Field evaluation of latex agglutination test for detecting urinary antigens in visceral leishmaniasis in Sudan

ABSTRACT A latex agglutination test to detect urinary antigens for visceral leishmaniasis (VL) was studied. In 204 patients with suspected VL, KAtex had a sensitivity of 95.2\% with good agreement with microscopy smears but poor agreement with 4 different serology tests. It was also positive in 2 confirmed VL cases co-infected with HIV. In all KAtex-positive confirmed cases actively followed up after treatment, the test became negative 1 month after completion of treatment. While KAtex had a specificity of 100\% in healthy endemic and non-endemic controls, the direct agglutination test (DAT) was positive in 14\% of the KAtex-negative healthy endemic controls. KAtex is a simple addition to the diagnostics of VL particularly at field level and as a complementary test for the diagnosis of VL in smear-negative cases with positive DAT results.

Evaluation sur le terrain du test d’agglutination au latex pour la détection des antigènes urinaires dans la leishmaniose viscérale au Soudan

RESUME Un test d’agglutination au latex pour la recherche des antigènes urinaires de la leishmaniose viscérale a fait l’objet d’une étude. Chez 204 patients avec suspicion de leishmaniose viscérale, le KAtex avait une sensibilité de 95.2\% concordant bien avec les frottis mais peu avec 4 tests sérologiques différents. Il était également positif dans 2 cas de leishmaniose viscérale confirmée co-infectées par le VIH. Dans tous les cas confirmés positifs au KAtex, suivis de près après traitement, le test est devenu négatif 1 mois après la fin du traitement. Si le KAtex avait une spécificité de 100\% chez les témoin sains de zones endémiques et non endémiques, le test d’agglutination directe était positif chez 14\% des témoin sains de zones endémiques, négatif au KAtex. KAtex est un simple supplément pour le diagnostic de la leishmaniose viscérale, en particulier sur le terrain, et un test complémentaire pour le diagnostic de la leishmaniose viscérale dans les cas à frottis négatif ayant des résultats positifs au test d’agglutination directe.

1Faculty of Medicine; 2Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan. 3Department of Public Health, Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium. 4Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
Introduction

Sudan is recognized as one of the most endemic areas for visceral leishmaniasis (VL) in the world. The disease poses a major health problem in many parts of the country, particularly in the eastern and southern states [1–5]. Accurate diagnosis and treatment remains the mainstay of intervention control measures. Early diagnosis of VL is of crucial importance, as a successful outcome depends on the initiation of prompt treatment.

While parasitology methods, which use direct demonstration or cultivation of the causative organism, remain the definitive laboratory diagnostic method for VL, serodiagnostic methods are needed to overcome the diagnostic difficulties experienced in some cases. In the past, many patients in Sudan died untreated in hospital, with the diagnosis of VL being made later at autopsy [6]. A variety of serological tests for the detection of anti-leishmania antibodies have been described, including indirect immunofluorescence (IFAT) [7], enzyme-linked immunosorbent assay (ELISA) [8,9], lateral flow using recombinant antigen (e.g. rK39 antigen dipstick) [10] and immunoblotting (western blotting) methods [11]. These assays are associated with a number of problems including the possible cross-reactivity with other pathogens and the high cost and/or need for sophisticated equipment. The direct agglutination test (DAT) [12,13] is a sensitive, specific and simple test but its main disadvantage is that, as with other serological tests, it cannot readily distinguish between active disease, sub-clinical infections or past infections [14]. This is a significant drawback to the use of the test in areas where infections are common, since seroconversion does not necessarily signify VL; in the majority of cases the infection remains asymptomatic and only an estimated 5%–20% of infections ever become clinically patent [15]. Thus, the initiation of treatment cannot be based on serological grounds alone and parasitological confirmation is not always possible in endemic areas. The use of an antigen detection test would fill this gap, if the test was highly specific and simple to use.

Tests for the detection of antigen would, in principle, provide a better means of diagnosis since the presence of antigen necessarily indicates an active infection and broadly correlates with parasite load. Although a number of papers have reported the existence of circulating antigens and immune complexes in VL [16–19], none of them has led to a useful antigen detection assay for VL. Since VL is a chronic infection, the detection of antigens in patient serum is complicated by the presence of high levels of antibodies, circulating immune complexes, serum amyloid, rheumatoid factors and autoantibodies. These problems could, theoretically, be avoided by detecting antigen in the urine [20–22]. Recently, a latex agglutination test, KAtex (Kalon Biological), has been described for the detection of urinary antigens in VL [23]. The test is simple, rapid, cheap and suitable for use in remote rural areas. It has recorded 100% specificity and 81.4% sensitivity in human urine samples, a figure comparable to parasitology results on bone-marrow aspirates [24]. In experimentally infected animals, urine antigens were detected as early as 1 week post-infection, and more importantly, the antigen levels started to decline very quickly after treatment.

In the light of these encouraging results, this study was undertaken to evaluate the performance of the KAtex test under field conditions in Sudan and to compare these results with those obtained by parasitology and serology techniques. In addition, the
ability of the test to detect asymptomatic pre-patent cases of VL and its prognostic potential were investigated.

Methods

Study area and subjects
The study was conducted in Gedaref state, eastern Sudan, in 3 VL diagnostic and treatment centres: Kassab and Um El-Khair centres in the Rahad river area, and Tabarakallah centre in the Atbara river area. The field study was implemented over 3 visits during the period April 2001 to February 2002.

The following study subjects presenting to the 3 centres were included in the study: all 204 new patients suspected with VL (i.e. with fever for 2 weeks or more plus splenomegaly and/or lymphadenopathy); 7 post-kala-azar dermal leishmaniasis (PKDL) cases identified on a clinical basis [25]; 10 patients who had completed their treatment and investigated for test-of-cure (i.e. by parasitology testing at the end of treatment); and 24 cured VL cases (i.e. with clinical cure and a negative test-of-cure) who reported for routine follow-up (within 3–6 months).

For the parasitology testing, lymph node aspiration was used to obtain samples for microscopy to confirm active disease in VL suspects and as a test-of-cure.

All confirmed VL cases (i.e. with positive lymph node smear and/or positive DAT result) were treated with generic sodium stibogluconate (Albert David Ltd, Calcutta, India); the regimen was an intramuscular dose of 20 mg/kg/day for 30 days. If the test-of-cure was negative at the end of treatment and if the patient recovered clinically then the patient was considered cured.

Confirmed VL cases with positive KA-tex were subjected to active follow-up for a period of 1 to 3 months after completion of treatment in order to evaluate the prognostic potential of KA-tex.

To investigate sub-clinical infection, blood samples were obtained from 58 healthy endemic controls (i.e. those living in the endemic area but with no past history of VL). They were recruited from the Rahad river area of Gedaref state by interview and clinical screening of household members for VL. In addition, 100 non-endemic healthy controls (i.e. subjects with negative past history of VL or history of travelling to VL endemic areas) were recruited from the blood bank at Khartoum Teaching Hospital and were studied together with the endemic controls to assess the specificity of the test.

To investigate cross-reaction with other diseases, a cohort of 16 subjects with confirmed active pulmonary tuberculosis (TB) (positive smear for acid-fast bacilli) and 20 subjects with malaria (positive blood film) were recruited to the study. The TB cases included 13 cases from a non-endemic area (Khartoum) plus 3 cases from the endemic area (Gedaref). They were recruited by clinical screening of the patients who presented with TB to El-Shab Hospital, Khartoum and Um-el Khair Centre in Gedaref. The malaria cases included 5 cases from Khartoum (non-endemic area) and 15 cases from Gedaref (endemic area). They were recruited by clinical screening of the patients who presented to the above-mentioned facilities for malaria.

To study co-infection, 95 individuals of the sample investigated for VL who agreed to it were tested for human immunodeficiency virus (HIV). Informed written consent was obtained from all patients agreeing to HIV testing.

Laboratory testing
Venous blood (5 cm3 from adults and 2 cm3 from children) was collected from VL sus-
Serum samples were separated by centrifugation and stored at –20 °C. In addition, finger prick blood spots were collected on filter papers (Whatman chromatography paper no. 3) from the healthy individuals in Um El-Khair village and stored at 4 °C. A urine sample (5–10 mL) was collected from all study subjects in 2 sterile containers: one was immediately used for field testing and the other one kept at –20 °C for subsequent testing.

The KA test kit (Kalon Biological, Aldershot, UK) containing latex beads coated with IgG anti-Leishmania antibodies was used. The test was performed according to Attar et al. [23]. Each urine sample was boiled for 5 minutes before testing and cooled at room temperature. Fifty µL of the prepared latex reagent was mixed with 50 µL of neat urine sample on a black glass slide (provided with the kit) and rotated and rocked consistently for 2 minutes in both clockwise and anticlockwise directions to ensure complete mixing. The degree of agglutination was recorded as:

-++++ Most of the latex agglutinated and moved to the edges.

+++ Reaction resembled chalk dust scattered onto surface.

++ Clear agglutinated particles against a background of granular latex.

+ Agglutination could just be noted compared with the negative control.

− No agglutination observed.

Only the first 3 grades of agglutination were regarded as positive.

For comparison with KA test, 4 different serological tests were used: DAT, IFAT, ELISA and immunoblotting.

DAT was performed on the sera of all patients who reported to the 3 centres according to Harith et al. [26], as well as on the eluates from filter paper serum samples from healthy endemic controls in Um El-Khair village.

The antigens for IFAT, ELISA and immunoblotting were prepared at the Laboratory of Immunology and Genetics of Parasitic Diseases, University of Marseille, France. Antigens were produced from a Leishmania strain isolated in Barbar village, Gedaref state, and characterized as L. donovani donovani by zymodeme analysis [27].

IFAT was performed according to the procedure of Edrissian et al. [28]. Results were considered positive if fluorescence was observed at a 1/50 dilution.

ELISA was carried out according to Mary et al. [29], using a leishmania lysate as coating antigen. The cut-off point for ELISA was determined by the mean + 2SD) of the absorbance for the control sera.

Immunoblotting was also carried out as described previously by Mary et al. [29]. The test was considered positive if antigen-14 and/or antigen-16 were recognized.

Screening for HIV was performed on stored and coded sera for the detection of specific antibodies to human immunodeficiency virus HIV-1 and HIV-2 using an ELISA kit (Novum, Dietzenbach, Germany). Confirmation of reactive samples was performed using 2 tests: a rapid test (HIV-SPOT Kit, Diagnostic Biotechnology, Bangkok, Thailand) and another ELISA (Vironostika HIV Uni-Form 11 plus 0, Organon Tecnica, Durham, USA). Only samples positive in the 3 tests were considered positive for HIV.

Data analysis

The data were entered into Epi-Info, version 6. The sensitivity and specificity of KA test were estimated by comparing it with parasitology results as the reference standard in the 2 × 2 contingency table. A pa-
tient with a positive lymph node aspirate was considered as a VL case. Agreement of the KATex result with that of other serological tests was assessed by Cohen's kappa coefficient, \(\kappa \). Interpretation of \(\kappa \) was made according to Landis and Koch \([30]\): 1.00–0.81 excellent, 0.80–0.61 good, 0.60–0.41 moderate, 0.40–0.21 weak, 0.20–0.00 negligible agreement.

Results

A total of 204 new VL suspects at Om El-Khair, Kassab and Tabarakallah treatment centres were studied. They included 137 (67.2%) males and 67 (32.8%) females, with ages ranging from 1 to 55 years (mean 19.4 ± SD 12.7).

The diagnosis was confirmed with a positive lymph node smear in 62 of the 180 patients (34.4%) on whom parasitological testing was performed (Table 1). KATex was positive in 43.6% (89/204), ELISA in 85.5%, IFAT in 90.4%, DAT in 96.1% and immunoblotting in 95.2% of the enrolled patients. KATex was positive in 59 of the 62 cases with positive smears (the gold standard), giving a sensitivity of 95.2%. The test was negative in all 58 endemic and 100 non-endemic controls indicating 100% specificity. The \(\kappa \) coefficient showed there was a good agreement between the results of KATex and those of parasitology testing \((P < 0.001)\). However, no significant agreement was observed with the various serological tests (Table 1).

<table>
<thead>
<tr>
<th>Diagnostic test</th>
<th>KATex No.</th>
<th>KATex Positive</th>
<th>KATex (\kappa)-value</th>
<th>SE</th>
<th>(P)-value</th>
<th>Concordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LN smear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>90</td>
<td>28</td>
<td>0.65</td>
<td>0.07</td>
<td>< 0.001</td>
<td>Good</td>
</tr>
<tr>
<td>Positive</td>
<td>3</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>7</td>
<td>1</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
<td>Negligible</td>
</tr>
<tr>
<td>Positive</td>
<td>108</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>14</td>
<td>4</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>Negligible</td>
</tr>
<tr>
<td>Positive</td>
<td>95</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>16</td>
<td>8</td>
<td>0.08</td>
<td>0.05</td>
<td>0.06</td>
<td>Negligible</td>
</tr>
<tr>
<td>Positive</td>
<td>70</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunoblotting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>6</td>
<td>2</td>
<td>0.04</td>
<td>0.03</td>
<td>0.12</td>
<td>Negligible</td>
</tr>
<tr>
<td>Positive</td>
<td>86</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LN = lymph node.
DAT = direct agglutination test.
IFAT = indirect immunofluorescence.
ELISA = enzyme-linked immunosorbent assay.
A cohort of 37 confirmed cases with a positive KAtex were actively followed-up for 1 month (19) and 3 months (18) after completion of their treatment. In all cases, KAtex became negative after 1 month and patients were considered clinically and parasitologically cured.

The results for the former VL cases are shown on Tables 2–4. In the 24 patients investigated after completion of their treatment (Table 2), KAtex was strongly positive (+++ or higher) in all the 5 cases who remained smear-positive when investigated for a test-of-cure. Most of the smear-negative patients (17/19) had a negative KAtex; only 2 were positive (with ++ and +++). Of the 10 ex-VL patients who reported for follow-up (Table 3), the test was positive (+) in only 2. All the 7 PKDL cases had negative KAtex except 1 patient with a strongly positive test (++++) in whom the LN smear was also positive (Table 4).

DAT was positive in 8 (13.8%) of the 58 KAtex negative healthy endemic controls in the Rahad river area. Seven samples had a titre of > 3200 and 1 sample had a titre of 1:3200. In addition, 2 samples had a borderline titre (1:1600).

In the Um El-Khair treatment centre (endemic area), KAtex was positive in 7 of 15 confirmed malaria cases; only 2 of these were parasitology-proven VL cases. On the other hand, KAtex was negative in all confirmed malaria cases (5) studied in Khartoum state (non-endemic area). The test was also negative in all confirmed TB cases (13 in the non-endemic and 3 in the endemic areas).

HIV infection was confirmed in 8 of the 95 VL suspects who agreed to be tested. The KAtex test was strongly positive in 3 of these 8 individuals; 2 of these were parasitology-confirmed VL cases.

Discussion

Clinicians are often faced with a diagnostic dilemma as the clinical features of VL include fever, lymphadenopathy, hepatosplenomegaly, weight loss and hypergammaglobulinaemia, features which are common to other co-endemic diseases. Therefore, the availability of a sensitive, non-invasive diagnostic method that can specifically identify VL early in the disease process is essential.

The sensitivity of the KAtex test in the present study (95.2%) was higher than that recorded by Attar et al. (80%) [23]. This may be explained by the fact that, in our study, the test was performed on fresh urine samples, while in the previous study samples had been stored for variable periods of time. The sensitivity was considerably higher than in a recent study performed by Rijal et al. in Nepal [31] and this may be due to the method of analysis, since they compared KAtex to microscopy on splenic aspirates which are more sensitive than lymph node biopsies. The poor agreement with other serological results in our study could in fact be explained if a considerable number of the smear-negative patients were true VL cases, and thus showed positive in the serology. In that case, our sensitivity figure for KAtex would be overestimated. On the other hand, the specificity of KAtex (100%) was in agreement with previous reports [23,31].

Cross-reactivity with urine samples from confirmed malaria and TB patients in Khartoum state was not observed. On the other hand, although the test was negative in Um El-Khair centre (in an endemic area) in the 3 confirmed TB cases with negative smears, it was positive in 5 of the 15 con-
confirmed malaria cases in whom the parasite (L. donovani) could not be identified by microscopy using lymph gland aspirates. Due to the low sensitivity of the lymph node smear compared with other parasitological methods [24], this finding would need to be further validated with more sensitive parasitological tests in order to rule

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age (years)</th>
<th>VL test results</th>
<th>HIV test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LN smear</td>
<td>DAT</td>
<td>KAtex</td>
</tr>
<tr>
<td>M</td>
<td>16</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>17</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M</td>
<td>32</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F</td>
<td>45</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F</td>
<td>40</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>20</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>23</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>M</td>
<td>28</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F</td>
<td>22</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>M</td>
<td>7</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>M</td>
<td>40</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>2</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>23</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>21</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>F</td>
<td>50</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>F</td>
<td>35</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>21</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>13</td>
<td>–</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Both + and – indicate a negative test.
*aThis patient had post-kala-azar dermal leishmaniasis (Table 4).
*bIsolate was obtained and typed by isoenzymes analysis.
LN = lymph node.
DAT = direct agglutination test.
ELISA = enzyme-linked immunosorbent assay.
IFAT = indirect immunofluorescence.
ND = not determined.
Table 3: Demographic, smear microscopy and serology findings of ex-visceral leishmaniasis (VL) cases who reported for follow-up (n = 10)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age (years)</th>
<th>LN smear</th>
<th>DAT</th>
<th>KAtex*</th>
<th>ELISA</th>
<th>IFAT</th>
<th>Immuno-smear blotting</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>19</td>
<td>–</td>
<td>+</td>
<td>++</td>
<td>–</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>M</td>
<td>13</td>
<td>–</td>
<td>ND</td>
<td>++</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>M</td>
<td>15</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>9</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>20</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>20</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>++</td>
<td>–</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>++</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>17</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>27</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Both + and – indicate a negative test.

LN = lymph node.
DAT = direct agglutination test.
ELISA = enzyme-linked immunosorbent assay.
IFAT = indirect immunofluorescence.
ND = not determined.

Table 4: Demographic, smear microscopy and serology findings of post-kala-azar dermal leishmaniasis cases (n = 7)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age (years)</th>
<th>LN smear</th>
<th>DAT</th>
<th>KAtex*</th>
<th>ELISA</th>
<th>IFAT</th>
<th>Immuno-smear blotting</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sup>b</sup></td>
<td>32</td>
<td>+</td>
<td>+</td>
<td>++++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>F</td>
<td>27</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>F</td>
<td>24</td>
<td>ND</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>F</td>
<td>29</td>
<td>ND</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>M</td>
<td>5</td>
<td>ND</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>M</td>
<td>5</td>
<td>ND</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td>ND</td>
<td>–</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

*Both + and – indicate a negative test.

^bThis patient was investigated for test of cure (Table 2).

LN = lymph node.
DAT = direct agglutination test.
ELISA = enzyme-linked immunosorbent assay.
IFAT = indirect immunofluorescence.
ND = not determined.
out or confirm the possibility of co-infection.

Our current results indicate that \textit{KA}tex was negative in all healthy endemic controls who reacted positively in the DAT in spite of the fact that they did not report any past history of VL. In view of these findings, it may be assumed that the test cannot detect pre-patent or sub-clinical infection, which contradicts earlier reports based on animal experimental studies [23]. Although this fact, if validated by further studies, limits its usefulness as an epidemiological tool, it emphasizes its diagnostic potential in VL-endemic areas where the inhabitants, including VL cases, develop humoral immune responses to \textit{L. donovani} infection, and the infection remains asymptomatic in the majority of cases [32]. Unfortunately, a firm conclusion could not be drawn from the present study, as the studied sample size was too small.

The longitudinal active follow-up for 1 and 3 months of treated confirmed VL cases showed that the test became negative in all the cases who had a positive test prior to treatment. In addition, the test was also negative in 8 of the 10 smear-negative ex-VL cases who reported to the centres for follow-up. Furthermore, of the 24 cases that have been studied for a test-of-cure, the test was strongly positive in all the 5 cases who were found to be smear-positive, and was negative in 17 of the 19 smear-negative cases, which suggests that \textit{KA}tex may be useful in the early detection of treatment failure. These findings are in accordance with previous reports by Attar et al. [23], who observed a rapid decline of antigen levels in the urine of experimentally infected animals at week 12, with the test becoming negative before the end of the course of treatment. Other workers recommended the use of a competitive ELISA [33] and rK39 recombinant antigen [34] for the prognostic evaluation of VL and the success of drug treatment. The question of how rapidly the \textit{KA}tex turns negative during the course of treatment of VL cases needs to be clarified.

An anti-leishmania serological response may not develop in immunocompromised patients with VL, including those with HIV infection. VL has emerged as an AIDS-associated opportunistic infection [35,36]. The rK39 dipstick test has shown promise both for the diagnosis and monitoring of patients with HIV infection and VL [37]. In this respect, \textit{KA}tex, being an antigen-based detection assay, would be expected to be a useful tool, but this needs to be clarified. Our data indicate that the test was positive in the 2 parasitology-confirmed cases co-infected with HIV infection. These preliminary results may predict the diagnostic potential of this test in this important emerging problem in the Sudan [38,39].

It is interesting to note that, with the exception of 1 smear-positive patient, the test was negative in all the 7 PKDL cases who had not been subjected to parasitological study in the treatment centres due to the absence of clinical features suggestive of VL. Furthermore, the test was also negative in all PKDL cases who had been detected in the epidemiological study. These findings may indicate that a positive result for \textit{KA}tex is not only associated with VL disease status, but is also related either to the visceralization of the parasite or to the parasite load.

The strong agreement between \textit{KA}tex and lymph node aspirate smear results indicates that, unlike DAT [14], the test may discriminate between active disease and infection (including sub-clinical and past infections). Thus, being a rapid test in addition to its specificity, \textit{KA}tex can be extremely useful for complementing DAT for the detection of the disease in the consider-
able number of cases for whom parasitological confirmation cannot be achieved, particularly when this depends on lymph gland aspiration, the least invasive but also the least sensitive procedure \cite{40}.

We conclude that KATex is a point-of-care test, which represents a useful addition to the diagnostic and therapeutic algorithms for VL, and is particularly well suited for use in field conditions. Further studies are recommended to evaluate the performance of the test in the diagnosis of HIV co-infected cases.

Acknowledgements

This investigation received technical and financial support from the joint WHO Eastern Mediterranean Region (EMRO), Division of Communicable Diseases (DCD) and the WHO Special Programme for Research and Training in Tropical Diseases (TDR): the EMRO/DCD/TDR Small Grants Scheme for Operational Research in Tropical and Communicable Diseases.

We would like to thank Mohammed Mahgoob, Hassan Nile, Kamal Mohammed for expert technical assistance. Our thanks are also due to Dr A. El-Harith for supply of the DAT antigen and to Professor A. Dessein and Dr C. Mary (Laboratory of Immunology and Genetics of Parasitic Diseases, INSERM UNIT 399, Faculty of Medicine, Marseille University, France) for their help in antigen preparation for IFAT, ELISA and WB. The cooperation of MSF Holland and the Ministry of Health (Gedaref state) are gratefully acknowledged. We would also like to express our gratitude to Ms Magboula Abbaker for skilful secretarial assistance.

References

9. El-Safi SA, Evans DA. A comparison of the direct agglutination test and enzyme-
linked immunosorbent assay in the sero-

11. Al-Assad et al. The significance of blood levels of IgM, IgA, IgG and IgG sub classes in Sudanese visceral leishma-
niasis. Clinical and experimental immu-

12. El-Harith A et al. A simple and economi-
cal direct agglutination test for serodiagnos-

13. El-Harith A et al. Improvement of a direct
agglutination test for field studies of vis-
ceral leishmaniasis. Journal of clinical

14. Zijlstra E et al. Direct agglutination test
for diagnosis and sero-epidemiological
survey of kala-azar in the Sudan. Trans-

15. Hommel M. Visceral leishmaniasis: biol-

16. Sehgal S, Aikat BK, Pathania AGS. Im-
mune complexes in Indian kala-azar. Bulletin of the World Health Organiza-

17. Galvao-Castro B et al. Polyclonal B cell
avtivation, circulating immune com-

18. Azazy AA, Devaney E, Chance ML. A PEG-ELISA for the detection of Leishma-
nia donovani antigen in circulating im-

20. Kohanteb J, Ardehali SM, Rezai HR. De-
tection of Leishmania donovani soluble antigen and antibody in the urine of vis-
ceral leishmaniasis patients. Transac-

22. Urnovitz HB et al. Urine-based diagnostic technologies. Trends in biotechnol-

23. Attar ZJ et al. Latex agglutination test for the detection of urinary antigens in vis-

25. Zijlstra EE, El-Hassan AM, Ismael A. En-
demic kala-azar in Eastern Sudan: post kala-azar dermal leishmaniasis. Ameri-

26. El-Harith A et al. Evaluation of cleaving agents other than trypsin in DAT for fur-
ter improving diagnosis of visceral

