studies, or allocation concealment as inclusion criteria); for other types of studies alternative items will be relevant.
Note: Can include use of a quality scoring tool or checklist, e.g., Jadad scale, risk of bias, sensitivity analysis, etc., or a description of quality items, with some kind of result for EACH study ("low" or "high" is fine, as long as it is clear which studies scored "low" and which scored "high"; a summary score/range for all studies is not Acceptable).

8. Was the scientific quality of the included studies used appropriately in formulating conclusions?
The results of the methodological rigor and scientific quality should be considered in the analysis and the conclusions of the review, and explicitly stated in formulating recommendations.
Note: Might say something such as “the results should be interpreted with caution due to poor quality of included studies.” Cannot score “yes” for this question if scored “no” for question 7.

9. Were the methods used to combine the findings of studies appropriate?
For the pooled results, a test should be done to ensure the studies were combinable, to assess their homogeneity (i.e., Chi-squared test for homogeneity, I^2). If heterogeneity exists a random effects model should be used and/or the clinical appropriateness of combining should be taken into consideration (i.e., is it sensible to combine?).
Note: Indicate “yes” if they mention or describe heterogeneity, i.e., if they explain that they cannot pool because of heterogeneity/variability between interventions.

10. Was the likelihood of publication bias assessed?
An assessment of publication bias should include a combination of graphical aids (e.g., funnel plot, other available tests) and/or statistical tests (e.g., Egger regression test, Hedges-Olken).
Note: If no test values or funnel plot included, score “no”. Score “yes” if mentions that publication bias could not be assessed because there were fewer than 10 included studies.

11. Was the conflict of interest stated?
Potential sources of support should be clearly acknowledged in both the systematic review and the included studies.
Note: To get a “yes,” must indicate source of funding or support for the systematic review AND for each of the included studies.
RAPID SYSTEMATIC REVIEW
Appendix G: Reporting Assessment Tool for Risk Assessments

<table>
<thead>
<tr>
<th>QUALITY DOMAIN / DESCRIPTION</th>
<th>OPTIONS FOR EACH CRITERION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Internal validity</td>
<td></td>
</tr>
<tr>
<td>1. Timeliness/scope</td>
<td></td>
</tr>
<tr>
<td>i. Is the scope of the study clearly defined (e.g. regarding species/time/place/sample matrices)?</td>
<td>1= Justified 0= Not justified 99= Not applicable</td>
</tr>
<tr>
<td>ii. Is scope/level of detail of RA justified by authors in relation to direction from end-users/stakeholders?</td>
<td></td>
</tr>
<tr>
<td>2. Quality and treatment of the data</td>
<td></td>
</tr>
<tr>
<td>i. Are current, relevant and sufficient data presented (e.g. are published relevant studies excluded from dataset?)</td>
<td>1= Yes 0= No 2= Can’t answer 99= Not applicable</td>
</tr>
<tr>
<td>ii. Are sources of data justified and quality of data assessed?</td>
<td></td>
</tr>
<tr>
<td>iii. Is expert opinion elicited via structured transparent process, to augment existing data or fill data gaps?</td>
<td></td>
</tr>
<tr>
<td>iv. Where expert opinion is substituted for existing primary research, do the authors justify this decision?</td>
<td></td>
</tr>
<tr>
<td>v. Is rationale for inclusion/exclusion of data provided?</td>
<td></td>
</tr>
<tr>
<td>3. Assumptions, expert opinion, scientific support</td>
<td></td>
</tr>
<tr>
<td>i. Are assumptions explicitly stated and justified?</td>
<td>1= Yes 0= No 2= Can’t answer 99= Not applicable</td>
</tr>
<tr>
<td>ii. Are premises or underlying assumptions logical, in terms of theoretical arguments or empirical results?</td>
<td></td>
</tr>
<tr>
<td>4. Inference of probability</td>
<td></td>
</tr>
<tr>
<td>i. Are probabilities transparently estimated?</td>
<td>1= Yes 0= No 2= Can’t answer 99= Not applicable</td>
</tr>
<tr>
<td>ii. Is the choice of distributions transparent?</td>
<td></td>
</tr>
<tr>
<td>iii. If the model is stochastic, is the number of model iterations reported?</td>
<td></td>
</tr>
<tr>
<td>iv. In semi-quantitative or qualitative assessments, is there a clear definition of the meaning of descriptors/elements of risk matrices such as negligible, low, medium, high?</td>
<td></td>
</tr>
<tr>
<td>v. Is the logic used in combining semi-quantitative values sound?</td>
<td></td>
</tr>
<tr>
<td>vi. Is the description of how conclusions are derived and magnitudes of probability and severity are assigned, clear?</td>
<td></td>
</tr>
<tr>
<td>5. Internal consistency</td>
<td></td>
</tr>
<tr>
<td>i. Are the correct units used for parameters throughout the model?</td>
<td>1= Yes 0= No 2= Can’t answer 99= Not applicable</td>
</tr>
<tr>
<td>ii. Does the RA methodology demonstrate sound logic and inference, or if the reader cannot assess this, at least no circular logic?</td>
<td></td>
</tr>
<tr>
<td>iii. Does the RA demonstrate systematic reasoning in assigning values for risk ranking and other non-mathematical evaluations?</td>
<td></td>
</tr>
<tr>
<td>iv. Are RA outcomes consistent with observed data (although not necessarily in agreement should be within plausible limits and account for all observations)?</td>
<td></td>
</tr>
<tr>
<td>v. Was sensitivity analysis performed and reported?</td>
<td></td>
</tr>
<tr>
<td>vi. Was the potential effect of the most influential assumption(s) discussed?</td>
<td></td>
</tr>
</tbody>
</table>
QUALITY DOMAIN / DESCRIPTION | OPTIONS FOR EACH CRITERION
--- | ---
B. External validity

6. **Target populations**
 - i. Is the scope/target population/target scenario(s) for the RA explicitly stated?
 - ii. Are the data sources appropriate for making inferences beyond this group?
 - iii. Are the assumptions appropriate for making inferences beyond this group?
 | 1= Yes
 | 0= No
 | 2= Can't answer
 | 99= Not applicable

7. **Uncertainty**
 - i. Was uncertainty analysis performed and reported?
 - ii. Was the potential effect of the sources of greatest uncertainty discussed?
 - iii. Is uncertainty investigated at each appropriate level (e.g. model uncertainty/path uncertainty/parameter uncertainty)?
 | 1= Yes
 | 0= No
 | 2= Can't answer
 | 99= Not applicable

C. Reporting, peer review, and communication

8. **Transparency with regards to:**
 - i. Do the authors present systematic development/description of the risk assessment steps and structure?
 - ii. Is the use of alternatives to close data gaps (e.g. expert knowledge, surrogate data, assumptions) clearly described?
 - iv. Are all sources of included data referenced?
 - v. Is code for the model(s) provided?
 | 1= Yes
 | 0= No
 | 2= Can’t answer
 | 99= Not applicable

D. Overall: Does the reader have confidence in the risk characterization and options presented, given the attendant uncertainties reported?
 | 1= Yes
 | 0= No
 | 2= Can’t answer
Rapid Systematic Review

Appendix H: GRADE Approach

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>GRADE POINTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downgrading criterion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual study risk-of-bias rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious = >50% of trials had an unclear or high overall risk-of-bias rating</td>
<td>a) = -1</td>
<td>Rating from risk-of-bias tool</td>
</tr>
<tr>
<td>Very serious = the risk of bias may have a strong influence on the estimate of effect and study limitations are present in the majority of studies</td>
<td>b) = -2</td>
<td></td>
</tr>
<tr>
<td>Inconsistency of findings among studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious = some inconsistency is noted (point estimates vary widely across studies and/or confidence intervals show minimal overlap, or significant heterogeneity is noted in meta-analysis).</td>
<td>a) = -1</td>
<td>Heterogeneity in the results is measured by (I^2) and the Q test (only if meta-analysis is possible).</td>
</tr>
<tr>
<td>Very serious = studies show widely different directions of effect (some positive, some negative).</td>
<td>b) = -2</td>
<td></td>
</tr>
<tr>
<td>Imprecision of effect estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The total number of samples is less than that required by a conventional sample size calculation for a single adequately powered controlled trial</td>
<td>a) = -1</td>
<td>For prevalence outcomes, assume at least a 10% reduction in risk (for common outcomes, (\sim 750-800) samples, for rare outcomes, (\sim 200-300)). (Check median control group risk in sample size calculator). For concentration outcomes, total sample size is >400. For rare events, can be less. (Check median treatment and control group means and SDs in sample size calculator).</td>
</tr>
<tr>
<td>Indirectness of individual study parameter as representative of target parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious = >50% of trials indirectly measure the intervention, population, comparison, or outcome</td>
<td>a) = -1</td>
<td>Indirectness indicates studies do not directly measure the target parameter of interest to the review question.</td>
</tr>
<tr>
<td>Very serious = >50% of trials measure two or more of the above parameters indirectly</td>
<td>b) = -2</td>
<td>E.g. studies only measuring surrogate/intermediate outcomes can be rated down. E.g. studies conducted under non-commercial conditions (e.g. low density farm housing, or laboratory conditions) to be rated down as not directly generalizable.</td>
</tr>
<tr>
<td>CRITERION</td>
<td>GRADE POINTS</td>
<td>EXPLANATION</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Publication bias</td>
<td>a) = -1</td>
<td>If meta-analysis is possible, publication bias detected in dataset. If meta-analysis is not possible, publication bias suspected by other means (e.g. lack of small studies showing no treatment effect).</td>
</tr>
<tr>
<td>Detected or suspected in data subset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrading criterion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large magnitude of effect</td>
<td>a) = +1</td>
<td>Large effect considered at least a 2-fold reduction in risk.</td>
</tr>
<tr>
<td>Large effect in the absence of plausible confounders and major threats to validity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction of plausible bias</td>
<td>a) = +1</td>
<td>E.g. only sicker patients receive an experimental intervention, yet they still fare better, and the actual effect of the intervention is likely to be even greater than the data suggest.</td>
</tr>
<tr>
<td>Results may have been underestimated due to the study design (e.g. population sampled)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose-response gradient</td>
<td>a) = +1</td>
<td></td>
</tr>
<tr>
<td>Majority of trials identified a dose-response relationship</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RAPID SYSTEMATIC REVIEW

Appendix I: Summary of factors that could influence the applicability and effectiveness of interventions to control *Salmonella* in beef and pork

This document serves as a companion to the Summary Cards that describe the efficacy of various interventions for *Salmonella* control in beef and pork. The systematic review identified many options for control of *Salmonella* in beef and pork chains, from farm production to consumption. Many interventions were shown to be effective in research study settings, but for various reasons, there was frequently very low to low confidence, so one could expect a similar intervention effect in practice due to various complex and dynamic factors. Some of these factors were related to the studies themselves (e.g. small sample sizes, possible risks of bias, and methodological differences), while others are related to variability in intervention effects across study settings. This purpose of this document is to outline some of the latter factors that might influence the effect of interventions across different contexts and settings. Some of these factors are within the control of various stakeholders (e.g. producers or processors), and some may be outside of their control but are important to consider in deciding on the appropriateness of a particular control strategy.

Salmonella burden and carriage in cattle and pigs

- **Prevalence and concentration of *Salmonella*** in cattle and pigs on individual farms, within herds, entering abattoirs, and on processing lines is dynamic and is not always predictable. Interventions aimed at controlling *Salmonella* may be affected by these baseline contamination levels. Multiple host factors influence these levels in animals, such as species, age, health status and co-infections, stress, reproduction, and high shedding events.

- **At the farm level, units may have status varying from negligible risk of infection, to endemic.** Farms negative for *Salmonella* detection will more appropriately be interested in control measures to prevent infection from entering the farm, while those that are positive will have greater interest in measures to limit spread and reduce prevalence.

- **The burden of *Salmonella*** can increase between farm and abattoirs due to the introduction of contamination during transport, lairage and marketing, deriving from sources such as other animals, transport vehicles, holding yards and environments. If animals with undetectable levels of *Salmonella* on-farm,
particularly pigs, are exposed to salmonellae after leaving the farm they can develop infection rapidly and the prevalence at slaughter can be higher than on-farm.

- At processing, cross-contamination and possible re-introduction of *Salmonella* can mitigate the impact of pathogen-reduction steps and decontamination interventions.
- *Salmonella* are carried in lymphoid tissues of cattle and pigs where they can be protected from exposure to decontamination agents, possibly reducing the efficacy of processing interventions.

SALMONELLA STRAINS

- *Salmonella* strains vary in their virulence, ecology, environmental persistence and ability to elicit responses to stress. Interventions have to be effective on the prevailing strains where the intervention is implemented.
- *Salmonella* can adapt and become resistant to control measures over time; regular monitoring of strain types and the effectiveness of interventions is required and corrective actions undertaken when necessary.

ENVIRONMENT

- At the farm level, *Salmonella* is widespread in farm environments and its presence is influenced by a complexity of non-host as well as host-related factors.
- The non-host factors that can interact in a complex manner on the presence of *Salmonella* in farm environments can include geography and location, weather, season, wildlife, and natural flora and fauna.
- An assessment of the risks of an existing or new setting for a production system is required to understand factors that need to be controlled either before or at the same time as the on-farm interventions, and whether an intervention can be transferred and adopted effectively.

PRODUCTION SYSTEMS AND INFRASTRUCTURE

- Different farm types and associated animal groups (e.g. mixed-species farms, dairy, feedlot, pasture, breeder and finishing farms) vary in their size, resources, animal husbandry and biosecurity practices, and the level of exposure to *Salmonella* and could affect intervention suitability and effectiveness.
- Fully integrated production systems under single management may offer greater opportunity for control than fragmented systems with multiple inde-
pendent managers; closer proximity of the production to the processing facilities will reduce the risk of an increase in the pathogen burden.

- At processing, establishment size, operating facilities, resources, and availability of services need to be considered in assessing the appropriateness and cost-effectiveness of interventions.
- Management commitment and staff capability and training can influence the implementation, effectiveness, and sustainability of interventions, and they are essential prerequisites to *Salmonella* control.

SOCIO-BEHAVIOURAL, POLITICAL AND REGULATORY FACTORS

- Various other contextual factors will influence implementation and uptake of interventions: acceptable costs and perceived benefits for those implementing the intervention; maintenance of market access and opportunity for new international markets; meeting customer specifications and economic incentives; consumer acceptance; regulation; and prevailing political and economic conditions.

IMPLICATIONS

- Reports of interventions are described in research studies in terms of *Salmonella* prevalence or concentration changes at one or more points in the food chain, and not on impacts on the final consumer risk of salmonellosis.
- A risk-based approach should be taken based on relevant country data and the unique context to identify the most appropriate points for *Salmonella* control. Controls in different sectors may be co-dependent and a combination of controls along the food chain will probably be required.
RAPID SYSTEMATIC REVIEW

Appendix J: Detailed GRADE Assessment Results

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Point in chain</th>
<th>Study design</th>
<th>Intervention subgroup</th>
<th>GRADE starting level</th>
<th>Downgrading Criteria</th>
<th>Upgrading Criteria</th>
<th>Dose response</th>
<th>Large effect</th>
<th>Direction of bias</th>
<th>GRADE final level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>ChT</td>
<td>Antimicrobials - phage therapy - lymph nodes</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>ChT</td>
<td>Antimicrobials - phage therapy - faecal</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Biosecurity - strategic movement</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Feed/water acidification- faecal</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Feed/water acidification- serum ELISA</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Feed/water acidification- lymph node</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Feed/water acidification- rectal content</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Feed management - meal - ELISA - finishers</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Feed management - coarse vs fine - faecal</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Vaccination - individual faecal</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Vaccination - pen faecal</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commodity</td>
<td>Point in chain</td>
<td>Study design</td>
<td>Intervention subgroup</td>
<td>GRADE starting level</td>
<td>Downgrading Criteria</td>
<td>Upgrading Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Vaccination - carcass lymph nodes</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>On-farm</td>
<td>CT</td>
<td>Vaccination - carcass caecal content</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Transport</td>
<td>CT</td>
<td>No lairage - caecal contents</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Transport</td>
<td>CT</td>
<td>No lairage - lymph nodes</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Scalding</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Singeing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Singeing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>CT</td>
<td>Pre-chill - thermal wash</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>CT</td>
<td>Pre-chill - acid wash vs no treatment</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>CT</td>
<td>Pre-chill - acid wash vs water</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>CT</td>
<td>Pre-chill - acid wash vs no treatment - 24 hours post measure</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>CT</td>
<td>Pre-chill - other wash</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>CT</td>
<td>Pre-chill - steam vacuum vs trim</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>CT</td>
<td>Pre-chill - multiple</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Pre-chill - water wash</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Pre-chill - organic wash</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commodity</td>
<td>Point in chain</td>
<td>Study design</td>
<td>Intervention subgroup</td>
<td>GRADE starting level</td>
<td>Risk of bias</td>
<td>Risk of inconsistency</td>
<td>Risk of imprecision</td>
<td>Risk of indirectness</td>
<td>Publication bias</td>
<td>Large effect</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Pre-chill - unspecified wash</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Pre-chill - multiple interventions</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Pre-chill - water wash</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Pre-chill - thermal wash</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Pre-chill - organic wash vs water</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Pre-chill - organic wash vs no treatment</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Pre-chill - other wash vs water</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Pre-chill - other wash vs no treatment</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Pre-chill - multiple interventions vs chilling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Pre-chill - multiple interventions vs pre-treatment</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>SR</td>
<td>Chilling</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>CT</td>
<td>Chilling - spray vs conventional</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>SR</td>
<td>Multiple stages - HACCP</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Cleaning/ disinfection</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Multiple stages - post-exsanguination</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commodity</td>
<td>Point in chain</td>
<td>Study design</td>
<td>Intervention subgroup</td>
<td>GRADE starting level</td>
<td>Downgrading Criteria</td>
<td>Upgrading Criteria</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Imprecision</td>
<td>Indirectness</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Multiple stages - pre-evisceration</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>Quasi</td>
<td>Multiple stages - post-evisceration</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Non-thermal - UV - CFU/cm²</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Non-thermal - UV - CFU/g</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pork</td>
<td>Processing</td>
<td>ChT</td>
<td>Non-thermal - plasma</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>On-farm</td>
<td>CT</td>
<td>Antimicrobials - ionophores</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>On-farm</td>
<td>CT</td>
<td>Gut manipulation - probiotics</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>On-farm</td>
<td>CT</td>
<td>Vaccination - dairy cow - shedding</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Live animal - water wash</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Post-exsanguination - water wash</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Live animal - acid wash</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Post-exsanguination - acid wash</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Live animal - other wash</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Post-exsanguination - other wash</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commodity</td>
<td>Point in chain</td>
<td>Study design</td>
<td>Intervention subgroup</td>
<td>GRADE starting level</td>
<td>Downgrading Criteria</td>
<td>Upgrading Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-exsanguination - acid wash</td>
<td>3</td>
<td>0 -1 -1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-exsanguination - other wash</td>
<td>3</td>
<td>0 -1 -1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-exsanguination - de-hairing vs no treatment</td>
<td>3</td>
<td>0 0 -1 -1 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-exsanguination - de-hairing vs water</td>
<td>3</td>
<td>0 0 -1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>CT</td>
<td>Bunging</td>
<td>4</td>
<td>-1 0 -1 0 0 0 0 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Post-evisceration - water wash</td>
<td>3</td>
<td>-1 0 0 0 0 0 0 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Post-evisceration - thermal wash</td>
<td>3</td>
<td>0 0 0 0 0 0 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Post-evisceration - multiple treatments</td>
<td>3</td>
<td>-1 0 0 0 0 0 0 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>CT</td>
<td>Post-evisceration - thermal</td>
<td>4</td>
<td>0 0 0 0 0 0 0 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>CT</td>
<td>Post-evisceration - Other interventions</td>
<td>4</td>
<td>-1 0 -1 -1 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - water wash - carcass sample</td>
<td>3</td>
<td>0 -1 -1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - water wash - ground beef sample</td>
<td>3</td>
<td>0 0 -1 0 0 0 0 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - thermal vs water wash - carcass sample</td>
<td>3</td>
<td>0 -1 -1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>Point in chain</td>
<td>Study design</td>
<td>Intervention subgroup</td>
<td>GRADE starting level</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Imprecision</td>
<td>Indirectness</td>
<td>Pub. bias</td>
<td>Large effect</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - thermal vs no wash - carcass sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - thermal vs water wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - thermal vs no wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - acid vs water wash - carcass sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - acid vs no wash - carcass sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - acid vs water wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - acid vs no wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - other vs water wash - carcass sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - other vs no wash - carcass sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - other vs water wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - other vs no wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Interventions for the Control of Non-Typhoidal Salmonella spp. in Beef and Pork

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Point in chain</th>
<th>Study design</th>
<th>Intervention subgroup</th>
<th>GRADE starting level</th>
<th>Downgrading Criteria</th>
<th>Upgrading Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - dry heat vs water wash - ground beef sample</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - electricity</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - extracts vs no treatment</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - extracts vs water</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - trimming</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - multiple treatments vs no treatment</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-evisceration - multiple treatments vs water wash</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Chilling</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Chilling - spray</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Chilling - acid</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Chilling - multiple</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Post-chill - acid</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-chill - thermal wash</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-chill - other wash</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-chill - multiple treatments</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - water wash - ground beef sample</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **GRADE**: Global rating of evidence quality
- **Starting level**: The global rating before any adjustments for downgrading or upgrading criteria
- **Downgrading Criteria**:
 - **Risk of bias**: The risk of bias in studies
 - **Inconsistency**: The presence of inconsistency
 - **Imprecision**: The presence of imprecision
 - **Indirectness**: The presence of indirectness
 - **Pub. bias**: The presence of publication bias
- **Upgrading Criteria**:
 - **Large effect**: The presence of large effect
 - **Direction of bias**: The direction of bias
 - **Dose response**: The dose response relationship
- **GRADE final level**: The global rating after adjustments for downgrading or upgrading criteria

Table Notes:
- The table above presents the interventions and their associated GRADE scores, along with criteria for downgrading and upgrading the evidence quality. Each intervention is categorized based on its point in the chain of beef and pork processing, the study design, and the intervention subgroup. The GRADE rating includes an assessment of risk of bias, inconsistency, imprecision, indirectness, and publication bias, along with considerations for large effect and direction of bias responses, leading to a final GRADE level.
<table>
<thead>
<tr>
<th>Commodity</th>
<th>Point in chain</th>
<th>Study design</th>
<th>Intervention subgroup</th>
<th>GRADE starting level</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Imprecision</th>
<th>Indirectness</th>
<th>Pub. bias</th>
<th>Large effect</th>
<th>Direction of bias</th>
<th>Dose response</th>
<th>GRADE final level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - water wash - steak sample</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - water wash - cheek meat</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - thermal wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - thermal wash - steak/cut sample</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - thermal wash - cheek meat</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - acid vs water wash - ground beef sample</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - acid vs no wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - acid vs water wash - steak/cuts sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - acid vs no wash - steak/cuts sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - acid wash - cheek meat</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - other vs water wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - other vs no wash - ground beef sample</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Commodity</td>
<td>Point in chain</td>
<td>Study design</td>
<td>Intervention subgroup</td>
<td>GRADE starting level</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Imprecision</td>
<td>Indirectness</td>
<td>Pub. bias</td>
<td>Large effect</td>
<td>Direction of bias</td>
<td>GRADE final level</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - other vs water wash - steak/cut sample</td>
<td>3 0 -1 -1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - other vs no wash - steak/cut sample</td>
<td>3 0 -1 -1 -1 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - other wash - cheek meat</td>
<td>3 -1 0 -1 -1 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - irradiation</td>
<td>3 0 -1 -1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - lactic acid bacteria</td>
<td>3 0 -1 -1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - multiple treatments vs water wash - ground beef sample</td>
<td>3 0 0 -1 0 0 0 0 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - multiple treatments vs no treatment - ground beef sample</td>
<td>3 0 -1 -1 -1 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - multiple treatments vs water wash - steak/cut sample</td>
<td>3 0 -1 -1 -1 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Post-fabrication - multiple treatments vs no treatment - steak/cut sample</td>
<td>3 0 -1 -1 -1 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>SR</td>
<td>Multiple stages - HACCP</td>
<td>3 0 0 0 0 0 0 0 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>Quasi</td>
<td>Multiple stages - multiple interventions</td>
<td>3 -1 0 0 0 0 0 0 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>Processing</td>
<td>ChT</td>
<td>Multiple stages</td>
<td>3 0 -1 -1 -1 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: CT = controlled trial; ChT = challenge trial; Quasi = quasi-experiment; SR = systematic review.
Steps in the beef and pork food chains as outlined in the Codex Committee on Food Hygiene Draft Guidelines

A generic flow diagram of the basic beef and pork production processes is shown below, as presented in the CCFH “Proposed Draft Guidelines for the Control of Non-typhoidal *Salmonella* spp. in Beef and Pork Meat”. This was the flow diagram which was available at the time of the expert meeting. Subsequent to the expert meeting some small updates were made to the diagram, in particular the inclusion of an additional step before Chilling, entitled Pre-chill Treatment. This diagram and the revised Codex guidance which reflects many of the recommendations made in this report can be found in Appendix II of the report of the 47th Session of the Codex Committee on Food Hygiene1.

Beef chain steps:

1. Primary Production
2. Transport to Slaughter
3. Receive and Unload
4. Lairage
5. Stunning
6. Shackling
7. Sticking/Bleeding
8. De-hiding

1 Available at: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodedx%252FMeetings%252F47%252FReport%252FREP16_FHe.pdf
9. Head Removal/Head Washing
10. Bunging
11. Brisket Opening
12. Rodding/Tying the Weasand
13. Evisceration
14. Splitting
15. Post Mortem Inspection
16. Chilling
17. Carcass Fabrication
18. Trim/Grinding
19. Packaging Finished Product
20. Transport to Distribution Channels
21. Cold Storage/Aging
22. Receiving at Purveyor
23. Finished Product Fabrication
24. Mechanical Tenderization
25. Distribution/Retail
26. Consumer
Pork chain steps:

1. Primary Production
2. Transport to Slaughter
3. Receive and Unload
4. Lairage
5. Stunning
6. Sticking/Bleeding
7. Scalding
8. De-hairing
9. Gambrelling
10. Singeing
11. Polishing
12. Bunging
13. Midline Opening
14. Evisceration
15. Splitting
16. Head Dropping/Removal
17. Post Mortem inspection
18. Chilling

(continued)
<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Carcass Fabrication</td>
</tr>
<tr>
<td>20</td>
<td>Mechanical Tenderization/Mincing</td>
</tr>
<tr>
<td>21</td>
<td>Packing Product</td>
</tr>
<tr>
<td>22</td>
<td>Transport to Distribution Channels</td>
</tr>
<tr>
<td>23</td>
<td>Cold Storage</td>
</tr>
<tr>
<td>24</td>
<td>Distribution/Retail</td>
</tr>
<tr>
<td>25</td>
<td>Consumer</td>
</tr>
</tbody>
</table>
FAO/WHO Microbiological Risk Assessment Series

1. Risk assessments of *Salmonella* in eggs and broiler chickens: Interpretative Summary, 2002
2. Risk assessments of *Salmonella* in eggs and broiler chickens, 2002
3. Hazard characterization for pathogens in food and water: Guidelines, 2003
18. Enterohaemorrhagic *Escherichia coli* in meat and meat products: Meeting Report, 2010
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Risk assessment tools for Vibrio parahaemolyticus and Vibrio vulnificus associated with seafood: Meeting Report and Follow-up, In press</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Salmonella spp. In bivalve molluscs: Risk Assessment and Meeting Report, In press</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Selection and application of methods for the detection and enumeration of human pathogenic Vibrio spp. in seafood: Guidance, 2016</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Multicriteria-based ranking for risk management of food-borne parasites, 2014</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Statistical aspects of microbiological criteria related to foods: A risk managers guide, 2016</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>A risk based approach for the control of Trichinella in pigs and Taenia saginata in beef: Meeting Report, In press</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Ranking of low moisture foods in support of microbiological risk management: Meeting Report and Systematic Review, In press</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Microbiological hazards associated with spices and dried aromatic herbs: Meeting Report, In press</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Microbial Safety of lipid based ready-to-use foods for the management of moderate acute and severe acute malnutrition: First meeting report, 2016</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Microbial Safety of lipid based ready-to-use foods for the management of moderate acute and severe acute malnutrition: Second meeting report, In press</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Interventions for the Control of Non-typhoidal Salmonella spp. in Beef and Pork: Meeting Report and Systematic Review, 2016</td>
<td></td>
</tr>
</tbody>
</table>
Non-typhoidal *Salmonella* spp. are estimated to cause 93.8 million cases of acute gastroenteritis and 155,000 deaths globally each year, approximately 85% of which are estimated to be foodborne. This means *Salmonella* causes a significant public health burden and economic impact on society. Pork products are among the top foodborne sources of *Salmonella* globally, while beef products have been implicated in several large outbreaks in recent years. Contamination of beef and pork with *Salmonella* can also have a negative impact on the agri-food and trade sectors due to costly recalls of products and by limiting market access.

Supporting international efforts to address this issue, and in particular the development of pertinent standards and guidelines by the Codex Alimentarius, FAO and WHO have undertaken a systematic review of the available evidence on interventions to control *Salmonella* in beef and pork from primary production through processing. This information was then considered by an expert meeting which provided recommendations on efficacious interventions. This report presents the outcome of those deliberations as well as the review of studies on which the discussions were based, providing the reader with a wealth of up to date information on the currently available interventions for the control of *Salmonella* in beef and pork.

This volume and others in this Microbiological Risk Assessment Series contains information that is useful to both risk assessors and risk managers, the Codex Alimentarius Commission, governments and regulatory authorities, food producers and processors and other institutions and individuals with an interest in *Salmonella* in beef and pork and its control.