Healthy Environments for Children

Report of a Workshop
Pattaya, Thailand, 3-5 February 2003

Project No: ICP CAH 001

World Health Organization
Regional Office for South-East Asia
New Delhi
September 2003
CONTENTS

<table>
<thead>
<tr>
<th>EXECUTIVE SUMMARY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BACKGROUND AND OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>2. METHODOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>3. PROCEEDINGS</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Screening Research Activities in SEA Countries</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Screening Research Activities in Countries from the Western Pacific Region</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Review of the Existing Information and Activities Undertaken in Selected Countries</td>
<td>11</td>
</tr>
<tr>
<td>3.4 Existing Collaborative Research Initiatives</td>
<td>19</td>
</tr>
<tr>
<td>4. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>27</td>
</tr>
<tr>
<td>4.1 CEH Priority Issues and Research Needs</td>
<td>27</td>
</tr>
<tr>
<td>4.2 How To Set Up Collaborative Partnerships for Research</td>
<td>29</td>
</tr>
<tr>
<td>4.3 Promoting Action at Governmental Levels and among Governments</td>
<td>29</td>
</tr>
<tr>
<td>4.4 Suggested Areas for Collaborative Research</td>
<td>30</td>
</tr>
</tbody>
</table>

Annexes

1. The Bangkok Statement	36
2. List of Participants	41
3. Programme	45
There is an urgent need to better understand children’s exposure to environmental risks during their lifetime and most specifically during the “critical windows of susceptibility” when the timing of exposure becomes more important than the dose. An International Conference on Environmental Threats for Children was held at the Chulabhorn Research Institute (CRI) in Bangkok, Thailand from 3-7 March 2002. This meeting provided the opportunity for World Health Organization’s Regional Offices for South-East Asia and the Western Pacific (SEARO and WPRO respectively), to enable nearly 300 scientists and health officials from more than 30 countries, to meet, exchange experiences and strengthen cooperation in the area of children’s environmental health. For this, WHO had joined efforts with the US-based National Institute of Environmental Health and Sciences (NIEHS), the United States Environmental Protection Agency (US/EPA), and other donor organizations and partners. During the World Summit for Sustainable Development held in Johannesburg, South Africa in September 2002, a landmark event took place: a worldwide call to action to uplift the status of children as the essence of sustainable development. Dr Gro Harlem Brundtland, WHO’s Director General launched a global movement to create Healthy Environments for Children. The proposal of a global alliance called Healthy Environments for Children Alliance (HECA) was backed by many countries and nongovernmental organizations. The support of HRH Princess Chulabhorn from Thailand was pivotal in this worldwide call to action.

Professor Dr HRH Princess Chulabhorn Mahidol graced the opening ceremony of the workshop and addressed the participants. HRH highlighted the specific recommendations set out at the Bangkok Conference in March 2002 for research mechanisms to assist in the assessment of environmental risks to children’s health and to provide appropriate monitoring procedures.

Following the main recommendations of the Bangkok conference 2002, the current workshop focused on four objectives:

1. To review progress and follow-up activities;
2. To discuss in depth some specific on going or planned children’s environmental health (CEH) research activities in the two regions;
(3) To discuss and make recommendations on strengthening and building research capacity in CEH, particularly in developing countries, and

(4) To develop and implement specific research collaborations and networks.

Participants from four countries of the South-East Asia Region – SEAR - (Bangladesh, India, Nepal and Thailand) and five from the Western Pacific Region – WPR - (Australia, Malaysia, Mongolia, Philippines and Singapore) attended the meeting. There were 32 workshop participants drawn from ministries of health and environment, academia and NGOs as well as from institutions and organizations working in the area of children’s environmental health. There was participation from NIEHS, USEPA, the University of Arizona, the Dartmouth Medical School and the University of Albany, New York, and also WHO staff from the South-East Regional Office and headquarters.

In reviewing the progress made since the International Conference held in Bangkok in 2002, the participants acknowledged that a number of initiatives had been taken to promote activities in areas concerning environmental factors and children's health. It was noted that although research is conducted in the areas of children’s health and on environmental issues, this is usually done separately, as no links are established between these two areas. One of the main reasons is the lack of awareness about children’s special vulnerability to environmental threats.

The unique vulnerabilities of children to chemical exposures during critical developmental stages highlight the need to promote collaborative research to address these vulnerabilities. Such studies have to take into perspective the socio-cultural and economic factors that may impact children’s health. There was general consensus about the need to further promote and implement research activities, to translate research into interventions, to increase knowledge and information flow, to collaborate with existing networks and organizations and to follow-up efforts initiated in the area of CEH. Research findings need to be translated into public health promotion/intervention programmes at the local community level.

Country presentations provided information on the status of CEH research activities and concerns dealing with specific environmental hazards like exposure to metals, pesticides, indoor and outdoor air pollution, global climate change and specific disease outcomes like asthma and allergy, neurobehavioural disorders, cancers and congenital defects.
Resource speakers from WHO’s global and regional programmes on the Promotion of Chemical Safety – PCS, US-NIEHS, US-EPA, University of the Philippines and other academia provided the participants with an overview of emerging concerns related to CEH such as exposure to persistent organic pollutants and endocrine disruptors, the role of gene-environment interaction and the need for interventional research. The activities of the US-CEH Research Centres that promote translation of basic research findings into applied intervention and prevention methods were presented. The “Prospective Cohort Study of the Thai Children (PCTC)” of the Ministry of Health, Thailand, was presented as a unique prospective cohort community-based multilevel research on the biological, psychosocial and moral development outcomes of Thai children. This study also covers most variables potentially determining child development such as physical environment, family structure and functions, and community profiles. It may well serve as a model for longitudinal CEH research in the Region.

Among the important highlights of this workshop was the interactive breakout sessions that provided the impetus for participants to move towards collaborative research in CEH. The major recommendations presented by the working groups in the plenary are summarized in the conclusions of this workshop. Discussion on the “next steps” emphasized the need to involve relevant partners in the CEH research initiative including paediatricians and health care providers, the International Paediatric Association and the NGOs working at the community level. The participants agreed that while additional research into remediation methods and human health effects are important, the immediate application of current knowledge to reduce exposure is critical. This requires communication and cooperation between the research, governmental and NGO communities at the national and international levels.

CONCLUSIONS AND RECOMMENDATIONS

At the end of the meeting, the participants concluded that the objectives of the workshop were fulfilled, as they were able to:

1. Review progress made since the Bangkok Conference
2. Discuss how to strengthen research (who is doing what, and where)
3. Discuss future specific collaboration initiatives
4. Develop specific collaboration schemes
Whilst recognizing that there are a number of environmental threats to children’s health, the major objective of this workshop was to identify and discuss specific examples of collaborative research that could be implemented immediately following this event.

The following topics of CEH research, both exposure sources and health outcomes, were singled out and prioritized for research and intervention:

(1) Air pollution (indoor and outdoor)
(2) Water and sanitation
(3) Injuries and accidents (as a result of unsafe settings)
(4) Vector borne diseases
(5) Pesticides and Persistent Organic Pollutants
(6) Metals (lead, mercury, arsenic, chromium) and fluorides
(7) Food contamination
(8) Noise pollution

The main health outcomes addressed in relation to the above included asthma and allergies, respiratory diseases, immune and neurodevelopmental disorders (educational outcomes), birth defects, and the health effects of both acute and low-level chronic exposure to specific contaminants.

These research areas require in-depth consideration to define the specific gaps in knowledge, taking into account gender issues, settings of children (rural and urban), the importance of malnutrition and genetic susceptibility.

The workshop participants addressed the need to strengthen and build research capacity in CEH, particularly in the developing nations of the SEA and WP regions. The main recommendations for action at the country level include:

(1) To identify existing CEH research capacities and current CEH research-related programmes in the countries, in order to build upon existing efforts and ongoing activities;
(2) To select and define the priority areas of research (exposure sources, health outcomes, interventions, evidence-based activities);
(3) To ensure as far as possible the sustainability of research efforts (e.g. focusing on expressed needs);
(4) To prepare guidelines for standardized procedures to conduct CEH collaborative research to reduce uncertainty factors;
(5) To collect data in a harmonized manner using standardized methodologies and protocols, so as to enable the comparability of data from different geographic regions;

(6) To promote interdisciplinary/multi-stakeholder collaboration for CEH research (e.g. links to poison centres, paediatric societies, academia, health institutes, laboratories, NGOs, decision-makers and other relevant partners);

(7) To ensure the follow-up of research efforts and interventions, as a means to evaluate progress made and lessons learned;

(8) To set up a CEH collaborative research network in the country (e.g. email group, informal Secretariat);

(9) To implement specific collaborative research projects on children’s health in areas such as (a) air pollution, asthma and other health effects; (b) arsenic and other metals and (c) pesticides and POPs, or other, as necessary, and

(10) To advocate for the incorporation of CEH-related research into the WHO country health programmes.

An informal network of research on CEH was set up as a means to exchange information to help implement some of these recommendations and CRI was nominated as the Secretariat (E-mail: bbk.ceh@tubtim.cri.or.th).

At the regional and international levels, collaborative research activities were proposed in the areas of:

- Arsenic exposure in pregnant women and children (USA and Asian countries)
- Asthma and allergies (Australia, Singapore and India)
- Pesticides and POPs (UNEP, GEF to be approached by WHO)
- Feasibility of national children’s studies (USEPA, WHO and Thailand)

The participants agreed that it is time for a multisectoral, multi-stakeholder collaborative research that integrates aspects of prevention and intervention and translates the evidence into policy, either public or regulatory. Thus, while we advance the science of children’s environmental health, we move closer to promoting and ensuring healthy environments for children.
1. **BACKGROUND AND OBJECTIVES**

Children’s exposure to environmental threats has been recognized as an increasing problem in many countries of the South-East Asian and Western Pacific Regions. Traditional threats, such as the lack of access to safe water and proper sanitation and new, emerging environmental risks, such as those posed by endocrine disrupters, are a cause of concern. In addition, more is known—but not enough—about the special “windows of susceptibility” in children, periods when the timing of exposure may be more important than the dose. Despite the rising concern of the scientific community, progress has been slow in the identification and study of some environmental threats on children’s health and the efficacy of interventions.

This issue was raised at the International Conference on Environmental Threats to the Health of Children kindly hosted by Her Royal Highness (HRH) Princess Chulabhorn Mahidol which took place at the Chulabhorn Research Institute (CRI) in Bangkok, Thailand from 3-7 March 2002. This conference was an opportunity for WHO’s South-East Asia and Western Pacific Regional Offices (SEARO and WPRO respectively), to join efforts with the US-based National Institute of Environmental Health and Sciences (NIEHS), the United States Environmental Protection Agency (US/EPA), and donors to enable almost 300 scientists and health officials from more than 30 countries, to meet, exchange experiences and strengthen cooperation in the area of children’s environmental health. Participants stressed the need to promote the recognition, assessment and study of environmental factors that have an impact on the health of children. Specific recommendations were made in the Bangkok Statement (see Annex I), where WHO is urged to support efforts in the area of health care and research, namely:

To promote the recognition, assessment and study of environmental factors that have an impact on the health and development of children, which includes:

- Establishing centres to address issues related to children’s environmental health;
- Developing and implementing cooperative multidisciplinary research studies in association with centres of excellence and WHO collaborating centres, and promoting the collection of harmonized data and their dissemination;
- Seeking financial and institutional support for research, data collection, education and prevention programmes, and
- Developing risk assessment methods that take account of children as a special risk group.

An important development took place at the September 2002 World Summit on Sustainable Development, where the WHO Director-General, Dr Gro Harlem Brundtland, called for a global movement to create Healthy Environments for Children (HEC). The proposal of a global alliance called Healthy Environments for Children Alliance (HECA) was backed by many countries and people representing nongovernmental organizations, the private sector, academia and international organizations. The support of HRH Princess Chulabhorn was pivotal in this worldwide call to action, a first of its kind, uplifting the status of children, both girls and boys, as the essence of sustainable development and binding nations around the world together to seek healthy and safe lives for children.

During the WHO Consultation on the publication of "Scientific Principles for Assessing Risks from Chemical Exposures in Children" (22-23 October 2002, Gex, France), the opportunity was taken by CRI, NIEHS and WHO/IPCS (International Programme for Chemical Safety) to discuss the next steps: the organization of a workshop for the promotion of collaborative research in the area of children's environmental health. It was recommended that emphasis should be placed on: (a) existing examples of research initiatives in developing countries such as arsenic, lead, mercury, air pollution; (b) on the interactive roles of toxicologists, clinicians, epidemiologists, engineers and other professionals in doing research on children’s health and environmental matters, and, especially, (c) on the promotion of collaboration among experts from different countries. Another priority research area proposed for discussion was the identification of unique exposure situations and populations where gene-environment interactions may be contributing to increased susceptibilities to exposure and disease.

The President of CRI, Prof. Dr HRH Princess Chulabhorn visited WHO headquarters in Geneva on the 9 December 2002 and personally supported the proposal of a meeting to discuss research needs and promote collaborative studies on healthy environments for children and kindly offered to host this workshop.
WHO HQ and SEARO efforts are supported by the NIEHS and the EPA in the United States, organizations deeply concerned about the fate of children and adolescents in a changing environment.

Following the main recommendations of the Bangkok International Conference 2002, the current workshop focused on the following four objectives:

1. To review progress and follow-up activities;
2. To discuss in depth some specific on going or planned CEH research activities in the two regions;
3. To discuss and make recommendations on strengthening and building research capacity in CEH, particularly in developing countries, and
4. To develop and implement specific research collaborations and networks.

Participants from four countries from the SEA Region (Bangladesh, India, Nepal and Thailand) and five from the WP Region (Australia, Malaysia, Mongolia, Philippines and Singapore) attended the meeting. There were 32 workshop participants drawn from ministries of health and environment, academia and NGOs from SEA and WP Regions, as well as from institutions and organizations working in the area of children's environmental health. In addition to WHO staff from the South-East Asia Regional Office and headquarters, there was participation from NIEHS, USEPA, the University of Arizona, the Dartmouth Medical School and the University of Albany, New York (see Annex II for the list of participants).

2. METHODOLOGY

The workshop session included presentations of scientific papers and country situation, plenary sessions, group work, discussions and experience sharing among the participating countries and organizations.

Professor Dr HRH Princess Chulabhorn Mahidol graced the opening ceremony of the workshop and addressed the participants. HRH highlighted the specific recommendations set out at the Bangkok Conference in March 2002 for research mechanisms to assist in the assessment of environmental risks to children's health and to provide appropriate monitoring procedures. HRH mentioned that research in environmental health and toxicology and on
the effects of specific hazards that threaten children's health provides the essential basis for addressing the issues that have been identified and described. HRH stressed the need for the participants to determine the ways by which research capacity can be built through an integrated and multidisciplinary approach. HRH observed that as a result of the exchange of information and experience on current research initiatives and findings, collaborative efforts could be made to accelerate progress and that this could be achieved through the development of networks among the countries represented by the participants engaged in the workshop. HRH referred to the experience at the Chulabhorn Research Institute, which has amply demonstrated the value of cooperative research projects in order to ensure that scarce resources are optimally used to the benefit of all in a particular research endeavor. HRH also stated that through the development of collaborative support and the rational use of human and material resources, progress in research can be made. Wishing success to the participants, HRH expressed confidence that the strengthening of research capability will have an important impact on protecting the health of children.

The workshop was chaired by Dr Mathuros Ruchirawat from CRI, Thailand, and Dr William Suk from the NIEHS-USA, and facilitated by WHO/HQ and SEARO staff. The proposed programme was revised based on the outcome and course of the discussions and inclusion of other emerging issues (see Final Agenda in Annex III).

3. PROCEDINGS

Dr Jenny Pronczuk gave an overview of the Global Alliance on Healthy Environments for Children (HECA) launched by Dr. Gro Harlem Brundtland, Director-General, WHO, at the World Summit on Sustainable Development in Johannesburg, South Africa in September 2002. Many countries and nongovernmental organizations, the private sector, academia and international organizations backed the proposed alliance, and the HECA Task Force is currently developing plans of action.

Mr. Alexander Von Hildebrand, Regional Adviser for Environmental Health, WHO/SEARO, presented a summary of the responses to a WHO Questionnaire on “Follow-up action of the 2002 Bangkok Conference on Children’s Environmental Health” sent in advance to the participants of this workshop. He said that it could be concluded that the momentum created at the Bangkok Conference remained active, and that many participants had
effectively managed to integrate CEH into their programmes. It was also concluded that the CEH helped to move the EH agenda forward, but that there was a lot more that still needed to be done, especially in the area of commitment. There was a need as well to generate data/information, and to translate this knowledge into action. Dr J M Luna, Regional Adviser for Child and Adolescent Health (CAH) and SEARO focal point for World Health Day, informed about the activities being planned at the HQ level as well as at the Regional Office level. He showed some of the material that was being made available, among them the 2003 Calendar produced by SEARO with the theme “Healthy Environments for Children”. He also informed the participants that a website (www.who.int/world-health-day/2003/en) had been made available at HQ level, from where all material related to WHD 2003 could be accessed and downloaded. He also requested all participants to post their planned activities for this day on this website.

Dr W Suk highlighted the important impact of the Bangkok Statement which had resulted in a number of collaborative activities in CEH. These issues were summarized in an edition of the Journal of Environmental Health Perspectives. He stressed the importance of translating research findings into public health promotion/intervention programs at the local community level.

Dr D Carpenter from the University of Albany, USA, made a presentation focusing on “When research, when interventions, when both?” Dr Carpenter gave practical examples where research results led to positive effects in the communities. In conclusion, Dr Carpenter pointed out that interventions should always be based on research evidence, and that if the concerned community actively participated in the research process the results and implications were more readily accepted. He insisted that the ultimate goal of CEH research was “to do something” about the environment health problems, not just about studying them.

3.1 Screening Research Activities in Sea Countries

Dr D K Saxena from the Industrial Toxicology Research Centre, Lucknow, India, presented a summary of various studies conducted in recent past in India and other countries of South-East Asia showing a correlation between various etiological factors and child health:

In the area of child health and lead, Ali et al (1978); Abdullah (1984) and Sprinke (1995) reported high blood levels of lead in Indian and Pakistani children using leaded eye cosmetics (“surma”) compared to those not using
such cosmetics. Studies in India by Gogte et al (1991) and Awasthi et al (1996) did not find any such links. More detailed studies are required in India which would help clarify the risk from this cosmetic.

Shenoi et al., (1991) conducted a school-based study to trace various sources of lead exposure in urban slum children in Mumbai. Elevated venous blood lead detected in some cases indicated a common source (nearby factory manufacturing lead storage batteries) which was identified after systematic family and environmental studies were conducted.

Chatterjee and Banerjee (1999) conducted a community-based study amongst 50000 people residing in the vicinity of a lead factory that produced lead ingots and lead alloys. Many people, especially children were found to be affected by lead toxicity. A study on children directly exposed to lead through their nature of occupation behaviour by Dinesh and Krishnaswamy (1999) found that 35% of children working in petrol bunks, 17% of those engaged in the bangle making industry and 47% of those involved in eating pieces of painted wall (pica syndrome) had high blood lead levels.

In another study by the same authors (NIN, 1995-96), children were screened to assess the extent of lead toxicity after some reports of cattle population deaths in Western India. It was found that in children living within the vicinity of 0 to 5 km of an industry engaged in preparation of packing material, the mean blood lead levels were 35.2 µg/dl with some clinically symptoms of lead poisoning as compared to children living farther away (23-28 µg/dl).

Bhattacharya et al. (2001) conducted a study of 405 children selected from the vicinity of lead smelting units in the suburbs of a metropolitan city where the ambient lead level was found to be high as compared to the WHO-recommended level of 0.5 µg/m³. Statistical evaluation of the psychological tests and blood lead of the subjects showed that the performance of high blood lead group of boys was significantly affected when compared to those of the low blood lead group. There was significant lowering of verbal IQ in the high blood lead group of boys and girls with respect to their low blood lead counterparts.

Patel et al., (2001) conducted a community-based cross-sectional study of 297 children aged six months to six years in an Indian city, assessed the prevalence of elevated blood lead (PbB) levels, their risk factors, and the lead contents in potential environmental sources. The prevalence of elevated PbB was 67%. Anticipated risk factors of elevated lead were living in houses painted with lead-based paint, and the use of eye cosmetics. Analysis of
various environmental sources such as paint, pencils, crayons, and clay revealed high lead levels. These results demonstrated the existence of a major environmental health problem in Indian children, with risk factors that differ from those in other countries.

Average concentration of Pb in atmospheric air particulates in different suburbs of Mumbai was studied (Tripathi et al., 2001) for almost a decade and its spatial and temporal profiles discussed in relation to emission sources.

Kaul (1999) demonstrated that iron deficiency among children predisposes them to increased lead absorption, thus further aggravating the detrimental effects of lead, as observed in a screening study of children carried out in Jammu city.

Arsenic and child health: In a preliminary study by Rahman et al (2001), 18 000 persons in Bangladesh and 86000 persons in West Bengal were clinically examined in arsenic-affected districts. Of them, 3 695 (20.6%, including 6.11% children) in Bangladesh and 8 500 (9.8%, including 1.7% children) in West Bengal had arsenical dermatological features. Children appear to have a higher body burden than adults, despite fewer dermatological manifestations.

Fluoride and child health: Gupta et al (1996) studied 25 children selected from an area consuming water containing 4.5 ppm of fluoride. All the children were in the age group 6-12 years and weighed 18 to 30 kg. They were graded for clinical, radiological and dental fluorosis and relevant biochemical parameters. Grade I skeletal fluorosis and all grades of the manifestation of dental and clinical fluorosis were observed.

A cross-sectional clinical dental examination of schoolchildren was carried out in Goa (India) by Mascarenhas & Burt (1998), along with a self-administered questionnaire to their parents. The prevalence of fluorosis was 12.9%. Results of the crude, stratified, and logistic regression analyses showed that use of fluoride toothpaste before the age of six years was a risk indicator for fluorosis.

Air pollution and child health: Sharma et al (1998) conducted a prospective study at two urban slums of Delhi in the peak winter season from November 1994 through February 1995 to determine the incidence of acute lower respiratory infection (ALRI) and its relationship to indoor air pollution due to fuel used for cooking (wood or kerosene); 642 infants were included in this study. Results are not published yet.
Behera et al (1998) carried out a detailed study on passive smoking, domestic fuels and lung function in 200 school children from North India.

Awasthi et al. (1996), studied the association between ambient air pollutants (AAP) and respiratory symptoms complex (RSC) in a cohort of 664 children between the ages of one month to 4.5 years from 28 slums of Lucknow.

Both teams concluded that to improve the respiratory health of preschool children, ambient air SPM and SO\textsubscript{2} levels should be kept as low as possible and mothers should be advised to keep children in another room while cooking.

Poisoning cases and child health: A study (Mehta et al., 1996) comprised 120 children brought to the hospital with the history of acute poisoning. In infants kerosene and medications accounted for 72 cases (60%) of poisoning exposures. None of the care-takers of children had received any instruction regarding prevention of accidents and poisoning prior to the episode, in spite of multiple contacts with health-care providers. Role of health education and other preventive measures were stressed.

Gupta et al., (1998) studied the trends in poisoning in children (age group: one month and above) admitted to the Department of Paediatrics, King George's Medical College, Lucknow, Uttar Pradesh in three alternate calendar years and compared it with a 1977-1979 study. Results showed that kerosene poisoning continues to be responsible for a substantial part of the morbidity. Poisoning due to insecticides had increased.

Heavy metals and child health: An ITRC study (1998) on 120 children attending paediatric OPD at NTPC Hospital (Shaktinagar) was carried out. No positive correlation could be established between findings of hyperpigmentation of the skin, anaemia, black line over gums, high blood pressure and fine tremors with blood and hair mercury levels. The levels of heavy metals, such as Pb, Cd, Cu, Zn and Fe, in whole blood samples of Mumbai and Hyderabad children were determined by Raghunath R et al (1997).

Khan and Eswari (1993) analyzed the health status of two hundred children living in the immediate vicinity of solid waste dumps in Pondicherry, India, compared to a non-exposed control group. The data showed significant occurrence of fever, skin disease, diarrhoea, dysentery, vomiting, cough, breathlessness, anaemia and eye infections. The relatively high incidence of
skin diseases was correlated with the direct or indirect physical contact with solid wastes.

Dr S Bhave, from India, insisted that research is very important to obtain success for CEH plans and related programmes and would require partnership of various agencies. Practising medical doctors are a vital link in this research process. A child affected by environmental health determinants and with physical or mental symptoms is first taken to a physician. But the diagnosis attributed to environmental factors may be missed if the physician is not properly trained. If he/she picks up an index, case then it can be referred to technical experts involved in this area of research in order to initiate proper environmental epidemiological investigation in the community or area. For example, anaemia in children is common in developing countries and can be caused by malnutrition and worms, but also by lead exposure.

Physicians are aware of medical conditions (illness) but the question is: how many physicians while seeing routine patients think of environmental factors? She said that currently the Indian Academic of Paediatrics (IAP) is training medical doctors to look for medical illness and the history taking and examination is centered around these factors. Physicians need to be made more aware of CEH. At present, this knowledge and practice is restricted to occupational and environmental health specialists. There is a need to build environmental health into the undergraduate medical and nursing curricula. All specialists should be made aware and capable of recognizing environmental health diseases in routine practice.

Clinical research is very important in the case of environmental diseases. Physicians, especially paediatricians, should be trained to take the environmental history form each patient. The environmental history should include: community, home, hobbies occupation and personal exposure. The environmental history is particularly relevant for pregnant women or women planning pregnancy as well.

3.2 Screening Research Activities in Countries from the Western Pacific Region

Dr Irma Makalinao from the University of Philippines, College of Medicine stated that research attempting to establish the link between children’s health and environmental exposures must take into account some understanding of “children’s environmental health”. In many instances, some researchers will
have a clear concept of children’s health and environmental health, but not the unique interrelation between “children” plus “environment” plus “health”. Children’s environmental health deals with disease outcomes following exposures in the settings where a child lives, grows, learns, plays and works. The unique vulnerabilities of children and the timing of exposure during the critical windows of susceptibility highlights the need to promote collaborative research that will allow for a better understanding of what affects children during their lifetime. Such studies will have to take into account the sociocultural, political, spiritual and economic factors that may modify the effects of physical, psychological and biochemical risks to children.

There are thirty-seven countries comprising the Western Pacific Region, a diverse geographic area with varying ethnicity and economic growth making it a fertile ground for comparing the issues that affect children in the developed, developing and extremely underdeveloped areas of the world including gene-environment interaction on a background of malnutrition and poverty. When comparing the basic indices of gross national income per capita (GNI) with either infant mortality rate (IMR) and more importantly with mortality among children under five, there seems to be an inverse relationship between GNI and the health indices previously mentioned. For example, in the WPR, Cambodia had the lowest GNI and the highest mortality rate for children under five. According to the UNICEF report, not all children in Marshall Island, Nauru, Niue, Samoa, Solomon Islands and Vanuatu are registered at birth, denying them of their identity, recognized name and nationality. Thus, some measures must be taken to give those children a way for meaningful participation in society before even embarking on CEH research.

An investigator trying to determine the status of CEH research done in the Region has to take into account published research. Many of the published research on specific hazards (air pollution, water and sanitation, biohazards, radiation) or health outcomes (autism and other neurological diseases, asthma, cancer, endocrine disruption) based on a PUBMED search engine were from countries in the higher GNI bracket like Japan, Australia, New Zealand and Singapore, and were focusing on asthma and air pollution. However, studies directly linking the disease outcomes with environmental exposures were lacking. A MEDLINE search provides an incomplete picture of research, as most of the CEH research in the developing countries remains unpublished. Thus, an inventory or directory of ongoing research and the
people doing it is of utmost importance. In most instances, the impetus needed to embark in research from the perspective of the developing country comes from a need or a sentinel case. For example, a child with keratosis from chronic arsenic poisoning in the community has called the attention of researchers in the Philippines to go back to a mining community where only biological monitoring for lead was being done. Now it includes arsenic among the metals being monitored in the area, even if this means increasing the funds necessary for community health assessment. The motivation to do research among developing countries arises from the need to implement intervention and move policy. The story of the deadly dancing firecracker “watusi”, which contains white phosphorus, illustrates a decade of scientific research that contributed to a treatment protocol not previously found in medical literature. More importantly, the research done convinced policy makers to ban “watusi” and prevent unnecessary injury and loss of children’s lives.

Possible areas of country-specific community health assessments which can build the blueprint for collaborative research include the following: lead, mercury and arsenic poisoning, chronic effects of pesticide exposure, indoor air pollution from second hand smoke and biomass burning, outdoor air pollution, lack of safe water and sanitation and the over-all impact of global climate change. Promoting collaborative research in the Region would allow for sharing of human and technical resource capabilities and address the need for a reliable laboratory. Clearly, a multisectoral, multi-stakeholder collaborative research using a child centered paradigm cutting across different developmental life stages, while identifying priority areas of concern, will help promote translational research in the Western Pacific Region. In this way, we can shape policy to take a bold step in promoting healthy environments for children.

3.3 Review of the Existing Information and Activities Undertaken in Selected Countries

Bangladesh

A densely populated country, Bangladesh is vulnerable to environmental factors: it is the second threatened by the consequences of global warming. It is estimated that a sea-level rise of one metre can inundate 17% of the coastal land, displacing around 11 million people from shelter. An issue of the highest
concern is that about 2/3 of the population is at risk of being affected by arsenic contaminated water. According to a World Bank estimate, 500 000 premature deaths and 4 to 5 million new cases of chronic bronchitis develop each year due to air pollution; about 15 000 children in Dhaka city die, and a million in the whole country become ill every year due to excess of lead in the air. Use of traditional bio-mass fuels for household cooking in ill/unventilated kitchen is the usual practice in rural areas. Thirteen internationally banned pesticides are being used by farmers in the country. Key priority research issues concerning CEH identified for Bangladesh are: arsenic, contamination, air pollution, water and sanitation problems; noise pollution; abuse of pesticides, food additives, and solid wastes.

India

India suffers from the double burden of diseases. While children continue to be under the siege of traditional diseases like malaria and diarrhoea, and unsafe water continues to be the biggest killer in India, the country is being faced now with the onslaught of modern diseases like asthma, lead toxicity, cancer and potential endocrine disruptors. Interventions do exist for dealing with traditional diseases, though they may be grossly inadequate. On the other hand, there exists virtually no data and no research on the extent of asthma incidence due to air pollution, or the rise in the incidence of paediatric cancer. Research in India is primarily carried out by the Indian Council for Medical Research (ICMR) which allocates 6% of its total annual budget to children’s health. Private medical colleges and independent researchers either work in isolation or have no platform to raise their voice and bring the issues at the policy level. India now has a new draft report on health research policy which again highlights the importance of research. It however, does not take into consideration the various other parameters that affect health like environmental, genetic, biological, behavioural and economic aspects.

In view of the above, it is suggested that the gaps in CEH research in India be minimized by focusing on the following:

- Developing of standardization protocols to carry out research-protocols that are region-specific;
- Focus on vulnerable and susceptible populations like children and pregnant women;
- Conducting exposure-based studies like on indoor air pollution;
Healthy Environments for Children

- Correlating data existing with private practitioners and private hospitals;
- Working on developing transparency and accountability in existing health systems;
- Identifying actions and policies for bringing about change;
- Investing in knowledge and data generation to bring about policy decisions and at the same time making use of existing research-based studies so that duplicity of work is avoided;
- Ensuring that research acts as a tool to trigger public support for change and regulations.
- Conducting research on asthma, cancer, fluorosis, health of children who work as scavengers and rag pickers and children exposed to heavy metals like mercury and lead.

Malaysia

Key children’s environmental health issues in Malaysia include the following: air pollution (open burning, haze problems, asthma in children); water-borne diseases related to safe water and sanitation; vector-borne diseases (dengue and other viral infections); chemical hazards (lead poisoning and cancers); injuries and accidents (drowning, fires, falls and MVA), and emerging issues (endocrine disruptions, radiations, climate change).

There is no centralized agency that deals with CEH, and access to a database that might contain such information is currently lacking.

With respect to activities that are either related directly or indirectly to CEH, the organizations that may be involved are: the Ministry of Health (under the Child Health Unit, DPH), Environmental Health Unit (DPH) which also conducts a healthy setting programme including safe school; the Environmental Health Research Centre; and the Institute of Medical Research. There are a number of universities that are known to be carrying out work in this area such as: the Universiti Sains Malaysia (including the National Poison Centre), the Universiti Kebangsaan Malaysia, the Universiti Malaya and the Universiti Putra Malaysia.

Mongolia

A large, landlocked country situated in the northern part of Central Asia, its climate is defined as semi-arid continental, with long severe winter and
average temperatures ranging from -32°C in the north to -15°C in the south. Most health research projects are in the fields of biomedical and clinical research. Research in public health and epidemiology is conducted by the public health Institute with most of the research based on laboratory sciences. The number of research workers in health research is over 500. Currently, health and medical research is organized through the Ministry of Health and Sub-Assembly of Medical Sciences, Academy of Sciences of Mongolia. The funding of research for all sectors (including health) is supported by the Science and Technology Foundation under the Prime Minister. In 2002, the amount of allocated budget for health research was increased by almost three times compared to 1997.

Key children’s environmental health issues in Mongolia includes: disease vectors, air pollution, injuries and accidents, water security and homelessness, poor hygiene and sanitation, chemical hazards, emerging issues such as radiation, endocrine disrupters and climate change, and alcohol use and smoking. The main sources of pollution are: power plants and small heating plants that use coal and motor vehicles (increasing number, use of leaded benzene, bad technical quality). Since 1990, Mongolia has conducted several research studies in the field of environmental health and published more than 60 research papers, and in 1996, organized a national conference. Main research work done include: correlation analyses between air pollution and respiratory diseases, asthma and bronchitis; air pollution and children’s physical growth; air pollution and nonspecific immunity of children; lead contamination of the environment and blood lead level of children, and mercury and child health (in areas of gold mining).

Potential partners in CEH research include: Public Health Institute; the Environmental Health Centre (with chemical, physical and bacteriological facilities), the Maternal and Child Health Research Centre (with all clinical departments and clinical laboratory). Others are the Ministry of Health, Ministry of Nature and Environment, Central Environmental monitoring laboratory and Hydrology and Meteorology Institute, Ministry of Social Welfare and Labor, NGO’s (Family Welfare Association, Paediatric Association) and international organizations like WHO and ILO.

Nepal

With a population of 23 million, children constitute nearly 50% of the population. Although drinking water coverage is above 80%, sanitation
coverage is very low, and water is secondly contaminated with coliform bacteria in many sites. Diarrhoea contributes to 25% of childhood deaths, and water-related diseases are very common. Most schools lack safe drinking water, latrines, hygienic canteen and safe playground. Acute respiratory infections account for 50% of hospitalizations in the <1 year age group, with air pollution and tobacco smoking being major contributors. Asthma and bronchitis are precipitated by emissions from motor vehicles. Vector-borne diseases (Japanese encephalitis, visceral leshmaniasis-Kalazar, and malaria) are rampant in the Terai region and chemical hazards due to the use and inadequate storage of unlicensed pesticides are a reality. Injuries and accidents due to fall injuries at the school, home, playground and working places along with burns, road traffic accidents, poisoning, drowning, dog and snake bites and child abuse are common causes of emergency admission in Kanti Children's hospital (the only children’s hospital in the country). Emerging issues such as child trafficking, child labourers, street children, carpet children and drug abuse are of concern. Recently, contamination of underground water with arsenic has been identified which adds to the emerging issues affecting the health of the general population, and especially that of the Nepalese children.

Different governmental agencies are working in the area of environmental health, but not focused on children's issues. Ministries of Population and Environment; Forest and Soil Conservation; Education, Agriculture, Tourism and Civil Aviation; Youth and Culture, and industry, Health, Construction and Transportation are involved in environmental protection. Partnerships with NGOs and international organizations are also critical.

In November 2002, the Nepal Health Research Council (NHRC) established an Environmental Health Unit through the tripartite effort of the NHRC, the MoH and WHO country office. It limits its activities to research only; thus there is a need for an institution that can execute and implement health projects. Still, there is a need to define a "children's environmental health unit" within this body.

Few study results have been published in the area of indoor air pollution and ARI in children, the same counts for studies related to health hazards in children working in the carpet industry. Reports on diarrhoeal diseases and parasitic infestation have been conducted as well, but none came out with concrete suggestions in the area of CEH.
Main research priority areas for CEH in Nepal include: respiratory diseases and child health, diarrhoeal diseases, and emerging issues such as persistent organic pollutants, and poisoning by heavy metals (lead, arsenic mercury and chromium).

Philippines

According to data from the Department of Health (DOH 1998) the leading causes of infant mortality in the Philippines are respiratory conditions of the foetus and newborn, pneumonia, congenital anomalies, birth injuries and difficult labour and diarrhoeal diseases. As in the case of developing and even developed countries, the country is faced with the burden of infectious diseases and increasingly chronic noncommunicable diseases. Infectious diseases remain the leading causes of morbidity in the country. Data showed that 91% of the urban population and 71% of the rural population have access to safe water supply (DOH, 1998). Another emerging area of concern is air pollution. Results of baseline health profile among children in Manila showed that the level of exposure to lead in 24.6% (N=51) exceeded the WHO standards. Equally a cause of concern is the use of biomass fuel, kerosene, liquefied petroleum gas which contributed significantly to lowering indoor air quality. Water pollution, soil degradation, solid waste management, food contamination and climate change remain public health concerns.

Health and environmental studies were undertaken among children exposed to chemical hazards such as mercury in small-scale gold mining activities (i.e. ballmilling/ blowtorching). Analyses for total and methyl mercury levels for environmental and biological biomarkers were done at the National Institute for Minamata Disease in Japan. At present, the country has also taken part in the Coordinated Research Project on Mercury sponsored by the International Atomic Agency on the health and environmental impact of mercury. Physical and neurological examinations were done including detoxification, whenever necessary. Other possible exposures include mercury thermometer bulbs, mercury injection and vaccines. Environmental exposure to lead among community residents affected by a mine spillage and large and small-scale battery recycling plants have also been studied. Currently, a health and environmental study on the impact of arsenic on the mother and child population in the Southern Philippines is being undertaken. Likewise, health studies are ongoing to determine exposure to environmental contaminants among mother and child residents near a former military base.
These activities are being undertaken in collaboration with the UP-National Poison Control and Information Service.

Priority areas for research include mercury, lead and pesticides. Other recommended areas include: toxicological endpoints; effects of chronic low-dose exposure on health; neurodevelopmental studies; laboratory procedures/biomarkers; interaction of two or more toxicants, and intervention measures (i.e. management and treatment).

Singapore

The prevalence of allergic diseases such as asthma, hay fever and atopic dermatitis has increased over the past three decades in many countries. The prevalence of doctor-diagnosed asthma is 20% in 6-7 year-old children and in preschool children the prevalence of asthmatic symptoms, such as nocturnal cough, reaches 30%.

The exact etiology for the increase in asthma cases has not been identified, but it seems that a number of environmental factors are involved and that a close relationship with a ‘western lifestyle’ might be responsible. Most researchers agree that a decreased bacterial load at an early age might be one of the most important causative factors for the increased prevalence of allergic diseases. Other factors that have been associated with the increased prevalence of allergic diseases are: indoor and outdoor pollution, vaccination programmes, viral infections (such as infections with respiratory syncytial virus), parasites and increased usage of medication (such as antibiotics and antipyretics).

In many studies, air pollution has been associated with increased morbidity and mortality rate of respiratory diseases, including childhood asthma. Various methods, including experiments on laboratory animals, clinical evaluations of the effects on human volunteers, and epidemiological studies, have shown and quantified the risk of exposure to ambient levels of air pollutants.

Monitoring of the levels and trends of air pollution has been handled by the Anti-Pollution Unit (APU) since its formation in 1970 and, more recently, by the Environmental Monitoring and Assessment Section of the Ministry of the Environment. In 1994, an episode of increased air pollution due to forest fires and agricultural burning in southern Sumatra and Kalimantan, popularly
known by Singaporeans as the “haze”, again highlighted the adverse effects of air pollution on health.

On the other hand, it was found that exposure to diesel exhaust particles (DEP) was associated with increased severity of allergic reactions.

In conclusion, a marked increase in childhood allergic diseases was noted during the last three decades. A number of changes in the environment seem to be responsible for that increase, including a decreased bacterial load to young children in combination with increased allergen exposure (i.e. a western life style). However, the role of other factors, such as the effect of DEP on young children, seems obvious and needs further study.

Thailand

Key priority environmental health issues affecting children in Thailand include: Air pollution (big cities, industrial areas), disease vectors (dengue haemorrhagic fever, diarrhoea), chemical hazards (lead and arsenic in old mines, pesticides), and accident injuries (traffic, school, home, drowning). Public awareness is high, and interventions are being implemented.

The top five causes of illness and death in the group of 0 to 4 years old children (respiratory infection, accident injuries, diarrhoea, conjunctivitis and haemorrhagic fever) are related to environmental factors.

The capability to conduct research in the area of CEH in Thailand is rather limited. The main limitations are funding for macro projects and difficulty to form multidisciplinary, multisectorial research teams.

Lessons learned in CEH research in Thailand are as follows:

- Some research led to strengthening of policy and programme development and implementation
 - air pollution in Bangkok industrial areas
 - lead contamination in Kanchanaburi
- Strengthening and empowering local authorities to manage local environmental health programmes is crucial.
- Building of multisectorial alliances is required.

Priority research areas include:

- Air pollution – home, school, public places
- EH of urban poor
- Good practice models for local implementation
- Appropriate technology for rural community
- CEH indicators development
- Climate change and children health

3.4 Existing Collaborative Research Initiatives

Dr V Aposhian from the University of Arizona (USA) presented his experience in arsenic research conducted in different countries. Arsenic in drinking water is definitely a major public health problem in Asia. He pointed out that this is a calamity affecting mainly the children of the poor; there is no "environmental justice" for these children. The bio-transformation, arsenic was now understood but there was still lack of understanding arsenic carcinogenicity or its toxigenomics. He said that WHO needs to reconsider the way funds are distributed in the area of research and on projects to improve the health of developing countries.

Dr M Karagas from the Darmouth Medical School (USA), summarized the adverse health effects of arsenic associated with exposure. She highlighted that early epidemiological evidence from the southwest of Taiwan linked skin cancer occurrences to ingestion of arsenic-contaminated well water. Later studies indicated a dose-related risk of bladder cancer, and more recently, lung cancer. There is also evidence that arsenic enhances risk of other malignancies, cardiovascular disease and diabetes in adults. The effects of arsenic on pregnant women, newborns and children are poorly understood. However, a number of epidemiological studies raise the possibility that arsenic, even at relatively low concentrations, may increase the risk of spontaneous abortions, still births, pre-term deliveries, and low birth weight. Also, there is limited epidemiological data suggesting a link between arsenic exposure during pregnancy and the development of cardiac anomalies.

In New Hampshire, private wells served roughly 40% of the households and approximately 2% of these wells were estimated to have arsenic levels above 50mcg/L. Over 20% had levels between 2mg/L and 50 mcg/L, the range of exposure suspected of being harmful to humans, but for which epidemiological data were lacking. Epidemiological studies underway in New Hampshire were investigating (1) ways to quantify human exposure to arsenic, and (2) the pre-clinical (e.g., early biological response) and clinical health effects of these exposures. Planned investigations included pregnant women and infants. The study would also attempt to identify potential subgroups of
the population that might be at risk to arsenic-induced health conditions. Results of this study might aid future international collaborative efforts on the effects of environmental arsenic exposure on children’s health.

Dr D. Carpenter from the School of Public Health, University of Albany (USA), made a presentation on “Neurotoxicants: Lead, Mercury, and PCBs”, focusing on the neurobehavioural effects of these environmental contaminants. He stressed that lead, mercury and polychlorinated biphenyls had each been convincingly demonstrated to cause decrements in IQ in children exposed in the prenatal period or in the early years of life. However, it was not known how these contaminants interacted if one person was exposed to two or more contaminants. The interactions might be additive or synergistic.

A study in China was being developed, in which neurobehavioural tests would be applied to children exposed to mercury in the vicinity of a gold mine, to PCBs in the vicinity of a PCB transformer recycling facility, and to both, mercury and PCBs in the vicinity of chloralkali plants. Lead levels would also be monitored since China had only recently removed lead from gasoline. It was hoped these studies would indicate the form of interaction between mercury, lead and PCBs on neurobehavioural outcomes.

Dr Mathuros Ruchirawat from Chulabhorn Research Institute (CRI) made a presentation on air pollution including a report on the partial results of a study in collaboration with the University of Aarhus, Denmark on exposure to genotoxic substances in the ambient air in Bangkok and their potential health effects.

In South-East Asia, air quality was routinely monitored in the capitals and major cities of some countries for CO, O₃, SO₂, NOₓ, NO₂, HC and PM10. Exposure to air pollutants was assessed mostly by measurement of pollutants at fixed monitoring stations. In tropical environments like Thailand, very little was done to link environmental pollutants with their seasonal variations and health effects. This study was designed to compare results with other countries in Europe, for example.

Bangkok is cited as a megacity with more than 8 million people and with air pollution problem. Air pollution from motor vehicles causes 300 to 1,400 cases of excess mortality per year due to respiratory health problems and other air pollution-related diseases. Routine air quality monitoring covered gases and particulate matters, but not substances which posed serious, long term adverse health effects on man, such as genotoxic substances. The levels
of benzene, toluene, ethyl benzene and xylene on Bangkok roadsides were relatively high, but comparable to major cities of developing countries.

The project was now entering the second phase and would be expanded to study exposure for benzene and 1, 3 butadiene and lead in Bangkok ambient air in adults as well as in school children. The exposure for genotoxic compounds in Bangkok ambient air was initially assessed among traffic policemen by using different biomarkers in the determination of the eight carcinogenic PAHs.

The total PAH exposure, was significantly higher in the traffic police group than in the office police group. The levels of biomarkers of exposure such as urinary metabolites, DNA and protein adducts were higher in traffic police compared with the office group indicating higher level of exposure and perhaps greater risk.

This study indicated that people living in Bangkok and who spent most of their day inside an air conditioning building are exposed to levels of PAH. These levels obtained were not significantly different from what has been reported in Western European cities. However, people who spend most of their day outside an air-conditioned building are exposed to significantly higher levels.

Dr Peter Sly from the Telethon Institute for Child Health Research - University of Western Australia, shared his experiences on asthma and air pollution. He said that asthma was the most common chronic medical condition affecting children and adults in developed countries. The prevalence of asthma in these countries had increased significantly over the last few decades. In Australia, 26 to 32% of school children were reported to have experienced wheezing. As asthma is such an important health problem in countries like Australia, a significant research effort focuses on mechanisms involved in the development of asthma in western countries.

In general, Asian countries currently had a much lower prevalence of asthma and allergies than western countries. Although prevalence rates varied considerably from region to region, there were indications that asthma and allergies were increasing in Asia. Data from countries such as Singapore, India and Thailand showed increasing prevalence over time. Almost nothing was known about the physiological, genetic, immunological, environmental and developmental factors that resulted in asthma in Asia.
Asthma and allergies could potentially become an enormous health problem in Asia as the Region adopts a more western lifestyle. Therefore, it is important to understand what has happened in the west and to implement comprehensive research programmes in Asia that will help the region predict and plan for the future.

In western countries, the increase in the prevalence of asthma and atopy is attributed to the following:

- Decreased microbial exposure, changes in diet, and increased exposure to allergens and environment irritants.
- The “western lifestyle” has been blamed for the increase in prevalence of asthma and allergies in developed countries. As Asian countries move toward a more “western” way of life, an increase in asthma and allergy could be predicted. However, differences may exist between “the west” and Asia, which might affect our ability to predict the impact of asthma and allergies in Asia. There might be significant differences between:
 - Environmental influences (e.g., infections, diet, genetic susceptibilities and clinical patterns)
 - Relative to opportunities for collaborative studies, he highlighted that two types of study were needed to understand the problems of asthma and allergies in Asia
 - Cross-sectional studies to determine prevalence (and changes over time) at different ages
 - Longitudinal cohort studies to examine mechanisms with a view to developing preventive strategies.

Mr J Speets, Sanitary Engineer, WHO-Nepal, presented a paper on the study results of "The case of PM10 in the Kathmandu Valley".

Particulate matter less than 10 micrometer (PM$_{10}$) normally falls in the range of 0 to 2.5 µm in the fine mode and in the range of PM 2.5 to 10 µm in coarse mode. The predominant contributors to PM$_{10}$ mass in the atmosphere include industries and road traffic, secondary particles and coarse particles arising from a number of sources such as re-suspension of surface soils and dusts and biomass combustion, mining and quarrying activities and tyre wear. However, for the easy understanding of the sources of PM$_{10}$, sources have been characterized as fugitive emission and fuel combustion in this study.
The study demarcated four micro-environments i.e. City core, City sub-core, Residential and Industrial.

The adverse health effect of PM$_{10}$ depends very much on its characteristics rather than on its mass. PM$_{10}$ from ambient and non-ambient sources also may have different physical and chemical characteristic and thus different health effects. However, there is a scientific consensus that very small rises in concentrations even from a baseline level PM$_{10}$ irrespective of chemical character can be associated with measurable increases in death rates and hospital admissions. PM$_{10}$ especially affects the lungs and heart of children and the elderly. It promotes a high risk of cancer and has potential to cause a number of respiratory diseases such as upper respiratory infection, otitis media and asthma.

There is a general tendency of PM$_{10}$ increment year after year. In the Kathmandu valley, the annual average of PM$_{10}$ is estimated at 156µg/m3, exceeding the WHO guideline by a factor 3 to 4.

From the observed monitoring data on the PM$_{10}$ in Nepal and particularly in the urban area of Kathmandu, it could be well stated that it has a direct linkage with the overall health of the people exposed to the elevated PM$_{10}$. ARI cases are increasing, but there are no direct epidemiological studies/researches to objectively evaluate the relationship of respiratory and other related health problems in Nepal to PM$_{10}$. The lack of centralized health records also limit the studies.

However, based on the available database on air quality monitoring combined with limited on site monitoring, estimations on the mortality and morbidity related to PM$_{10}$ for the Kathmandu area population were made with the help of the research conducted outside Nepal. Calculations were based on the application of the Ostro-formula. The calculated values were quite alarming. In this scenario, 9.14 children of less than five years of age were estimated to die prematurely annually in the Kathmandu valley. About 65 000 cases of respiratory problems related to PM$_{10}$ occur annually with a direct economic cost (estimated at approximately US$ 1million).

The above results are based on the estimated annual PM$_{10}$ average in the ambient air. The impact of PM$_{10}$ on health could be worse if indoor air quality is also viewed collectively. Indoor air quality in the Nepalese households is very poor. It is related to the fuels used as well as the inadequate house ventilation systems. The poor communities in Nepal have the worse indoor air quality and they are more likely to be impacted by the PM$_{10}$ related indoor air
quality health risks. Obviously, children, the elderly and women are the most vulnerable victims of the PM\textsubscript{10} health risks.

Recommendations from the study are focusing on improvement of the quality of data, better coordinated research and inclusion of research topics in the WHO country programmes.

Dr W Suk from the NIEHS-US made a presentation on "Dioxins", the highly toxic, and persistent global pollutants produced as unwanted by-products of industrial processes. The potential health effects of dioxin include cancer, birth defects, and immune, reproductive, neurobehavioural and endocrine impairment. Further data on the potential effects in children are needed, particularly as it relates to chemical mixtures. Collaborative studies between US and Vietnam on the health effects of dioxins are being established.

In her presentation on "Persistent Organic Pollutants and Endocrine Disrupters", Dr Terri Damstra from (WHO, IPCS/IRRU-USA), mentioned that there is sufficient evidence to warrant concern about the potential health effects of exposure to POPs and EPCs in children. Data on exposure during critical periods in development are urgently needed.

Dr W Suk talked about "The Work of CEH Research Centres" in USA. He explained that these Research Centres were developed by the National Institute of Environmental Health Sciences (NIEHS), the US Environmental Protection Agency (EPA), and the Centres for Disease Control and Prevention (CDC) in 1998, and designed around a central scientific theme (growth and development, respiratory diseases, asthma, autism, learning disabilities, hearing loss, and cognitive, sensory and motor deficits). The goal of these centres is to promote translation of basic research findings into applied intervention and prevention methods and their objectives are:

- To conduct multidisciplinary basic and applied research in combination with community-based prevention research projects to support studies on the causes and mechanisms of children's disorders having an environmental etiology;
- To identify relevant environmental exposures;
- To intervene to reduce hazardous exposures and their adverse health effects; and
To decrease the prevalence, morbidity and mortality of environmentally-related childhood diseases.

The centres are located in twelve different locations along the United States of America, viz: Columbia University, Mount Sinai Medical Centre, New Jersey's University of Medicine and Dentistry, Johns Hopkins University, Cincinnati Children's Hospital Medical Centre, University of Illinois, University of Michigan, University of Iowa, University of Washington State, University of California (Davis), University of California (Berkeley) and University of South California.

The centres will have multidisciplinary interactions among basic, clinical, and behavioural scientists coordinating programmes of research/prevention of environmental aspects of children’s diseases in different areas like exposure assessment, health effects research, developmental and validation of risk management and health prevention strategies, and will try to establish an international network that fosters communication.

Dr Carole Kimmel from the US Environmental Protection Agency (EPA) presented the background and activities regarding the US National Children's Study (NCS). The US National Children's Study (NCS) is a large long-term study of environmental influences on children’s health and development. This study will explore a broad range of environmental factors, both helpful and harmful, that influence the health and well-being of children. For this study, environment is broadly defined to include chemical, physical, social and behavioural influences on children, and to better understand the role of these factors on health and disease.

The NCS grew out of the President’s Task Force on Environmental Health and Safety Risks to Children, and was authorized in the Children’s Health Act which directed the National Institute of Child Health and Human Development (NICHD/NIH) to conduct the study along with a consortium of federal agencies, including the Environmental Protection Agency (EPA), the Centers for Disease Control and Prevention (CDC) and the National Institute of Environmental Health Sciences (NIEHS).

The study will examine about 100,000 children across the United States and follow them during prenatal development, through birth, childhood, and into adulthood. The study will allow the evaluation of exposure and outcome
links in the context of life stages of development. Sample core hypotheses include:

- Prenatal/early childhood exposures (e.g., pesticides) increase the risk of neurodevelopmental conditions (such as autism and other developmental disabilities). Prenatal/early childhood exposures with potential immune-modulating effects influence the incidence and severity of asthma.
- Individual, family, and community factors affect the incidence, severity, and outcome of childhood injuries.
- Impaired glucose metabolism during pregnancy increases the risk of birth defects and other adverse pregnancy outcomes.
- Physical activity patterns and diet affect the risk of obesity and insulin resistance.
- Early exposure to endocrine-active agents increases the risk of altered age at puberty.

Planning and organization of the study are underway, as well as methods development studies for exposure and outcome measures. The NCS Advisory Committee and several working groups were established to consider issues such as hypotheses and study design, ethics, development and behaviour, chemical and physical exposures, injuries, emerging technologies to measure exposures and outcomes, and community outreach/participation. Careful integration and communication with community groups and health care providers, a state-of-the-art data collection and management system, strong partnerships between federal and non-federal scientists and community, parent, advocacy, and industry groups are all being emphasized throughout the planning process. The website for information about the study and updates on planning activities is www.nationalchildrensstudy.gov.

An International Interest Group has recently been established to facilitate exchange of information among investigators worldwide who are currently working on or are interested in establishing longitudinal cohort studies on children’s environmental health. A network has been established to facilitate communication and sharing of ideas. A survey of studies is being conducted, and the possibility of collaboration among investigators internationally will be explored. The co-chairs for the International Interest Group are Dr Danuta Krostoski (NICHD/NIH) and Dr Jenny Pronczuk (WHO).
Dr Chanpen Choprapawan from the Department of Medical Science, Ministry of Health-Thailand, gave the background and update on the “The Prospective Cohort Study of The Thai Children (PCTC)”. She explained that PCTC is currently an organization working under the auspice of the Health System Research Institute (HSRI), Thailand. PCTC was established with the purposes of (1) tracing the development of Thai children from foetus to young adults; and (2) training new and competent researchers in health-related science. This is the first prospective cohort community-based multilevel research on the biological, psychosocial and moral development outcomes of Thai children, which also covers most variables potentially influencing determinants of child development such as physical environment, family structure and functions, and community profiles. The PCTC is an observational study and does not involve intervention. The overall design consists of both quantitative and qualitative elements. The PCTC uses prospective design and follows subjects, selected from five regions, in their 28th to 38th week of pregnancy. The birth cohort is observed and followed up until the offsprings reach the age of 24. The project was launched in July 2000 and is targeted for completion in 25 years. The Thailand Research Fund, Health System Research Institute, the Ministry of Public Health, and the World Health Organization provided financial support for the first phase of the project.

4. CONCLUSIONS AND RECOMMENDATIONS

On Day 2, group discussions were held on the following issues:

(1) How to set up research collaborative partnerships: types of collaboration, challenges and opportunities
(2) Roles of international organizations and centres of excellence
(3) Promoting action at governmental levels and among governments
(4) First steps into collaboration
(5) Establishing a CEH research network

4.1 CEH Priority Issues and Research Needs

Country research priorities and their health impacts were reviewed. These were discussed further to create a priority research list (see Table 1) and intervention strategies for the Asian region. It was emphasized that in developing countries, any research and interventions should take into consideration the role of malnutrition, the possibility of hazardous exposures
in the context of child labour, gender issues, the specific settings of children (e.g. urban, rural) and the need to ensure sustainability.

Table 1: CEH Priority Issues and Research Needs

<table>
<thead>
<tr>
<th>Air pollution (ambient and indoor)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Interventions for reducing air pollution</td>
<td></td>
</tr>
<tr>
<td>• Research on reproductive effects and cancer in relation to air pollution</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water and sanitation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Research to better identify the problems (levels of exposure)</td>
<td></td>
</tr>
<tr>
<td>• Research on metals in water (Arsenic, lead, mercury) and fluorides.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injuries and accidents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Incidence and characterisation of injuries (e.g. drowning, falls,)</td>
<td></td>
</tr>
<tr>
<td>• Intervention: Regulations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vector borne diseases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alternatives to the use of DDT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pesticides and POPs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Research to better identify and characterize the problem</td>
<td></td>
</tr>
<tr>
<td>• Research on long-term effects (POPs)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metals (As, Pb, Hg, Cr) and fluorides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Incorporated under water and food</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Food contamination</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Additives (colouring) and contaminants (Mustard oil) and metals</td>
<td></td>
</tr>
<tr>
<td>• Microbial contamination</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noise</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Research on the effects of noise, sources and interventions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infections and allergies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Role of exposure to environmental agents inducing immunosuppression and allergens</td>
<td></td>
</tr>
</tbody>
</table>
4.2 How to Set up Collaborative Partnerships for Research

Collaborative partnerships start at the individual level “bottom up” which means a priority issue is taken up by researchers with mutual interests. Whenever possible, a source of funding must be identified early during the planning stage. Once individuals set up collaborations, the next level involves interest groups and finally, institutions.

Taking cognizance of the fact that there is a need to go beyond an individual researcher’s agenda for scientific/technical studies that would address a bigger picture of CEH concerns, it was recommended that a coordinating body be established. The main function of this body would be to disseminate information, and to facilitate interactions between researchers. Such a group could be called for example "The Bangkok Coordinating Group on Research on Children’s Environmental Health". Thus, a mechanism can be developed to harmonize interests and methodology, and draw up strategies to match funding with scientists. For example, sources of funding such as the Gates Foundation would be better tapped through a coordinating body. Follow-up meetings to evaluate progress and to focus on specific CEH should be convened. The coordinating body is expected to evolve into a Centre (s) of Excellence in different regions, with more definitive roles, such as training (capacity-building). However, setting up the Centre(s) of Excellence requires considerable resources.

International organizations such as the World Health Organization play a very important role in this process. While WHO is not a funding agency, it has the capacity to network with agencies that can provide funds or mobilize resources. In some circumstances, a small amount of money may be available through the WHO country and regional offices. Equally important is the technical assistance that may be rendered and extended by WHO.

4.3 Promoting Action at Governmental Levels and Among Governments

The strategic plan of action to promote action at the governmental level and among governments may vary from country to country depending on their existing structures. The governmental agencies primarily involved in CEH should be targeted. In addition, the organization of national workshops and public symposia involving agencies of government will help develop awareness about the most immediate research needs. Efforts should be made to establish/ integrate with existing interagency organization and create task forces. Advocacy at the level of other agencies (science and technology, education, environment, agriculture, social welfare, children’s welfare council,
urban planning, industry, transport), as well as local government executives
and legislators is necessary. Sustained tri-media campaigns may prove useful.
The aim would be to establish an action plan or continuing programme
including a regional alliance for funding support and technical assistance.
Twinning agreements between developed and developing countries should be
promoted. The possibility of being linked up with Healthy Environment for
Children’s Alliance (HECA) was proposed. The Clearinghouse for Tobacco
Control based at the National Poison Centre, Universiti Sains Malaysia was
cited as an example of a coordinating group between four countries in South-
East Asia funded by the Rockefeller Foundation. There have been some
recommendations to institutionalize CEH programmes with the creation of
paediatric environmental health units by suitable institutions like the
academia with training hospitals or organizations such as paediatric or family
health societies. Inclusion in the medical and allied medical curriculum of
simple, basic but fundamental issues is important in increasing knowledge
about the link between children’s health and environmental exposure.

To establish a CEH research network, the following was recommended:

(1) An informal, dynamic network of researchers (i.e. list of researchers
or research activities/Directory of participants) should be created.
(2) A mechanism to update its members about ongoing CEH research
and training activities should be set up.
(3) Workshops to deal with specific issues should be organized, as well
as capacity building undertaken.

4.4 Suggested Areas for Collaborative Research

After having these broad discussions, the participants were asked again to
divide into groups to discuss the following more specific areas that were
identified as part of the CEH priority issues and research needs, and to make
specific recommendations:

(1) Air pollution/Asthma
(2) Arsenic, lead, mercury, chromium
(3) Pesticides and POPs

A. Air Pollution and Asthma

(1) An inventory of people working on asthma in the country and a
review of research already done should be drawn up.
(2) A representative should be identified from each country to make a comprehensive report of the status of air pollution and a review of published literature in the country.

(3) The clinical phenotypes and sub-phenotypes in various countries should be defined by using the same protocol and definitions.

(4) The severity and quality of symptoms e.g. for asthma wheezing, cough, and other respiratory diseases should be defined.

(5) An Air Pollution Steering group for electronic networking should be created.

(6) A standard protocol should be designed taking into account country-specific variables, pros and cons of cross-sectional versus longitudinal studies, growth and development and changing environment. In developing countries the different socioeconomic sections are to be considered.

B. Heavy Metals

Which metals represent a problem, and where? The significance and magnitude of the problems linked to a particular metal are not fully known. According to individual needs and priorities, countries manifested different interests in working/researching on a particular metal as follows:

<table>
<thead>
<tr>
<th>Country</th>
<th>Mercury</th>
<th>Arsenic</th>
<th>Chromium</th>
<th>Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Mongolia</td>
<td>Yes</td>
<td>?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Nepal</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>India</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Thailand</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Malaysia</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>Myanmar</td>
<td>?</td>
<td>Yes</td>
<td>?</td>
<td>Yes</td>
</tr>
<tr>
<td>Singapore</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Based on the above, a list of possible CEH research topics and interested participating countries was developed as follows:

- Is arsenic a risk to human health in my country? (MOG, PHL)
- Exposure levels to arsenic in children in ten districts (NEP, IND)
- Arsenic exposure and gene-environment interactions (THA)
- Lead and its association with neurodevelopment in children (BAN, IND, MOG)
- Urinary metabolites of arsenic in children below one year (BAN)
- Correlation of chromium exposure during pregnancy (IND, BAN)
- Neurodevelopment of mercury/lead/arsenic on infants and children (PHL, MOG)
- Birth defects from mercury exposure (MOG)
- Neurobehavioural an intelligence evaluation in young children exposed to elemental mercury vapor – IQ and blood (NEP, MOG)

C. Children’s Health, Pesticides and POPs

Within Malaysia, the potential for performing studies on exposure to PCBs, pesticides, and POPs is good because funds may be identified and excellent laboratory facilities are available. The Doping Laboratory of the Universiti Sains Malaysia could become a regional reference and resource laboratory. Exchange of information and technical assistance is required, as well as expert consultation to provide guidance on how to prepare study protocols.

Within India, the Regional Research Laboratory of Thiruvananthapuram in Kerala can also do dioxin analysis. Thus it also has the potential of becoming a regional reference laboratory. The Industrial Toxicology Research Centre (Lucknow) could also act as a regional resource centre (e.g. POPs, pesticides and metals).

Within the Philippines, there is a need to network with other centres that have quality assurance for good laboratory practice to allow for analysis of the more hazardous chemicals (e.g., dioxin). At the moment, a group of researchers is trying to evaluate the use of RBC cholinesterase as biomarker for chronic exposure to organophosphate pesticides among children, in the absence of markers like neurotoxin esterase. There is an ongoing longitudinal research that looks at exposure of children to pesticides beginning at birth, using meconium as one of the biological samples tested in the cohort.
The specific recommendations made in the area of Children’s Health, pesticides and POP’s were:

(1) Development of quality control and quality assurance mechanism for the whole region for laboratories analyzing environmental and human samples is very important and should be accorded priority.

(2) Standard protocols for assays of chemical contaminants should be prepared and made available in WHO/PCS website (e.g. lead, pesticides, dioxins, arsenic, mercury, and other....), including also information on appropriate biomarkers for exposures to different POPs and pesticides.

(3) UNEP and the IPCS should be approached for support to POPs related research activities in children.

Steps for the Future

In reviewing the progress made since the International Conference held in Bangkok in 2002, the participants acknowledged a number of initiatives had taken to promote activities in areas concerning environmental factors and children’s health. Although progress was made in information exchange and promotion of CEH, awareness raising and the support of national and international organizations was still needed. There was general consensus about the need to further promote and implement research activities, to translate research into interventions, to increase knowledge and information flow, to collaborate with existing networks and organizations and to follow-up efforts initiated in the area of CEH. It was noted that research was conducted in the areas of children’s health and environmental issues, separately, as no links were established between these two areas. One of the main reasons was the lack of awareness about children’s special vulnerability to environmental threats.

Participants mentioned specifically the need to involve relevant partners in the research initiative, including paediatricians and health care providers, the International Paediatric Association and NGOs working at the community level.

The roles of NGOs was considered relevant in raising awareness about the need for doing research, promoting and/or implementing interventions, measuring their efficacy, promoting education and disseminating information. NGOs may help identify problem areas requiring research and interventions and provide the education for policy-making.
The ultimate goal is to reduce exposures that constitute a threat to the health of children. There is sufficient knowledge of many of these hazards, such that active intervention programmes should be implemented immediately based on the existing technology whenever possible. This should include public education at every level of society, development of governmental regulation, and application of technological interventions. While additional research into remediation methods and human health effects is important, the immediate application of current knowledge to reduce exposure is critical. This requires communication and cooperation between the research, governmental and NGO communities.

Reference was made to the fact that animal experimentation may provide data for mechanistic approaches to the study of environmental pollutants as well as on the influence of confounding factors on children’s environmental health (e.g. protein malnutrition, iron and calcium deficiency).

Participants suggested following areas for future collaboration.

1. Health effects of arsenic in pregnant women and their children in the US and in Asian countries. Focal points could be CRI and US colleagues (Drs Karagas and Aposhian). Some of the elements that this study should include are:
 - Examination of urinary arsenic profiles;
 - Study of the effects of genetic variation on urinary profiles;
 - Impact of arsenic ingestion during pregnancy and gene expression of the mother and the newborn;
 - Comparison of the results of urinary profiles, polymorphisms and gene expression with those in other parts of the world; and
 - Intervention, translation of the results of research into effective community actions (e.g. community based prevention and intervention).

2. Asthma and allergies was the theme proposed by participants from Australia and Singapore, eventually involving other countries, as well as their paediatric societies. Proposed focal points are Dr P Sly (Australia) and Dr Van Bever (Singapore). The first task will be to provide definition and circulate existing protocols. A birth cohort pilot study on asthma in children could be developed in India, with the participation of the Ministry of Environment and Forestry.
(MoEF), the Industrial Toxicology Research Centre (ITRC) and the Paediatric Department of Perth, Australia (initiative of the participants from India). In view of the existing memorandum of understanding between USEPA and the MoEF, the possibility of further USEPA collaboration should be explored.

(3) Pesticides/POPs collaborative studies could involve the identification of reference laboratories in the Region, such as the existing ones in the Universiti Sains Malaysia in Penang (Malaysia) to be coordinated by Dr Rahmat Awang, and ITRC Lucknow (India) and also the approach to potential funding organizations, such as the Global Environment Facility (GEF) of UNEP, UNDP.

(4) Feasibility of longitudinal cohort studies (LCS) – national children’s studies- so that data can be compared and conclusions made about similarities and differences in different countries and population groups. This may start with the preparation of an inventory of existing cohort studies, maintaining network and communication channels among researchers doing LCS, promoting the sharing of protocols, data and analysis capabilities. Drs Kimmel and Pronczuk were proposed as focal points.
Annex 1
THE BANGKOK STATEMENT

A pledge to promote the protection of Children’s Environmental Health

We, the undersigned scientists, doctors and public health professionals, educators, environmental health engineers, community workers and representatives from a number of international organizations, from governmental and non-governmental organizations in South East Asian and Western Pacific countries, have come together with colleagues from different parts of the world from 3 to 7 March 2002 in Bangkok, Thailand, to commit ourselves to work jointly towards the promotion and protection of children’s health against environmental threats.

Worldwide, it is estimated that more than one-quarter of the global burden of disease (GBD) can be attributed to environmental risk factors. Over 40% of the environmental disease burden falls on children under 5 years of age, yet these constitute only 10% of the world population. The environmental burden of paediatric disease in Asia and the Pacific countries is not well recognized and needs to be quantified and addressed.

WE RECOGNIZE

That a growing number of diseases in children have been linked to environmental exposures. These range from the traditional waterborne, foodborne and vector-borne diseases and acute respiratory infections to asthma, cancer, injuries, arsenicosis, fluorosis, certain birth defects and developmental disabilities.

That environmental exposures are increasing in many countries in the region; that new emerging risks are being identified; and that more and more children are being exposed to unsafe environments where they are conceived and born, where they live, learn, play, work and grow. Unique and permanent adverse health effects can occur when the embryo, fetus, newborn, child and adolescent (collectively referred to as “children” from here onwards) are exposed to environmental threats during early periods of special vulnerability.
That in developing countries the main environmental health problems affecting children are exacerbated by poverty, illiteracy and malnutrition, and include: indoor and outdoor air pollution, lack of access to safe water and sanitation, exposure to hazardous chemicals, accidents and injuries. Furthermore, as countries industrialize, children become exposed to toxicants commonly associated with the developed world, creating an additional environmental burden of disease. This deserves special attention from the industrialized and developing countries alike.

That environmental hazards arise both from anthropogenic and natural sources (e.g. plant toxins, fluoride, arsenic, radiations), which separately and in combination can cause serious harm to children.

That restoring and protecting the integrity of the life-sustaining systems of the earth are integral to ensuring children’s environmental health now and in the future. Therefore, addressing global changes such as human population growth, land and energy use patterns, habitat destruction, biodiversity loss and climate change must be part of efforts to promote children’s environmental health.

That despite the rising concern of the scientific community and the education and social sectors about environmental threats to children’s health and development, progress has been slow and serious challenges still remain.

That the health, environment and education sectors must take concerted action at all levels (local, national, global), together with other sectors, in serious efforts to enable our countries to assess the nature and magnitude of the problem, identify the main environmental risks to children’s health and establish culturally appropriate monitoring, mitigation and prevention strategies.

WE AFFIRM
That the principle “children are not little adults” requires full recognition and a preventive approach. Children are uniquely vulnerable to the effects of many chemical, biological and physical agents. All children should be protected from injury, poisoning and hazards in the different environments where they are born, live, learn, play, develop and grow to become the adults of tomorrow and citizens in their own right.
That all children should have the right to safe, clean and supportive environments that ensure their survival, growth, development, healthy life and well-being. The recognition of this right is especially important as the world moves towards the adoption of sustainable development practices.

That it is the responsibility of community workers, local and national authorities and policy-makers, national and international organizations, and all professionals dealing with health, environment and education issues to ensure that actions are initiated, developed and sustained in all countries to promote the recognition, assessment and mitigation of physical, chemical and biological hazards, and also of social hazards that threaten children’s health and quality of life.

WE COMMIT OURSELVES
To developing active and innovative national and international networks with colleagues, in partnership with governmental, nongovernmental and international organizations for the promotion and protection of children’s environmental health, and urge WHO to support our efforts in all areas, especially in the following four:

(1) PROTECTION AND PREVENTION - To strengthen existing programmes and initiate new mechanisms to provide all children with access to clean water and air, adequate sanitation, safe food and appropriate shelter:

- Reduce or eliminate environmental causes and triggers of respiratory diseases and asthma, including exposure to indoor air pollution from the use of biomass fuels and environmental tobacco smoke.
- Reduce or eliminate exposure to toxic metals such as lead, mercury and arsenic, to fluoride, and to anthropogenic hazards such as toxic wastes, pesticides and persistent organic pollutants.
- Reduce or eliminate exposure to known and suspected anthropogenic carcinogens, neurotoxicants, developmental and reproductive toxicants, immunotoxicants and naturally occurring toxins.
• Reduce the incidence of diarrhoeal disease through increased access to safe water and sanitation and promotion of initiatives to improve food safety.

• Reduce the incidence of accidents, injuries and poisonings, as well as exposure to noise, radiation, microbiological and other factors by improving all environments where children spend time, in particular at home and at school.

• Commit to international efforts to avert or slow global environmental changes, and also take action to lessen the vulnerability of populations to the impact of such changes.

(2) HEALTH CARE AND RESEARCH - To promote the recognition, assessment and study of environmental factors that have an impact on the health and development of children:

• Establish centres to address issues related to children’s environmental health.

• Develop and implement cooperative multidisciplinary research studies in association with centres of excellence, and promote the collection of harmonized data and their dissemination.

• Incorporate children’s environmental health into the training for health care providers and other professionals, and promote the use of the environmental history.

• Seek financial and institutional support for research, data collection, education, intervention and prevention programmes.

• Develop risk assessment methods that take account of children as a special risk group.

(3) EMPOWERMENT AND EDUCATION - To promote the education of children and parents about the importance of their physical environment and their participation in decisions that affect their lives, and to inform parents, teachers and caregivers and the community in general on the need and means to provide a safe, healthy and supportive environment to all children:

• Provide environmental health education through healthy schools and adult education initiatives.

• Incorporate lessons on health and the environment into all school curricula
Empower children to identify potential risks and solutions.

Impart environmental health expertise to educators, curriculum designers and school administrators.

Create and disseminate to families and communities culturally relevant information about the special vulnerability of children to environmental threats and practical steps to protect children.

Teach families and the community to identify environmental threats to their children, to adopt practices that will reduce risks of exposure and to work with local authorities and the private sector in developing prevention and intervention programmes.

(4) **ADVOCACY** – To advocate and take action on the protection and promotion of children’s environmental health at all levels, including political, administrative and community levels:

- Use lessons learned to prevent environmental illness in children, for example by promoting legislation for the removal of lead from all gasoline, paints, water pipes and ceramics, and for the provision of smoke-free environments in all public buildings.

- Sensitize decision-makers to the results of research studies and observations of community workers and primary health care providers that need to be accorded high priority to safeguard children’s health.

- Promote environmental health policies that protect children.

- Raise the awareness of decision-makers and potential donors about known environmental threats to children’s health and work with them and other stakeholders to allocate necessary resources to implement interventions.

- Work with the media to disseminate information on core children’s environmental health issues and locally relevant environmental health problems and potential solutions.

For all those concerned about the environmental health of children, the time to translate knowledge into action is now.

Bangkok, 7 March 2002
Annex 2

LIST OF PARTICIPANTS

SOUTH-EAST ASIA REGION

Dr. D.K. Saxena
Head, Embryotoxicology,
Industrial Toxicology Research Center
M.G. Marg, P.O. Box No. 80,
Lucknow- 226 001, Uttar Pradesh
India
Tel: +91-522 2213786, 2220207. Ext
218/219 (Lab.)
+91-522 2358573 (Resi.)
Fax: +91-522 2228227
Email: dk_saxena1@rediffmail.com

Ms. Sarita Bahl
Assistant Coordinator
Health and Environment Unit
Centre For Science And Environment (CSE)
41, Tughlakabad Institutional Area
New Delhi - 110 062
Tel : +91-11-26 07 3410 / 26 09 5781 / 26 08
1125
Fax: +91-11 26 08 5879
Email: sarita@cseindia.org

Dr. (Ms.) Swati Y. Bhave
Pediatrician, Past President IAP
SC Member IPA (International Pediatric
Association)
C II / 44 Shahajahan Road
Opp. UPSC Office
New Delhi 110003
Tel: +91-11-2378 2074 / 2307 3388
Fax: +91-11-2436 4365
Email: sybhav@vsnl.com

Dr. G.K. Pandey
Adviser, Ministry of Environment & Forests
Government of India.
CGO Complex
Lodhi Road, New Delhi
110003 India
Tel & Fax: +91-11-2436 0467
Email: pandey@menf.delhi.nic.in

Dr. Selim Ahmed
Assistant Professor of Paediatrics,
Institute of Child and Mother Health,
Matuail, Dhaka 1362
Bangladesh
Tel: +88-0-17154 5037 / 2892 3940
Email: selim@icmhbd.org / doel@bangla.net

Dr. Bimala Shrestra
Department of Community Medicine and Family
Health
Institute of Medicine Kathmandu, Nepal
Tribhuvan University
GPO. Box 2844
Kathmandu
Nepal
Tel: +977-1-521 662/424860
Fax: +977-1-260 651
Email: bimala@mos.com.np

Dr. Uma Devi Chhetri
Paediatrician in the Kanti Children Hospital
Collaborates with the National Health
Research Council
12/512 Neghal Kwado
Katmandu, Nepal
Tel : +977-1-414 498
Fax: +977-1-240 589
Email : rkchhetri@healthnet.org.np

Dr. Jutamaad Satayavivad
Chulabhorn Research Institute
Vipavadee Rangsit Highway, Lak si,
Donmuang, Bangkok 10210
Thailand
Email : jutamaad@tubtim.cri.or.th

Dr. Panida Navasumrit
Chulabhorn Research Institute
Vipavadee Rangsit Highway, Lak si,
Donmuang, Bangkok 10210, Thailand
E-mail : panida@tubtim.cri.or.th
Dr. Daam Settachan
Chulabhorn Research Institute
Vipavadee Rangsit Highway, Lak si,
Donmuang, Bangkok 10210, Thailand
E-mail: daam@tubtim.cri.or.th

Dr. Twisuk Punpeng
Senior Advisor (Health Promotion),
Office of the Advisory Board,
Health Department,
Ministry of Public Health,
Nonthaburi 11000, Thailand.
Tel: + 66 02 590 4144
Fax: + 66 02 590 8149
Email: twisuk@anamai.moph.go.th

Ms. Theechat Boonyakarnkul
Director
Sanitation and Health Impact Assessment Division.
Department of Health
Ministry of Public Health
Nonthaburi 11000, Thailand
Tel: + 66 02 590 4342
Fax +66 02 590 4359
Email: tchat@health.moph.go.th

Dr. Chanpen Choprapawan
The Prospective Cohort Study of Thai Children
2nd Floor, Bld 5, Dept of Medical Science
Ministry of Public Health
Tiwanon Rd, Nonthaburi
Thailand 11000
Tel: +66 296 59 839-43
Fax: +66 296 598-43
Email: ptc@health.moph.go.th

WESTERN PACIFIC REGION

Professor Peter Sly
MBBS MD DSc FRACP
Head of Division of Clinical Sciences
Telethon Institute for Child Health Research,
University of Western Australia (UWA)
100 Roberts Road, Subiaco
Perth, Western Australia 6008
Tel: +618-9489-7810
Fax: +618-9489-7706
Email: peters@ichr.uwa.edu.au

Dr. Rahmat Awang
Director
National Poison Center
University Sains Malaysia
11800 Minden
Penang, Malaysia
Tel: 604 657 0099
Fax: 604 656 8417
Email: rahmat@usm.my

Dr. Stephen Ambu
Head, Environmental Health Research Center
Institute for Medical Research
Jalan Pahang
50588 Kuala Lumpur
Malaysia
Tel : +603 298 6033 / 603 404 0431 (direct)
Fax: +603 293 83 06
Email: s-ambu@imr.gov.my

Dr. Irma R. Makalinao
Associate Professor,
Department of Pharmacology and Toxicology
University of the Philippines College of Medicine
National Poison Control and Information Service (NPCIS)
Ward 14 A Room 100, Philippine General Hospital
Taft Avenue, Manila 1000
Philippines
Tel:+632 524 1078
Fax: +632 526 0062
Mobile: +63-917-842 8158
Email: Docirma@mydestiny.net

Dr. Gako Nemesio
Assistant Secretary of Health
Department of Health
San Lazaro Compound
Rizal Avenue, Sta Cruz
Manila, Philippines
Tel: +632 781 7353
Fax: c/o (NPCIS) +632 526 00 62
Email : useclopez@yahoo.com
Ing Ana Trinidad Francisco-Rivera
Supervising Health Program Officer
Environmental and Occupational Health Office
2nd floor or Building 13
San Lazaro Compound, Rizal Avenue, Sta Cruz
Manila, Philippines
Tel: +632 781 7353
Fax: c/o (NPCIS) +632 526 0062
Email: Pipay@pacific.net.ph

Professor Hugo Van Bever
Department of Paediatrics
National University Hospital
5 Lower Kent Ridge Road
119074 Singapore
Tel: +65 6772 4420 or +65 6772 4112
Fax: +65 6779 7486
Email: paevbhps@nus.edu.sg

Dr. Badrakhyn Burmaa
Ministry of Health
Office on Research Policy in Health Sciences
Ulaanbaatar 11, Olympic Street-2, M.O.H
Mongolia
Tel: +976.11.327874(0)
Fax: +976.11.320916
Email: Burmaajav@yahoo.com

FACILITATORS
Dr Carole Kimmel
US Environmental Protection Agency (EPA)
National Center for Environmental Assessment (NCEA)
Ariel Rios Building
1200 Pennsylvania Avenue, NW
Washington, D.C. 20460 USA
Tel: +1 202-564-3307
Fax: +1 202-565-0078
Email: kimmel.carole@epamail.epa.gov

Dr. William Suk
US National Institute of Environmental Health Sciences (NIEMS)
Division Extramural Research and Training
Office Program Development
P.O. Box 12233, MD EC-27
Research Triangle Park,
North Carolina 27709, USA
Tel: +1 919-541-0797
Fax: +1 919-541-2843
Email: suk@niehs.nih.gov

Dr. D. Carpenter
University of Albany, SUNY
School of Public Health
One University Place B242
Rensselaer, New York 12144, USA
Tel: +1 518-525-2660
Fax: +1 518-525-2665
Email: carpent@uamail.Albany.edu

Dr. H. Vasken Aposhian Ph.D.
University of Arizona
Professor of Molecular and Cellular Biology
Life Sciences South Bldg Rm 444
P.O. Box 210106
Tucson, Arizona 85721 / USA
Tel: +1 520-621-7565
Fax: +1 520-621-3709
Email: aposhian@u.Arizona.edu

Dr. Margaret Karagas
Dartmouth Medical School
Section of Biostatistics and Epidemiology
One Medical Center Drive
HB 7927 Rubin Bldg., 462M-3
Lebanon, New Hampshire 03756
USA
Tel: +1 603-650-8044
Fax: +1 603-653-0578
Email: Margaret.karagas@Dartmouth.edu

WHO SECRETARIAT
Dr. Mathuros Ruchirawat
Vice President for Research
Chulabhorn Research Institute
Vipavadee Rangsit Highway, Lak s.,
Donmuang, Bangkok 10210, Thailand
Tel: +66-2 574-0615, 574 /+ 62-2-33 ext 1602
Fax: +66-2 574-0616, 575-1497
Email: mathuros@tubtim.cri.or.th

Dr. Terri Damstra
World Health Organization /WHO
IPCS/IRRU
P.O. Box 12233
Research Triangle Park, NC 27709, USA
Phone +1 919-541-7537
Fax +1 919-541-3276
Email : Damstra@niehs.nih.gov
Annex 2

PROGRAMME

Monday, 3 February 2003

08:30-09:00 hrs Registration

09:00-09:30 hrs Opening ceremony
 Chairperson: Dr. W. Suk
 Report to HRH (Dr. J. Pronczuk)
 Address and opening remarks
 (Prof. Dr HRH Princess Chulabhorn Mahidol)
 Background and objectives of the workshop (Dr. T. Damstra)

Session A Updates on CEH since the Bangkok Conference...

Chair: Dr. W. Suk and Dr. M. Ruchirawat

10:30-11:00 hrs Overview of the Healthy Environments for Children activities
 and follow–up of the Bangkok Conference
 -The HEC Initiative and Alliance, on-going activities, progress
 made and plans for the coming World Health Day– 7 April
 2003 (Drs. J. Pronczuk, A. Von Hildebrand, J. Luna)
 -The impact of the BKK Conference (Dr. W. Suk)

11:00-11:30 hrs When research, when interventions, when both?
 (Dr. D. Carpenter)

Session B Research on CEH issues in SEA and WP countries

Chair: Dr. C. Kimmel and Dr. S. Luna

11:30-12:00 hrs Research Activities in WP countries (Dr. I. Makalinao)

12:00-12:30 hrs Research Activities in SEA countries
 (Drs. D.K. Saxena and S.Y. Bhave)
12:30-13:00 hrs Activities developed by Ministry of Environment and Forestry in India (Dr. G. K. Pandey)

14:00-15:30 hrs Review of the existing information and activities undertaken in selected countries: Australia, Bangladesh, India, Malaysia, Mongolia, Nepal, Philippines, Singapore, Thailand (focusing on specialized centres, main CEH issues addresses, existing cooperation schemes and networks) (Participants from SEA and WP countries to present in 5'-10' their experience, following the guiding questionnaire)

Session C Overview on existing collaborative research initiatives
(Presentation of specific examples of on-going or planned research in specific areas of action, indicating how were they set up, the benefits obtained, main difficulties encountered, lessons learned and the way ahead)

Chair: Dr. Sly and Dr. Shrestra

16:00-16:30 hrs Arsenic (Dr. V. Aposhian)

16:30-17:00 hrs Arsenic (Dr. M. Karagas)

Tuesday, 4 February 2003

08:00-08:30 hrs Neurotoxicants: Lead and Mercury (Dr. D. Carpenter)

08:30-09:00 hrs Air pollution (Dr. M. Ruchirawat)

09:00-09:30 hrs The case of PM10 in Kathmandu Valley (Dr. J. Speets)

09:30-10:00 hrs The experience of LC studio in Thailand (Dr. C. Choprapawan)

10:00-10:30 hrs Asthma and Air Pollution (Dr. P. Sly)

11:00-11:30 hrs Persistent Organic Pollutants and Endocrine Disrupters (Dr. T. Damstra)
11:30-12:00 hrs Dioxins (Dr. W. Suk)

12:00-12:30 hrs National Children’s Studies in the U.S.A. (Dr. C. Kimmel)

Plenary discussion on the feasibility of national children’s studies in developing regions

Session D Towards collaborative research in CEH

Chair: Dr. R. Awang and Dr. D. Carpenter

13:30-15:00 hrs Break-out groups to address (tentative issues):

1. Identification of priority research areas and main needs in Asia
2. Roles of NGOs: interaction with researchers
3. How to set up research collaborative partnerships: types of collaboration, challenges and opportunities
4. Roles of international organizations and centres of excellence
5. First steps into collaboration
6. Promoting action at governmental levels and among governments
7. Establishing a CEH research network

15:00-16:00 hrs Break out groups on specific issues:
 A. Air pollution/asthma
 B. Arsenic, head, mercury, chromium
 C. Pesticides and POPs

16:30-17:30 hrs Report of break-out groups: observations and recommendations
Wednesday, 5 February 2003

Session E The way ahead: next steps

Chair: Dr. W. Suk and Dr. M. Ruchirawat

08:30-09:30 hrs Review and approval of recommendations made

09:30-10:30 hrs Plenary discussion and agreements on next steps (e.g. research networks, centres of excellence and centres “for action”, potential for international and intercountry twinning arrangements; how to establish a cooperation scheme; identifying funds for research on CEH, and other issues).

10:45-12:00 hrs (Session D to continue)

12:00-12:30 hrs Closing ceremony