Prevalence and risk indicators of myopia among schoolchildren in Amman, Jordan

Y.S. Khader,1 W.Q. Batayha,2 S.M.I. Abdul-Aziz3 and M.I. Al-Shiekh-Khalil3

1Department of Community Medicine, Public Health and Family Medicine; 2Faculty of Medicine/Jordan University of Science & Technology, Irbid, Jordan (Correspondence to Y.S. Khader: yousef.k@excite.com).

Received: 12/10/04; accepted: 09/01/05

ABSTRACT We aimed to identify the prevalence and risk factors of myopia among secondary-school students in Amman. Thus 1777 (1081 males and 696 females) students aged 12–17 years old were recruited from 8 schools randomly selected from 8 different geographic locations in Amman. Data were collected by questionnaire, and self-reported myopia was checked against school medical records. The prevalence of myopia was 17.6%, with no significant difference between males and females after adjusting for other possible variables. Myopia was significantly associated with age, family history of myopia, computer use, and reading and writing outside school. Playing sports was inversely associated with myopia but there was no association with watching television.

Prévalence et indicateurs de risque de la myopie chez des collégiens à Amman (Jordanie)

RÉSUMÉ Notre objectif était d’identifier la prévalence de la myopie et les facteurs de risque chez des élèves du secondaire à Amman. Ainsi, 1777 élèves (1081 garçons et 696 filles) âgés de 12 à 17 ans ont été recrutés dans 8 écoles choisies au hasard dans 8 lieux géographiques différents à Amman. Des données ont été recueillies par questionnaire et la myopie déclarée a été vérifiée par rapport aux dossiers médicaux scolaires. La prévalence de la myopie était de 17.6%, sans différence significative entre les garçons et les filles après ajustement en fonction d’autres variables possibles. La myopie était significativement associée à l’âge, aux antécédents familiaux de myopie, à l’utilisation d’un ordinateur, et à la lecture et l’écriture en dehors du cadre scolaire. Pratiquer un sport était inversement associé avec la myopie mais regarder la télévision n’était pas un facteur associé.

References

1Department of Community Medicine, Public Health and Family Medicine; 2Faculty of Medicine/Jordan University of Science & Technology, Irbid, Jordan (Correspondence to Y.S. Khader: yousef.k@excite.com).

Received: 12/10/04; accepted: 09/01/05
Introduction

Myopia is the most common eye disorder in the world. High myopia (> –6 diopters) may be associated with glaucoma, cataract, retinal degeneration and myopic macular degeneration [1].

Several studies worldwide have shown that the prevalence of myopia varies considerably from one geographic area to another and that the prevalence has been increasing over that past few decades [2]. It is reported to be high (up to 80%) in the student population in Asia [2]. In a national survey of children in Taiwan, Lin et al. reported the prevalence of myopia to be over 70% [3].

Considerable research has been done to determine the risk factors of myopia [4–17]. The results of these investigations support both genetic and environmental components. Physiological myopia is thought to be a multifactorial condition with both genetic and environmental factors [4]. Twin studies and segregation analysis studies have indicated that myopia is hereditary [5]. On the environmental front, near work is the most commonly implicated environmental factor, both by animal studies in monkeys [6–8] as well as by epidemiological studies [9]. Other possible risk factors include age, sex, education, occupation, intelligence, high socioeconomic status and decreased outdoor activities [10–16].

Studies on eye diseases in Jordanian schoolchildren are rare and there are few data on myopia [18]. Therefore, this study was conducted to identify the prevalence and risk factors of myopia among secondary-school students in Amman in order to provide baseline information on this condition for health care organizations.

Methods

This was a cross-sectional study of schoolchildren aged 12–17 years attending secondary schools in Amman city. There are a total of 770 schools in Amman with a total of 240,634 students. We divided Amman into 8 geographic locations of approximately the same size of student population and 1 school from each location was selected by simple random sampling. Two of these schools were private and the other 6 were public schools. All children (1931) between 12 and 17 years of age in the 8 selected schools were asked for their and their parents’ permission to participate in this study. A total of 1777 (92%) of the children agreed to participate: 1081 males and 696 females.

A questionnaire was constructed with the help of 2 ophthalmologists and was pilot tested with 75 children. The questionnaire was modified accordingly and given to all students by trained members of the research team who explained the purpose of this study and how to complete the questionnaire properly. The students were asked to fill the questionnaire at home in the presence and with the help of one of their parents. Participants were followed up to ensure return of the questionnaire. The section of the questionnaire concerning self-reported myopia and other eye problems was rechecked from the school medical records which contain a yearly updated eye test. Myopia was defined as spherical error of at least –0.50 diopters. Information on age, sex, socioeconomic status and family history of myopia was obtained. Near-work activity (visual task performed at a near distance) was measured by questions on the amount of time in hours per day spent on near-work.
activity outside school on weekdays and weekends. Individual near-work activity tasks included reading and writing, watching television and working on the computer. Information about physical exercises was also collected.

Descriptive statistics, univariate analysis using the chi-squared test for categorical variables and independent t-test for continuous variables, and binary logistic regression were performed using SPSS, version 11.0. A P-value < 0.05 was considered statistically significance.

Results
Table 1 shows the demographic characteristics and family history of myopia of the 1777 children (60.8% males and 39.2% females). About 8.6% of children were 12 years old, 19.2% were 13 years old, 21.9% were 14 years old, 18.6% were 15 years old, 23.4% were 16 years old, and 8.3% were 17 years old. A total of 54.6% of children had a family history of myopia.

Overall, there were 313 (17.6%) children with myopia. The prevalence of myopia was significantly higher in females (20.3%) compared to males (15.9%) (P = 0.019). Myopia was also significantly related to age. The prevalence was lowest for the youngest age group (7.8%) and increased until it reached 20.6% for 14-year-old children. After this age, the prevalence decreased gradually. The prevalence among children varied according to the family history based on who was af-

Table 1 Demographic characteristics, family history of myopia, and the prevalence of myopia among schoolchildren aged 12 to 17 years old in Amman, Jordan

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. examined</th>
<th>Children with myopia</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1081</td>
<td>172</td>
<td>0.019</td>
</tr>
<tr>
<td>Female</td>
<td>696</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>12</td>
<td>154</td>
<td>12</td>
<td>7.8</td>
</tr>
<tr>
<td>13</td>
<td>340</td>
<td>42</td>
<td>12.4</td>
</tr>
<tr>
<td>14</td>
<td>388</td>
<td>80</td>
<td>20.6</td>
</tr>
<tr>
<td>15</td>
<td>331</td>
<td>67</td>
<td>20.2</td>
</tr>
<tr>
<td>16</td>
<td>415</td>
<td>83</td>
<td>20.0</td>
</tr>
<tr>
<td>17</td>
<td>147</td>
<td>29</td>
<td>19.7</td>
</tr>
<tr>
<td>Family history of myopia</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>No family history</td>
<td>807</td>
<td>70</td>
<td>8.7</td>
</tr>
<tr>
<td>1 myopic parent only</td>
<td>277</td>
<td>50</td>
<td>18.1</td>
</tr>
<tr>
<td>2 myopic parents only</td>
<td>66</td>
<td>16</td>
<td>24.2</td>
</tr>
<tr>
<td>1 myopic parent with at least 1 myopic sibling</td>
<td>516</td>
<td>129</td>
<td>25.0</td>
</tr>
<tr>
<td>2 myopic parents with at least 1 myopic sibling</td>
<td>111</td>
<td>48</td>
<td>43.2</td>
</tr>
</tbody>
</table>

*The ages of 2 participants were missing.
lected and the number of persons affected in the family. The prevalence was 8.7% for those who had no family history, and was highest for those with 2 myopic parents and with at least 1 myopic sibling (43.2%).

<table>
<thead>
<tr>
<th>Activity</th>
<th>No myopia (n = 1464)</th>
<th>Myopia (n = 313)</th>
<th>t-test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Watching television</td>
<td>1.80</td>
<td>0.79</td>
<td>1.71</td>
<td>0.48</td>
</tr>
<tr>
<td>Playing sports</td>
<td>4.04</td>
<td>2.82</td>
<td>1.87</td>
<td>2.33</td>
</tr>
<tr>
<td>Reading and writing</td>
<td>2.54</td>
<td>1.45</td>
<td>3.07</td>
<td>1.53</td>
</tr>
<tr>
<td>Using the computer</td>
<td>0.69</td>
<td>0.64</td>
<td>0.95</td>
<td>0.46</td>
</tr>
</tbody>
</table>

SD = standard deviation.

With regard to the activities outside school, myopic and non-myopic children differed in the time they spent on these activities (Table 2). Myopic children spent significantly more time reading and writing outside school and in computer work compared with non-myopic children. Although myopic children spent less time watching television (1.7 hours per day) compared to non-myopic children (1.8 hours per day), this difference was not significant. On the other hand, myopic children spent significantly less time (1.87 hours per day) playing sports compared to non-myopic children (4.04 hours per day).

In the binary logistic regression analysis, the variables that were significantly associated with having myopia were age, family history, computer work, playing sports and reading/writing at home (Table 3). The odds of having myopia increased by 16% and 24% for each additional 1 hour spent on computer work and writing/reading outside of school respectively. While watching television was not significantly associated with myopia, playing sports was negatively associated with myopia.

Discussion

The occurrence of myopia varies in different countries as well as different localities [19,20]. The prevalence of myopia among school-
children in Amman in our study was 17.6%. The prevalence was significantly higher in females than males but this difference was no longer significant after adjusting for other possible variables. The prevalence of myopia was significantly associated with age, being the lowest in the youngest age group. Children with a family history of myopia were more likely to have myopia. With regard to activities outside of school, myopic children spent significantly more time in computer work and reading and writing and less time in sports activities. These relationships remained significant even after controlling for possible confounders. On the other hand, hours spent watching television were not associated with myopia.

The prevalence of myopia in the 12-year-olds in our study (7.8%) was slightly higher than that in Oman for the same age group (5.16%) [21]. Our results are consistent with previous epidemiological studies and support the evidence of the near-work hypothesis [16,22]. The association between daily hours spent on reading and writing outside school and myopia was consistent with results obtained from other cross-sectional and case–control studies [8,16,19–23].

The association we found between myopia and number of parents with myopia contradicts the results of a cross-sectional study of myopia in kindergarten children in Singapore [24], while it supports the results of another study that indicated that there is a familial component in myopia [5].

As our study was limited to data from 8 schools it may not be possible to generalize the results to the whole Jordanian population. Prospective longitudinal studies are needed to establish a causal relationship between near work and myopia in this age group. Similar measurements taken at birth to establish if such a state is congenital may provide further insight into the inheritance of myopia. Future studies should involve large sample sizes and long follow-up periods.

References

